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Abstract: An efficient diagnosis method dedicated to embedded wiring network based on reflectometry technique is developed
in this study. The proposed methodology is based on the two complementary steps. In the first step, the time-domain
reflectometry (TDR) method is simulated, by RLCG (R: resistance, L: inductance, C: capacitance and G: conductance) circuit
model and the numerical finite-difference time-domain method, and at the same time the datasets are created. In the second
step, the support vector machine (SVM) algorithm is combined with a principal component analysis to identify the faults on
wiring network from the TDR response. Two types of SVM models have been used in the diagnosis procedure: SVM classifiers
and SVM regression models. In order to illustrate the performances and the feasibility of the proposed approach, numerical and
experimental results are presented.

1 Introduction
The apparition of X-by-wire (or drive by wire) technology that
consists of replacing mechanical or hydraulic systems by electronic
ones, and also the complexity of modern systems, implies
increasing the length of the cable [1]. As an example, cable lengths
of up to 4 km in modern cars and up to 400 km in civil planes can
be found.

Regardless of their application area, the cables can be subjected
to several degradation mechanisms, e.g., chemical, electrical or
mechanical, or just aging, causing faults and failures in different
systems. These defects can be regrouped into two categories. When
the degradation is simple and local, it creates a small impedance
variation, which leads to a so-called soft fault. When a soft fault
gets worse, the hard fault (open or short circuit) appears. Both
faults can lead to tragic consequences, especially when the wires
are an important element of the security of critical systems. For
example, after investigation, the origins of the crashes of TWA
flight 800 in 1996 and Swiss Air flight 111 in 1998 have been
traced to defective wiring networks of the aircraft [1].

Several efforts have been undertaken to develop means that can
easily and efficiently test the wiring network degradation status.
They can be categorised into two groups: the first solution is based
on reflectometry techniques. The idea behind these methods is
based on propagating a signal in a cable and monitoring its
reflections due to the impedance discontinuity [1]. In frequency-
domain reflectometry (FDR), a sine wave signal is used while in
time-domain reflectometry (TDR), a timed pulse is used. For each
of these domains, various derived methods have been proposed.
The most famous techniques for TDR are the sequence TDR
(STDR) that transmits a pseudorandom digital code, and SSTDR
(spread STDR) where the pseudo-noise (PN) code is used [1–3]. In
the second wiring diagnosis category, few notable methods are X-
ray and thermal imaging along with some electrical techniques
such as capacitance and inductance sensors [4], and the standing
wave ratio method. In this paper, a TDR-based method is used.

In order to evaluate the reflectometry measurement data, several
simulation models have been proposed that may also be grouped
into two classes: analytical and numerical. The analytical solutions
consist of determining the reflection coefficient at the input of the
wiring network with respect to the shape topology. Their main
advantage is that they can give a response in both time and

frequency domains. However, they do not have access to small
impedance variations along the wires. Besides, the numerical
solution is built on the RLGC (R: resistance, L: inductance, C:
Capacitance and G: conductance) circuit model that generates the
telegraph's equations solved using a numerical approach like the
finite difference time domain (FDTD) method. The model can
determine the impedance discontinuity in a complex wiring
network. This paper uses the numerical FDTD method.

The simulated or measured reflectometry response of a wiring
network inherently contains reflections of the junctions and
terminals, and the faults in the affected network. This makes the
response very complicated, and it is hard to extract state
information of the network under test. Hence, reflectometry by
itself is not adequate for wiring network diagnosis. Thus, it must be
associated with another method to deduce fault information from
the reflectometry response. In this field, numerous solutions have
been proposed and can be broadly categorised into two types: the
ones that use the forward model in the iterative optimisation
method in order to minimise the difference between the measured
response and the simulated one with the use of optimisation
algorithms like genetic algorithm (GA) or particle swarm
optimisation (PSO) [5–7], and the ones that build an adjusted
model ‘off-line’, containing data about the wiring network
topology combined in a database, and to be used ‘on-line’. The
second solution is more common for embedded systems. Our
proposed methodology is based on the second inversion approach.
In [8] the authors proposed the use of artificial neural networks
(ANNs) for the inversion procedure, but as the responses of the
wiring network can be considered as high-dimensional data, this
technique requires constructing a complex ANN and including a lot
of internal parameters to be adjusted. Also, we can mention the
shortcomings of overfitting and sinking into the local optimum in
the use of ANN. The support vector machines (SVM)-based
procedure has proven to be more robust in solving difficult
approximation problems compared to the traditional ANN [9].
Also, SVM solution has the major advantages of global
optimisation, higher generalisation capacity and capability to deal
with high-dimensional data, in contrast to the traditional ANN.

The SVM for fault diagnosis is already employed for the power
transmission line [10–12], where the wiring configuration is very
simple, no ramifications. In [13] the authors have treated the
branched wiring problem; the method is based on the state-
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transition matrix as direct model and for training the SVM. The
limitations of the proposed approach are focused on the forward
model that is able to give the response of the topology network
only at the input without having access to the impedance variations
along the branches. And this could limit the generalisation of the
approach to another type of fault. Another limitation that it does
not treat fault characterisation.

This paper develops a new wiring network diagnosis
methodology. The approach is based on two steps; in the first step,
a direct model is established to simulate the TDR of the affected
wiring network and create an ‘off-line’ dataset required to train an
SVM. In the second step, the SVM combined with a principal
component analysis (PCA) is used ‘on-line’ to identify faults from
the measured reflectometry response. Two SVM models, classifier
and regression, will be used in order to characterise and localise the
faults.

2 Forward model
The forward model is needed to predict the TDR of the wiring
network and the fault. The model is based on the RLCG circuit
model [14].

2.1 RLCG circuit and FDTD method for a multi-transmission
line (MTL)

Applying circuit laws on the RLCG circuit allow us writing the
following differential (telegraph's equations):

∂

∂z
V z, t = − R ⋅ I z, t − L ⋅

∂

∂t
I z, t (1)

∂

∂z
I z, t = − G ⋅ V z, t − C ⋅

∂

∂t
V z, t (2)

where line voltages and line currents represented by n × 1 vectors
are V  and I , respectively, z denotes the position along the line
and t denotes the time. The n × n matrices represent the per-unit-
length parameters R , L , C  and G .

The p–u–l are computed using a numerical approach, like the
finite element method or an analytical solution for the known
configurations. The FDTD method is used to solve the telegraph's
equations in order to reach the time-domain solution. The method
consists of discretising the z-axis line in Δz increments and Δt

increments for the time variable t and approximating the
derivatives of MTL equations using finite differences.

For the space stepping algorithm to be stable, the size of Δz
must be smaller compared to the source signal wavelength λmin,
usually of the order of Δz = λmin/60. In order to ensure the
algorithm stability, the sampling interval Δt  is chosen compared
with the propagation velocity on the wire v as Δt = Δz/ 2 ⋅ v ,
where v can be considered as 0.5c < v < 0.8c, and c represents the
speed of the light.

To model network shape, transmission conditions must be
applied at the junctions. Equation (3) gives the reflection
coefficient that can be calculated at each impedance discontinuity
as

Γ =
Z − Z0

Z + Z0

(3)

where the characteristic impedance of the wires is denoted by Z0,
and the impedance at the discontinuity (mismatch) is denoted by Z.
The value of Z is equal to Z0/n if the wires have equal impedances.
Thus, the previous equation becomes

Γ =
Z0/n − Z0

Z0/n − Z0

=
1 − n

1 + n
(4)

2.2 Validation

The validation phase is very important in the proposed
methodology. On the one hand, it allows us to validate the forward
model, and on the other hand, it enables us to build the dataset for
training the inverse model. The MTL network shown in Fig. 1a,
consists of twisted wire pair (TWP) in a Y-shaped network with a
characteristic impedance of 120 Ω and loaded open circuit, is
considered. The lengths of the cables are indicated in Fig. 1a. The
key issue to analyse a non-uniform MTL using the transmission
line theory is to discrete the non-uniform wire to a small section of
uniform MTL [15].

For the experimental setup, the vector network analyser (VNA)
of the frequency range between 600 kHz and 2 GHz is used. The
inverse fast Fourier transform (IFFT) of the frequency measured of
S11 parameters is used in order to obtain the TDR response.

In Fig. 1b, the measured and simulated TDR responses of the
wiring network given in Fig. 1a are presented. A comparison
illustrates a significant similarity between the responses, especially
in the locations and amplitudes of the principal peaks. Due to the
impedance mismatch between the TWP impedance
ZTWP = 120 Ω  and the VNA input impedance ZVNA = 50 Ω , a

reflection (at 0 m) is observed. The reflection at 1.46 m indicates
the length of L1; the first or main branch. The reflection at 3.22 and
at 3.52 m is caused by the load of the secondary branches L2 and L3
(open circuit). The round trips between the input, junction, and the
ends of the branches induce several reflections after the main
reflections of the wiring network configuration at 1.46, 3.22 and
3.52 m. Notice that the differences between the responses are due
to the difference between simulated and real characteristic
impedance along the TWP.

3 Inverse model
Solving the inverse problem for the wiring network diagnosis using
the proposed method is organised in three phases; detection,
localisation and characterisation as shown in Fig. 2. The detection
phase consists of comparing the TDR response of the wiring
network under test with that of the healthy one. This can be done
by calculating the mean square error (MSE) estimator, for example.
If the values of MSE are less than a certain tolerance, the wiring
network is designated as healthy. Otherwise, the algorithm
progresses to the next phase. For the localisation and
characterisation phases, the design parameters (parameters to be
calculated) depend on the fault type. If the wiring network is
affected by a soft fault, the position and impedance of the fault are
the design parameters of the optimisation process. For a hard fault,

Fig. 1  Validation Example
(a) TWP network and, (b) Comparison between simulation results and measures for
the TDR response
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the design parameters are the branch lengths for the fault location
and the secondary branch loads for the fault characterisation, thus,
reconstructing the wiring network. In this paper, only hard faults
are investigated.

3.1 SVM for wiring diagnosis

In order to achieve the other two diagnosis steps, i.e. localisation
and characterisation for a wiring network affected by hard faults,
an inverse problem is solved using a supervised learning method,
the well-known SVM algorithm [10, 11]. This work proposes to
combine SVM with a PCA, which is a powerful tool for
dimensionality reduction [16]. In this work, it allows a selection of
the significant features of the reflectometry response reducing the
number of inputs of the SVM and so the dimension of required
training dataset examples.

The forward model is employed to create the datasets required
to train the SVM. To construct the datasets, we use examples
linking the reflectometry response to the type and position of the
fault. For hard faults, the design parameters are the secondary
branch loads (open or short circuit) and the branch lengths Li.

Two SVM model types are developed; one for regression and
one for classification [17, 18]. The SVM classifiers are used to
identify the fault types (open or short circuit) and to determine
which branch is an affected branch. The dataset needed to build the
SVM classifiers contain examples linking a reduced reflectometry
response to the affected branches and their loads.

The SVM regression model is used to estimate the length of the
affected branches. The dataset for training SVM regression
contains examples linking reflectometry response to the length of
the branches.

The training dataset of N points is given by
D = xi, yi , i ∈ 1, …, N, where xi ∈ ℝ

d is a d-dimensional vector
and yi = 0, 1  in the classification case and yi ∈ ℝ in the
regression case. The aim of the SVM algorithm in classification
and regression is to construct the function h which permits
matching each input xi to output y such that y = h x , based on
the maximum margin.

In our application, the input is the reduced reflectometry
response and the output is the fault type for the SVM classifier or
the branch length for the SVM regression model. Generally, there
is one output for an SVM model, so the number of SVM regression
models for wiring network is a function of the number of
secondary branches.

To evaluate the robustness of the SVM models, each
corresponding database is cut into two sets; a training set and a
testing set. In our case, 10% of the samples are devoted to testing.
The training set is used to find the best hyperparameters of the
SVM model. In order to evaluate the generalisation capability of
the obtained model, the testing set is used.

SVM models are built ‘off-line’; they are used ‘on-line’ to
localise and characterise the faults from the TDR response of the
faulty wiring network. In the next section, numerical results for
two fault scenarios on a Y-shaped topology are presented.

4 Numerical results
Two test configurations are treated in this section. In the first
example, the Y-shaped wiring network affected by one hard fault
(open circuit), as shown in Fig. 3a, is studied. The second example
treats the same network but affected with two hard faults in two
different branches, as shown in Fig. 4a. 

4.1 Y wiring network affected by one hard fault

As stated before, the first investigated configuration is a Y-shaped
wiring network affected only in one branch. The configuration is
composed of three cables with lengths 1.5 m each one, and the
secondary branches L2 and L3 are loaded with open circuits. The
shape is affected in L2 with an open-circuit fault, as shown in
Fig. 3a. Fig. 3b gives a comparison between the reflectometry
response of the faulty network and a healthy one. For the
reflectometry response of the healthy network, the first reflection
gives information about the length of the main branch (L1 = 1.5 m).
The second reflection at 3 m is due to the open circuit at the end of
the L2 and L3. The other reflections are due to the round trips
between the test point, junction, and end of branches.

After comparing and calculating the MSE between the two
responses (network under test and the healthy one), the detection
phase on the diagnosis procedure is accrued. Note that at this level,
the number of faults affected the wiring configuration cannot be
determined.

The status of the main (first) branch, affected or not, can be
deduced just from the analysis of the difference between the
reflectometry response of the network under test and the healthy
one. If a peak appears before the significant reflection of the main
branch, it is affected; otherwise, it is healthy. In our case, and from

Fig. 2  Flowchart of the proposed diagnosis method
 

Fig. 3  Y wiring network affected by one hard fault and figure
(a) Network with one hard fault, open-ended (broken wire) and, (b) Reflectometry
responses of the healthy and faulty network (measures)

 

222 IET Sci. Meas. Technol., 2020, Vol. 14 Iss. 2, pp. 220-224
© The Institution of Engineering and Technology 2019



Fig. 3b, there is no peak before 1.5 m; thus, L1 is healthy and it is
removed from the design parameters.

The next step in the diagnosis procedure, as illustrated in Fig. 5,
consists of identifying the parameters to be optimised, or in
classifying wires branches (i.e. identifying if the wire branch is
affected or not by a fault). The SVM classifier model is used for
this purpose. The input of the inversion model is the measured
TDR response of the network under test, as shown in Fig. 3b and
the output is three classes; 11, 10 or 01, corresponding to if L2 and
L3 are affected, L2 is affected and L3 is healthy, or L2 is healthy and

L3 is affected, respectively. In the case study, the identified class is
01. In the last step, the SVM regression model is used to determine
an estimation of the new length of L3 in order to localise the fault.
The reconstructed wiring network is given in Fig. 6. 

4.2 Y-wiring network affected by two hard faults

In the second case, the same Y-shaped wiring network, but affected
by two hard faults, is considered, as shown in Fig. 4a. The input of
the proposed inversion procedure is the reflectometry response of
the faulty wiring network shown in Fig. 4b.

After the elimination of L1 from the design parameters and
checking if they have a difference between the responses before the
peak of the mean branches, the SVM algorithm is applied.

The SVM classifier model, in this case, gives as output 11,
signifying that L2 and L3 are affected. The output of the SVM
regression model is the new lengths of L2 and L3. The new lengths
of L2 and L3 are 0.76 and 0.38 m, respectively, which represents a
good matching between TDR responses of both the actual and
reconstructed faulty networks.

The plot of the support vector regression model predicting the
branch lengths of L3 is compared with the training datasets and
shown in Fig. 7. Here, both L2 and L3 are short-circuited in
different positions. The fault localisation of L3 is well estimated in
approximately all the tests, even if L2 is affected.

In order to illustrate the advantages of the proposed diagnosis
technique compared to the iterative techniques (GA [5], PSO [6],
improved black hole (IBH) [19], ANN [8]) the same discretisation
of the branched wiring network is considered. The comparison
results show that the faults are characterised and localised with
incomparable computation time, as illustrated Table 1. 

The online diagnosis time for GA is 90.6 min and the PSO is
26.3 min and IBH is 20 min, but for the SVM is <1 s. The main
advantage of the proposed method compared with the direct
inversion techniques like ANN [8] is that is able to use all the TDR
response data without being impellent to select the significant
parameters using the PCA algorithm. The inputs of the SVM
models are set of points constituting a reflectometry response; this
can be seen as a high dimension data space, leading to a complex
SVM including a lot of internal parameters to be adjusted. A
reduction of the dimensionality of the observations is then
implemented using PCA.

Fig. 4  Y Wiring Network affected by two hard faults
(a) Network with two hard faults, open-ended (broken wire) and, (b) Reflectometry
responses of the healthy and faulty one

 

Fig. 5  SVM for Y wiring diagnosis
 

Fig. 6  Wiring network reconstructed from the reflectometry response of
the faulty network

 

Fig. 7  Set values and predicted values of L3 (training data)
 

Table 1 Comparison results SVM, NN with GA, PSO and
IBH

Y with one fault Y with two faults
actual 0.75 0.75–0.37
SVM 0.74 0.76–0.38
NN 0.73 0.74–0.36
GA 0.77 0.76–0.38
PSO 0.77 0.76–0.38
IBH 0.75 0.69–0.36
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For the soft fault, SVM classifier models should be used to
identify the fault class, i.e. soft or hard fault.

5 Conclusion
In this paper, an efficient technique based on TDR and SVM for
the wiring network involving MTL was presented. The proposed
methodology allows determining the physical information about
the wiring network by finding the branch lengths. The forward
problem permits to simulate the time response of the cables, that
can be compared to the measured data and used to build the
dataset. The inverse problem is solved in two steps; an ‘off-line’
step to train and build a behavioural model and an ‘online’ step to
reconstruct the wiring network. Furthermore, the algorithm can be
exploited in embedded system. Experimental results illustrate the
effectiveness of the diagnosis methodology. The proposed
approach yields an important advantage compared to the iterative
procedures like GA, PSO or IBH, and also the direct inversion
methods like ANN. The method can be extended to the diagnosis
of complex networks affected by more than one fault. For the soft
fault, the optimised parameters are the fault impedance for
characterisation and fault position for localisation.
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