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Harvesting information to control non-equilibrium states of active matter

We propose to use a correlated noise bath to drive an optically trapped Brownian particle that mimics active biological matter. Thanks to the flexibility and precision of our setup, we are able to control the different parameters that drive the stochastic motion of the particle with unprecedented accuracy, thus reaching strongly correlated regimes that are not easily accessible with real active matter. In particular, by using the correlation time (i.e., the "color") of the noise as a control parameter, we can trigger transitions between two non-equilibrium steady states with no expended work, but only a calorific cost. Remarkably, the measured heat production is directly proportional to the spectral entropy of the correlated noise, in a fashion that is reminiscent of Landauer's principle. Our procedure can be viewed as a method for harvesting information from the active fluctuations.

Introduction -Chemical and biological non-equilibrium processes reveal the special role played by fluctuations at mesoscopic scales, raising fascinating questions that form a major topic of current transdisciplinary research [START_REF] Rao | Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics[END_REF][START_REF] Fang | Nonequilibrium physics in biology[END_REF][START_REF] Davies | Does new physics lurk inside living matter?[END_REF]. The combined development of stochastic thermodynamics and optical trapping experiments offers an appropriate framework to describe such processes with the required focus put on fluctuations [START_REF] Bustamante | The nonequilibrium thermodynamics of small systems[END_REF][START_REF] Ciliberto | Experiments in stochastic thermodynamics: Short history and perspectives[END_REF]. Recently, active fluctuations have been artificially injected inside optical traps by adding correlated (i.e. colored) noises to the trapping potential [START_REF] Park | Rapid-prototyping a Brownian particle in an active bath[END_REF][START_REF] Paneru | Transport and diffusion enhancement in experimentally realized non-gaussian correlated ratchets[END_REF][START_REF] Militaru | Escape dynamics of active particles in multistable potentials[END_REF]. The engineering of the noise inside the trap offers a new playground where, for instance, optomechanical models of active matter can be studied in close relation with theory [START_REF] Speck | Stochastic thermodynamics for active matter[END_REF][START_REF] Marconi | Heat, temperature and clausius inequality in a model for active brownian particles[END_REF][START_REF] Sandford | Pressure and flow of exponentially self-correlated active particles[END_REF][START_REF] Martin | Statistical mechanics of active Ornstein-Uhlenbeck particles[END_REF].

In this Letter, we follow this approach to decipher the energetics engaged between non-equilibrium states and correlated baths [START_REF] Dabelow | Irreversibility in active matter systems: Fluctuation theorem and mutual information[END_REF][START_REF] Speck | Modeling of biomolecular machines in nonequilibrium steady states[END_REF]. To do so, we bring an optically confined microparticle in an active-matter-like non-equilibrium steady state (NESS). The injected correlated noise yields the constant external source of heat needed to maintain, through its consumption, the particle in a chosen NESS. We monitor the non-Brownian diffusion of the trapped bead, and probe large deviations from thermal equilibrium, which correspond to strongly correlated regimes unexplored so far to our knowledge and not accessible with experiments that use real, biological active matter [START_REF] Argun | Non-boltzmann stationary distributions and nonequilibrium relations in active baths[END_REF][START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF][START_REF] Maggi | Memory-less response and violation of the fluctuationdissipation theorem in colloids suspended in an active bath[END_REF].

We further demonstrate that it is possible to drive the bead from one NESS to another through the sole change of the correlation time (i.e., the "color") of the active fluctuations. For instance, transitions between NESS are known to occur when biological matter undergoes a change in mechanical properties, such as during mitosis, and thereby a modification of the intracellular noise spectrum [START_REF] Hurst | Intracellular softening and increased viscoelastic fluidity during division[END_REF][START_REF] Taubenberger | The mechanics of mitotic cell rounding[END_REF]. Modulating the color of the noise without changing its amplitude makes it possible to achieve heat production at constant energy input. We show that this capacity to induce NESS-to-NESS transitions at zero energetic cost is rooted in the informational content of active fluctuations. Indeed, correlated noise carries information that can be quantified by the spectral entropy H s [START_REF] Zaccarelli | Order and disorder in ecological time-series: Introducing normalized spectral entropy[END_REF], the counterpart of Shannon's entropy in the frequency domain, which depends on the noise correlation time. Remarkably, we find that, for a constant noise amplitude quantified by an effective temperature T ef f , the heat ∆Q generated through the transition is proportional to the entropy of the correlated noise: ∆Q = k B T ef f ∆H s , in a fashion that is reminiscent of Landauer's principle. This relation is tested robust over a wide range of heat production and for different noise amplitudes. Effectively therefore, our protocol harvests information from the colored noise and turns it into heat released to the surrounding fluid throughout the NESS-to-NESS transition. Our result makes explicit the deep connection between information and non-equilibrium thermodynamics, which is central to molecular motors and living systems capable of extracting energy from their fluctuating environments to accelerate their average motion, e.g. [START_REF] Astumian | Fluctuation driven transport and models of molecular motors and pumps[END_REF][START_REF] Ezber | Dynein harnesses active fluctuations of microtubules for faster movement[END_REF][START_REF] Linke | Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers[END_REF].

FIG. 1. Schematic view of the experimental realization. The particle is trapped by optical gradient forces using a focused 785 nm laser beam ("optical potential" on the figure). Its stochastic motion is driven by two random baths: a thermal (white noise) bath associated with the surrounding fluid at room temperature T = 296 K (blue) and an active (colored noise) bath generated by an additional 800 nm laser exerting on the bead an actively fluctuating radiation pressure force (red).

Experimental realization -Our experiment consists in optically trapping a single 3 µm dielectric bead with a 785 nm Gaussian laser beam. The optical potential created by the gradient forces at the waist of the beam is harmonic, with a stiffness that is proportional to the intensity of the laser. The bead is immersed in water at ambient temperature and undergoes random motion due to the thermal fluctuations consistent with an Ornstein-Uhlenbeck process. An additional radiation pres-sure force is applied to the bead by a second laser, whose intensity is digitally controlled through time by an acousto-optic modulator. Any waveform can be sent on the bead, including noise with arbitrary spectrum, up to ≈ 10 5 Hz. A schematic view of the experimental realization is shown in Fig. 1 and the experimental setup is described in Appendix A.

Active particles are characterized by a persistence that can be mimicked by an exponentially correlated Gaussian noise [START_REF] Szamel | Self-propelled particle in an external potential: Existence of an effective temperature[END_REF][START_REF] Fodor | How far from equilibrium is active matter?[END_REF][START_REF] Bechinger | Active particles in complex and crowded environments[END_REF]. This noise can be generated by an Ornstein-Uhlenbeck process [START_REF] Jung | Dynamical systems: A unified colorednoise approximation[END_REF][START_REF] Miguel | A colored-noise approach to Brownian motion in position space. corrections to the smolucski equation[END_REF] 

dη t = -ω c η t dt + √ 2αω c dW t , (1) 
where dW t is a δ-correlated Wiener process. Equation (B1) yields a noise η t with a correlation η t η s = αe -|t-s|ωc , where ω c is the inverse of the correlation time τ c . The variance of the noise η t is given by the amplitude factor α [29].

We emphasize the great flexibility of the above model, which enables us to tune independently the amplitude (variance) and the correlation of the active noise. Thus, we are able to probe a wide range of regimes, from white (small τ c ) to strongly correlated (large τ c ) noises.

The noise η t is generated numerically using Eq. (B1) and sent to the bead via the radiation pressure of the secondary laser beam -see Appendix B. Hence, the overall motion of the bead is subjected to three forces: the deterministic optical trapping force, the stochastic white noise arising from the thermal bath, and the stochastic colored noise applied by the radiation pressure. The position x t of the bead obeys the Langevin equation [START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF][START_REF] Szamel | Self-propelled particle in an external potential: Existence of an effective temperature[END_REF] 

ẋt = -ω 0 x t + √ 2Dξ t + 2D a η t , (2) 
where ω 0 = κ/γ is the inverse of the relaxation time in the optical trap, with κ being the stiffness of the trap and γ the Stokes viscous drag. The stochastic variable ξ t is a white noise that models the fluid thermal bath, with thermal diffusion coefficient D = k B T /γ, where k B is the Boltzmann constant and T the temperature of the fluid. D a is the active diffusivity associated with the colored noise η t , which incorporates therefore the optomechanical coupling between the bead and the noisy radiation pressure. Note that the model equation (D1) describes a non-Markovian stochastic process that does not respect the fluctuation-dissipation theorem, as the fluctuating force η t possesses an intrinsic correlation time, whereas the friction term γ ẋt is instantaneous. Hence, the fluctuations of the active bath are not compensated by the dissipation at the same rate [START_REF] Maggi | Memory-less response and violation of the fluctuationdissipation theorem in colloids suspended in an active bath[END_REF], as discussed and probed in detail in Appendix E.

Out-of-equilibrium properties -One remarkable feature of active matter is that, due to the correlation properties of the bath, it diffuses in non-Brownian fashion [START_REF] Sandford | Pressure and flow of exponentially self-correlated active particles[END_REF][START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF][START_REF] Wu | Particle diffusion in a quasi-twodimensional bacterial bath[END_REF][START_REF] Sandford | Memory effects in active particles with exponentially correlated propulsion[END_REF]. The appropriate observable to estimate the departure from Brownian motion is the mean square displacement MSD(∆) ≡ δx 2 (∆) = (x t+∆ -x t )

2 , where ∆ is a lag time. In general in the short-time limit, the bead will explore the available space inside the trap according to the free diffusive motion MSD ∼ ∆ β , with β = 1 for normal diffusion and β = 1 for anomalous diffusion [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF][START_REF] Mutothya | Characterising stochastic motion in heterogeneous media driven by coloured non-Gaussian noise[END_REF].

In Fig. 2 (a), we present the MSD for two processes, obeying Eq. (D1) with the radiation pressure injecting in the trap either a colored noise, or a white noise of equal amplitude. In the latter case, two white noises (thermal and radiation pressure) drive the bead and the data can be fitted with the standard Ornstein-Uhlenbeck MSD δx 2 (∆) = 2D ef f (1 -exp(-ω 0 ∆))/ω 0 . Using the experimental value for the relaxation time ω -1 0 in the trap, we determine an effective diffusion coefficient D ef f = 0.29 µm 2 /s. The colored noise data is fitted with a modified expression that can be found in [START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF][START_REF] Chaki | Entropy production and work fluctuation relations for a single particle in active bath[END_REF][START_REF] Chaki | Effects of active fluctuations on energetics of a colloidal particle: Superdiffusion, dissipation and entropy production[END_REF]. This expression takes into account the noise correlation and where the unique fitting parameter is the active diffusion coefficient D a in this way extracted. The superdiffusive nature of the process is clearly visible at short times, with a slope β = 1.5. By tuning the correlation time τ c and the amplitude η 2 t = α of the noise η t injected inside the trap, we can probe different regimes of correlated noise. Of course, all regimes are characterized by a departure from the thermal, white noise equipartition condition x 2 t = D/ω 0 , as a signature of the non-equilibrium nature of the system [START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF][START_REF] Fodor | How far from equilibrium is active matter?[END_REF].

When the added colored noise is almost white, i.e. when τ c ω 0 1, the bead is driven by two, uncorrelated white noises -see Eq. (D1) -yielding a close-to-equilibrium relation x 2 t ≈ (D + D a )/ω 0 between the motional variance x 2 t and the resulting white noise diffusion coefficients D + D a [START_REF]-time τ γ/κ limit of the MSD is driven by the same temperature as the long-time of the MSD where the motional dynamics is dominated by the trapping process, and by the same temperature fixing[END_REF]. The variance x 2 t is determined experimentally from the recorded trajectories. Importantly, this case leads to a modified equipartition with an effective temperature k B T ef f = κ(D + D a )/ω 0 that directly depends on the choice of the active diffusion coefficient D a [START_REF] Szamel | Self-propelled particle in an external potential: Existence of an effective temperature[END_REF][START_REF] Łuczka | Non-markovian stochastic processes: Colored noise[END_REF]. This weakly correlated regime has been studied both theoretically [START_REF] Sandford | Pressure and flow of exponentially self-correlated active particles[END_REF] and experimentally using colloidal beads confined in a bath of swimming E. coli bacteria [START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF].

But our ability to manipulate both the color and the amplitude of the noise leads us to investigate strong deviations from equilibrium in the regime of long correlations times that have not been explored experimentally so far. For such long correlation times τ c ω 0 1, we clearly observe in Fig. 2 (b) that the measured variances depart from the white noise D + D a linearity. In this strongly correlated case, the relation between variance and diffusivity can be evaluated from the long-time limit of the MSD with δx 2 (∆

τ c ) = 2 x 2 t ≈ ω -1 0 (D + αD a /(ω 0 + ω c )) (see Appendix D)
. This law fits well the experimental data [red line in Fig. 2 (b)] and the discrepancy between the two blue and red curves quantifies the deviation from equipartition. An important consequence of the explicit dependency of x 2 t on ω c is that one cannot define a unique effective temperature to describe the system both in the short and long time limits [START_REF] Dieterich | Single-molecule measurement of the effective temperature in non-equilibrium steady states[END_REF].

Transition protocols between two NESS -The correlation time of the noise may further be used as a control parameter in a protocol that brings the system from one NESS to another, without changing either the confining potential or the temperature. The simplest possible protocol is a step-like sudden change of the correlation time τ c (referred to as "STEP protocol" hereafter), while keeping the noise amplitude constant. We apply the STEP protocol on the system at a low repetition = γ/κ ≈ 1.2 ms. A naive equipartition result (straight blue line) that would assimilate the correlated noise to a white noise of same amplitude clearly departs from the experimental results, except for very short correlation times. The correct variance estimation for the correlated noise is given by the red curve drawn by taking the Da value extracted from the correlated noise MSD. It fits well the experimental data (see Appendix D for further details). rate, so that it reaches a steady state in between each change of τ c . The ergodic hypothesis, carefully verified (see Appendix C), leads us to build an ensemble of ≈ 1.1 × 10 4 independent trajectories experiencing the same protocol. The main quantity of interest here will be the variance of the response of the bead x 2 t [START_REF] Goerlich | Noise and ergodic properties of brownian motion in an optical tweezer: Looking at regime crossovers in an ornsteinuhlenbeck process[END_REF]. In Fig. 3, we show the results of a STEP protocol where the correlation time is suddenly changed from τ c = 0.8 ms to τ c = 40 ms, while ω -1 0 = 2.1 ms. A number of realizations of the noise variable η t are displayed in Fig. 3 (a): the change in correlation time at t = 0 is clearly visible. In Fig. 3 (b), we represent the variance of the positions of the bead, which undergoes a threefold increase when the correlation time is t of the positions of the bead; the shaded area represents the 99.7% confidence interval. (c) Main plot: Cumulative excess heat in units of kBT . Inset: Cumulative housekeeping heat before the STEP (blue line) and after the STEP (red dotted line). In the inset, the time origin was reset so as to correspond to the beginning of the steady state for each regime.Sign conventions for the heat terms are used in agreement with [START_REF] Sekimoto | Langevin Equation and Thermodynamics[END_REF].

changed. The small dip right after the STEP is due to the fact that the non-Markovian trajectory x t is an integral of the noise η t , hence needs a finite time to probe the total amplitude of η t .

The above STEP protocol has the same effect (increase in the variance x 2 t ) as a protocol where the noise remains white, but its amplitude (temperature) increases [START_REF] Martínez | Adiabatic processes realized with a trapped Brownian particle[END_REF][START_REF] Martinez | Colloidal heat engines: a review[END_REF][START_REF] Albay | Shift a laser beam back and forth to exchange heat and work in thermodynamics[END_REF]. The important difference is that, in our case, we do not change the amplitude of the noise, but only act on its spectrum by modifying the correlation time. In this sense, the protocol can seem costless from the experimentalist's point of view, as no additional power has to be provided to the laser source at the transition time. As a comparison, we estimated the equivalent power needed to induce the same increase in variance as in Fig. 3 (b) through a change in the noise amplitude, i.e., by changing the diffusivity D a . The result is that one would need a laser intensity of 70 mW, whereas we used only 36 mW in our color-based protocol.

From a thermodynamic point of view, our color-based protocol necessarily produces heat, which is then released in the thermal bath. Following Sekimoto's treatment [START_REF] Sekimoto | Langevin Equation and Thermodynamics[END_REF][START_REF] Sekimoto | Stochastic energetics[END_REF], which was recently applied to active matter [START_REF] Dabelow | Irreversibility in active matter systems: Fluctuation theorem and mutual information[END_REF], the cumulative stochastic heat can be written as (see Appendix F):

q(t) = 1 2 t 0 κ dx 2 dt dt -γ t 0 2D a η t ẋt dt . (3) 
The first term accounts for the excess heat released during a transient evolution of the distribution, and vanishes for steady states [START_REF] Seifert | Stochastic thermodynamics, fluctuation theorems and molecular machines[END_REF]. The second term, expressed in terms of the crosscorrelation η ẋ , can be evaluated analytically by injecting ẋ as from Eq. (D1) and is shown to grow linearly in time at steady state (see Appendix F). This is the housekeeping heat, representing the constant expense needed to maintain the system in its NESS.

Both heat terms are shown in Fig. 15(c). The main graph represents the excess heat dissipated during the transient, with an energy release of ≈ 10k B T . In the inset, we display the housekeeping heat during the steady states, both before and after the protocol, showing that changing the correlation time affects the heat dissipation rate. Interestingly, the powers at play dQ HK /dt ∼ 2 k B T /ms in our optical trapping experiments are close to those involved in biological processes such as axonal transport, where kinesin consumes around [0.4 -0.8] k B T /ms [START_REF] Woehlke | Walking on two heads: the many talents of kinesin[END_REF][START_REF] Ariga | Nonequilibrium energetics of molecular motor kinesin[END_REF][START_REF] Ariga | Noiseinduced acceleration of single molecule kinesin-1[END_REF].

Harvesting information from the noise -The protocol described in the above paragraphs seems to raise a paradox: after the transition, the heat released during the process appears to increase (see Fig. 15), while no further energy was injected in the system since only the spectrum of the noise was changed and not its amplitude. As the first principle of thermodynamics is of course not violated, this means that the coupling between the correlated noise bath and the bead has increased, so that energy can be transferred more efficiently from the former to the latter. Such a modulation of the coupling is exactly what happens when the correlation time of the active fluctuations is modified.

Nevertheless, it is illuminating to analyze this situation from an informational point of view. Indeed, a correlated noise carries more information and has lower entropy than a white, or a less correlated, noise. This information content can be measured by the spectral entropy H s , which is just the Shannon entropy in the frequency domain [START_REF] Zaccarelli | Order and disorder in ecological time-series: Introducing normalized spectral entropy[END_REF]:

H s = -k B N i=1 P (ω i ) ln P (ω i ), (4) 
where

P (ω i ) = S η (ω i )/ i S η (ω i )
, and S η (ω i ) denotes the power spectral density of the signal η at frequency ω i . The spectral entropy vanishes for a monochromatic signal and reaches its maximum k B ln N for white noise. Any correlated noise has an intermediate value of H s , which can be used to measure its information content. We measured H s for various correlation times, but also several noise amplitudes. Each amplitude is labeled by an effective temperatures T ef f , determined by sending a white noise of same amplitude as each colored noise cases. The spectral entropy H s is then compared to the generated excess heat. More precisely, for each effective temperature, we define ∆H s = H s (τ c ) -H s (τ ref ), and similarly for ∆Q ex , where τ ref = 0.5 ms is taken as a reference correlation time. Hence, ∆H s and ∆Q ex represent respectively the informational expenditure and the corresponding energetic cost to go from the reference case to the colored case with correlation time τ c through the STEP protocol described above.

The data from several measurements are plotted in Fig. 4 and obey very neatly the relation ∆Q ex /k B T ef f = ∆H s . This is a striking proof that the excess heat produced in the process corresponds exactly, in units of k B T ef f , to the injected information. Note that this expression is highly nontrivial: the left-hand side is a thermodynamic quantity related to the diffusive motion of the trapped bead, while the righthand side captures the informational content of the colored bath generated by the laser beam. This expression is fully in line with Landauer's principle [START_REF] Landauer | Irreversibility and heat generation in the computing process[END_REF][START_REF] Frank | Physical foundations of Landauer's principle[END_REF] where the physical nature of information is seen in the context of active matter. This remarkable result highlights the informational nature of our process, resolving what could appear as a paradoxically costless protocol.

Conclusion -In this work, we studied experimentally the diffusive motion of an optically trapped particle subjected to both a white thermal noise due to the surrounding fluid and a correlated noise generated by a digitally controlled fluctuating radiation pressure. This configuration constitutes a very accurate, controllable model of active biological matter.

Three major results were obtained: (i) thanks to the flexibility of our setup, we could explore an unprecedented range of regimes, most notably those characterized by long correlation times and strong amplitudes, which are unattainable in experiments with real active matter; (ii) by using the correlation time as a control parameter, we devised a protocol that drives the system from one non-equilibrium steady state to another, at zero nominal energetic cost; (iii) finally, we showed that the excess heat released during such a protocol is proportional to the spectral entropy of the colored noise, a relationship that is akin to Landauer's principle of equivalence between information and energy cost [START_REF] Plenio | The physics of forgetting: Landauer's erasure principle and information theory[END_REF][START_REF] Lutz | Information: From maxwell's demon to landauer's eraser[END_REF]. Effectively, the protocol harvests information from the colored noise, turns it into heat necessary for the transition between the two non-equilibrium states, and finally releases it to the surrounding environment. The ubiquity of non-equilibrium steady states in biological systems, including changes in the spectrum of the bath through time (for example during mitosis [START_REF] Hurst | Intracellular softening and increased viscoelastic fluidity during division[END_REF][START_REF] Taubenberger | The mechanics of mitotic cell rounding[END_REF]) suggests exciting applications for the present findings.

Appendix A: Experimental setup and calibration Our experimental setup consists in optically trapping, in a harmonic potential, a single dielectric bead (3 µm polystyrene sphere) in a fluidic cell filled with dionized water at room temperature. The harmonic potential is induced by focusing inside the cell a linearly polarized Gaussian beam (785 nm, CW 110 mW laser diode, Coherent OBIS) through a high numerical aperture objective (Nikon Plan Apo VC, 60×, NA= 1.20 water immersion, Obj1 on Fig. 5). An additional force in the form of radiation pressure is applied to the sphere using an additional high-power laser (800 nm, CW 5 W Ti:Sa laser, Spectra Physics 3900S). The intensity of this radiation pressure beam is controlled by an acousto-optic modulator (Gooch and Housego 3200s, AOM on Fig. 5) using a digital-to-analogue card (NI PXIe 6361) and a PYTHON code. FIG. 5. Simplified view of the optical trapping setup. The sphere is suspended in water inside the Sample cell inserted between the two objectives Obj1 and Obj2. The 785 nm trapping beam is drawn in red, the 800 nm radiation pressure beam in purple. The intensity of this beam controlled by the acousto-optic modulator (AOM). The instantaneous position of the trapped bead is probed using the auxiliary 639 nm laser beam, drawn in orange, whose scattered signal is sent to a high-frequency photodiode.

The instantaneous position x t of the sphere along the optical axis is measured by recording the light scattered off the sphere of a low-power 639 nm laser (CW 30 mW laser diode, Thorlabs HL6323MG), sent on the bead via a second objective (Nikon Plan Fluor Extra Large Working Distance, 60×, NA= 0.7, Obj2 on the figure). The scattered light is collected by Obj1 and recorded by a photodiode (100 MHz, Thorlabs Det10A). The recorded signal (in V/s) is amplified using a low noise amplifier (SR560, Stanford Research) and then acquired by an analog-to-digital card (NI PCI-6251). The signal is filtered through a 0.3 Hz high-pass filter at 6 dB/oct to remove the DC component and through a 100 kHz low-pas filter at 6 dB/oct to prevent from aliasing. The scattered intensity varies linearly with the position of the trapped bead x t for small enough displacements and we make sure to work in the linear response regime of the photodiode so that the recorded signal is linear with the intensity, resulting in a voltage trace well linear with x(t). The calibration of the recorded voltage is done by fitting the motional Lorentzian spectrum of the sphere -see Fig. 6from which is extracted a calibration coefficient expressed in m/V, generally ∼ 10 -7 m/V. The noise added by the radiation pressure laser modifies the dynamics of the bead, but without changing the properties of the trapping potential. As presented in Fig. 6, we carefully verify that an added white noise that mimics a higher temperature, only leads to an increase in the power spectral density amplitude (as expected when increasing the kinetic temperature of the bead) without modifying neither its Lorentzian profile nor the roll-off frequency of the trap, left unchanged at ≈ 150Hz.

Appendix B: External radiation pressure force acting as a bath: from noise generation to active protocols

We generate the external noise following the sequence described in Fig. 7. Using a PYTHON code with a build-in random noise generator, we can easily generate a white noise for which the choice of the distribution function of the noise has no influence on x(t) (by the virtue of the central limit theorem with all noise events being independent). To maximize the usable dynamical range, we thus simply use a uniformly distributed noise.

In contrast, for a colored noise, both correlation and distribution matter. In this case, we use a Gaussian exponentially correlated noise, given as the solution of the Ornstein-Uhlenbeck process

dη t = -ω c η t dt + √ 2αω c dW t , (B1) 
where ω c is the inverse characteristic time of the noise and √ α its amplitude. The variance of such a process is η 2 t = α. This correlated noise will then enter into the Langevin equation as an external random force field

γ ẋ = -κx t + γ √ 2Dξ t + F ext (t) (B2) 
with D = k B T /γ the diffusion coefficient in the thermal bath. The external radiation pressure force F ext = F 0 + δF (t) is centered around a mean value F ext = F 0 and with a zero mean noise part δF (t) = 0. The average term F 0 vanishes trivially when looking at the centered process x t -x t = x t -F 0 /κ, which is always the case in our experiments. Random, the external force acts as a secondary bath. It can thus be recast as F ext (t) = γ √ 2D a η t , i.e. on the same footing as the thermal force F th (t) = γ √ 2Dξ t where D is in m 2 /s and ξ (the time derivative of a Wiener process) is in

√

Hz. This leads us to introduce an active diffusion coefficient D a having the same dimension as D, associated with the noise η t solution of Eq. (B1). This gives the noise of dimension

[η t ] ≡ [ √ α] ≡ √
Hz, just like the thermal noise term ξ t . An important asset of our work is the flexibility of our scheme for controlling the color and the amplitude of the noise, which demands to keep ω c and α independent. To do so, we first generate numerically with the PYTHON code, under a sampling frequency of 20kHz, the noise η t of variance α, scaled to the desired amplitude ∈ [0, 1] which corresponds, in Volts, to the range fixed by the radio-frequency generator driving the acousto-optic modulator (AOM). The AOM response is calibrated to yield a linear relation between the input voltage and output laser intensity in the first order diffracted beam. The numerically generated noise is thereby encoded into a radiation-pressure laser intensity noise sent to the bead. This noise intensity acting on the bead depends both on the gain of the AOM-diffracted beam and on the choice of the radiation-pressure laser intensity.

In our experiments, the amplitude of the noise is independent of its color, which is different from the choice made in [START_REF] Maggi | Generalized energy equipartition in harmonic oscillators driven by active baths[END_REF], where α scales as the square root of the inverse correlation time of the noise. This choice necessarily induces the interplay between both correlation times and amplitudes that we want to avoid. The actual amplitude of the noise experienced by the bead, which depends not only on the radiationpressure laser intensity but also on the optomechanical coupling between this laser beam and the trapped sphere, will be taken into account in F ext via the active diffusion coefficient D a . This implies that choosing α = 1 is the simplest option. However, we keep the α term for clarity, as a purely dimensional constant.

FIG. 8. (a)

Power spectral density associated with different noises ηt (for each colored curves, the corresponding correlation time is indicated within brackets in the legend). These spectra are measured directly from the laser intensity signal that is sent on the trapped bead as a radiation pressure. (b) Mean squared displacement of the sphere for each of the noises presented in panel (a). The DC case corresponds to the absence of additional noise, with Fext = F0. We observe that the white noise case and the first colored noise case (correlation time 0.1ms) are almost identical. Superimposing the fit performed with the analytical expression for the mean squared displacement (see below, Sec. D) enables one to extract the active diffusion coefficients Da for each case.

On Fig. 8 (a), we show the power spectral densities of different noises, from white to colored. At high frequencies (> 3000 Hz, see Fig. 6), the signal is dominated by the electronic noise of the experiment, limiting the spectral bandwidth of interest from a fraction of Hz to a few kHz. The blue curve in Fig. 8 corresponds to a white noise generated over the desired bandwidth where we see its flat spectrum covering all the response region of the bead, up to the 20 kHz limit of the generation sampling frequency. The other curves are the dif-ferent colored noises, with correlation times spanning from 0.1 to 50 ms. On Fig. 8 (b), we show the mean squared displacement (MSD) associated with each noise. The black curve shows the DC case with F ext = F 0 where no noise is added. The blue curve corresponds to the white noise drive (blue spectrum of Fig. 8 (a)), slightly above the thermal MSD as a consequence of the increase in effective temperature. The orange curve gives the first colored noise case (orange spectrum of Fig. 8 (a)). We can note that the responses to a white noise and to a colored noise of correlation time 0.1 ms are similar, this colored noise being "almost white". This implies that longer (> 0.1 ms) correlation times are needed to make a clear difference between white and colored cases (as seen for the next colored noise with correlation time 0.5 ms). The other curves are the MSD corresponding to the different noises of Fig. 8 (a). To study protocols, we need an ensemble of independent trajectories all experiencing the same parameter changes. In our experiments, this is a change in correlation time ω c (t) that we modulate in a step-like way from an initial ω i c to a final ω f c values. With one single bead in the optical trap, the ensemble is drawn out of a long time series, for which the ergodic hypothesis is crucial and was carefully checked as discussed in Sec. C. We produce one long noise sequence η t where a large number of correlation time changes are produced following a ω i c /ω f c square modulation at a low enough repetition rate (a few tens of Hertz). This modulation sequence is sent to the bead via the radiation pressure laser. The corresponding trajectory x t of the bead relaxes to one steady-state between each change on ω c . This long trajectory is cut and reshaped into an ensemble of trajectories {x i t } that, each, experience a steplike change in correlation time. In order to build the actual noise protocol driving these trajectories, we generate in parallel two independent sequences of η t time-series with different (but constant) correlation times that are then interspersed synchronously with the ω i c /ω f c square modulation impacting the motional trajectory x t . The detailed procedure is described in Fig. 9.

Our system, consisting of an optically trapped bead thermally diffusing within active fluctuations, is described by a couple of stochastic differential equations that determine the evolution of the position of the bead within the trap according to:

ẋt = -ω 0 x t + √ 2Dξ t + 2D a η t (D1)
where the active noise η t , solution of the Ornstein-Uhlenbeck process

dη t = -ω c η t dt + √ 2αω c dW t , (D2) FIG. 10. (a)
The ergodic parameter (i.e. the normalized variance (∆) presented in our previous work [START_REF] Goerlich | Noise and ergodic properties of brownian motion in an optical tweezer: Looking at regime crossovers in an ornsteinuhlenbeck process[END_REF]) is shown as a function of the time lag ∆ for both the white noise driven process (blue circles) and the colored noise driven process (red triangles) along with the analytical prediction for the white noise case (black dashed line). The red and blue hazes measure the 95% confidence interval. (b) The same ergodic parameter (∆) plotted as a function of the total time τ for both the white-noise driven process (blue circles) and the colored-noise driven process (red triangles) along with the analytical prediction for the white noise case (black dashed line).

is an exponentially correlated Gaussian variable.

We can derive the noise power spectrum density by Fourier transforming Eq. (D2)

-iωη[ω] = -ω c η[ω] + √ αω c ξ[ω] (D3)
where ω c is the correlation pulsation. Taking the squared norm leads to the active noise power spectral density (PSD)

η[ω]η * [ω] = |η[ω]| 2 = αω c ω 2 c + ω 2 . ( D4 
)
On Fig. 11 (a), we plot the PSD directly measured from the laser output signal used to induce the noisy radiation pressure, both in the case of a white noise and colored noise. As expected, the spectrum of the white noise is flat on all the studied bandwidth, whereas the spectrum of the colored noise is following a Lorentzian profile, well captured by a fit following Eq. (D4).

The PSD of the motion x t is evaluated from Eq. (D1) as: noting that the implicit averaging performed in this square cancels the two cross-product of the uncorrelated noises η[ω]ξ * [ω] and the complex conjugate. In Eq. (D5), ω 0 = κ/γ is the inverse of the characteristic relaxation time of the system, and η[ω]η * [ω] is given by Eq. (D4) and ξ

x[ω]x * [ω] = 1 ω 2 0 + ω 2 (2Dξ[ω]ξ * [ω] + 2D a η[ω]η * [ω]) , (D5) 
[ω]ξ * [ω] = 1. Hence x[ω]x * [ω] = |x[ω]| 2 = 1 ω 2 0 + ω 2 2D + 2D a αω c ω 2 c + ω 2 (D6)
On Fig. 11 (b), we plot the measured spectra of x t both for a white and colored external drive, with the analytical result of Eq. (D6) using the value of D a obtained from the fit of the MSD for the colored noise (see Fig. 8 above) and using the D a → 0 limit for the white noise case. A very good agreement between the theory and the experimental data is clearly seen, confirming that our model captures well the real diffusive dynamics of the trapped bead.

We can also compute the correlation function of the colored noise driven process from the Wiener-Khintchine theorem as:

C xx (∆) = 1 2π +∞ -∞ |x[ω]| 2 e -iω∆ dω = 1 2π +∞ -∞ 2De -iω∆ dω ω 2 0 + ω 2 + 1 2π +∞ -∞ 2D a αω c e -iω∆ dω (ω 2 0 + ω 2 ) (ω 2 c + ω 2 ) , (D7) 
where both integrals can be computed via contour integration. For the first one,

f [ω] = D π e -iω∆ ω 2 
0 +ω 2 has one simple pole in the upper-half complex plane in iω 0 , leading to compute one residue

+∞ -∞ f [ω]dω = 2iπRes{f [ω], iω 0 } = lim ω→ω0 2De -iω∆ ω + iω 0 = D ω 0 e -ω0∆ .
(D8)

Similarly, the second integral with g

[ω] = Daαωce -iω∆ π(ω 2 0 +ω 2 )(ω 2 c +ω 2 )
is evaluated by separating it through partial fraction decomposition in g

[ω] = Daαωce -iω∆ π(ω 2 c -ω 2 0 ) 1 ω 2 0 +ω 2 -1 ω 2 c +ω 2 ≡ g 1 [ω] + g 2 [ω] leading to two integrals with simple poles in iω 0 and iω c +∞ -∞ g[ω]dω = 2iπRes{g 1 [ω], iω 0 } + 2iπRes{g 1 [ω], iω c } = D a αω 2 c e -ω0∆ ω 0 (ω 2 c -ω 2 0 ) - e -ωc∆ ω c (ω 2 c -ω 2 0 ) = D a αω c ω 0 (ω 2 c -ω 2 0 ) e -ω0∆ - ω 0 ω c e -ωc∆ .
(D9) These evaluations are combined to provide the expression for the correlation function of the diffusion process:

C xx (∆) = D ω 0 e -ω0∆ + D a αω c ω 0 (ω 2 c -ω 2 0 ) e -ω0∆ - ω 0 ω c e -ωc∆ (D10) 
On Fig. 12 we represent the normalized correlation function C xx for both white and colored noise drives where we superimpose the analytical result, using the value of D a obtained, as indicated above, from the fit of the MSD for the colored noise. Here too, we use the D a → 0 limit for the white noise. Again, the good agreement between the exponential decays and the analytical models is observed.

The MSD of a colloid diffusing in a thermal environment obeys an Ornstein-Uhlenbeck process and is thus characterized by the white noise MSD: where D is the diffusion coefficient in the thermal bath, expressed in m 2 /s, and ω 0 = κ/γ is the inverse of the characteristic relaxation time of the bead in the trap.

δx 2 (∆) ≡ (x(t + ∆) -x(t)) 2 = 2D ω 0 1 -e -ω0∆ ( 
In contrast, the MSD of an active particle obeys Eq. (D1) and can be computed as δx 2 (∆) = 2 x 2 t -2C xx (∆) where the variance is the stationary variance of the process and x 2 t is taken as the limit lim t→∞

[ x 2 t ] = D ω0 + Daαωc ω0(ωc+ω0)
). This leads us to calculate directly:

δx 2 (∆) = 2D ω 0 + 2D a α ω 0 (ω c + ω 0 ) + 2D ω 0 e -ω0∆ + 2D a αω c ω 0 (ω 2 c -ω 2 0 ) e -ω0∆ - ω 0 ω c e -ωc∆ = 2D ω 0 1 -e -ω0∆ + 2D a αω c ω 0 (ω 2 c -ω 2 0 ) 1 -e -ω0∆ - ω 0 ω c (1 -e -ωc∆ )
(D12) that constitutes the result used in the main text.

The long-time limit can be easily derived as:

lim ∆→∞ [ δx 2 (∆) ] = 2D ω 0 + 2D a α ω 0 (ω c + ω 0 ) . ( D13 
)
To asses the break of the equipartition relation, it is enough to show the absence of linearity between the variance and the effective diffusion coefficient associated with the active process. For different noise colors, we thus measure and fit the MSD to extract each corresponding D a . We then plot in Fig. 2, panel (b) of the main tex the variance against the total diffusion coefficient D + D a . As seen in the figure, we clearly observe that the variance does not follow the intuitive ω -1 0 linearity. In striking contrast, it rather follows one half of Eq. (D13) -i.e., D ω0 + Daα ω0(ωc+ω0) -where the explicit ω c term prevents us from defining a unique effective diffusion coefficient (or effective temperature) and where D a comes from the fit of the MSD displayed in Fig. 8.

Appendix E: Micro Rheology and Fluctuation Dissipation Theorem

We probe the non-equilibrium nature of the active fluctuations and the validity of the Fluctuation Dissipation Theorem (FDT) by comparing the dynamical responses of our system to Active MicroRheological (AMR) and Passive MicroRheological (PMR) excitations, respectively [START_REF] Chaki | Effects of active fluctuations on energetics of a colloidal particle: Superdiffusion, dissipation and entropy production[END_REF][START_REF] Turlier | Equilibrium physics breakdown reveals the active nature of red blood cell flickering[END_REF].

At thermal equilibrium, under detailed balance conditions, the linear response of the system to a small perturbation is connected to equilibrium correlations of fluctuations through the FDT according to which:

∂C xx (t) ∂t = 2k B T R(t), (E1) 
where C xx (t) = x(t)x(0) is the motional autocorrelation function and R(t) is the response function of the system. This equation can be more conveniently derived in the frequency domain. If we consider the motion of the bead driven by a noise of unit variance φ t (that takes in our case the form ξ t + D a /Dη t ), the Fourier transform of the corresponding Langevin equation writes as:

-iωγx[ω] = -κx[ω] + 2k B T γφ[ω], (E2) 
where κ is the stiffness of the potential, γ the Stokes friction drag, and √ 2k B T γφ[ω] is a generic random force. The equation can be written in terms of a mechanical susceptibility χ[ω] as

x[ω] = χ[ω] 2k B T γφ[ω] (E3)
where χ[ω] can be decomposed into real and imaginary parts as:

χ[ω] = ω 0 γ(ω 2 0 + ω 2 ) +i ω γ(ω 2 0 + ω 2 ) ≡ χ [ω]+iχ [ω]. (E4)
If we compare the imaginary part χ [ω] with the power spectral density obtained, in the case of a thermal, white noise drive, by the square modulus of position Fourier transform |x[ω]| 2 = 2D/(ω 2 0 + ω 2 ), we obtain the expression of the FDT in the Fourier space: If now one adds a small sinusoidal perturbation on the bead by means of an external force (which corresponds to radiation pressure in our experiments), the FDT can be tested experimentally by measuring the response function. Under the sinusoidal ac drive of the AMR mode at pulsation ω ac , the PSD takes the following form [START_REF] Schnoering | Thermally limited force microscopy on optically trapped single metallic nanoparticles[END_REF] |x

χ [ω] = ω|x[ω]| 2 2k B T ( 
[ω]| 2 ac = 1 ω 2 0 + ω 2 2D + F 2 ac 2γ 2 δ(ω -ω ac ) (E6)
where F ac is the Fourier force component of the drive, while the unperturbed PSD of the PMR mode writes

|x[ω]| 2 = 2D ω 2 0 + ω 2 . (E7)
By computing the ratio |x[ω ac ]| 2 /|x[ω ac ]| 2 ac at the pulsation ω ac for a bead on which a "white noise" radiation pressure is exerted (hence maintaining it close to thermal equilibrium but at an effective temperature T ef f higher than room tempertaure), we can extract the value of F ac by taking the mean value of all realizations. This value can then be used to calibrate the response function χ On Fig. 13 (a), we show the external drive in the timedomain and the motional response of the bead inside the trap for two different modulation frequencies. By repeating the procedure for frequencies ranging from 10 Hz to 6 kHz, the response of the bead is characterized over all the useful bandwidth (see Fig. 13 (b)). On Fig. 14, the values of ω|x[ω]| 2 /2k B T and χ [ω] are plotted together for the probed frequencies, for both the white noise and colored noise driven processes. We clearly observe that in both cases, the response functions associated with the mechanical susceptibilities fall back on the same trend. This trend is exaclty the one associated with the white noise driven PSD as expected from Eq. (E5). In contrast, the spectral density of the colored noise driven process significantly departs from the FDT in Eq. (E5), and more particularly for the low frequencies of the active fluctuation spectrum. This is in agreement with other observations made recently in active systems [START_REF] Turlier | Equilibrium physics breakdown reveals the active nature of red blood cell flickering[END_REF], where the active mechanical processes mostly appear at low frequency, while the FDT is recovered for the thermally dominated highfrequency part. We note here that a simple observation of the breaking of the FDT can already be seen in our model described by Eq. (D1), where the fluctuating forces associated with the added noises ξ t and η t now possess an intrinsic correlation time due to the correlated nature of η t , while the friction kernel γ is taken as instantaneous Γ(t, t ) = γδ(t, t ). This choice has been shown to be valid in the experimental case [START_REF] Maggi | Memory-less response and violation of the fluctuationdissipation theorem in colloids suspended in an active bath[END_REF], where the fluctuations of the active bath are not compensated by a dissipation with the same rate. In the limit of vanishing correlation times, the FDT is recovered as the noise is white (δcorrelated) and its only effect is an effective change in temperature, as was already observed using a different experimental technique [START_REF] Martínez | Effective heating to several thousand kelvins of an optically trapped sphere in a liquid[END_REF][START_REF] Mestres | Realization of nonequilibrium thermodynamic processes using external colored noise[END_REF].

tem is brought to a Non-Equilibrium Steady-State (NESS) where the stationary stochastic laser drive maintains -through the action of radiation pressure -the system out of its equilibrium state at a given temperature and stiffness κ. Following the standard methods of stochastic energetics [START_REF] Sekimoto | Langevin Equation and Thermodynamics[END_REF][START_REF] Sekimoto | Stochastic energetics[END_REF], we write, from Eq. (D1), for our process γ ẋt -γ √ 2Dξ t dt dx = -κx t + γ 2D a η t dx. (F1)

The left-hand side is interpreted as the heat exchanged with the thermal bath δq = -γ ẋ -√ 2Dξ t dt dx. Since the active force is stochastic, it produces no work. In fact, including a random force in the expression of work induces a violation of the Crooks relation [START_REF] Gomez-Solano | Steady-state fluctuation relations for systems driven by an external random force[END_REF]. The internal energy stays related to the potential energy dU = -κx 2 t dx and the remaining term γ √ 2D a η t dx is the energy exchanged with the active bath. Interpreted as a heat term [START_REF] Dabelow | Irreversibility in active matter systems: Fluctuation theorem and mutual information[END_REF], it can be evaluated from the right-hand side of Eq. (F1) as

δq(t) = κ dx 2 dt dt -γ 2D a η t ẋt dt, ( F2 
)
which can be integrated to give the stochastic heat evaluation q(t) = Finally, we compute the ensemble average heat, which will be expressed in terms of variance and cross-correlations Q(t) ≡ q(t) = 1 -e -s(ω0+ωc) ds -t = 2γD a α ω 0 ω 0 + ω c -1 t + 2γD a ω 0 (ω 0 + ω c ) 2 (1 -e -t(ω0+ωc) ), (F6)

to give, after an exponential decorrelation at short times (just after the noise is turned on, a short-time regime that is never probed in our experiments), a linear heat expenditure with negative (since ω 0 > 0) slope 2γD a α ω0 ω0+ωc -1 that account for the heat needed to maintain the system in its NESS. We note again that, in the white noise limit on an infinite bandwidth, ω c → ∞ makes this quantity vanish.

Therefore, if we discard the decorrelation after the noise is turned on, we obtain the following expression for the cumulative heat: where the two quantities are reminiscent of the excess (EX) and housekeeping (HK) heat terms [START_REF] Seifert | Stochastic thermodynamics, fluctuation theorems and molecular machines[END_REF]. In Fig. 15, we display the time evolution of these two quantities for the τ c (t) STEP protocol described above. Figure 15 (a) shows the heat necessary to maintain the NESS both before and after the change of τ c . As we see, changing the correlation time changes the rate of heat dissipation. In Fig. 15 (b), the time-evolution of the excess heat discarded through the transient is plotted for both increasing or decreasing STEP of τ c . It is remarkable to stress that the quantity of heat ≈ 10k B T exchanged is the same for both cases.

Q(t) =
Note that an alternative expression for the heat can be found in the context of active matter and active Ornstein-Uhlenbeck processes. These different approaches lead all to similar results, since Sekimoto's definition of heat as δq = -γ ẋ -γ

√ 2Dξ t dt dx (F8)
is uniquely defined [START_REF] Park | Rapid-prototyping a Brownian particle in an active bath[END_REF][START_REF] Sekimoto | Langevin Equation and Thermodynamics[END_REF]. The differences stem from the way to evaluate this quantity. In the description of non-reciprocal systems [START_REF] Loos | Irreversibility, heat and information flows induced by non-reciprocal interactions[END_REF], the steady-state heat is computed as a sum of correlation between variables and velocities. In our case of unidirectional coupling, this simplifies to a term ∼ η t ẋt which is the term we also obtain. Another definition is based on the deviation from the fluctuation dissipation relation, the Harada-Sasa relation [START_REF] Harada | Equality connecting energy dissipation with a violation of the fluctuation-response relation[END_REF] used in [START_REF] Park | Rapid-prototyping a Brownian particle in an active bath[END_REF][START_REF] Chaki | Effects of active fluctuations on energetics of a colloidal particle: Superdiffusion, dissipation and entropy production[END_REF], which, similarly to our calculations, gives a linear heat production in the steady state.
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 2112 FIG. 2. (a) Mean square displacement measured experimentally for a white noise added to the existing thermal fluctuations inside the fluid (blue line), showing a short-time diffusive limit (∼ ∆ 0.94 ), and a correlated noise with τc = 1 ms (red line), yielding a short-time superdiffusive limit (∼ ∆ 1.5 ); the superimposed dashed lines are the MSD expected from theory, with a Ornstein-Uhlenbeck MSD evaluated for the white noise case (taking T = 296 K, ω -1 0 = 1.2 ms and extracting a thermal diffusion coefficient D ef f = 0.29 µm 2 /s) and a modified MSD in the correlated-noise case detailed in Appendix D. The best fit yields an active diffusion coefficient Da = 1.44 µm 2 /s, to be compared with the thermal diffusion coefficient D. The shaded regions accounts for the uncertainties associated with the fitting error in determining ω0 and the systematic error in the sphere radius determination. (b) The relation between motional variance x 2 t and the D + Da diffusivity is measured on a 99.7% confidence level (blue dots and 3-σ bars) for different correlation times ranging from τc = 0.1 ms to τc = 100 ms, with relaxation time inside the optical trap ω -1 0

FIG. 3 .

 3 FIG. 3. STEP protocol using the noise correlation time as control parameter. (a) Several digital realizations of the noise variable ηt, undergoing a change in the correlation time at t = 0, from τc = 0.8 ms before the STEP to τc = 40 ms after. (b) Corresponding experimental ensemble variance x 2t of the positions of the bead; the shaded area represents the 99.7% confidence interval. (c) Main plot: Cumulative excess heat in units of kBT . Inset: Cumulative housekeeping heat before the STEP (blue line) and after the STEP (red dotted line). In the inset, the time origin was reset so as to correspond to the beginning of the steady state for each regime.Sign conventions for the heat terms are used in agreement with[START_REF] Sekimoto | Langevin Equation and Thermodynamics[END_REF].

FIG. 4 .

 4 FIG. 4. Measured excess heat between two NESS (in units of kBT ef f ) plotted as a function of the calculated spectral entropy, for three values of the noise amplitude, each characterized by an effective temperature T ef f -experimental details given in Appendix G. The dashed line has a slope equal to unity.

FIG. 6 .

 6 FIG. 6. Power spectral density Sx[ω] of the bead position, recorded with no additional noise, i.e. solely driven by thermal fluctuations (blue circles) and with additional white noise injected inside the trap (red circles) using the auxiliary radiation pressure laser made noisy via the AOM. In both cases, the dashed lines correspond to Lorentzian fits, with shaded regions indicate the limits of the fits. The vertical line mark the position of the trap roll-off frequency at ∼ 10 2 Hz. Note the onset of the electronic noise floor at high frequencies.

FIG. 7 .

 7 FIG.7. Schematic representation of the signal and data acquisition processing implemented in our experiments. The noise ηt is digitally generated, scaled to a voltage V (t) that can be sent to the acoutooptic modulator (AOM), producing a diffracted beam whose intensity varies linearly with this input voltage. The laser beam diffracted through the AOM exerts a radiation pressure on the optically trapped sphere, whose position is recorded as detailed in Sec. A. A small part of the laser beam is also measured and used to monitor and evaluate the noise ηt as it enters the trap.

FIG. 9 .

 9 FIG. 9. (a) Temporal noise series ηt modulated between two correlation times (two colors) following a 20 Hz square modulation function (top) and the resulting trajectory xt (bottom). (b) Each long trajectory is reshaped as an ensemble. In the upper panel, the {η i t } ensemble clearly displays at t = 0 the instantaneous change in correlation with constant amplitude. In the lower panel, the ensemble of trajectories {x i t } of the bead show the progressive change in the motional variance that results from the step-like change of correlation times of the bath.

FIG. 11 .

 11 FIG. 11. (a) Power spectral densities (PSD) of the white noise (blue curve) and colored noise (red curve) measured on a 10% fraction of the laser beam signal that is sent inside the trap to act on the bead as a noisy radiation pressure. A Lorentzian fit (black dashed curve) is superimposed on the colored noise spectrum. (b) Motional PSD Sx[ω] = 2|x[ω]| 2 plotted as a function of the frequency for the white noise driven process (blue) and the colored noise driven process (red) along with the associated theoretical PSD (black dashed curves).

FIG. 12 .

 12 FIG. 12. Correlation function Cxx(∆) = x(t + ∆)x(t) plotted as a function of the lag ∆ for the white (blue curve) and colored (red curve) noise-driven processes, both normalized to the zero-delay ∆ = 0 correlation function Cxx(0). The theoretical expressions derived in Sec. D are displayed as dashed black curves for both cases.

  E5) where the spectrum |x[ω]| 2 is the Fourier transform of autororrelation function C xx (t) (Wiener-Khinchine theorem).

  FIG. 13. (a) Active micro-rheological (AMR) experiment where the sinusoidal forcing of the system is monitored in the time domain. The recorded trajectories of the bead inside the trap are superimposed to the sinusoidal traces of the force for two different modulation frequencies. (b) Power spectral densities displayed together for different modulation frequencies of the external force drive. The Fourier components of each harmonic forcing are clearly seen as peaks in the PSD.

FIG. 14 .

 14 FIG. 14. We compare the measured values of χ [ω] for white (open circles) and correlated (open squares) noise for different modulation frequencies ωac and small sinusoidal perturbations with the stationary correlation spectra plotted as ω|x[ω]| 2 /2kBT for white (blue curve) and correlated (orange curve) noises. One immediately remarks the breaking of the FDT for the colored-noise driven process.

2D a x s ηs ds = -γ t 0

 0 s ẋs ds.(F4)The first term is connected to the evolution of the variance. It vanishes in the steady-state and only accounts for the heat released during a transient evolution of the distribution. The second term can be computed analytically by injecting the differential equation Eq. (D1) for ẋt : x t ηt = -ω 0 x t η t + √ 2D a α. The first term can be computedx t η t = t 0 2D a η t η s e -ω0(t-s) ds = α t 0 2D a e -ωc|t-s|-ω0(t-s) ds = √ 2D a α ω 0 + ω c 1 -e -t(ω0+ωc) ,2Da -ω 0 x s η s + 2D a α ds = 2γD a α t 0 ω 0 ω 0 + ω c

≡

  Q EX (t) + Q HK (t), (F7)

FIG. 15 .

 15 FIG. 15. (a) Measured heat necessary to keep the system in a NESS (in units of kBT ) both for τc = 0.8 ms (blue line, before the STEP) and for τc = 40 ms (red dotted line, after the STEP). (b) Released heat measured through the transient both for a increasing correlation time (blue circles) and equivalently for a decreasing correlation time (red triangles).

Appendix D: Power spectral density, autocorrelation, mean squared displacement and equipartition breaking
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Appendix C: Ergodicity

Ergodicity is the equality of time and ensemble averages in the limit of infinite time T and infinite ensemble. But as detailed in our previous work [START_REF] Goerlich | Noise and ergodic properties of brownian motion in an optical tweezer: Looking at regime crossovers in an ornsteinuhlenbeck process[END_REF], appropriate tools exist that can asses the ergodic nature of trajectories {x t } on finite samples and finite times. To do so, we rely on an estimator [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF] corresponding to the variance of the ratio between time averaged mean squared displacement (MSD) and timeensemble averaged MSD. This ratio should becomes Diraclike for long-time (or short time lag ∆ in the MSD). The 0 limit of the variance of this ration for ∆/T → 0 is a necessary and sufficient condition for ergodicity [START_REF] Goerlich | Noise and ergodic properties of brownian motion in an optical tweezer: Looking at regime crossovers in an ornsteinuhlenbeck process[END_REF].

The result, plotted in Fig. 10 (a) with fixed T and varying ∆, decays to zero for short time-lag as expected. With fixed ∆, varying T , the expected decrease towards 0 for long time, with a linear trend in log scale, is also clearly seen in Fig. 10 (b). These two results validate our ergodic assumption for the time-series of position x t , and therefore our treatment when it comes to building trajectory ensembles.

Appendix F: Thermodynamics

The application of stochastic thermodynamics to active matter has already been studied theoretically [START_REF] Speck | Stochastic thermodynamics for active matter[END_REF][START_REF] Marconi | Heat, temperature and clausius inequality in a model for active brownian particles[END_REF][START_REF] Dabelow | Irreversibility in active matter systems: Fluctuation theorem and mutual information[END_REF][START_REF] Chaki | Entropy production and work fluctuation relations for a single particle in active bath[END_REF][START_REF] Chaki | Effects of active fluctuations on energetics of a colloidal particle: Superdiffusion, dissipation and entropy production[END_REF] and experimentally in some cases [START_REF] Argun | Non-boltzmann stationary distributions and nonequilibrium relations in active baths[END_REF]. In this Appendix, we describe in detail how the stochastic heat can be efficiently used to describe and characterize the processes at play in our experiments. We first note that, in our experiments, our sys-

The information content of the injected noise is measured by the spectral entropy H s [START_REF] Zaccarelli | Order and disorder in ecological time-series: Introducing normalized spectral entropy[END_REF], which is precisely the Shannon entropy measured in the frequency domain. To evaluate this quantity and its relation to heat, we perform a series of measurement varying the correlation time of the noise τ c while keeping the other parameters constant, and test the robustness of the result for different sets of parameter (stiffness and noise intensity). For each experiment, an equivalent white noise experiment is also performed, that allows us to extract an effective temperature evaluated through equipartition: T ef f = κ x 2 /k B . We then compare Q EX /k B T ef f to H s . The evaluation of H s is done on the normalized power spectral density of the noise itself. In Fig. 16, we represent the normalized power spectral densities (PSD) for white and colored noises generated at 20 kHz, along with the spectral boundaries used to get rid of the nonphysical part of the signal (high frequency noise of the electronics).

On this PSD, the spectral entropy is then evaluated as:

where