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Abstract: The radiation captured in spectral imaging depends on both the complex light–matter
interaction and the integration of the radiant light by the imaging system. In order to obtain material-
specific information, it is important to define and invert an imaging process that takes into account
both aspects. In this article, we investigate the use of several mixing models and evaluate their
performances in the study of oil paintings. We propose an evaluation protocol, based on different
features, i.e., spectral reconstruction, pigment mapping, and concentration estimation, which allows
investigating the different properties of those mixing models in the context of spectral imaging. We
conduct our experiment on oil-painted mockup samples of mixtures and show that models based on
subtractive mixing perform the best for those materials.

Keywords: spectral imaging; imaging models; spectral unmixing; pigment mapping

1. Introduction

In the past decades, many research bodies have specialised in the field of spectral
imaging, an acquisition technique that allows the pixel-wise evaluation of the radiance
spectrum of a scene. Depending on the number of spectral channels or the spectrum
interval spanned, the technique is referred to as Multispectral (MSI) or Hyperspectral
Imaging (HSI).

Remote sensing has been one of the first research areas that exploited HSI, with
applications aimed in the fields of agriculture [1], military [2], and mineralogy [3]. Spectral
Unmixing (SU) is one of the most studied applications within remote sensing [4], since it
allows the identification and mapping of specific materials, denominated endmembers, by
decomposing a spectrum into fundamentals, according to a pre-determined imaging model.

To have material-specific endmembers, the effect of the illumination is discarded by
calibration, and the wavelength-dependent spectra of reflectance factors ρ(λ) are treated.
Each endmember is assumed to be present in a specific mixture with a relative concentration
α. The concentrations related to the q possible endmembers of a scene are grouped in the
concentration vector C =

(
α1, α2, ..., αq

)T , which is subject to two physical constraints: the
non-negativity constraint (NC) αi ≥ 0, ∀i ∈ {1, ..., q}, and the sum-to-one constraint (SC)
∑

q
i=1 αi = 1. In several applications, to grant a certain degree of flexibility to the algorithms,

the two constraints (particularly SC) can be relaxed to allow a margin of tolerance. SU
eventually boils down to an optimisation problem, where the spectral library E (provided
or extracted from the scene) is used to decompose a target spectrum Y into q components
and their relative element of the concentration vector C:
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Y[N×1] = f
(

E[N×q], C[q×1]

)
(1)

in which N represents the number of spectral bands.
In remote sensing, the linear model (Equation (2)) has been extensively used to perform

SU [5–7].

Y(λ) =
q

∑
i=1

ρi(λ) αi (2)

The rationale behind this choice resides in the fact that satellite images are limited
in optical resolution and the surface on earth represented by a pixel can be a few meters
to several dozen meters. Two materials that are physically separated on the ground-level
may end up being represented in the same pixel, at the camera level. In this instance, the
linear model is a fair approximation since the amount of light incoming from a material is
proportional to the sensor surface that the material itself covers. The state of the art on SU
comprehends linear and non-linear approaches, as well as supervised and unsupervised
methods. For an exhaustive review on the topic of SU, refer to [4].

Over the recent years, several research lines such as the food industry [8–10], medical
imaging [11], biology [12], and cultural heritage [13–17], have started to exploit spectral
imaging for close-range applications. Contrarily to remote sensing, when spectral imaging
is applied to targets found in close-range with respect to the camera sensor, it is safe to
assume that the optical resolution of the system is powerful enough to discern physically
separated objects. Therefore, in this context, the usage of the linear model to perform
spectral unmixing might be a too coarse approximation, and non-linear models should
be preferred.

In the context of Cultural Heritage (CH), the optical mixing problem can be intuitively
extended to the mixing of pigments in artworks. HSI is a well-appreciated technique in
the field of conservation science, since it enables the study of CH artefacts in a way that
is non-invasive and non-destructive, features that are imposed by the ethical guidelines
issued by the CH community. HSI can be adopted to perform monitoring of artefacts [18],
pigment mapping [19], forgery detection [20], and rejuvenation of paintings [21].

Pigment mapping (PM) in its standard form allows the spatial identification of pig-
ments across the surface of a painting, resulting in binary maps. Moving a step forward,
with the application of SU, it is possible to retrieve abundance maps, as gray-level images
for example, considering the spectral signatures of the pure pigments as endmembers in
the unmixing problem. Examples of recent works on PM have seen the inversion of the
linear model, to map the pigments of Edvard Munch’s The Scream [19,22], and to perform
pigment identification [23] using the sparse SUnSAL approach [24]. Recently, PM has been
tackled with Deep Learning approaches as well [25–27]. Those mentioned works, however,
focus on improving the performances of the application, rather than on the imaging model
that generated the data. Thus, the aim of this study is not to compare against the literature
in terms of pigment detection accuracy, but rather the investigation of the role of the
imaging models.

In the present study, mockup samples of mixtures in various concentration ratios
were realised using seven commercially available pigments that mimic a possible palette of
the Renaissance period, and then acquired with an HSI setup. Seven mixing models are
selected and adapted from the literature to assess their properties through an evaluation
protocol composed of three steps. The first stage involves the forward-feeding of the
models with all the information contained in the ground truth of the mockup samples, to
evaluate the spectral accuracy of the outputs. In the two following steps, the models are
inverted in two SU tasks that differ in the amount of prior information provided regarding
the ground truth, with the aim of evaluating the ability of each model in identifying and
estimating correctly the pigments and their relative concentrations.

The models are selected based on criteria that aimed to describe specific underlying
imaging configurations, with the goal of comparing them through the proposed evaluation
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protocol. In the particular instance of the investigated imaging models, the results show
that models having a subtractive nature are more accurate under several standpoints:
spectral reconstruction, accuracy in pigment identification, and precision in determining
the relative abundances. A validation test of pigment mapping is run on a mockup painting
realised with the same set of pigments, confirming the observation made on the dataset of
mixture samples.

We have investigated the models on a preliminary mockups set [28], and applied the
best model to the mockup painting of this work [29]. The present article strengthens and
refines our preliminary observations.

The remainder of this paper is organised as follows: Section 2 introduces the investi-
gated imaging models and provides detailed descriptions of the experimental setup and
the methodologies adopted, while Section 3 shows the results, and Section 4 includes a few
concluding remarks and future work.

2. Materials and Methods
2.1. Imaging Models

Equation (1) shows that an imaging model combines the reflectance factors of the
endmembers, with their relative concentrations. In this perspective, we consider three
possible cases on how the pigments (or endmembers in general) might be mixed when
represented as an individual pixel. Figure 1 schematically reports such configurations,
which can be smoothly applied to the case of pigment mixing and lead us to propose the
use of specific mixing models.
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Figure 1. Three possible configurations of pigment mixing. (a): Optical blending occurs when two
materials are physically separated but mixed at the camera level. (b): A layered structure assumes
that light is transmitted and reflected according to the properties of the different layers. (c): In the
intimate mixing the components are not physically discernible.

Optical blending (Figure 1a) occurs when the paints are physically separated on
the canvas, but due to the lack of spatial resolution by the acquisition system, they are
eventually represented with a single pixel value. An artistic example can be found in
Pointillism, in which many dots of different paints are applied on the canvas to produce
the perception of a uniform colour [30].

In a speculative layered structure, pigments are applied one over the other (Figure 1b).
Having multiple pictorial layers is not an unusual instance: often artists covered their penti-
menti with more details, but also adopted the fat over lean technique, applying first the layers
with lower oil content, and the fatter layers once the previous ones have dried out [31].
Technically, pigments float in the binding material (linseed oil, egg tempera, acrylic, etc.)
creating a suspension [32] in which the different powder particles are scattered across the
volume. Therefore, the pigment powder should be separable from the binder. However, the
considered scale is observable only with advanced microscopic instrumentation, and for
this reason, the mixture of pigments can be considered intimate [33] (Figure 1c), borrowing

Figure 1. Three possible configurations of pigment mixing. (a): Optical blending occurs when two
materials are physically separated but mixed at the camera level. (b): A layered structure assumes
that light is transmitted and reflected according to the properties of the different layers. (c): In the
intimate mixing the components are not physically discernible.

Optical blending (Figure 1a) occurs when the paints are physically separated on
the canvas, but due to the lack of spatial resolution by the acquisition system, they are
eventually represented with a single pixel value. An artistic example can be found in
Pointillism, in which many dots of different paints are applied on the canvas to produce
the perception of a uniform colour [30].

In a speculative layered structure, pigments are applied one over the other (Figure 1b).
Having multiple pictorial layers is not an unusual instance: often artists covered their penti-
menti with more details, but also adopted the fat over lean technique, applying first the layers
with lower oil content, and the fatter layers once the previous ones have dried out [31].
Technically, pigments float in the binding material (linseed oil, egg tempera, acrylic, etc.)
creating a suspension [32] in which the different powder particles are scattered across the
volume. Therefore, the pigment powder should be separable from the binder. However, the
considered scale is observable only with advanced microscopic instrumentation, and for
this reason, the mixture of pigments can be considered intimate [33] (Figure 1c), borrowing
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the terminology from the remote sensing community. In the technique called alla prima
(literally, on the first attempt), different pigment powders are blended and applied onto
the canvas [32]. In the next paragraphs, these mixing configurations are associated with
imaging models, explaining the rationale behind each choice.

The selected imaging models are labelled with the notation Mx, and their equations
are reported at the end of the section in Table 1 grouped into 3 categories: additive (A),
subtractive (S), and hybrid (H). To ease the reading, the notation related to the wavelength-
dependency has been dropped. All models are assumed to strictly comply with the non-
negativity and sum-to-one constraints. All models assume diffuse reflections and do not
handle specularities nor Bidirectional Reflectance Distribution Functions (BRDF) [34].

Table 1. Proposed imaging models divided into three main categories: additive (A), subtractive (S),
and hybrid (H). The models M4 and M5 are indeed hybrid but have strong additive and subtractive
tendencies, respectively.

Label Name Equation Category

M1 Additive Y = ∑
q
i=1 ρiαi A

M2 Subtractive Y = ∏
q
i=1 ρ

αi
i S

M3 Yule-Nielsen Y =
(

∑
q
i=1 αiρ

τ
i

) 1
τ H

M4 Additive-Subtractive Y = τ ∑
q
i=1 αiρi + (1− τ)∏

q
i=1 ρ

αi
i H/A

M5 Subtractive-Additive Y =
(

∑
q
i=1 αiρ

τ
i

)(
∏

q
i=1 ρ

αi(1−τ)
i

)
H/S

M6 LIP additive Y = 1−∏
q
i=1(1− ρi)

αi A

M7 LIP subtractive Y = 1− exp
[
−∏

q
i=1[−log(1− ρi)]

αi
]

S

The linear model (Equation (2)) is considered and labelled as M1. To oppose it, the
subtractive model based on the weighted geometric mean [35] is considered and labelled
with the notation M2. Given its non-linearity, this model is selected to represent the instance
of intimate mixing displayed in Figure 1c. Three hybrid models defined between M1 and
M2 are selected in this work: the Yule–Nielsen model (M3) [36], which was originally
proposed to study halftoned colours in printing, the Additive-Subtractive model (M4) [37],
and the Subtractive-Additive model (M5) [37]. All three hybrid models are modulated by
the mixing constant τ ∈ [0, 1], which determines the weight of one model or the other on
the output, as the models approach M1 and M2, when τ is set to 1 and 0 (asymptotically
for M3), respectively. The underlying physical model is well described in [37], and it is
represented as a combination of layers and adjacent areas containing different endmembers.

The layered configuration displayed in Figure 1b has been historically modelled by
the Kubelka–Munk theory [38,39]. However, there exists a framework in digital image
processing that aims to achieve meaningful image reproduction considering images as
transmission filters. The Logarithmic Image Processing (LIP) framework [40] transforms
the standard operators of addition, subtraction, multiplication, and power to better mimic
the human visual system, following the Weber–Fechner law of brightness perception [41].
LIP can be exploited to draw parallelism to the layered structure of pictorial layers applied
onto the canvas. Furthermore, another parallelism can be made by observing the fact
that both reflectance spectra and images in LIP must comply with an upper bound limit
at a value µ, which is for example 255 for 8-bit images, and 1 for reflectance factors (if
fluorescence effects are neglected). By utilising the set of rules provided by LIP, the linear
and subtractive models M1 and M2, are transformed into the models labelled as M6 and
M7, respectively. It is worth mentioning that the LIP addition operation features the
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commutative property, so the order of the layers does not matter. The same cannot be said
for consecutive pictorial layers, as it is possible to assume that the outer layers play a more
significant role in the perception of the resulting colour. Nevertheless, the LIP framework
is considered an appropriate approximation of the layered configuration.

We decided to not include in our study models that explicitly solve the radiative
transfer equation, although some might be very relevant for future work, for example,
the Kubelka–Munk or the four flux [42] models. One very practical reason for that is
the need of measuring the scattering and absorption coefficient of the endmembers. This
would be feasible [43], but fairly cumbersome, and we had not the possibility to do that
in our study. Other reasons to not use those models are related to the several conditions
of applicability [44] and the assumptions that need to be verified (semi-infinite or infinite
material, distribution of pigments in the binding material, number of layers, etc.). Although
some of those hypotheses are certainly assumed implicitly in the models we studied, we
do not need to verify them according to the fact that the models are directly embedded
into the imaging process.

2.2. Mockup Samples Realisation and Imaging Setup

Mockup samples of mixtures were realised using seven pigments manufactured by
Kremer [45], composing a palette relevant to oil painting in the Renaissance period (Table 2).
The pigment Kremer White was chosen to replace Lead White, which was commonly used
in the past but is not sold nowadays due to its high toxicity.

Table 2. Pigments included in the set of mockups. The codes refer to the serial number assigned by
the manufacturer. The labels identify the pigments and are arbitrarily assigned to better understand
the results when the mockup painting is analysed.

Name Code Label

Kremer White 46360 W
Ultramarine Blue 45030 B

Naples Yellow 43125 Y
Carmine 23403 C

Vermilion 42000 V
Viridian Green 44250 G
Gold Ochre DD 40214 O

Pre-primed stretched canvases made of linen of size 35× 27 cm are used as supports.
Although the canvases are sold already primed, an ulterior layer of gesso in acrylic base is
applied to facilitate the adhesion of the pictorial layer. To compose the mockups, only the
mixtures including up to 3 pigments are considered, since in traditional oil painting this is
usually the ceiling number of pigments per mixture [46]. Mixtures including two pigments
are performed for all combinations of the seven endmembers in concentration ratios of 1 :1
and 2 :1. When mixtures of three pigments are considered, all the combinations of ratios
2 :1 :1 are realised. A total of 175 mixtures has been performed (Figure 2).

To obtain a faithful ground truth of concentrations, the pigments in powder form are
weighed on a precision scale with 0.005 g sensitivity. This means that the concentrations
refer to relative proportions of masses and not volumes, indeed the pigments are bound to
linseed oil at a later stage. The mockup samples are named after the pigments that compose
the mixture, considering the information regarding the relative concentration ratios as well.
Using the labels contained in Table 2, a mixture can be named in the following ways:

• X, endmember, 100% of that pigment,
• XY, ratio 1 :1 between the 2 pigments,
• Xy, ratio 2 :1, with X being the most concentrated,
• Xyz, ratio 2 :1 :1, with X being the most concentrated.
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Each sample patch has a size of 2× 2 cm, a comfortable dimension to paint without
wasting pigments, and at the same time a size that allows having a high enough number of
pixels in the final spectral cube, as the next paragraphs will show.

As a validation test, a homemade mockup painting was realised for the occasion,
using the same set of pigments (Figure 3).

Figure 2. Set of mockup samples realised for the experiment. The 175 painted patches are ordered
according to a script, not considering perceptual similarities. Reproduced from [29] with permission
from the International Colour Association (AIC).

Figure 3. Mockup painting realised with the same set of pigments used for the composition of the
mixture samples. Reproduced from [47] with permission from the AIC.

Hyperspectral images of the objects prepared for this research were captured using a
push broom hyperspectral camera HySpex VNIR-1800 produced by Norsko Elektro Optikk.
This line scanner uses a diffraction grating and results in generating 186 images across the
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electromagnetic spectrum, from 400 to 1000 nm, with a spectral sampling of 3.26 nm. The
focus of the optics was set to 30 cm, with a 17° field of view and 1800 pixels per line, which
allows obtaining a pixel resolution of approximately 50µm. Considering the 2× 2 cm
size of a mixture patch, this resolution yields approximately 160,000 pixels per sample.
The objects were illuminated by a halogen Smart Light 3900e produced by Illumination
Technologies, guided on the scene via fibre optics, projecting lights at 45° with respect to
the camera (Figure 4). At each acquisition, a Spectralon ® calibration target with a known
wavelength-dependent reflectance factor was included in the scene. The target served
to estimate the light source spectrum and to compute the reflectance at the pixel level.
The HyspexRAD software was deployed to perform radiometric correction [48]. Flat field
correction was performed to correct the spatial non-uniformities of the illumination field.
Due to noise present at both ends of the spectrum, the first 10 and last 10 spectral bands are
omitted from the data, therefore leaving spectra with 166 data points. The reflectance factor
of each patch was obtained by averaging over a manually cropped area. Post-processing of
hyperspectral images and the analysis presented in the following sections are conducted
using MATLAB (The MathWorks Inc., Natick, MA, USA).

Figure 4. Hyperspectral image acquisition setup. The light sources are placed at 45°, while the
camera is at 0°. This allows avoiding specular reflection and shadows. In the push broom setup,
the translator stage slides across the field of view of the camera at a speed synchronised with the
integration time of the camera.

2.3. Spectral Unmixing Method

To perform SU, the Nelder–Mead optimisation method for non-linear constrained
functions [49] is adopted. The array of concentrations Ĉ, subject to NC and SC constraints,
is retrieved by optimising an objective function based on the Mean Square Error (MSE)
between two spectra:

MSE
(
Y, Ŷ

)
=

N

∑
j=1

(
Yj − Ŷj

)2

N
(3)

in which Ŷ is the estimated spectrum obtained combining the spectral library of pure
pigments and the estimated concentration vector Ĉ, according to the evaluated imaging
model f :

Ŷ[N×1] = f
(

E[N×q], Ĉ[q×1]

)
(4)



Sensors 2021, 21, 2471 8 of 16

The optimisation problem to solve is therefore:

argmin

∑N
j=1

[
Yj − f

(
Ej,
(
α1, ..., αq

)T
)]2

N


s.t αi ≥ 0, ∀i ∈ {1, ..., q} and

q

∑
i=1

αi = 1

(5)

Minimising MSE means maximising the spectral similarity between the ground truth
measurement and its reconstruction. However, spectral accuracy does not lead to a com-
plete evaluation of an imaging model in the context of pigment identification. Indeed, the
accuracy from the concentration standpoint is as, if not more, valuable.

We propose to use a concentration error ∆α that can be computed as the Euclidean
distance between the ground truth concentration vector C and its estimation Ĉ. The MSE
and ∆α can then be combined to yield a score w that considers both spectral and concentra-
tion accuracies. In Equation (6) both terms are scaled by their maximum possible value: 1
for MSE, and

√
2 for ∆α (bearing in mind the compliance with SC and NC).

w = MSE
(
Y, Ŷ

)
+

∆α√
2

(6)

As w takes on smaller values, the unmixing is considered more successful. In this
way, instances reporting low MSE values and high concentration errors can be penalised in
favour of instances with slightly higher MSE values but better accuracy in detecting the
correct pigments.

2.4. Evaluation Protocol

The steps taken to evaluate the features of the imaging models are summarised in
Figure 5.

Mockup 
samples

realization

HSI capture

Reflectance 
factors 

estimation

Prediction

Model 
Expectation 

Test

Spectral 
Unmixing

Concentration 
estimation

Pigment 
identification

Spectral 
accuracy

Imaging model

Figure 5. Experimental flow chart. The mockup samples are realised and acquired in a Hyperspectral
Imaging (HSI) setup, then the reflectance factors of the patches are estimated (Section 2.2). Each
imaging model is evaluated individually. Different features of the imaging models can be observed,
depending on the task performed: the model expectation test allows to evaluate the spectral accuracy;
the prediction task investigates spectral accuracy and concentration estimation, whereas spectral
unmixing comprehends spectral accuracy, concentration estimation, and pigment identification.

Using the spectral measurements and the information contained in the ground truth
of the dataset, three tasks were performed to evaluate the properties of the seven imaging
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models. For all the described tasks, the mixing constant τ of the hybrid models is arbitrarily
set to 0.5.

1. Model expectation test. For each mixture sample, the models produce spectra us-
ing the ground truth concentration vector. This test is used to explore the forward
performances of the models and their spectral accuracy.

2. Prediction task. In this inversion test, only the information of the pigments included
in a mixture is used. All models are inverted in a facilitated unmixing, as the spec-
tral library is pruned down to contain only those pigments. The concentrations are
retrieved through the optimisation algorithm, and the spectral reconstruction and
the concentration vector are evaluated, via the proposed score w. With this task, it
is possible to evaluate the ability of each model to retrieve accurate concentrations,
given that they are not allowed to select endmembers absent in the mixture, while at
the same time keeping a good degree of spectral reconstruction.

3. Unmixing. In this instance no prior information is used. All models undergo the task
of retrieving the concentrations, starting from the spectrum of the measurement and
the spectral library. For each mixture sample, the best model is chosen by selecting
the lowest w score. With the task of full unmixing, it is possible to evaluate all the
characteristics observed in the previous tasks: spectral accuracy and concentration
accuracy, plus the ability to detect the correct pigments present in a mixture.

3. Results
3.1. Model Expectation Test

The spectra output by the investigated models is compared to the ground truth in
terms of MSE. An overview of the individual performances of the models is reported
in Figure 6. It is observable that there exists a correlation between the MSE values and
the nature of the models (Figure 6a): subtractive models fared the best, followed by
hybrid models, and then by additive models. Even within the pool of hybrid models, it
is clear how the general tendencies of the models affect the ranking, as M5 (subtractive-
oriented) exhibits better MSE values than M4 (additive-oriented). Figure 6b reports the
number of times each model was selected as best or worst, depending on the MSE value of
the reconstruction.
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Figure 6. Performances in the model expectation test. (a): Average MSE values and respective 95%
confidence intervals. (b): Number of times each model has been selected as best or worst in terms
of MSE.

3.2. Prediction

The task of predicting the concentrations of a mixture, knowing the primaries in-
volved, is performed solving the optimisation problem (Equation (5)). The algorithm is
forced to select from either two or three endmembers, depending on the sample mixture
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analysed. Figure 7 shows correlation between the values of MSE (Figure 7c) and the score
w (Figure 7d), indicating that good spectral reconstructions yield good concentration re-
trievals as well. Indeed, the relative differences in the score w are amplified, if compared
to the individual MSE and ∆α differences. The model ranking observed with the model
expectation test is confirmed, with the pure subtractive model resulting in the most selected
throughout the mixture samples (Figure 7).
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3.3. Spectral Unmixing

In this task, no prior information regarding the ground truth is exploited, which means
that the models can also be evaluated on their ability to identify correctly the pigments
present in the mixtures.

The first part of the analysis focuses on the reconstruction of target spectra and
the ground truth concentration vectors, following the procedure adopted in the case
of the prediction task. In this perspective, Figure 8 exhibits rather similar results to
Figure 7: indeed the ranking pattern of the models is exactly the same, with a very similar
selection histogram (Figure 8b) as well. However, it is noticeable how the scale of MSE
is reduced by approximately a factor 10 (Figure 8c), indicating more accurate spectral
reconstructions when the spectral library of endmembers is extended and more pigments
can be selected. Incidentally, the concentration error ∆α (Figure 8d) is slightly higher than
in the prediction task.
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3.3. Spectral Unmixing

In this task, no prior information regarding the ground truth is exploited, which means
that the models can also be evaluated on their ability to identify correctly the pigments
present in the mixtures.

The first part of the analysis focuses on the reconstruction of target spectra and
the ground truth concentration vectors, following the procedure adopted in the case
of the prediction task. In this perspective, Figure 8 exhibits rather similar results to
Figure 7: indeed the ranking pattern of the models is exactly the same, with a very similar
selection histogram (Figure 8b) as well. However, it is noticeable how the scale of MSE
is reduced by approximately a factor 10 (Figure 8c), indicating more accurate spectral
reconstructions when the spectral library of endmembers is extended and more pigments
can be selected. Incidentally, the concentration error ∆α (Figure 8d) is slightly higher than
in the prediction task.
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Although the MSE values are lower, the reconstructions proposed by the unmixing
task cannot be considered better than those of the prediction task, which used solely the
pigments contained in the ground truth. The introduction of the score w (Figure 8a) is
crucial to separate the reconstructions that overfit the spectral data at the expense of the
concentration error. Based on these results, the models selected for the study describe
partially the mixture of pigments, since very accurate retrievals of concentrations are
rarely achieved.

3.4. Pigment Identification

An estimated concentration vector rarely presents entries with a value of exactly 0, as
spurious concentrations of some endmembers are often output in the optimisation process.
It is nonetheless interesting to inspect the detection accuracy of each model: i.e., the ability
to identify correctly the pigments present in the mixture ground truth. Knowing that
small spurious concentrations can be neglected, we define for each model a concentration
threshold αT , below which a pigment is considered as not present. In order to do so, the
Receiver Operating Characteristic (ROC) curves of each model are analysed. The False
Positive Rate (FPR) and True Positive Rate (TPR) are computed varying αT in the interval
[0, 1] at 0.01 steps. The cut-off value of FPR and its correspondent αT are retrieved using
the maximum of the Youden Index J [50].

Table 3 reports the cut-off values of αT for each model. Ideally, the lower αT the better,
as pigments estimated with a concentration smaller than this value are considered as not
detected. In this case, we observe how the hybrid models M3, M4, and M5 perform slightly
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score. (c): Average MSE. (d): Mean concentration error ∆α.

Although the MSE values are lower, the reconstructions proposed by the unmixing
task cannot be considered better than those of the prediction task, which used solely the
pigments contained in the ground truth. The introduction of the score w (Figure 8a) is
crucial to separate the reconstructions that overfit the spectral data at the expense of the
concentration error. Based on these results, the models selected for the study describe
partially the mixture of pigments, since very accurate retrievals of concentrations are
rarely achieved.

3.4. Pigment Identification

An estimated concentration vector rarely presents entries with a value of exactly 0, as
spurious concentrations of some endmembers are often output in the optimisation process.
It is nonetheless interesting to inspect the detection accuracy of each model: i.e., the ability
to identify correctly the pigments present in the mixture ground truth. Knowing that
small spurious concentrations can be neglected, we define for each model a concentration
threshold αT , below which a pigment is considered as not present. In order to do so, the
Receiver Operating Characteristic (ROC) curves of each model are analysed. The False
Positive Rate (FPR) and True Positive Rate (TPR) are computed varying αT in the interval
[0, 1] at 0.01 steps. The cut-off value of FPR and its correspondent αT are retrieved using
the maximum of the Youden Index J [50].

Table 3 reports the cut-off values of αT for each model. Ideally, the lower αT the better,
as pigments estimated with a concentration smaller than this value are considered as not
detected. In this case, we observe how the hybrid models M3, M4, and M5 perform slightly
better than the subtractive ones M2 and M7. It is worth noting that these values might
be too high from a conservation standpoint, as concentrations of around 10% might be
significant, but would end up being neglected in this particular instance.
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Table 3. Concentration thresholds αT computed for each model. The lowest and preferable values are
obtained by the hybrid models M3, M4, and M5, indicating that they can discard more confidently
false positive detections.

M1 M2 M3 M4 M5 M6 M7

αT 0.26 0.18 0.13 0.13 0.15 0.30 0.20

The detection ability of the models is analysed via the scores of accuracy, precision,
recall, and F1. Figure 9a considers the scores at the concentration thresholds reported
in Table 3. The differences in accuracy indicate that the preference should be given to
subtractive-based imaging models. Figure 9b exhibits the same scores but this time obtained
at a fixed concentration threshold αT = 0.15, which is selected arbitrarily. In this instance,
the scores suggest generally poorer performances than when αT is optimal, while the
differences between models are less appreciated.

Figure 9. Performances of pigment detection. (a): The scores are calculated at the concentration
thresholds reported in Table 3. (b): The scores are computed at a fixed αT = 0.15. The overall detection
performance is slightly poorer when a fixed αT is used, as it is observable by the small decreases in
accuracy. At the same time, the trade-off between precision and recall yields very similar F1 scores in
both conditions (a,b).

3.5. Mockup Painting

As a validation test, pigment mapping is applied to the mockup painting depicted
in Figure 3. To drastically reduce the computation time, the spectral cube was spatially
down-sampled by a factor of 10 without performing interpolation, which would have
introduced an element of artificial mixing.

Figure 10 reports the pigment concentration maps retrieved by each model. The
imaging models are ordered by rows, while the pigments are in columns.
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Figure 10. Pseudo-colour concentration maps related to each pigment (by column) and investigated
imaging models (by row). The best performances are obtained by the subtractive-based models,
whereas the additive-based models reported the poorest results.

A few remarks can be made considering the previous knowledge on how the painting
was realised. The lower part of the sky contains a significant amount of Kremer White
(W) pigment. Such concentration is correctly identified by the subtractive-based models,
and not fully appreciated by the additive-based ones. Considering the column of pigment
Carmine (C), the additive-based models detect its presence in the right portion of the
subject’s face. As a matter of fact, Carmine (C) is not present in this specific area, and its
absence is correctly identified by the subtractive-based models. There is a generally strong
tendency to misidentify pigment Naples Yellow (Y) with Gold Ochre (O).

From this analysis, the observations made while comparing the imaging models on the
mixture samples are confirmed, with the subtractive-based models performing significantly
better than their hybrid and additive counterparts.

With the selected unmixing algorithm, the spectral reconstructions showed increasing
accuracies as the endmember spectral library was extended. For this reason, a new score
w was introduced to penalise those instances where the spectral reconstruction is over-
prioritised at the expense of the estimation of the pigment abundances. More ways of
penalisation can be investigated: the concentration error in its current states does not
consider the scale of the concentrations, but only the magnitude of the difference. Moreover,
instances where a pigment results to be a false positive could be highly penalised, as
misdetections could lead to wrong conservation treatments. However, we also note that a
good unmixing does not imply directly a good rendering, as we observed in [47], and future
joint analysis of unmixing and rendering are required in order to provide conservation
scientists with adapted tools. These problems are also related to the diffusive assumption
and future studies should address advanced BRDF descriptions. Indeed, in our mockups
we observe the presence of specularities.

4. Conclusions

This work proposed the comparison of imaging models in the context of oil painting
through an evaluation protocol. This protocol enables the evaluation of the performance
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ascribable to different properties, namely: spectral accuracy, estimation of the pigment
abundances, and pigment identification. Mockup samples of mixtures of pigments in
various concentration ratios and a mockup painting were realised for the occasion and
acquired in an HSI setup. From the imaging model comparison, we demonstrated that
subtractive-based models are to be preferred to their additive counterparts.

A more advanced SU algorithm that exploits the sparsity property of concentration
vectors in oil painting could be considered. The imaging models can be improved by
augmenting their specificity to oil painting, including more factors such as varnishes,
binders, supports, and the impact of the pictorial technique. Also, it would be of interest
to apply our protocol to imaging models based on the Kubelka–Munk and the four-
flux theories, which characterise light–matter interactions. The directionality of reflection
described by BRDFs could also be considered in future work. The expansion of the
investigated regions of the electromagnetic spectrum is a direction of future work as well
since pigments exhibit renowned properties in the shortwave infrared (SWIR) region.
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