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We propose to use a correlated noise bath to drive an optically trapped Brownian particle that mimics active
biological matter. Thanks to the flexibility and precision of our setup, we are able to control the different param-
eters that drive the stochastic motion of the particle with unprecedented accuracy, thus reaching strongly corre-
lated regimes that are not easily accessible with real active matter. In particular, by using the correlation time
(i.e., the “color”) of the noise as a control parameter, we can trigger transitions between two non-equilibrium
steady states with no expended work, but only a calorific cost. Remarkably, the measured heat production is
directly proportional to the spectral entropy of the correlated noise, in a fashion that is reminiscent of Landauer’s
principle. Our procedure can be viewed as a method for harvesting information from the active fluctuations.

Introduction — Chemical and biological non-equilibrium
processes reveal the special role played by fluctuations at
mesoscopic scales, raising fascinating questions that form a
major topic of current transdisciplinary research [1–3]. The
combined development of stochastic thermodynamics and op-
tical trapping experiments offers an appropriate framework to
describe such processes with the required focus put on fluc-
tuations [4, 5]. Recently, active fluctuations have been arti-
ficially injected inside optical traps by adding correlated (i.e.
colored) noises to the trapping potential [6–8]. The engineer-
ing of the noise inside the trap offers a new playground where,
for instance, optomechanical models of active matter can be
studied in close relation with theory [9–12].

In this Letter, we follow this approach to decipher the en-
ergetics engaged between non-equilibrium states and corre-
lated baths [13, 14]. To do so, we bring an optically con-
fined microparticle in an active-matter-like non-equilibrium
steady state (NESS). The injected correlated noise yields the
constant external source of heat needed to maintain, through
its consumption, the particle in a chosen NESS. We monitor
the non-Brownian diffusion of the trapped bead, and probe
large deviations from thermal equilibrium, which correspond
to strongly correlated regimes unexplored so far to our knowl-
edge and not accessible with experiments that use real, bio-
logical active matter [15–17].

We further demonstrate that it is possible to drive the bead
from one NESS to another through the sole change of the cor-
relation time (i.e., the “color”) of the active fluctuations. For
instance, transitions between NESS are known to occur when
biological matter undergoes a change in mechanical proper-
ties, such as during mitosis, and thereby a modification of the
intracellular noise spectrum [18, 19]. Modulating the color of
the noise without changing its amplitude makes it possible to
achieve heat production at constant energy input. We show
that this capacity to induce NESS-to-NESS transitions at zero
energetic cost is rooted in the informational content of active
fluctuations. Indeed, correlated noise carries information that
can be quantified by the spectral entropy Hs [20], the coun-
terpart of Shannon’s entropy in the frequency domain, which
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depends on the noise correlation time. Remarkably, we find
that, for a constant noise amplitude quantified by an effective
temperature Teff , the heat ∆Q generated through the tran-
sition is proportional to the entropy of the correlated noise:
∆Q = kBTeff∆Hs, in a fashion that is reminiscent of Lan-
dauer’s principle. This relation is tested robust over a wide
range of heat production and for different noise amplitudes.
Effectively therefore, our protocol harvests information from
the colored noise and turns it into heat released to the sur-
rounding fluid throughout the NESS-to-NESS transition. Our
result makes explicit the deep connection between informa-
tion and non-equilibrium thermodynamics, which is central
to molecular motors and living systems capable of extracting
energy from their fluctuating environments to accelerate their
average motion, e.g. [21–23].

FIG. 1. Schematic view of the experimental realization. The par-
ticle is trapped by optical gradient forces using a focused 785 nm
laser beam (“optical potential” on the figure). Its stochastic motion
is driven by two random baths: a thermal (white noise) bath asso-
ciated with the surrounding fluid at room temperature T = 296 K
(blue) and an active (colored noise) bath generated by an additional
800 nm laser exerting on the bead an actively fluctuating radiation
pressure force (red).

Experimental realization — Our experiment consists in op-
tically trapping a single 3 µm dielectric bead with a 785 nm
Gaussian laser beam. The optical potential created by the gra-
dient forces at the waist of the beam is harmonic, with a stiff-
ness that is proportional to the intensity of the laser. The bead
is immersed in water at ambient temperature and undergoes
random motion due to the thermal fluctuations consistent with
an Ornstein-Uhlenbeck process. An additional radiation pres-
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sure force is applied to the bead by a second laser, whose in-
tensity is digitally controlled through time by an acousto-optic
modulator. Any waveform can be sent on the bead, including
noise with arbitrary spectrum, up to ≈ 105Hz. A schematic
view of the experimental realization is shown in Fig. 1 and
the experimental setup is described in Appendix A.

Active particles are characterized by a persistence that
can be mimicked by an exponentially correlated Gaussian
noise [24–26]. This noise can be generated by an Ornstein-
Uhlenbeck process [27, 28]

dηt = −ωc ηtdt+
√

2αωc dWt, (1)

where dWt is a δ-correlated Wiener process. Equation (B1)
yields a noise ηt with a correlation 〈ηtηs〉 = αe−|t−s|ωc ,
where ωc is the inverse of the correlation time τc. The vari-
ance of the noise ηt is given by the amplitude factor α [29].
We emphasize the great flexibility of the above model, which
enables us to tune independently the amplitude (variance) and
the correlation of the active noise. Thus, we are able to probe
a wide range of regimes, from white (small τc) to strongly
correlated (large τc) noises.

The noise ηt is generated numerically using Eq. (B1) and
sent to the bead via the radiation pressure of the secondary
laser beam –see Appendix B. Hence, the overall motion of
the bead is subjected to three forces: the deterministic op-
tical trapping force, the stochastic white noise arising from
the thermal bath, and the stochastic colored noise applied by
the radiation pressure. The position xt of the bead obeys the
Langevin equation [16, 24]

ẋt = −ω0xt +
√

2Dξt +
√

2Daηt, (2)

where ω0 = κ/γ is the inverse of the relaxation time in the
optical trap, with κ being the stiffness of the trap and γ the
Stokes viscous drag. The stochastic variable ξt is a white
noise that models the fluid thermal bath, with thermal diffu-
sion coefficientD = kBT/γ, where kB is the Boltzmann con-
stant and T the temperature of the fluid. Da is the active diffu-
sivity associated with the colored noise ηt, which incorporates
therefore the optomechanical coupling between the bead and
the noisy radiation pressure. Note that the model equation
(D1) describes a non-Markovian stochastic process that does
not respect the fluctuation-dissipation theorem, as the fluctu-
ating force ηt possesses an intrinsic correlation time, whereas
the friction term γẋt is instantaneous. Hence, the fluctuations
of the active bath are not compensated by the dissipation at the
same rate [17], as discussed and probed in detail in Appendix
E.

Out-of-equilibrium properties — One remarkable feature of
active matter is that, due to the correlation properties of the
bath, it diffuses in non-Brownian fashion [11, 16, 30, 31]. The
appropriate observable to estimate the departure from Brow-
nian motion is the mean square displacement MSD(∆) ≡
〈δx2(∆)〉 = 〈(xt+∆ − xt)2〉, where ∆ is a lag time. In gen-
eral in the short-time limit, the bead will explore the available
space inside the trap according to the free diffusive motion
MSD ∼ ∆β , with β = 1 for normal diffusion and β 6= 1 for
anomalous diffusion [32, 33].

In Fig. 2 (a), we present the MSD for two processes, obey-
ing Eq. (D1) with the radiation pressure injecting in the
trap either a colored noise, or a white noise of equal am-
plitude. In the latter case, two white noises (thermal and
radiation pressure) drive the bead and the data can be fit-
ted with the standard Ornstein-Uhlenbeck MSD 〈δx2(∆)〉 =
2Deff (1 − exp(−ω0∆))/ω0. Using the experimental value
for the relaxation time ω−1

0 in the trap, we determine an ef-
fective diffusion coefficient Deff = 0.29 µm2/s. The col-
ored noise data is fitted with a modified expression that can
be found in [16, 34, 35]. This expression takes into account
the noise correlation and where the unique fitting parameter is
the active diffusion coefficient Da in this way extracted. The
superdiffusive nature of the process is clearly visible at short
times, with a slope β = 1.5. By tuning the correlation time τc
and the amplitude 〈η2

t 〉 = α of the noise ηt injected inside the
trap, we can probe different regimes of correlated noise. Of
course, all regimes are characterized by a departure from the
thermal, white noise equipartition condition 〈x2

t 〉 = D/ω0,
as a signature of the non-equilibrium nature of the system
[16, 25].

When the added colored noise is almost white, i.e. when
τc ω0 � 1, the bead is driven by two, uncorrelated white
noises – see Eq. (D1) – yielding a close-to-equilibrium re-
lation 〈x2

t 〉 ≈ (D + Da)/ω0 between the motional vari-
ance 〈x2

t 〉 and the resulting white noise diffusion coefficients
D + Da [36]. The variance 〈x2

t 〉 is determined experimen-
tally from the recorded trajectories. Importantly, this case
leads to a modified equipartition with an effective tempera-
ture kBTeff = κ(D + Da)/ω0 that directly depends on the
choice of the active diffusion coefficient Da [24, 37]. This
weakly correlated regime has been studied both theoretically
[11] and experimentally using colloidal beads confined in a
bath of swimming E. coli bacteria [16].

But our ability to manipulate both the color and the am-
plitude of the noise leads us to investigate strong deviations
from equilibrium in the regime of long correlations times that
have not been explored experimentally so far. For such long
correlation times τc ω0 ' 1, we clearly observe in Fig. 2
(b) that the measured variances depart from the white noise
D+Da linearity. In this strongly correlated case, the relation
between variance and diffusivity can be evaluated from the
long-time limit of the MSD with 〈δx2(∆ � τc)〉 = 2〈x2

t 〉 ≈
ω−1

0 (D + αDa/(ω0 + ωc)) (see Appendix D). This law fits
well the experimental data [red line in Fig. 2 (b)] and the dis-
crepancy between the two blue and red curves quantifies the
deviation from equipartition. An important consequence of
the explicit dependency of 〈x2

t 〉 on ωc is that one cannot de-
fine a unique effective temperature to describe the system both
in the short and long time limits [38].

Transition protocols between two NESS — The correlation
time of the noise may further be used as a control parameter in
a protocol that brings the system from one NESS to another,
without changing either the confining potential or the temper-
ature. The simplest possible protocol is a step-like sudden
change of the correlation time τc (referred to as “STEP pro-
tocol” hereafter), while keeping the noise amplitude constant.
We apply the STEP protocol on the system at a low repetition
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FIG. 2. (a) Mean square displacement measured experimentally for
a white noise added to the existing thermal fluctuations inside the
fluid (blue line), showing a short-time diffusive limit (∼ ∆0.94), and
a correlated noise with τc = 1 ms (red line), yielding a short-time
superdiffusive limit (∼ ∆1.5); the superimposed dashed lines are the
MSD expected from theory, with a Ornstein-Uhlenbeck MSD evalu-
ated for the white noise case (taking T = 296 K, ω−1

0 = 1.2 ms and
extracting a thermal diffusion coefficient Deff = 0.29 µm2/s) and a
modified MSD in the correlated-noise case detailed in Appendix D.
The best fit yields an active diffusion coefficient Da = 1.44 µm2/s,
to be compared with the thermal diffusion coefficientD. The shaded
regions accounts for the uncertainties associated with the fitting er-
ror in determining ω0 and the systematic error in the sphere radius
determination. (b) The relation between motional variance 〈x2t 〉 and
the D + Da diffusivity is measured on a 99.7% confidence level
(blue dots and 3-σ bars) for different correlation times ranging from
τc = 0.1 ms to τc = 100 ms, with relaxation time inside the optical
trap ω−1

0 = γ/κ ≈ 1.2 ms. A naive equipartition result (straight
blue line) that would assimilate the correlated noise to a white noise
of same amplitude clearly departs from the experimental results, ex-
cept for very short correlation times. The correct variance estimation
for the correlated noise is given by the red curve drawn by taking the
Da value extracted from the correlated noise MSD. It fits well the
experimental data (see Appendix D for further details).

rate, so that it reaches a steady state in between each change of
τc. The ergodic hypothesis, carefully verified (see Appendix
C), leads us to build an ensemble of ≈ 1.1× 104 independent
trajectories experiencing the same protocol. The main quan-
tity of interest here will be the variance of the response of the
bead 〈x2

t 〉 [39].

In Fig. 3, we show the results of a STEP protocol where
the correlation time is suddenly changed from τc = 0.8 ms to
τc = 40 ms, while ω−1

0 = 2.1 ms. A number of realizations
of the noise variable ηt are displayed in Fig. 3 (a): the change
in correlation time at t = 0 is clearly visible. In Fig. 3 (b),
we represent the variance of the positions of the bead, which
undergoes a threefold increase when the correlation time is

FIG. 3. STEP protocol using the noise correlation time as control pa-
rameter. (a) Several digital realizations of the noise variable ηt, un-
dergoing a change in the correlation time at t = 0, from τc = 0.8 ms
before the STEP to τc = 40 ms after. (b) Corresponding experimen-
tal ensemble variance 〈x2t 〉 of the positions of the bead; the shaded
area represents the 99.7% confidence interval. (c) Main plot: Cumu-
lative excess heat in units of kBT . Inset: Cumulative housekeeping
heat before the STEP (blue line) and after the STEP (red dotted line).
In the inset, the time origin was reset so as to correspond to the be-
ginning of the steady state for each regime.Sign conventions for the
heat terms are used in agreement with [40].

changed. The small dip right after the STEP is due to the fact
that the non-Markovian trajectory xt is an integral of the noise
ηt, hence needs a finite time to probe the total amplitude of ηt.

The above STEP protocol has the same effect (increase
in the variance 〈x2

t 〉) as a protocol where the noise remains
white, but its amplitude (temperature) increases [41–43]. The
important difference is that, in our case, we do not change
the amplitude of the noise, but only act on its spectrum by
modifying the correlation time. In this sense, the protocol can
seem costless from the experimentalist’s point of view, as no
additional power has to be provided to the laser source at the
transition time. As a comparison, we estimated the equiva-
lent power needed to induce the same increase in variance as
in Fig. 3 (b) through a change in the noise amplitude, i.e., by
changing the diffusivityDa. The result is that one would need
a laser intensity of 70 mW, whereas we used only 36 mW in
our color-based protocol.

From a thermodynamic point of view, our color-based pro-
tocol necessarily produces heat, which is then released in the
thermal bath. Following Sekimoto’s treatment [40, 44], which
was recently applied to active matter [13], the cumulative
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stochastic heat can be written as (see Appendix F):

q(t) =
1

2

∫ t

0

κ
dx2

dt′
dt′ − γ

∫ t

0

√
2Daηt′ ẋt′dt

′. (3)

The first term accounts for the excess heat released during a
transient evolution of the distribution, and vanishes for steady
states [45]. The second term, expressed in terms of the cross-
correlation 〈ηẋ〉, can be evaluated analytically by injecting ẋ
as from Eq. (D1) and is shown to grow linearly in time at
steady state (see Appendix F). This is the housekeeping heat,
representing the constant expense needed to maintain the sys-
tem in its NESS.

Both heat terms are shown in Fig. 15(c). The main graph
represents the excess heat dissipated during the transient, with
an energy release of ≈ 10kBT . In the inset, we display
the housekeeping heat during the steady states, both before
and after the protocol, showing that changing the correla-
tion time affects the heat dissipation rate. Interestingly, the
powers at play dQHK/dt ∼ 2 kBT/ms in our optical trap-
ping experiments are close to those involved in biological
processes such as axonal transport, where kinesin consumes
around [0.4− 0.8] kBT/ms [46–48].

Harvesting information from the noise — The protocol de-
scribed in the above paragraphs seems to raise a paradox: after
the transition, the heat released during the process appears to
increase (see Fig. 15), while no further energy was injected in
the system since only the spectrum of the noise was changed
and not its amplitude. As the first principle of thermodynam-
ics is of course not violated, this means that the coupling be-
tween the correlated noise bath and the bead has increased, so
that energy can be transferred more efficiently from the former
to the latter. Such a modulation of the coupling is exactly what
happens when the correlation time of the active fluctuations is
modified.

Nevertheless, it is illuminating to analyze this situation
from an informational point of view. Indeed, a correlated
noise carries more information and has lower entropy than a
white, or a less correlated, noise. This information content
can be measured by the spectral entropy Hs, which is just the
Shannon entropy in the frequency domain [20]:

Hs = −kB
N∑
i=1

P (ωi) lnP (ωi), (4)

where P (ωi) = Sη(ωi)/
∑
i Sη(ωi), and Sη(ωi) denotes the

power spectral density of the signal η at frequency ωi. The
spectral entropy vanishes for a monochromatic signal and
reaches its maximum kB lnN for white noise. Any correlated
noise has an intermediate value of Hs, which can be used to
measure its information content.

We measured Hs for various correlation times, but also
several noise amplitudes. Each amplitude is labeled by an
effective temperatures Teff , determined by sending a white
noise of same amplitude as each colored noise cases. The
spectral entropy Hs is then compared to the generated excess
heat. More precisely, for each effective temperature, we de-
fine ∆Hs = Hs(τc) − Hs(τref ), and similarly for ∆Qex,
where τref = 0.5 ms is taken as a reference correlation time.

FIG. 4. Measured excess heat between two NESS (in units of
kBTeff ) plotted as a function of the calculated spectral entropy, for
three values of the noise amplitude, each characterized by an effec-
tive temperature Teff –experimental details given in Appendix G.
The dashed line has a slope equal to unity.

Hence, ∆Hs and ∆Qex represent respectively the informa-
tional expenditure and the corresponding energetic cost to go
from the reference case to the colored case with correlation
time τc through the STEP protocol described above.

The data from several measurements are plotted in Fig. 4
and obey very neatly the relation ∆Qex/kBTeff = ∆Hs.
This is a striking proof that the excess heat produced in the
process corresponds exactly, in units of kBTeff , to the in-
jected information. Note that this expression is highly non-
trivial: the left-hand side is a thermodynamic quantity related
to the diffusive motion of the trapped bead, while the right-
hand side captures the informational content of the colored
bath generated by the laser beam. This expression is fully
in line with Landauer’s principle [49, 50] where the physical
nature of information is seen in the context of active matter.
This remarkable result highlights the informational nature of
our process, resolving what could appear as a paradoxically
costless protocol.

Conclusion — In this work, we studied experimentally the
diffusive motion of an optically trapped particle subjected to
both a white thermal noise due to the surrounding fluid and
a correlated noise generated by a digitally controlled fluctuat-
ing radiation pressure. This configuration constitutes a very
accurate, controllable model of active biological matter.

Three major results were obtained: (i) thanks to the flexi-
bility of our setup, we could explore an unprecedented range
of regimes, most notably those characterized by long corre-
lation times and strong amplitudes, which are unattainable in
experiments with real active matter; (ii) by using the corre-
lation time as a control parameter, we devised a protocol that
drives the system from one non-equilibrium steady state to an-
other, at zero nominal energetic cost; (iii) finally, we showed
that the excess heat released during such a protocol is pro-
portional to the spectral entropy of the colored noise, a re-
lationship that is akin to Landauer’s principle of equivalence
between information and energy cost [51, 52]. Effectively, the
protocol harvests information from the colored noise, turns it
into heat necessary for the transition between the two non-



5

equilibrium states, and finally releases it to the surrounding
environment. The ubiquity of non-equilibrium steady states
in biological systems, including changes in the spectrum of
the bath through time (for example during mitosis [18, 19])
suggests exciting applications for the present findings.
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Appendix A: Experimental setup and calibration

Our experimental setup consists in optically trapping, in a
harmonic potential, a single dielectric bead (3 µm polystyrene
sphere) in a fluidic cell filled with dionized water at room tem-
perature. The harmonic potential is induced by focusing in-
side the cell a linearly polarized Gaussian beam (785 nm, CW
110 mW laser diode, Coherent OBIS) through a high numeri-
cal aperture objective (Nikon Plan Apo VC, 60×, NA= 1.20
water immersion, Obj1 on Fig. 5). An additional force in the
form of radiation pressure is applied to the sphere using an ad-
ditional high-power laser (800 nm, CW 5 W Ti:Sa laser, Spec-
tra Physics 3900S). The intensity of this radiation pressure
beam is controlled by an acousto-optic modulator (Gooch and
Housego 3200s, AOM on Fig. 5) using a digital-to-analogue
card (NI PXIe 6361) and a PYTHON code.

FIG. 5. Simplified view of the optical trapping setup. The sphere is
suspended in water inside the Sample cell inserted between the two
objectives Obj1 and Obj2. The 785 nm trapping beam is drawn in
red, the 800 nm radiation pressure beam in purple. The intensity of
this beam controlled by the acousto-optic modulator (AOM). The in-
stantaneous position of the trapped bead is probed using the auxiliary
639 nm laser beam, drawn in orange, whose scattered signal is sent
to a high-frequency photodiode.

The instantaneous position xt of the sphere along the op-
tical axis is measured by recording the light scattered off the
sphere of a low-power 639 nm laser (CW 30 mW laser diode,
Thorlabs HL6323MG), sent on the bead via a second objec-
tive (Nikon Plan Fluor Extra Large Working Distance, 60×,
NA= 0.7, Obj2 on the figure). The scattered light is collected
by Obj1 and recorded by a photodiode (100 MHz, Thorlabs
Det10A). The recorded signal (in V/s) is amplified using a
low noise amplifier (SR560, Stanford Research) and then ac-
quired by an analog-to-digital card (NI PCI-6251). The signal
is filtered through a 0.3 Hz high-pass filter at 6 dB/oct to re-
move the DC component and through a 100 kHz low-pas filter
at 6 dB/oct to prevent from aliasing. The scattered intensity
varies linearly with the position of the trapped bead xt for
small enough displacements and we make sure to work in the
linear response regime of the photodiode so that the recorded
signal is linear with the intensity, resulting in a voltage trace
well linear with x(t).



6

FIG. 6. Power spectral density Sx[ω] of the bead position, recorded
with no additional noise, i.e. solely driven by thermal fluctuations
(blue circles) and with additional white noise injected inside the
trap (red circles) using the auxiliary radiation pressure laser made
noisy via the AOM. In both cases, the dashed lines correspond to
Lorentzian fits, with shaded regions indicate the limits of the fits.
The vertical line mark the position of the trap roll-off frequency at
∼ 102Hz. Note the onset of the electronic noise floor at high fre-
quencies.

The calibration of the recorded voltage is done by fitting
the motional Lorentzian spectrum of the sphere -see Fig. 6-
from which is extracted a calibration coefficient expressed in
m/V, generally ∼ 10−7m/V. The noise added by the radi-
ation pressure laser modifies the dynamics of the bead, but
without changing the properties of the trapping potential. As
presented in Fig. 6, we carefully verify that an added white
noise that mimics a higher temperature, only leads to an in-
crease in the power spectral density amplitude (as expected
when increasing the kinetic temperature of the bead) without
modifying neither its Lorentzian profile nor the roll-off fre-
quency of the trap, left unchanged at ≈ 150Hz.

Appendix B: External radiation pressure force acting as a bath:
from noise generation to active protocols

We generate the external noise following the sequence de-
scribed in Fig. 7. Using a PYTHON code with a build-in ran-
dom noise generator, we can easily generate a white noise for
which the choice of the distribution function of the noise has
no influence on x(t) (by the virtue of the central limit theo-
rem with all noise events being independent). To maximize
the usable dynamical range, we thus simply use a uniformly
distributed noise.

In contrast, for a colored noise, both correlation and dis-
tribution matter. In this case, we use a Gaussian exponen-
tially correlated noise, given as the solution of the Ornstein-
Uhlenbeck process

dηt = −ωcηtdt+
√

2αωcdWt, (B1)

where ωc is the inverse characteristic time of the noise and√
α its amplitude. The variance of such a process is 〈η2

t 〉 = α.

FIG. 7. Schematic representation of the signal and data acquisition
processing implemented in our experiments. The noise ηt is digitally
generated, scaled to a voltage V (t) that can be sent to the acouto-
optic modulator (AOM), producing a diffracted beam whose inten-
sity varies linearly with this input voltage. The laser beam diffracted
through the AOM exerts a radiation pressure on the optically trapped
sphere, whose position is recorded as detailed in Sec. A. A small part
of the laser beam is also measured and used to monitor and evaluate
the noise ηt as it enters the trap.

This correlated noise will then enter into the Langevin equa-
tion as an external random force field

γẋ = −κxt + γ
√

2Dξt + Fext(t) (B2)

withD = kBT/γ the diffusion coefficient in the thermal bath.
The external radiation pressure force Fext = F0 + δF (t) is
centered around a mean value 〈Fext〉 = F0 and with a zero
mean noise part 〈δF (t)〉 = 0. The average term F0 vanishes
trivially when looking at the centered process xt−〈xt〉 = xt−
F0/κ, which is always the case in our experiments. Random,
the external force acts as a secondary bath. It can thus be
recast as Fext(t) = γ

√
2Daηt, i.e. on the same footing as the

thermal force Fth(t) = γ
√

2Dξt where D is in m2/s and ξ
(the time derivative of a Wiener process) is in

√
Hz. This leads

us to introduce an active diffusion coefficient Da having the
same dimension as D, associated with the noise ηt solution of
Eq. (B1). This gives the noise of dimension [ηt] ≡ [

√
α] ≡√

Hz, just like the thermal noise term ξt.
An important asset of our work is the flexibility of our

scheme for controlling the color and the amplitude of the
noise, which demands to keep ωc and α independent. To do
so, we first generate numerically with the PYTHON code, un-
der a sampling frequency of 20kHz, the noise ηt of variance
α, scaled to the desired amplitude ∈ [0, 1] which corresponds,
in Volts, to the range fixed by the radio-frequency generator
driving the acousto-optic modulator (AOM). The AOM re-
sponse is calibrated to yield a linear relation between the input
voltage and output laser intensity in the first order diffracted
beam. The numerically generated noise is thereby encoded
into a radiation-pressure laser intensity noise sent to the bead.
This noise intensity acting on the bead depends both on the
gain of the AOM-diffracted beam and on the choice of the
radiation-pressure laser intensity.

In our experiments, the amplitude of the noise is indepen-
dent of its color, which is different from the choice made in
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[16], where α scales as the square root of the inverse corre-
lation time of the noise. This choice necessarily induces the
interplay between both correlation times and amplitudes that
we want to avoid. The actual amplitude of the noise experi-
enced by the bead, which depends not only on the radiation-
pressure laser intensity but also on the optomechanical cou-
pling between this laser beam and the trapped sphere, will be
taken into account in Fext via the active diffusion coefficient
Da. This implies that choosing α = 1 is the simplest option.
However, we keep the α term for clarity, as a purely dimen-
sional constant.

FIG. 8. (a) Power spectral density associated with different noises
ηt (for each colored curves, the corresponding correlation time is
indicated within brackets in the legend). These spectra are measured
directly from the laser intensity signal that is sent on the trapped
bead as a radiation pressure. (b) Mean squared displacement of the
sphere for each of the noises presented in panel (a). The DC case
corresponds to the absence of additional noise, with Fext = F0.
We observe that the white noise case and the first colored noise case
(correlation time 0.1ms) are almost identical. Superimposing the
fit performed with the analytical expression for the mean squared
displacement (see below, Sec. D) enables one to extract the active
diffusion coefficients Da for each case.

On Fig. 8 (a), we show the power spectral densities of
different noises, from white to colored. At high frequencies
(> 3000 Hz, see Fig. 6), the signal is dominated by the elec-
tronic noise of the experiment, limiting the spectral bandwidth
of interest from a fraction of Hz to a few kHz. The blue curve
in Fig. 8 corresponds to a white noise generated over the de-
sired bandwidth where we see its flat spectrum covering all
the response region of the bead, up to the 20 kHz limit of the
generation sampling frequency. The other curves are the dif-

ferent colored noises, with correlation times spanning from
0.1 to 50 ms. On Fig. 8 (b), we show the mean squared
displacement (MSD) associated with each noise. The black
curve shows the DC case with Fext = F0 where no noise is
added. The blue curve corresponds to the white noise drive
(blue spectrum of Fig. 8 (a)), slightly above the thermal MSD
as a consequence of the increase in effective temperature. The
orange curve gives the first colored noise case (orange spec-
trum of Fig. 8 (a)). We can note that the responses to a white
noise and to a colored noise of correlation time 0.1 ms are
similar, this colored noise being ”almost white”. This im-
plies that longer (> 0.1 ms) correlation times are needed to
make a clear difference between white and colored cases (as
seen for the next colored noise with correlation time 0.5 ms).
The other curves are the MSD corresponding to the different
noises of Fig. 8 (a).

FIG. 9. (a) Temporal noise series ηt modulated between two corre-
lation times (two colors) following a 20 Hz square modulation func-
tion (top) and the resulting trajectory xt (bottom). (b) Each long
trajectory is reshaped as an ensemble. In the upper panel, the {ηit}
ensemble clearly displays at t = 0 the instantaneous change in cor-
relation with constant amplitude. In the lower panel, the ensemble of
trajectories {xit} of the bead show the progressive change in the mo-
tional variance that results from the step-like change of correlation
times of the bath.

To study protocols, we need an ensemble of independent
trajectories all experiencing the same parameter changes. In
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our experiments, this is a change in correlation time ωc(t) that
we modulate in a step-like way from an initial ωic to a final ωfc
values. With one single bead in the optical trap, the ensemble
is drawn out of a long time series, for which the ergodic hy-
pothesis is crucial and was carefully checked as discussed in
Sec. C. We produce one long noise sequence ηt where a large
number of correlation time changes are produced following a
ωic/ω

f
c square modulation at a low enough repetition rate (a

few tens of Hertz). This modulation sequence is sent to the
bead via the radiation pressure laser. The corresponding tra-
jectory xt of the bead relaxes to one steady-state between each
change on ωc. This long trajectory is cut and reshaped into an
ensemble of trajectories {xit} that, each, experience a step-
like change in correlation time. In order to build the actual
noise protocol driving these trajectories, we generate in paral-
lel two independent sequences of ηt time-series with different
(but constant) correlation times that are then interspersed syn-
chronously with the ωic/ω

f
c square modulation impacting the

motional trajectory xt. The detailed procedure is described in
Fig. 9.

Appendix C: Ergodicity

Ergodicity is the equality of time and ensemble averages
in the limit of infinite time T and infinite ensemble. But
as detailed in our previous work [39], appropriate tools ex-
ist that can asses the ergodic nature of trajectories {xt} on
finite samples and finite times. To do so, we rely on an esti-
mator [32] corresponding to the variance of the ratio between
time averaged mean squared displacement (MSD) and time-
ensemble averaged MSD. This ratio should becomes Dirac-
like for long-time (or short time lag ∆ in the MSD). The 0
limit of the variance of this ration for ∆/T → 0 is a neces-
sary and sufficient condition for ergodicity [39].

The result, plotted in Fig. 10 (a) with fixed T and varying
∆, decays to zero for short time-lag as expected. With fixed
∆, varying T , the expected decrease towards 0 for long time,
with a linear trend in log scale, is also clearly seen in Fig. 10
(b). These two results validate our ergodic assumption for the
time-series of position xt, and therefore our treatment when it
comes to building trajectory ensembles.

Appendix D: Power spectral density, autocorrelation, mean
squared displacement and equipartition breaking

Our system, consisting of an optically trapped bead ther-
mally diffusing within active fluctuations, is described by a
couple of stochastic differential equations that determine the
evolution of the position of the bead within the trap according
to:

ẋt = −ω0xt +
√

2Dξt +
√

2Daηt (D1)

where the active noise ηt, solution of the Ornstein-Uhlenbeck
process

dηt = −ωcηtdt+
√

2αωcdWt, (D2)

FIG. 10. (a) The ergodic parameter (i.e. the normalized variance
ε(∆) presented in our previous work [39]) is shown as a function of
the time lag ∆ for both the white noise driven process (blue circles)
and the colored noise driven process (red triangles) along with the
analytical prediction for the white noise case (black dashed line).
The red and blue hazes measure the 95% confidence interval. (b)
The same ergodic parameter ε(∆) plotted as a function of the total
time τ for both the white-noise driven process (blue circles) and the
colored-noise driven process (red triangles) along with the analytical
prediction for the white noise case (black dashed line).

is an exponentially correlated Gaussian variable.
We can derive the noise power spectrum density by Fourier

transforming Eq. (D2)

− iωη[ω] = −ωcη[ω] +
√
αωcξ[ω] (D3)

where ωc is the correlation pulsation. Taking the squared
norm leads to the active noise power spectral density (PSD)

η[ω]η∗[ω] = |η[ω]|2 =
αωc

ω2
c + ω2

. (D4)

On Fig. 11 (a), we plot the PSD directly measured from the
laser output signal used to induce the noisy radiation pres-
sure, both in the case of a white noise and colored noise. As
expected, the spectrum of the white noise is flat on all the stud-
ied bandwidth, whereas the spectrum of the colored noise is
following a Lorentzian profile, well captured by a fit following
Eq. (D4).

The PSD of the motion xt is evaluated from Eq. (D1) as:

x[ω]x∗[ω] =
1

ω2
0 + ω2

(2Dξ[ω]ξ∗[ω] + 2Daη[ω]η∗[ω]) ,

(D5)
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FIG. 11. (a) Power spectral densities (PSD) of the white noise (blue
curve) and colored noise (red curve) measured on a 10% fraction of
the laser beam signal that is sent inside the trap to act on the bead
as a noisy radiation pressure. A Lorentzian fit (black dashed curve)
is superimposed on the colored noise spectrum. (b) Motional PSD
Sx[ω] = 2|x[ω]|2 plotted as a function of the frequency for the white
noise driven process (blue) and the colored noise driven process (red)
along with the associated theoretical PSD (black dashed curves).

noting that the implicit averaging performed in this square
cancels the two cross-product of the uncorrelated noises
η[ω]ξ∗[ω] and the complex conjugate. In Eq. (D5), ω0 = κ/γ
is the inverse of the characteristic relaxation time of the sys-
tem, and η[ω]η∗[ω] is given by Eq. (D4) and ξ[ω]ξ∗[ω] = 1.
Hence

x[ω]x∗[ω] = |x[ω]|2 =
1

ω2
0 + ω2

(
2D +

2Daαωc
ω2
c + ω2

)
(D6)

On Fig. 11 (b), we plot the measured spectra of xt both for a
white and colored external drive, with the analytical result of
Eq. (D6) using the value of Da obtained from the fit of the
MSD for the colored noise (see Fig. 8 above) and using the
Da → 0 limit for the white noise case. A very good agree-
ment between the theory and the experimental data is clearly
seen, confirming that our model captures well the real diffu-
sive dynamics of the trapped bead.

We can also compute the correlation function of the colored

noise driven process from the Wiener-Khintchine theorem as:

Cxx(∆) =
1

2π

∫ +∞

−∞
|x[ω]|2e−iω∆dω

=
1

2π

∫ +∞

−∞

2De−iω∆dω

ω2
0 + ω2

+
1

2π

∫ +∞

−∞

2Daαωce
−iω∆dω

(ω2
0 + ω2) (ω2

c + ω2)
,

(D7)

where both integrals can be computed via contour integration.
For the first one, f [ω] = D

π
e−iω∆

ω2
0+ω2 has one simple pole in

the upper-half complex plane in iω0, leading to compute one
residue ∫ +∞

−∞
f [ω]dω = 2iπRes{f [ω], iω0}

= lim
ω→ω0

2De−iω∆

ω + iω0

=
D

ω0
e−ω0∆.

(D8)

Similarly, the second integral with g[ω] = Daαωce
−iω∆

π(ω2
0+ω2)(ω2

c+ω2)

is evaluated by separating it through partial fraction decompo-
sition in g[ω] = Daαωce

−iω∆

π(ω2
c−ω2

0)

(
1

ω2
0+ω2 − 1

ω2
c+ω2

)
≡ g1[ω] +

g2[ω] leading to two integrals with simple poles in iω0 and
iωc∫ +∞

−∞
g[ω]dω = 2iπRes{g1[ω], iω0}+ 2iπRes{g1[ω], iωc}

= Daαω
2
c

(
e−ω0∆

ω0 (ω2
c − ω2

0)
− e−ωc∆

ωc (ω2
c − ω2

0)

)
=

Daαωc
ω0(ω2

c − ω2
0)

(
e−ω0∆ − ω0

ωc
e−ωc∆

)
.

(D9)
These evaluations are combined to provide the expression for
the correlation function of the diffusion process:

Cxx(∆) =
D

ω0
e−ω0∆+

Daαωc
ω0(ω2

c − ω2
0)

(
e−ω0∆ − ω0

ωc
e−ωc∆

)
(D10)

On Fig. 12 we represent the normalized correlation func-
tion Cxx for both white and colored noise drives where we
superimpose the analytical result, using the value of Da ob-
tained, as indicated above, from the fit of the MSD for the
colored noise. Here too, we use the Da → 0 limit for the
white noise. Again, the good agreement between the expo-
nential decays and the analytical models is observed.

The MSD of a colloid diffusing in a thermal environment
obeys an Ornstein-Uhlenbeck process and is thus character-
ized by the white noise MSD:

〈δx2(∆)〉 ≡ 〈(x(t+ ∆)− x(t))2〉 =
2D

ω0

(
1− e−ω0∆

)
(D11)
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FIG. 12. Correlation function Cxx(∆) = 〈x(t + ∆)x(t)〉 plotted
as a function of the lag ∆ for the white (blue curve) and colored
(red curve) noise-driven processes, both normalized to the zero-delay
∆ = 0 correlation function Cxx(0). The theoretical expressions
derived in Sec. D are displayed as dashed black curves for both cases.

where D is the diffusion coefficient in the thermal bath, ex-
pressed in m2/s, and ω0 = κ/γ is the inverse of the charac-
teristic relaxation time of the bead in the trap.

In contrast, the MSD of an active particle obeys Eq. (D1)
and can be computed as 〈δx2(∆)〉 = 2〈x2

t 〉−2Cxx(∆) where
the variance is the stationary variance of the process and 〈x2

t 〉
is taken as the limit lim

t→∞
[〈x2

t 〉] = D
ω0

+ Daαωc

ω0(ωc+ω0) ). This leads
us to calculate directly:

〈δx2(∆)〉 =
2D

ω0
+

2Daα

ω0(ωc + ω0)
+

2D

ω0
e−ω0∆

+
2Daαωc

ω0(ω2
c − ω2

0)

(
e−ω0∆ − ω0

ωc
e−ωc∆

)
=

2D

ω0

(
1− e−ω0∆

)
+

2Daαωc
ω0(ω2

c − ω2
0)

(
1− e−ω0∆ − ω0

ωc
(1− e−ωc∆)

)
(D12)

that constitutes the result used in the main text.
The long-time limit can be easily derived as:

lim
∆→∞

[〈δx2(∆)〉] =
2D

ω0
+

2Daα

ω0(ωc + ω0)
. (D13)

To asses the break of the equipartition relation, it is enough
to show the absence of linearity between the variance and the
effective diffusion coefficient associated with the active pro-
cess. For different noise colors, we thus measure and fit the
MSD to extract each corresponding Da. We then plot in Fig.
2, panel (b) of the main tex the variance against the total dif-
fusion coefficient D + Da. As seen in the figure, we clearly
observe that the variance does not follow the intuitive ω−1

0

linearity. In striking contrast, it rather follows one half of Eq.
(D13) – i.e., Dω0

+ Daα
ω0(ωc+ω0) – where the explicit ωc term pre-

vents us from defining a unique effective diffusion coefficient

(or effective temperature) and where Da comes from the fit of
the MSD displayed in Fig. 8.

Appendix E: Micro Rheology and Fluctuation Dissipation
Theorem

We probe the non-equilibrium nature of the active fluctua-
tions and the validity of the Fluctuation Dissipation Theorem
(FDT) by comparing the dynamical responses of our system
to Active MicroRheological (AMR) and Passive MicroRheo-
logical (PMR) excitations, respectively [35, 53].

At thermal equilibrium, under detailed balance conditions,
the linear response of the system to a small perturbation is
connected to equilibrium correlations of fluctuations through
the FDT according to which:

∂Cxx(t)

∂t
= 2kBTR(t), (E1)

where Cxx(t) = 〈x(t)x(0)〉 is the motional autocorrelation
function and R(t) is the response function of the system. This
equation can be more conveniently derived in the frequency
domain. If we consider the motion of the bead driven by
a noise of unit variance φt (that takes in our case the form
ξt +

√
Da/Dηt), the Fourier transform of the corresponding

Langevin equation writes as:

− iωγx[ω] = −κx[ω] +
√

2kBTγφ[ω], (E2)

where κ is the stiffness of the potential, γ the Stokes fric-
tion drag, and

√
2kBTγφ[ω] is a generic random force. The

equation can be written in terms of a mechanical susceptibility
χ[ω] as

x[ω] = χ[ω]
√

2kBTγφ[ω] (E3)

where χ[ω] can be decomposed into real and imaginary parts
as:

χ[ω] =
ω0

γ(ω2
0 + ω2)

+i
ω

γ(ω2
0 + ω2)

≡ χ′[ω]+iχ′′[ω]. (E4)

If we compare the imaginary part χ′′[ω] with the power spec-
tral density obtained, in the case of a thermal, white noise
drive, by the square modulus of position Fourier transform
|x[ω]|2 = 2D/(ω2

0 + ω2), we obtain the expression of the
FDT in the Fourier space:

χ′′[ω] =
ω|x[ω]|2

2kBT
(E5)

where the spectrum |x[ω]|2 is the Fourier transform of autoror-
relation function Cxx(t) (Wiener-Khinchine theorem).

If now one adds a small sinusoidal perturbation on the bead
by means of an external force (which corresponds to radiation
pressure in our experiments), the FDT can be tested experi-
mentally by measuring the response function. Under the sinu-
soidal ac drive of the AMR mode at pulsation ωac, the PSD
takes the following form [54]

|x[ω]|2ac =
1

ω2
0 + ω2

(
2D +

F 2
ac

2γ2
δ(ω − ωac)

)
(E6)
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where Fac is the Fourier force component of the drive, while
the unperturbed PSD of the PMR mode writes

|x[ω]|2 =
2D

ω2
0 + ω2

. (E7)

By computing the ratio |x[ωac]|2/|x[ωac]|2ac at the pulsation
ωac for a bead on which a “white noise” radiation pressure
is exerted (hence maintaining it close to thermal equilibrium
but at an effective temperature Teff higher than room tem-
pertaure), we can extract the value of Fac by taking the mean
value of all realizations. This value can then be used to cal-
ibrate the response function χ′′[ω] and compare it with the
steady-state fluctuation PSD 2|x[ω]|2.

FIG. 13. (a) Active micro-rheological (AMR) experiment where
the sinusoidal forcing of the system is monitored in the time domain.
The recorded trajectories of the bead inside the trap are superimposed
to the sinusoidal traces of the force for two different modulation fre-
quencies. (b) Power spectral densities displayed together for differ-
ent modulation frequencies of the external force drive. The Fourier
components of each harmonic forcing are clearly seen as peaks in the
PSD.

On Fig. 13 (a), we show the external drive in the time-
domain and the motional response of the bead inside the
trap for two different modulation frequencies. By repeating
the procedure for frequencies ranging from 10 Hz to 6 kHz,
the response of the bead is characterized over all the use-
ful bandwidth (see Fig. 13 (b)). On Fig. 14, the values of
ω|x[ω]|2/2kBT and χ′′[ω] are plotted together for the probed

frequencies, for both the white noise and colored noise driven
processes. We clearly observe that in both cases, the response
functions associated with the mechanical susceptibilities fall
back on the same trend. This trend is exaclty the one as-
sociated with the white noise driven PSD as expected from
Eq. (E5). In contrast, the spectral density of the colored
noise driven process significantly departs from the FDT in
Eq. (E5), and more particularly for the low frequencies of the
active fluctuation spectrum. This is in agreement with other
observations made recently in active systems [53], where the
active mechanical processes mostly appear at low frequency,
while the FDT is recovered for the thermally dominated high-
frequency part.

FIG. 14. We compare the measured values of χ′′[ω] for white (open
circles) and correlated (open squares) noise for different modulation
frequencies ωac and small sinusoidal perturbations with the station-
ary correlation spectra plotted as ω|x[ω]|2/2kBT for white (blue
curve) and correlated (orange curve) noises. One immediately re-
marks the breaking of the FDT for the colored-noise driven process.

We note here that a simple observation of the breaking of
the FDT can already be seen in our model described by Eq.
(D1), where the fluctuating forces associated with the added
noises ξt and ηt now possess an intrinsic correlation time due
to the correlated nature of ηt, while the friction kernel γ is
taken as instantaneous Γ(t, t′) = γδ(t, t′). This choice has
been shown to be valid in the experimental case [17], where
the fluctuations of the active bath are not compensated by a
dissipation with the same rate. In the limit of vanishing cor-
relation times, the FDT is recovered as the noise is white (δ-
correlated) and its only effect is an effective change in temper-
ature, as was already observed using a different experimental
technique [55, 56].

Appendix F: Thermodynamics

The application of stochastic thermodynamics to active
matter has already been studied theoretically [9, 10, 13, 34,
35] and experimentally in some cases [15]. In this Appendix,
we describe in detail how the stochastic heat can be efficiently
used to describe and characterize the processes at play in our
experiments. We first note that, in our experiments, our sys-
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tem is brought to a Non-Equilibrium Steady-State (NESS)
where the stationary stochastic laser drive maintains – through
the action of radiation pressure – the system out of its equi-
librium state at a given temperature and stiffness κ. Follow-
ing the standard methods of stochastic energetics [40, 44], we
write, from Eq. (D1), for our process

(
γẋt − γ

√
2Dξtdt

)
dx = −

(
κxt + γ

√
2Daηt

)
dx. (F1)

The left-hand side is interpreted as the heat exchanged with
the thermal bath δq = −

(
γẋ−

√
2Dξtdt

)
dx. Since the ac-

tive force is stochastic, it produces no work. In fact, including
a random force in the expression of work induces a violation
of the Crooks relation [57]. The internal energy stays related
to the potential energy dU = −κx2

tdx and the remaining term
γ
√

2Daηtdx is the energy exchanged with the active bath.
Interpreted as a heat term [13], it can be evaluated from the
right-hand side of Eq. (F1) as

δq(t) = κ
dx2

dt
dt− γ

√
2Daηtẋtdt, (F2)

which can be integrated to give the stochastic heat evaluation

q(t) =

∫ t

0

κ
dx2

s

ds
ds− γ

∫ t

0

√
2Daηsẋsds. (F3)

Finally, we compute the ensemble average heat, which will
be expressed in terms of variance and cross-correlations

Q(t) ≡ 〈q(t)〉 =

∫ t

0

κ
d〈x2

s〉
ds

ds− γ
∫ t

0

√
2Da〈ηsẋs〉ds.

(F4)
The first term is connected to the evolution of the variance.
It vanishes in the steady-state and only accounts for the heat
released during a transient evolution of the distribution. The
second term can be computed analytically by injecting the dif-
ferential equation Eq. (D1) for ẋt : 〈xtη̇t〉 = −ω0〈xtηt〉 +√

2Daα. The first term can be computed

〈xtηt〉 =

∫ t

0

√
2Da〈ηtηs〉e−ω0(t−s)ds

= α

∫ t

0

√
2Dae

−ωc|t−s|−ω0(t−s)ds

=

√
2Daα

ω0 + ωc

(
1− e−t(ω0+ωc)

)
,

(F5)

and the second term

− γ
∫ t

0

√
2Da〈xsη̇s〉ds

= −γ
∫ t

0

√
2Da

(
−ω0〈xsηs〉+

√
2Daα

)
ds

= 2γDaα

(∫ t

0

ω0

ω0 + ωc

[
1− e−s(ω0+ωc)

]
ds− t

)
= 2γDaα

(
ω0

ω0 + ωc
− 1

)
t+

2γDaω0

(ω0 + ωc)2
(1− e−t(ω0+ωc)),

(F6)

to give, after an exponential decorrelation at short times (just
after the noise is turned on, a short-time regime that is never
probed in our experiments), a linear heat expenditure with
negative (since ω0 > 0) slope 2γDaα

(
ω0

ω0+ωc
− 1
)

that ac-
count for the heat needed to maintain the system in its NESS.
We note again that, in the white noise limit on an infinite band-
width, ωc →∞ makes this quantity vanish.

Therefore, if we discard the decorrelation after the noise is
turned on, we obtain the following expression for the cumula-
tive heat:

Q(t) =

∫ t

0

κ
d〈x2

s〉
ds

ds+ 2γDaα

(
ω0

ω0 + ωc
− 1

)
t

≡ QEX(t) +QHK(t),

(F7)

where the two quantities are reminiscent of the excess (EX)
and housekeeping (HK) heat terms [45].

FIG. 15. (a) Measured heat necessary to keep the system in a NESS
(in units of kBT ) both for τc = 0.8 ms (blue line, before the STEP)
and for τc = 40 ms (red dotted line, after the STEP). (b) Released
heat measured through the transient both for a increasing correlation
time (blue circles) and equivalently for a decreasing correlation time
(red triangles).

In Fig. 15, we display the time evolution of these two quan-
tities for the τc(t) STEP protocol described above. Figure 15
(a) shows the heat necessary to maintain the NESS both before
and after the change of τc. As we see, changing the correlation
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time changes the rate of heat dissipation. In Fig. 15 (b), the
time-evolution of the excess heat discarded through the tran-
sient is plotted for both increasing or decreasing STEP of τc.
It is remarkable to stress that the quantity of heat ≈ 10kBT
exchanged is the same for both cases.

Note that an alternative expression for the heat can be found
in the context of active matter and active Ornstein-Uhlenbeck
processes. These different approaches lead all to similar re-
sults, since Sekimoto’s definition of heat as

δq = −
(
γẋ− γ

√
2Dξtdt

)
dx (F8)

is uniquely defined [6, 40]. The differences stem from the way
to evaluate this quantity. In the description of non-reciprocal
systems [58], the steady-state heat is computed as a sum of
correlation between variables and velocities. In our case of
unidirectional coupling, this simplifies to a term ∼ 〈ηtẋt〉
which is the term we also obtain. Another definition is based
on the deviation from the fluctuation dissipation relation, the
Harada-Sasa relation [59] used in [6, 35], which, similarly to
our calculations, gives a linear heat production in the steady
state.

Appendix G: Spectral entropy

The information content of the injected noise is measured
by the spectral entropy Hs [20], which is precisely the Shan-
non entropy measured in the frequency domain. To evalu-
ate this quantity and its relation to heat, we perform a se-
ries of measurement varying the correlation time of the noise
τc while keeping the other parameters constant, and test the
robustness of the result for different sets of parameter (stiff-
ness and noise intensity). For each experiment, an equivalent
white noise experiment is also performed, that allows us to
extract an effective temperature evaluated through equiparti-
tion: Teff = κ〈x2〉/kB . We then compare QEX/kBTeff to
Hs. The evaluation of Hs is done on the normalized power
spectral density of the noise itself. In Fig. 16, we represent
the normalized power spectral densities (PSD) for white and
colored noises generated at 20 kHz, along with the spectral

boundaries used to get rid of the nonphysical part of the sig-
nal (high frequency noise of the electronics).

On this PSD, the spectral entropy is then evaluated as:

Hs = −kB
N∑
i=1

P (ωi) lnP (ωi), (G1)

where P (ωi) = Sη[ωi]/
∑
i Sη[ωi], and Sη[ωi] = 2|η[ωi]|2

denotes the PSD of the signal η[ω] at frequency ωi.
In the main text, we present the data from three different

experiments. The first one is set with κ = 33.2 pN/µm and a
pushing laser maximal power of 150 mW, leading to a white
noise effective temperature of 764.4 K. The second exper-
iment is performed with κ = 14.8 pN/µm, pushing laser
power 19 mW, leading to Teff = 531.8 K. The third ex-
periment is done with κ = 21.4 pN/µm, pushing laser power

FIG. 16. Spectra of the white noise (blue line) and colored noise
(orange line). The vertical black lines are the limits imposed on the
calculation of the spectral entropy at 0.1Hz and 104Hz.

40 mW, leading to Teff = 943.6 K. The strong influence of
both the stiffness and noise intensity on effective temperature
is clear. This influence however does not break the central
relation shown in the main text between QEX and Hs.
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