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Abstract

C++ is a multi-paradigm language that en-
ables the programmer to set up efficient im-
age processing algorithms easily. This language
strength comes from many aspects. C++ is
high-level, so this enables developing power-
ful abstractions and mixing different program-
ming styles to ease the development. At the
same time, C++ is low-level and can fully
take advantage of the hardware to deliver the
best performance. It is also very portable and
highly compatible which allows algorithms to
be called from high-level, fast-prototyping lan-
guages such as Python or Matlab. One of the
most fundamental aspects where C++ really
shines is generic programming. Generic pro-
gramming makes it possible to develop and
reuse bricks of software on objects (images) of
different natures (types) without performance
loss. Nevertheless, conciliating genericity, effi-
ciency, and simplicity at the same time is not
trivial. Modern C++ (post-2011) has brought
new features that made it simpler and more
powerful. In this paper, we will focus in par-
ticular on some C++20 aspects of generic pro-
gramming: ranges, views, and concepts, and
see how they extend to images to ease the de-
velopment of generic image algorithms while
lowering the computation time.

Keywords — Image processing, Generic Pro-
gramming, Modern C++, Software, Performance

1 Introduction

C++ claims to “leave no room for a lower-level lan-
guage (except assembler)” [38] which makes it a
go-to language when developing high-performance
computing (HPC) image processing applications.
The language is designed after a zero-overhead
abstraction principle that allows us to devise a
high-level but efficient solution to image process-
ing problems. Others aspects of C++ are its sta-
bility, its portability on a wide range of archi-
tectures, and its direct interface with the C lan-

Figure 1: The watershed segmentation algo-
rithm runs on a 2D-regular grayscale image
(left), on a vertex-valued graph (middle) and
on a 3D mesh (right).

guage which makes C++ easily interoperable with
high-level prototyping languages. This is why the
performance-sensitive features of many image pro-
cessing libraries (and numerical libraries in gen-
eral) are implemented in C++ (or C/Fortran as
in OpenCV [7], IPP [11]) or with a hardware-
dedicated language (e.g. CUDA [8]) and are ex-
posed through a high-level API to Python, LUA. . .

Apart from the performance considerations, the
problem lies in that each image processing field
comes with its own set of image type to process.
Obviously, the most common image type is an im-
age of RGB or gray-level values, encoded with 8-
bits per channel, on a regular 2D rectangular do-
main that covers 90% of common usages. How-
ever, with the development of new devices has come
new image types: 3D multi-band images in Medi-
cal Imaging, hyperspectral images in Astronomi-
cal Imaging, images with complex values in Signal
Processing. . . Some devices generate images with a
depth channel which is encoded with a number of
bits different from the other channels. . . An image
processing library able to handle those images type
would cover 99% of use cases. Finally, the remain-
ing 1% would cover the usage of esoteric image
types.

In Digital Topology, we have to deal with non-
regular domain where pixels are not regular pixels.
They might be super-pixels produced by a segmen-
tation algorithm, hexagonal pixels, pixels defined
on some special grids (e.g. the cairo pattern [19]) or
even meshes’ vertices. In Mathematical Morphol-
ogy, most image operators are defined on a graph
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void dilate_rect(image2d_u8 in, image2d_u8 out, int w, int h) {

for (int y = 0; y < out.height(); ++y)

for (int x = 0; x < out.width(); ++x) {

uint8_t s = 0;

for (int qy = y - h/2; qy <= y + h/2; ++y)

for (int qx = x - w/2; qx <= x + w/2; ++x)

if (0 <= qy <= in.height() && 0 <= qx <= in.width())

s = max(s, input(qx, qy));

out(x,y) = s;

}

}

Figure 2: Non-generic dilation algorithm for 8-
bits grayscale 2D-images by a rectangle.

framework and are naturally extended to a hierar-
chical representation of the image (e.g. operators
on hierarchies of segmentation [28], trees [12] or a
shape space [44]). The fact that image processing
is related to many fields has already led Järvi to
wonder about how they can easily adapt types to
fit different image formalism [22].

From a programming standpoint, the ability to
run the same algorithm (code) over a different set of
image types, as shown in fig. 1, is called genericity.
This term was defined by Musser in [30] as follows:
“By generic programming we mean the definition
of algorithms and data structures at an abstract
or generic level, thereby accomplishing many re-
lated programming tasks simultaneously. The cen-
tral notion is that of generic algorithms, which
are parametrized procedural schemata that are com-
pletely independent of the underlying data represen-
tation and are derived from concrete, efficient algo-
rithms.” To illustrate our point, we will consider a
simple yet complex enough image operation: the
dilation of an image f by a flat structuring element
(SE) B defined as

g(x) =
∨

y∈Bx

f(y) (1)

Simply said, it consists in taking the supremum
of the values in region B centered in x. Despite
the apparent simplicity, this operator allows a high
variability of the inputs. f can be a regular 2D im-
age as well as a graph; values can be grayscale as
well as colors; the SE can be rectangle as well as a
disc adaptive to the local content. . . The straight-
forward implementation in fig. 2 covers only one
possible set of parameters: the dilation of 8-bits
grayscale 2D-images by a rectangle. The combina-
torial set of parameters increases drastically with
the types of the inputs as seen in fig. 3. In [34], the
authors depict four different approaches to leverage

SE

Ball

Diamond

Square

Structure

2D-buffer 3D-buffer graph

Values

16-bits int

double

8-bits RGB

Possible uses of the dila-

tion with a square SE.

Figure 3: The combinatorial set of inputs that
a dilation operator may handle.

“genericity” in order to write a generic version of an
algorithm.

With Ad-hoc polymorphism (A), one has to write
one implementation for each image type which in-
volves code duplication to be exhaustive. The abil-
ity to select which implementation will run is based
on the “real” type of the image. In C++, if this in-
formation is known at compile time (static), the
compiler selects the right implementation by it-
self (static dispatch by overload resolution). If the
“real” type of the image is known dynamically, one
has to select the correct implementation by hand
by writing boilerplate code.

With Generalization (B), one has to consider a
common type for all images (let us name it super-
type) and write algorithms for this common type.
It implies conversion back and forth between the
super-type and other image types for every compu-
tation.

With Inclusion Polymorphism, Dynamic Traits
(C), one has to define an abstract type featuring
all common image operations. For example, one
may consider that all images must define an opera-
tor get_value(Point p) -> Any where Point is a
type able to contain any point value (2d, 3d, graph
vertex. . . ) and Any a type able to hold any value.
This is generally achieved using inclusion polymor-
phism in Object-Oriented Programming with an
interface and/or abstract type AbstractImage for
all image types. It may also be achieved using
more modern techniques such as type-erasure with
a type AnyImage (that has the same interface as
AbstractImage) for which any image could be con-
verted to. Whatever technique used behind the
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scene relies on a dynamic dispatch at runtime to
resolve which interface method is called.

Parametric Polymorphism, Generics, Static
Traits (D) somewhat relates to the same concept
of Inclusion Polymorphism; one also has to define
an abstraction for the handled images. However,
the main difference lies in the dispatch which is
static and has the best performance. The com-
piler writes a new specialized version for each input
image type by itself thanks to template algorithm.
C++ generic programming will be reviewed more
in-depth in section 2.

Most libraries do not fall into a single cate-
gory but mix different techniques. For instance,
CImg [39] mixes (B) and (D) by considering only
4D-images parametrized by their value type. In
OpenCV [7], algorithms take generalized input
types (C) but dispatch dynamically and manually
on the value type (A) to get a concrete type and
call a generic algorithm (D). Scikit-image [40] re-
lies on Scipy [23] that has a C-style object dy-
namic abstraction of nd-arrays and iterators (C)
and sometimes dispatch by hand to the most spe-
cialized algorithm based on the element type (A).
Many libraries have chosen the (D) option with a
certain level of genericity (Boost GIL [6], Vigra [25],
GrAL [4], DGTal [14], Higra [32], and Pylene [13]).

The table comparing all the pros and cons from
the aforementioned approaches is presented in ta-
ble 1. We can see in this table that Generic Pro-
gramming in C++20 check all the boxes that we
are interested in.

Table 1: Genericity approaches: pros. & cons.

Paradigm TC CS E One IA EA
Code Duplication ✓ ✗ ✓ ✗ ✗

Code Generalization ✗ ≈ ≈ ✓ ✗

Object-Orientation ≈ ✓ ✗ ✓ ✓

Generic Programming:
with C++11 ✓ ≈ ✓ ✓ ≈

with C++17 ✓ ✓ ✓ ✓ ≈

with C++20 ✓ ✓ ✓ ✓ ✓

TC: type checking; CS: code simplicity; E: efficiency
One IA: one implementation per algorithm; EA: explicit
abstractions / constrained genericity

The recent advances in the C++ language [35]
have eased the development of high-performance
code and scientific libraries have taken advantages
of these features [21, 29, 43]. The modern C++
has brought generic programming to a higher level

template <Range R>

requires MaxMonoid<value_t<R>>

auto maxof(R col) {

value_t<R> s = 0;

for (auto e : col)

s = max(s, e);

return s;

}

template <typename T>

concept MaxMonoid =

requires(T x) {

{ T v = 0; };

{ x = max(x, x); };

}

Figure 4: A generic concept-checked sum algo-
rithm over a collection.

through ranges [31] and concepts [16]. The contri-
butions of this paper are two-fold. First, revisiting
the definitions of images and algorithms to extend
the range views to images. In particular, we enable
mixing types and algorithms in some new types that
are composable. Second, we show that it yields
performance boost while preserving usability that
could benefit libraries relying on the (D) approach.

The paper is organized as follows. In section 2,
we review some basics of generic programming and
explain how the authors leverages C++20’s con-
cepts to abstract image types by designing a generic
framework. In section 3, we present C++20’s
ranges, in particular range views, and we contribute
by extending this design by applying it to images.
We also discuss and compare our contribution with
state-of-the-art solution that may seem similar to
ours in section 4. Eventually, in section 5, we val-
idate the performance gain on a real-case bench-
mark.

2 Algebraic Properties of Im-

ages and Related Notions

2.1 The Abstract Nature of Algo-

rithms

Most algorithms are generic by nature as
demonstrated in the Standard Template Library
(STL) [36] when one has to work on a collection
of data. For example, let us consider the algo-
rithm maxof(Collection c) that gets the maximal
element of a collection (see fig. 4). It does not mat-
ter whether the collection is actually implemented
with a linked-list, a contiguous buffer of elements
or whatever data structure. The only requirements
of this algorithm are: (1) we can iterate through
it; (2) the type of the elements is regular (i.e. be-
haves the same way as a primitive type like int)
and forms a monoid with an associative operator
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template <class I, class SE>

void dilation(I in, I out, SE se) {

for (auto p : out.domain()) {

value_t<I> s = min_of_v<value_t<I>>;

for (auto q : se(p))

s = max(s, input(q))

output(p) = s;

}

}

Figure 5: Generic dilation algorithm.

“max” and a neutral element “0”. Actually (1) is
abstracted by pairs of iterators in the STL and
ranges in C++20, while C++20 introduces con-
cepts to check if a type follows the requirements of
the algorithm. The term "concept" is defined as
follows in [16]: “a set of axioms satisfied by a data
type and a set of operations on it.”

While cataloging the image processing operators
and algorithms, the authors could extract three
main families of algorithms. First are the point-
wise algorithms which consists in traversing each
pixel one by one to perform an operation limited
to this pixel (e.g. filling the image with a value).
Second are the local algorithm which consists in
traversing each pixel one by one to perform an op-
eration that will consider a window of pixel around
this pixel. This window is defined by a structuring
element. Typical mathematical morphology algo-
rithms such as dilation, closing are part of that fam-
ily. Finally, are the global algorithms which consists
in traversing each pixel one by one to perform an
operation which may need to consider all the pixels
of the image at once, including the previous pix-
els in the traversing order which have already been
transformed. These algorithms are typically prop-
agating a transformation across the whole image.
The chamfer distance transformation is a good ex-
ample of such an algorithm.

When addressing how to write a concept, one
should always refer to the following rule: “It is not
the types that define the concepts: it is the algo-
rithms” [37]. Which means that being able to cata-
log image processing algorithms mechanically leads
to the emergence of concepts related to image pro-
cessing.

2.2 Image Concept

Most image processing algorithms are also
generic [33, 26, 27] by nature. We saw in sec-
tion 2.1 that concepts emerges from pattern behav-
ior extracted from algorithms. Similarly to fig. 4,

template <class I>

concept Image = requires {

point_t<I>; // Type of point (P)

value_t<I>; // Type of value (V)

} && requires (I f, point_t<I> p, value_t<I> v) {

{ v = f(p) }; //

{ f(p) = v }; // optional, for output

{ f.domain() } -> Range; // (actually Range of P)

};

template <class SE, class P>

concept StructuringElement =

requires (SE se, P p) {

{ se(p) } -> Range; // (actually Range of P)

};

template <Image I, class SE>

void dilation(I input, I output, SE se)

requires MaxMonoid<value_t<I>>

&& StructuringElement<SE, point_t<I>>

{ ... }

Figure 6: Image and Structuring Element con-
cept and constrained version of the dilation al-
gorithm.

let us consider the morphological dilation of an im-
age f : E → F (defined on a domain E with values
in F ) by a flat structuring element (SE) B (we note
Bx the SE centered in x). The dilation is defined as
δf (x) = sup{f(y), y ∈ Bx}; the generic algorithm
is given in fig. 5. As one can see, the implementa-
tion does not rely on a specific implementation of
images. It could be 2D images, 3D images or even
a graph (the SE could be the adjacency relation
graph).

The image requirements can be extracted from
this algorithm. The image must provide a way to
access its domain E which must be iterable. The
structuring element must act as a function that re-
turns a range of elements having the same type as
the domain element (let us call them points of type
P ). Image has to provide a way to access the value
at a given point (f(x)) with x of type P. Last, as
in fig. 4, image values (of type V ) have to sup-
port max and have a neutral element “0”. It follows
the -simplified- Image concept and the constrained
dilation algorithm in fig. 6. Actually, the require-
ments for being an image are quite light. This pro-
vides versatility and allows us to pass non-regular
“image” objects as inputs such as the image views
in section 3.

While C++20 provides all the tools necessary
to properly define concepts as well as leveraging
them when implementing algorithms, it is still nec-
essary to make the inventory of the algorithms fam-
ilies (explained in section 2.1) in order to actually
extract the concepts related to image processing.
This extracting process is detailed more in-depth

5



by the authors in [34]. We performed the image
processing concept extraction and made it available
alongside the image processing library Pylene [13].

2.3 Genericity, Ease of use, Special-

ization and Performance

It is often argued against generic programming that
a single implementation cannot be performance op-
timal for every type. For example, the generic
implementation of the dilation for n-dimensional
buffer images convert points into indices to access
the data in the buffer while it could use indices di-
rectly if the data are contiguous in memory. We
claim that this is not the problem of the generic
programming paradigm as there exist several algo-
rithms for the same image operator. Performance
is the matter of an optimization process, i.e. ,
transforming or adapting the code into an equiva-
lent code that performs better. Some optimizations
are within the grasp of compilers, mostly low-level
ones, while some high-level optimizations are just
not reachable by compilers. The dilation operation
allows some drastic optimization based on the type
of inputs; if the SE is decomposable, use a sequence
of dilations with simpler SEs; if the SE is a line then
use a dedicated O(n) 1D-algorithm [18]; if the data
is a contiguous buffer of basic types and the SE is
a line then use the 1D vertical dilation with vector
processing; if the extent of the SE is small then per-
form the dilation with a fixed-size mask. C++ GP
does not mean that a single implementation will
cover all these cases. It cannot as some of these de-
cisions depends on runtime conditions. However, it
aims at providing n algorithms to cover m combina-
tions of inputs with n ≪ m and ease the selection
of the best implementation based on compiletime
features of the inputs. Modern C++ has greatly
eased the compiletime selection with concepts and
type properties as shown in fig. 7 mixing overload
selection with concept refinement and specialization
ordering. Even if the third implementation is very
specific to some inputs, it is still generic enough
to cover all the native basic types (float, uint8,
uint16. . . ) so that we do not have to duplicate
code for each of them.

Finally, it is often known that there is a rule
of three about genericity, performance and ease of
use. The rule states that one can only have two

template <Image I, class SE> // (1)

requires MaxMonoid<value_t<I>> &&

StructuringElement<SE, point_t<I>>

void dilation(I input, I output, SE se)

{ /* Generic impl. */ }

template <Image I, class SE> // (2)

requires MaxMonoid<value_t<I>> &&

DecomposableStructuringElement<SE, point_t<I>>

void dilation(I input, I output, SE se)

{ /* Decomposition-based impl. */ }

template <class V> // (3)

requires is_arithmetic_v<V>

void dilation(buffer2d<V> in, buffer2d<V> out, vline2d se)

{ /* SIMD impl. of 1D version */ }

Figure 7: Dilation implementation specializa-
tion based on compiletime predicates. (1) is
the generic fall-back overload, (2) is selected
based on constraints ordering and concept re-
finement of the structuring element; (3) is se-
lected based on the ordering rules for template
specializations.

of those items by sacrificing the third one. If one
wants to be generic and efficient, then the naive
solution will be very complex to use with lots of
parameters. If one wants a solution to be generic
and easy to use, then it will be not very efficient by
default. If one wants a solution to be easy to use
and efficient then it will not be very generic. This
rule can be empirically verified by looking at exist-
ing C++ libraries such as [5]. We assert that C++
concepts, used wisely as demonstrated previously
enables to break through this rule. A piece of code
now can be generic, efficient and easy to use all at
the same time.

3 Another View of Images for

Genericity and Performance

3.1 Ranges and Views in C++20

STL

C++20 ranges [31] formalizes the concept of view,
extending the array views implemented in array-
manipulation libraries[42, 2], and transferable to
the Image concept. In the STL, there is a distinc-
tion between the container owning the data buffer,
the iterators related to traversing this container,
the range encapsulating the iterator pair allowing
traversing the container and the view which mu-
tates the way the base range traverse the data it is
related to. All those abstraction levels need proper
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auto h = [](int x)

{

0 if x < 150

255 if x ≥ 150

auto u =

auto v = transform( u , h ) →

h
u

(p
oi
nt
er
)

≡

Figure 8: An image view performing a thresh-
olding.

refined design about data ownership, lifetime of dif-
ferent object depending on what it refers to. For
instance, a range may not be cheap-to-copy as it
may contain data in order to prolong lifetime of
the underlying object, for instance, extending the
lifetime of a temporary range in a pipe. Another
issue related to range is the semantic of the con-
stness. Indeed, the standard has to define what it
means for a range view to be const. Does it prop-
agate the constness to the underlying data or does
it impact the view capsule only?

In our design, all images have reference semantics
and cheap-to-copy. An image view, as a lightweight
object that acts like an image, models the Image
concept. For example, it can be a random genera-
tor image object which generates a value whenever
f(p) is called, or an observer image that records
the number of times each pixel is accessed in order
to compare algorithms performance. In some pre
C++-11 libraries (e.g. the GIL [6] or Milena [27]),
image views were also present (named morphers
alongside the SCOOP pattern [10, 17]) but not
compatible with modern C++ idioms (e.g. the
range-based for loop) and not as well-developed as
in [31] however the idea remains the same and mod-
ern C++ ease their development.

Among image views, we give a partic-
ular focus on image adaptors. Let v =

transform(u1, u2, · · · , un, h) where ui are input
images and h a n-ary function. transform returns
an image generated (adapting) from other image(s)
as shown in fig. 8. An adaptor does not “own” data
but records the transformation h and the pointer
to the input images. The properties of the re-
sulting view depend on h. On the one hand, the
projection h: (r, g, b) 7→ g that selects the green
component of an RGB triplet gives a view v that

clip( , DiamondShape ROI ) →

filter( ,
[](int x) {

return (x % 2) == 0;

}

) →

Figure 9: Clip and filter image adaptors that
restrict the image domain by a non-regular ROI
and by a predicate that selects only even pixels.

Input
(RGB-16)

Grayscale
Conversion

Sub-quantization
(8-bit conversion)

Dilation
Output

(Gray 8-bit)

Algorithm Composition = MyConplexOperator

Image Views Composition = MyComplexImage

Figure 10: Example of a simple image process-
ing pipeline illustrating the difference between
the composition of algorithms and image views.

is writable, with 8-bits integer values and has the
same domain as u1. On the other hand, the projec-
tion h: (a, b) 7→ (a+b)/2, applied on images u1 and
u2 gives a read-only view that computes pixel-wise
the average of u1 and u2.

Following the same principle, a view can apply
a restriction on an image domain. In fig. 9, we
show the adaptor clip(input, roi) that restricts
the image to a non-regular roi and filter(input,

predicate) that restricts the domain based on a
predicate. All subsequent operations on those im-
ages will only affect the selected pixels.

3.2 Views applied to image process-

ing

Views feature many interesting properties that
change the way we program an image processing
application. To illustrate those features, let us
consider the following image processing pipeline:
(Start) Load an input RGB-16 2D image (a classical
HDR photography) (A) Convert it in grayscale (B)
Sub-quantized to 8-bits (C) Perform the grayscale
dilation of the image (End) Save the resulting 2D
8-bits grayscale image; as described in fig. 10.

Views are composable. One of the most im-
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portant feature in a pipeline design (generally, in
software engineering) is object composition. It en-
ables composing simple blocks into complex ones.
Those complex blocks can then be managed as if
they were still simple blocks. In fig. 10, we have
3 simple image operators Image → Image (the
grayscale conversion, the sub-quantization, the di-
lation). As shown in fig. 10, algorithm composition
would consider these 3 simple operators as a sin-
gle complex operator Image → Image that could
then be used in another even more complex pro-
cessing pipeline. Just like algorithms, image views
are composable, e.g. a view of the view of an im-
age is still an image. In fig. 10, we compose the
input image with a grayscale transform view and a
sub-quantization view that then feeds the dilation
algorithm.

Views improve usability. The code to com-
pose images in fig. 10 is almost as simple as:

auto input = imread(...);

auto A = transform(input, [](rgb16 x) -> float {

return (x.r + x.g + x.b) / 3.f; }; );

auto MyComplexImage = transform(A, [](float x)

-> uint8_t { return (x / 256 + .5f); }; );

People familiar with functional programming
may notice similarities with these languages where
transform (map) and filter are sequence operators.
Views use the functional paradigm and are created
by functions that take a function as argument: the
operator or the predicate to apply for each pixel;
we do not iterate by hand on the image pixels.

Views improve re-usability. The code snip-
pets above are simple but not very re-usable.
However, following the functional programming
paradigm, it is quite easy to define new views, be-
cause some image adaptors can be considered as
high-order functions for which we can bind some
parameters. In fig. 11, we show how the primitive
transform can be used to create a view summing
two images and a view operator performing the
grayscale conversion as well as the sub-quantization
which can be reused afterward1.

Views for lazy computing. Because the op-
eration is recorded within the image view, this new
image type allows fundamental image types to be
mixed with algorithms. In fig. 11, the creation of
views does not involve any computation in itself

1These functions could have been written in a more
generic way for more re-usability, but this is not the
purpose here.

auto operator+(Image A, Image B) {

return transform(A, B, std::plus<>());

}

auto togray = [](Image A) { return transform(A, [](auto x)

{ return (x.r + x.g + x.b) / 3.f; };)

};

auto subquantize16to8b = [](Image A) { return transform(A,

[](float x) { return uint8_t(x / 256 +.5f); });

};

auto input = imread(...);

auto MyComplexImage = subquantize16to8b(togray(A));

Figure 11: Using high-order primitive views to
create custom view operators.

but rather delays the computation until the ex-
pression v(p) is invoked. Because views can be
composed, the evaluation can be delayed quite far.
Image adaptors are template expressions [41, 42]
as they record the expression used to generate the
image as a template parameter. A view actually
represents an expression tree (fig. 14).

Views for performance. With a classical de-
sign, each operation of the pipeline is implemented
on “its own”. Each operation requires memory to be
allocated for the output image and also, each op-
eration requires that the image is fully traversed.
This design is simple, flexible, composable, but
is not memory efficient nor computation efficient.
With the lazy evaluation approach, the image is
traversed only once (when the dilation is applied)
that has two benefits. First, there are no interme-
diate images which is very memory effective. Sec-
ond, traversing the image is faster thanks to a bet-
ter memory cache usage. Indeed, in our example
(fig. 10), processing a RGB16 pixel from the dila-
tion algorithm directly converts it in grayscale, then
sub-quantize it to 8-bits, and finally makes it avail-
able for the dilation algorithm. It acts as if we were
writing an optimal operator that would combine
all these operations. This approach is somewhat
related to the kernel-fusing operations available in
some HPC specifications [24] but views-fusion is op-
timized by the C++ compiler only [9].

Views for productivity. All point-wise image
processing algorithms can (and should) be rewrit-
ten intuitively by using a one-liner view. The trans-
form views is the key enabling that point. This im-
plies that there exist a new abstraction level avail-
able to the practitioner when prototyping their al-
gorithm. The time spent implementing features
is reduced, thus the feedback-loop time is reduced

8



too. This brings the practitioner to a productivity
gain.

3.3 Reasoning at image level

void blend_inplace(const uint8_t* ima1, uint8_t* ima2, float alpha,

int width, int height, int stride1, int stride2) {

for (int y = 0; y < height; ++y) {

const uint8_t* iptr = ima1 + y * stride1;

uint8_t* optr = ima2 + y * stride2;

for (int x = 0; x < width; ++x)

optr[x] = iptr[x] * alpha + optr[x] * (1-alpha);

}

}

Figure 12: Alpha-blending with classical
C/C++ code.

ima

← 0.2 ×

ima1

+ 0.8 ×

ima2

Figure 13: Alpha-blending algorithm written
at image level.

The final argument we bring in our discussion
about views is the fact that the IP practitioner
raises his reasoning by one level. Indeed, let us take
a look at the alpha-blending algorithm as a support
example for our argument. The default code for a
classical, handmade (and error-prone C++) alpha-
blending is presented in fig. 12. This algorithm
makes several non-relevant hypotheses about the
image type. Indeed, it is not relevant to the final
application whether the image’s color is 8-bits RGB
or float. Also, the practitioner may only need to
process a specific color channel, or a specific region
of the image. The image may also be 3D. To sum-
marize, there are a lot of hypotheses that are not
relevant to the application logic and yet weight on
the resulting implementations which lead us to the
need of genericity. The solution is to shift the ab-
stract level by one layer and reason at image level,
as shown in fig. 13 which presents the code and
the produced view expression tree. Rewriting the
low level algorithm in terms of views is as simple
as in fig. 14. Finally, we also show in fig. 15 how
simple it now becomes to restrict input images to
a specific region or specific color channel directly
by chaining views at image level when reasoning at

image level. The code has become more readable,
more expressive and more efficient by default.

+

∗

f alpha

∗

g 1− alpha

auto alphablend =

[](auto ima1, auto ima2, float alpha) {

return alpha * ima1 +

(1 - alpha) * ima2; };

Figure 14: Alpha-blending, generic implemen-
tation with views, expression tree.

auto ima = blend(ima1, ima2, 0.2); // User-defined view

auto ima_roi = blend(clip(ima1, roi), clip(ima2, roi), 0.2); // ROI

auto ima_red = blend(red(ima1), red(ima2), 0.2); // Red channel

Figure 15: Chaining views to feed alpha-
blending.

4 Comparison with Data Flow

oriented frameworks

A parallel can be drawn between image views and
the data flow oriented programming [15] style used
in Data Science such as the Apache Spark tech-
nology [45, 20], Hadoop system [3] or even Ten-
sorFlow [1]. Indeed, we find similar properties in
those data flow system, such as composition and
lazy-computing. Let us focus on the Apache Spark
technology for this comparison. This technology is
designed in two parts: first is the Spark program-
ming model that creates a dependency graph; sec-
ond is the runtime system which will schedule work
unit on a cluster for the execution of the previously-
built graph, and transports code and data to rele-
vant worker nodes.

The spark programming model will proceed in
three steps. First is the partitioning function used
with a homogeneous collection of objects to con-
struct the Resilient Distributed Dataset (RDD)
from our data. Those transformations consist in
a pipeline of higher-order functions (e.g. map, fil-
ter, . . . ), which are chained with each other. Each
transformation returns a new RDD which depends
on the old RDD. Finally, an action (reduce) is per-
formed on the RDD. At that time all the transfor-
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mation pipeline is applied on the RDD and compu-
tation is scheduled on worker nodes. Furthermore,
the Spark programming model allows the developer
to fine tune how the program should handle inter-
mediate results (e.g. save it on storage for later
reuse).

It is very similar to our view design in the fact
that transformations can be compared to views
(computed lazily and chainable) and actions can
be compared to our algorithms (perform the work
and resolve the transformation). However, it dif-
fers from views at execution time. Views will only
do computation on the part of the image that is
requested by the final algorithm whereas the data
flow pipeline may perform transformation on the
whole dataset prior to a narrowing transformation
(filtering for instance). The dynamic model enable
distribution on clusters of transformations asyn-
chronously when performing actions that acts as
barriers in the pipeline, but it does not prevent in-
efficient and unnecessary computation due to na-
ture of the acyclic computation graph built on the
successive transformed RDD. Indeed, RDD are im-
mutable. In contrast, views are static, their compo-
sition is static and there is no need of frameworks
for that. Also, computation can be done in-place
through projector views which is very memory effi-
cient.

Finally, our design differs in the sens that views
are still image types (with an embedded operation).
When reasoning about images, the IP practitioner
can focus on behavior of his images and algorithms.
On the other hand, Data flow programmer focuses
on the data and how to transform it in order to
extract information. Design-wise, a RDD is a gen-
eralized super-type of data, more flexible due to its
dynamic nature, but it does not abstract away the
underlying complexity incurred by the processed
data.

5 Experimentation

To highlight the interest of GP and views in the
context of performance-sensitive applications, we
study the impact on a simple but real case im-
age processing pipeline aiming at extracting objects
from a background as depicted on 16. Simply said,
it computes the difference between an image and a
registered image. The gaussian blur and the mor-

Background
(RGB-8)

Grayscale
Conversion

Substract Thresholding
Opening

(Erosion+Dilation)

Output
(Gray 8-bit)

Input
(RGB-8)

Grayscale
Conversion

Gaussian

Figure 16: Pipeline for foreground extraction
using algorithms and views.

Background Candidate Result

Figure 17: Foreground extraction: sample re-
sult.

phological opening allow some robustness to noise.
The pipeline is implemented with (1) OpenCV, (2)
our library (Pylene) where each step is a computing
operator, (3) our library where the purple blocks
are views. This pipeline actually produced interest-
ing results, as shown in 17. In table 2, we bench-
mark the computation time and the memory us-
age 2of these implementations (all single-threaded)
with an opening of disc of radius 32 on 10 MPix
RGB images (the minimum of many runs is kept).

The results should not be misunderstood. They
do not say that OpenCV is faster or slower but
shows that implementations all have the same or-
der of processing time (the algorithms used in our
implementation are not the same as those used in

2Memory usage is computed with valgring/massif as
the difference between the memory peak of the run and
the memory peak without any computation (just setup
and image loading)

Framework Compute Time Memory
usage

∆Memory
usage

Pylene (w/o views) 2.11s (± 144ms) 106 MB +0%

OpenCV 2.41s (± 134ms) 59 MB -44%

Pylene (views) 2.13s (± 164ms) 51 MB -52%

Table 2: Benchmarks of the pipeline fig. 16 on
a dataset (12 images) of 10MPix images. Av-
erage computation time and memory usage of
implementations with/without views and with
OpenCV as a baseline.
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float kThreshold = 150; float kVSigma = 10;

float kHSigma = 10; int kOpeningRadius = 32;

auto img_gray = view::transform(img_color, to_gray);

auto bg_gray = view::transform(bg_color, to_gray);

auto bg_blurred = gaussian2d(bg_gray, kHSigma, kVSigma);

auto tmp_gray = img_gray - bg_blurred; /

auto thresholdf = [](auto x) { return x < kThreshold; };

auto tmp_bin = view::transform(tmp_gray, thresholdf); /

auto ero = erosion(tmp_bin, disc(kOpeningRadius));

dilation(ero, disc(kOpeningRadius), output);

Figure 18: Pipeline implementation with
views . Highlighted code uses views by pre-
fixing operators with the namespace view.

OpenCV for blur and dilation/erosion) so that the
comparison makes sense. It allows us to validate ex-
perimentally the advantages of views in pipelines.
First, we have to be cautious about the real ben-
efit in terms of processing time. Here, most of
the time is spent in algorithms that are not eli-
gible for view transformation. Thus, depending on
the operations of the pipeline, views may not im-
prove processing time. Nevertheless, using views
does not degrade performance neither (only 1% in
this experiment). It seems to show that using views
does not introduce performance penalties and may
even be beneficial in lightweight pipelines as the
one in section 3. On the memory side, views re-
duce drastically the memory usage which is benefi-
cial when developing applications which are mem-
ory constrained. From the developer standpoint,
it requires only few changes in the code as shown
in fig. 18 — the implementation of the algorithms
remain the same — which is a real advantage for
software maintenance.

6 Conclusion

Thanks to simple yet concrete examples, we have
shown how modern C++ and the generic program-
ming paradigm can ease image processing software
development. We have given a particular focus
to the concepts of image views and have shown
that they improve both performance and usabil-
ity of an image processing framework. These ideas
have been implemented in our C++20 library [13]
and used for concrete image processing applications
(medical imaging and document analysis). We have
compared our design to existing similar design in
data flow oriented programming and outlined the
main differences. Nonetheless, generic program-
ming in C++ comes with some downsides. Tem-
plates belong to the static world and selecting algo-

rithmic specialization based on runtime conditions
is not trivial. It requires ahead-of-time generation
of specializations that increases compile times and
does not scale with the parameter space size, or
it requires switching to a more dynamic paradigm
that could degrade performances. Dealing with dy-
namic should not be an option when it comes down
to exposing a static library to a dynamic language
like Python. As a future work, we will research
ways to address this issue.
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