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Abstract Industrial systems resources are capable of
producing large amount of data. These data are often

in heterogeneous formats and distributed, yet they pro-
vide means to mine the information which can allow the
deployment of intelligent management tools for produc-

tion activities. For this purpose, it is necessary to be

able to implement knowledge extraction and prediction

processes using Artificial Intelligence (AI) models but

the selection and configuration of intended AI models

tend to be increasingly complex for a non-expert user.
In this paper, we present an approach and a software
platform that may allow industrial actors, who are usu-

ally not familiar with AI, to select and configure algo-

rithms optimally adapted to their needs. Hence, the

approach is essentially based on automated machine

learning. The resulting platform effectively enables a

better choice among the combination of AI algorithms

and hyper-parameter configurations. It also makes it

possible to provide features of explainability of the re-

sulting algorithms and models, thus increasing the ac-

ceptability of these models in practicing community of

the users. The proposed approach has been applied in

the field of predictive maintenance. Current tests are
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based on the analysis of more than 360 databases from

the subjected field.
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1 Introduction

Data driven decision-making may be defined by the set

of practices aiming to make decisions based on data

analysis rather than on intuitive insights [1]. The busi-

ness entities that have deployed data-driven decision-

making activities have been observed as more profitable

and productive compared to the traditional ones [2].

Nowadays, decision making tools are mainly based on

results of the current AI research works [3]. The suc-

cess of AI based tools is mainly due to the advances
in machine learning approaches [4]. This is particularly
stimulated by the availability of large datasets concern-
ing various real-world features [3] and also through the

increase of the computational gains which are generally

attributed to the powerful GPU cards [5].
The manufacturing area is one of those generat-

ing huge amounts of data gathered by means of Cy-

ber Physical System (CPS) devices. The availability of

such data combined with the knowledge of manufactur-

ing experts may be an opportunity to build AI based

processes and models providing high value insights and

assets for decision makers. Nevertheless, building such

processes and models requires AI and data science skills

and expertise that are not always available in the man-

ufacturing area workbenches and laboratories.

The work shown in this paper aims to bridge the gap

between AI expertise and manufacturing experts. We

believe that automated machine learning (AutoML) [6]
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is one of the most powerful approaches that can effec-

tively deal with this problem; notably the ones pro-

posed in [7–10]. Instead of searching appropriate Ma-

chine Learning (ML) algorithms and manually tuning

the hyper-parameters in a virtually infinite space, the

AutoML leads to automatically and iteratively config-

ure the appropriate hyper-parameters of multiple ma-

chine learning algorithms in a virtually infinite space,
in order to optimize these parameters for a predefined
search space.

The use of AutoML approaches has gained sig-

nificant attention in research community. A plethora
of systems for AutoML, such as Auto-sklearn [7],
TPOT [8],Auto-WEKA [9], ATM [10], and Google

Cloud AutoML1 have been developed in recent years.

The interest of building complex AI models that

are able to achieve unprecedented performance levels

has been gradually replaced by a growing concern for

alternative design factors leading to an improved us-

ability of the resulting tools. Indeed, in a manifold of

application areas, complex AI models become of limited

practical utility [11]. The major reason lies on the fact

that AI models are often designed to focus the per-

formance factors, thus leaving aside other important

and even sometimes the crucial aspects such as confi-

dence, transparency, fairness or accountability. The ab-

sence of explanation for predicted performing factors

make the AI models usually black boxes, which only
allows the prominent exhibition of input and output
parameters but conceal the visibility of inherent asso-
ciations among them. It is more preferably desired to

avoid such lack of transparency in real-life applications

such that in industrial manufacturing processes. Since,

these applications may imply critical decision choices,

it is favorable to have some justifications of individ-
ual predictions which are perceived trough an AI algo-
rithm, more particularly, in an automated environment.
Therefore acceptance of, and the trust in, an AutoML

system is highly dependent on the transparency of the

recommendations.
Because of the lack of transparency in AutoML sys-

tems as Decision Support Systems (DSS), users tend to

question the validity of automatic results, such that :

did the AutoML run long enough? Did the AutoML miss

some suitable models? Did the AutoML sufficiently ex-

plore the search space? Did the recommended configu-

ration over or under fit?, etc. Such queries may cause
reluctance for users to apply the results of AutoML in

more critical situations [12]. Meanwhile, when AutoML

provides unsatisfactory results, users are unable to rea-

son and thus cannot improve the obtained results. They

may only increase the computational budget (e.g., the

1 https://cloud.google.com/automl

run-time) as much as possible, which can result as bar-

riers of the AutoML effectiveness.
It is therefore a preliminary objective of the current

work to make the outcome from such well-performing

AutoML systems transparent, interpretable and self-

explainable. This shall make AutoML support systems

more reliable and operational through a set of different

visual summary levels of the provided models and con-
figurations. It may render the AutoML system more
transparent and controllable, hence increasing its ac-

ceptance.

In the current work, we attempt a transparent and

auto-explainable AutoML system for recommending
the most adequate ML configuration for a given prob-

lem and explain the rationale traceability behind a rec-

ommendation. It may further allow to analyze the pre-

dictive results in an interpretable and reliable manner.

In the proposed approach, the end users can explore the

AutoML process at different levels, such as described in

the following :

– The AutoML-oriented level (i.e. exploring the Au-

toML process from recommendation to refinement).
– The Data-oriented level (i.e. exploring data proper-

ties through different visualization levels).

– The Model-oriented level (i.e. exploring the models

provided by the AutoML system (e.g. model perfor-

mance, what-if-analysis, decision path, etc.)).

The system consists of two integrated modules : the

Automated Machine Learning module and the Auto-
mated Machine Learning explainer (AMLExplainer).

However, the later, AMLExplainer module is not sys-

tem or algorithm specific; it is inter-operable with a va-

riety of AutoML frameworks. The main contributions

of this work are summarized as follows:

1. Develop a premier transparent and self-explained
AutoML system.

2. Provide an assisted traceability of the reasoning be-

hind the AutoML recommendation generation pro-

cess.

3. Develop a module that can explain the predictions

of any recommendation through linked visual sum-

mary and/or textual information.

4. Provide a multi-level interactive visualization tool
that facilitate the model operation and performance

inspection to address the ”trusting the model”.

5. Provide a reliable guidance, when AutoML returns

unsatisfying results in order to improve the expected

performances by assessing the importance of an al-

gorithm hyper-parameters.

The rest of the paper is organized as follows : the

section 2 discusses the closely related works in respect
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of ML-based data analytics solutions and the need for

transparency to gain trust in AI models. The section 3

briefly describes the different types of explanations and

also their respective information content with their use

in practice. The section 4 provides an overview of the

proposed framework and discusses how these compo-

nents collaborate to achieve the pursued goals. Finally,

the contents of this paper are concluded in section 5
along with outlines of future perspectives.

2 Related works

The available literature testifies a considerable progress

in respect of automated machine learning method-

ologies and their application in multi-disciplinary ar-

eas. We have been attentively studying some of the

most relevant works, particularly the recommendation-

based decision support systems in manufacturing indus-

try. We particularly considered the works dealing with

transparency and explainability of automated machine

learning and those related to big industrial data mining.

Through the advances on high-tech sensing and the
widespread use of applications such as electronic manu-

facturing records, mobile sensors, and Industrial Inter-

net of Things (IIoT) tools, manufacturing data are be-

ing accumulated at an exponentially growing rate an-

nually. According to a recent research report [13], the

global big data market size will grow from USD 138.9

billions in 2020 to USD 229.4 billion by 2025 (increase

from Petabytes to Exabytes). Machine learning is a key

technology to transform large manufacturing data sets,
or ”big industrial data”, into actionable knowledge.

In this section, we observe the limitations of avail-

able research work on explainable AI /AutoML systems

as DSS that primarily motivate the work described

in this paper. The current literature, in this regard

can be generally summarized in form of an overlapped

overview of three major research areas, as described in

the following subsections.

2.1 Challenges in selecting and configuring machine
learning algorithms

The machine learning is widely used in many indus-

trial applications across different levels, including pro-
cesses, machines, shop floors, and supply chain levels.
For instance, machine learning models can be used to

control product quality [14], to monitor the condition

of tools by tracking the evolution of their state [15], or

to monitor the health of machines by predicting the

time of occurrences of machine failures and also to es-

timate the criticality of these failures [16]. However, de-

spite its countless benefits and advances, building a ma-

chine learning pipeline is still a challenging task, partly
because of the difficulty in manually selecting an effec-
tive combination of an algorithm and hyper-parameters

values for a given task or problem.

Owing to the development of open source ML pack-

ages and the active research in the ML field, there are
dozens of machine learning algorithms, where each ma-
chine learning algorithm has two types of model param-
eters : (1) ordinary parameters that are automatically

optimized or learned during the model training phase;

(2) and hyper-parameters (categorical and continuous)

that are typically set by the user manually before the

training of the model (as shown in Table 1).

Table 1 Configuration space of some classification algo-
rithms.

ML Algorithm Number of
Ordinary
parame-

ters

Number of
Hyperparame-

ters

Support Vector Machine 2 5
Decision Tree 1 3
Random Forest 2 4
Logistic Regression 4 6

To achieve the desired performance for a particular

problem, users typically try a set of models and config-

urations based on their understanding of the algorithms
and their observation of the data since there is no algo-
rithm that performs well on all possible problems (i.e.,
No Free Lunch [17]). Then, based on the feedback about

how the learning tools performed, the practitioner may

adjust the configuration to verify if the performance can

be improved. Such a trial-and-error process terminates

once a desired performance is achieved or the compu-
tational budget runs out (as shown in Figure 1).

Fig. 1 The ML configuration tuning process.
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2.2 Automated machine learning

The Automated Machine Learning or AutoML [18] field
is among the rapidly emerging sub-fields of ML that at-
tempts to address the theoretical and algorithmic chal-
lenges in order to fully automate the ML process. It

addresses also the development and deployment of sys-

tems in this regard. AutoML has two main goals : (1)

democratizing the application of ML to non-experts of

data analysis by providing them with “off the shelf”
solutions, and (2) enabling the knowledge practitioners
to save time and effort.

Over the last few years, a plethora of AutoML sys-
tems have been developed providing partial or com-

plete ML automation, such as Auto-sklearn [7], TPOT
[8],Auto-WEKA [9], ATM [10], as well as commercial
systems such as Google AutoML1, RapidMiner2, Dar-

winAI3, and DataRobo4. These tools range from au-

tomatic data preprocessing [19, 20], automatic feature
engineering [21, 22] to automatic model selection [18,
23] and automatic hyper-parameters tuning [24, 25].

Some approaches attempt to automatically and simul-

taneously choose a learning algorithm and optimize its

hyper-parameters. These approaches are also known as

Combined Algorithm Selection and Hyper-parameters

optimization problem (CASH) [7–9, 25–28]. Table 2

shows a comparison among some of the most popu-

lar AutoML tools, in terms of training framework, sup-
ported ML tasks, automatic features engineering, user
interface and process transparency.

The interest in developing complex AI models, de-

spite their revolutionary characteristics and capabili-

ties of achieving unprecedented levels of performance

has been progressively perishing. The loss of sustain-

ability is mainly concerned with alternative design fac-

tors particularly to make such models more usable in

practice [3]. These systems emphasize on useful assis-

tance but their usability is greatly limited to provide de-

tailed analysis about the recommended configurations

and the insightful working of the black-box models [12].

The reason lies on the fact that AI models are often

designed with performance as their only design goal,

thus ignoring other important matters such as privacy

awareness, confidence, transparency, and accountabil-

ity makes them usually untrustworthy black-boxes [12,

29].

2 https://rapidminer.com
3 https://darwinai.com/
4 thttps://www.datarobot.com/

2.3 The need for Transparency to Trust in AI and in

AutoML

Black-box AI systems have been used in various ar-

eas. Their implication in critical domains, like in power

consumption forecasting or supply chain management

to analyze the brands trends or consumer sentiments;

usually have less focus to consider the quality features

such as transparency and explainability rather con-

sidering more importantly the system’s overall perfor-

mance. However, even if these systems fail, e.g., the

Quality Control system is mostly not able to detect the

failure, the Equipment Failure Prevention system are

less expected to identify the exact cause of failure and

generally produces false or inaccurate predictions. The
consequences are rather underwhelming. In industrial
critical applications, the situations are different where

the lack of transparency of ML techniques can be a

disqualifying factor, if not limited. Specifically, a single

wrong decision can be highly risked to put in danger the

entire production line (e.g., failure of a critical unit) and

can cause significant financial deprivations (e.g., prod-
uct conformity). It is therefore, relying on an incompre-
hensible black-box data-driven system would not be the

best option. The lack of transparency is among the most

relevant reasons to question the adoption of AI models

in manufacturing industry. The stakeholders are more

cautious than doing so in the consumer entertainment,

or e-commerce industries.

Explaining the reasoning behind one’s decisions or

actions is an important part of human interactions

in the social dimension [30]. As the explanations help

to build trust in human-to-human relationships, sim-

ilarly, these should also be part of human-to-machine

interactions [3]. In this work, we investigate the contri-

butions and feasibility of a process designed to make

such powerful DSS transparent, interpretable and self-

explainable to foster trust, both in situations where
the AI system has a supportive role (e.g., production
planning) and in those where it provides directions and
decision-making (e.g., Quality Control, predictive main-

tenance or autonomous driving). In the former cases,

explanations provide extra information, which help the

human in the loop to gain an overall view of the situa-

tion or the problem at hand in order to take decisions.

It is similar to an expert who has to provide a detailed

report explaining his/her findings, a supportive AI sys-

tem should explain the decisions in detail instead of

providing only a prediction or a decision.
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Table 2 Summary of the main features of some state-of-the-art AutoML tools. (*): commercialized tools.

Tool Training ML task
Automatic features engineering

User Transparent /
Framework Categorical

data
processing

Missing
values im-
putation

interface Self-
explainable

Google AutoML * TensorFlow,
SparkML

Classification NO YES YES YES

DarwinAI * TensorFlow Classification YES YES YES YES
DataRobot * Scikit-learn,

TensorFlow,
Spark

Classification YES YES YES YES

AutoSklearn[7] Scikit-learn Classification
& Regression

NO YES NO NO

TPOT [8] Scikit-learn Classification
& Regression

YES NO NO NO

AutoWeka[9] Weka Classification
& Regression

NO YES YES NO

Hyperopt-Sklearn [25] Scikit-learn Classification YES NO NO NO
AutoKeras [26] Keras Classification NO NO NO NO
SmartML[28] RWeka Classification YES NO YES NO

3 Explainable AI

Explainable AI (XAI) [11] refers to artificial intelligence

technologies that can provide human-understandable

explanations for their output or actions [31]. End users,

by nature, may wonder about the reasoning behind how

and why algorithms make or arrive to decisions [29]. As

the complexity of the AI algorithms and systems grows,
they are viewed as “black-boxes” [27, 32]. Increasing
complexity can result in the lack of transparency that

hampers understanding the reasoning of these systems,

which negatively affects the users trustiness.

Model explainability can be divided into two cat-

egories : global explainability and local explainability.

Global explainability means the users can understand

the model directly from its overall structure. Local ex-

plainability just consider a specific input and it tries to

find out why the model makes a certain decision.

The development of methods for explaining, visu-

alizing and interpreting machine learning models has

recently gained increasing attention under the Explain-

able AI (XAI) area [11, 12, 29, 31, 32]. In the re-
cent years, the advancements in XAI are grown rapidly
but there are still broader gaps to generalize XAI ap-
proaches. The current major XAI methodologies are

only applicable to specific type of data and models.

Such specificities mostly require the pre-configuration

of input parameters that are not easily coded by non-

experts. In contrast, our proposed system intends to

support the analysis and inspection of all machine

learning classification models without any data type

dependency, neither even having to write any line of

code. A variety of XAI methods characteristics in terms

of data explanations level, data and model dependency,

and pre-configuration requirements are highlighted in
Table 3.

It can be useful to primarily establish a consensus
of understanding on what the term explainability may

refer in the context of artificial intelligence and, more

specifically, in the area of machine learning. Different

levels of explanations provide insights into different as-

pects of the model, ranging from information about the

learned representations to the identification of distinct

prediction strategies and the assessment of the over-

all model behavior. Depending on the recipient and his

or her intent, it may be advantageous to focus on one
particular level of explanation.

Recent design recommendations put more focus on
the importance of intuitive interfaces, along with a
clean and concise presentation, among the explanation

facilities, and easy user interactions [38]. In order to

make AI systems as decision support systems acces-

sible and effortless for both machine learning experts

and neophytes, system builders and designers should

present not only the final model prediction or rec-

ommendation coming out of the system, but also the

pipeline steps and decisions made in each of those steps

along with the prediction or decision generation pro-

cess. In this argument, more clarity and transparency

for users are expected from the AutoML system. To ac-

commodate the user needs of transparency and trust,
a few recent works have proposed prototypes design
for increasing AI systems transparency [38–40]. How-
ever, most of these systems fall short in providing an

overview of the AutoML process of how and why a rec-
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Table 3 Properties of XAI state of the art tools. Level is the interpretability coverage: local or global. Dependency specifies
necessary inputs.

XAI method
Level Dependency

Require pre-configuration
Local Global Data Model

LIME[12] • ◦ ? ◦ •
ANCHORS[33] • ◦ • ◦ •
Node-Link Vis[34] • • ◦ • •
SHAP [35] • • ◦ ◦ •
DeepTaylor[36] • ◦ • • •
Occlusion [37] • ◦ • • •
AMLExplainer • • ◦ ◦ ◦

ommended pipeline configuration was generated, and

their interfaces are complex and not suitable for manu-

facturing routine and needs. Furthermore, the incorpo-

rated explanation facilities are often insufficient and/or

not tailored to the industrial domain.

Our proposed system aims to provide guidance to

solve particular problems (Figure 2). Given a dataset,

the tool automatically recommend the most adequate

ML configurations and allow users to easily observe and

analyze these models through an interactive multiple

views module that explain the inner working of any ma-

chine learning classifier in an interpretable and faithful

manner. The goal is manifold : (1) facilitate the mod-

els working and performance inspection through linked

visual summaries and textual information (2) provide

a visual summary of all evidence items and their rel-

evance for the computation result, and (3) present a

guided investigation of the reasoning behind the rec-

ommendation generation.

Fig. 2 “Black-box” model recommendation and prediction
to “White box” model with explanations.

4 The conceptual framework

Given a predictive modeling problem for an industrial

application, it is often difficult to build an accurate

machine learning based predictive model that is easy

to develop and to be interpreted by non-ML experts.

The key idea for our transparent and explainable au-

tomated machine learning vision is to separate recom-

mendations from explanations by using two modules si-

multaneously. The first module is used for making the
recommendation of the most adequate ML configura-
tion for a problem at hand and aims to maximize the

requested predictive performance metric (e.g. Accuracy,

Precision, Recall). The second module is used for pro-

viding the rationale behind the recommended config-

uration as well as automatically explaining the inner

workings of the model.

The following section describes the design and im-

plementation choices of the proposed tool, a complete,

transparent and self-explainable AutoML system. As it

is shown by the Figure 3. For the recommender mod-

ule (AMLBID), when a new dataset is presented, Au-

toML is performed, and a list of candidate pipelines is

provided based on the task at hand. The dataset char-

acteristics, AutoML output and candidate pipelines list

are supplied to the explanatory module to generate an

interactive dash to help the end-user understand the

provided results, diagnose the performance of the gen-

erated pipelines and explore the possibilities of perfor-

mance refinement.

4.1 The recommender module

The Automated Machine Learning tool for Big Indus-
trial Data (AMLBID) module is a Meta-learning [41]

based system for automating the algorithm selection

and tuning problem using a recommendation system

that is bootstrapped with a meta-knowledge base. This

knowledge-base, derived from a large set of experiments

conducted on 360 real-world datasets from different
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Fig. 3 The global architecture of the proposed white-box AutoML (AMLBID and AMLExplainer).

manufacturing levels generating more than 3 millions

of different ML configurations (pipelines). Each pipeline

consists of a choice of a machine learning model and

its hyperparameters configuration. By exploring the in-

teractions between datasets and pipelines topology, the

system is able to identify effective pipelines without per-

forming computationally expensive analysis.

Building a meta-learning based system to deal with

the algorithms selection and configuration problem re-

quires a meta-knowledge base for the learning process.

This involves collecting datasets, choosing machine

learning algorithms, extracting meta-features (datasets

and pipelines characteristics), and determining the per-

formance of the algorithm configurations according

to different evaluation measures (e.g. Accuracy, preci-

sion, Recall). Though, when a new problem is pre-
sented to the system, the meta-features are extracted,
and a recommendation mechanism that makes use of
the meta-knowledge base provides the ranking of the

pipeline(s) (algorithms and configurations) for the un-

seen problem according to the desired performance

measure.

AMLBID consists of two main phases : the learn-

ing phase and the inferring one. During the learning

phase, we evaluate different classification algorithms,

analyze multiple datasets (to extract meta-features),

and train a ranking meta-model. During the inference

phase, the meta-model generated in the training phase

is used to produce a ranked list of promising classifi-

cation pipelines for a new dataset and a classification

performance metric.

4.1.1 The learning phase

During the learning phase, we evaluate different clas-

sification algorithms with multiple hyper-parameters

configurations on a large collection of various datasets.

Then, we generate meta-features that are used to train

a meta-model able to recommend promising classifica-

tion pipelines for a given dataset and performance met-

ric. The entire training phase is illustrated in Figure 4.

Fig. 4 Learning phase workflow.

The datasets : We conduct the experiments on 360

real-world manufacturing classification datasets which
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are collected from the popular UCI5 , OpenML6 , Kag-

gle7 and KEEL8 repositories, among other real world
scenarios. These datasets cover various tasks with re-

spect to their size, the number of attributes, their com-

position and class imbalance. Datasets characteristics

are illustrated in Table 4.

Table 4 Datasets’s dimensions.

Number of
classes

Number of
attributes

Number of
instances

Min 2 5 1800
Max 18 1000 105908

The Meta-features : The meta-learning core

paradigm is to relate the performance of learning

algorithms and configurations to data character-

istics (Meta-features). Meta-features are common

characteristics of several problems, and their aim is to
identify structural similarities and differences among
problems. These characteristics can be divided into

three categories [28] :

Simple : based on general measures, such as the num-

ber of instances, attributes and classes, dataset di-
mensionality. They are designed to some extent to

measure the complexity of the underlying problem.
Statistical : based on statistical measures obtained

from the dataset attributes, such as means, stan-

dard deviation, class entropy, and correlations, etc.

Landmark : that characterize the extent of datasets

when basic machine learning algorithms (with de-

fault configuration) are performed on them. The

used landmark characteristics in our system in-

clude performance of the linear discriminant anal-

ysis (LDA), Gaussian Naive Bayes (GNB), Decision

Trees (DT), Gaussian Naive Bayes (GNB) and the

K-Nearest Neighbor (KNN) landmarks.

The pipelines generation : To build the Meta-
knowledge base, we used 08 classifiers from the pop-

ular Python-based machine learning library, Scikit-

learn. These classifiers are AdaBoost, Support Vector

Classifier (SVC), Extra Trees, Gradient Boosting, De-

cision Tree, Logistic Regression, Random Forest, and

Stochastic Gradient Descent (SGD) classifiers. Detailed

5 https://archive.ics.uci.edu/
6 https://www.openml.org/
7 https://www.kaggle.com/
8 https://sci2s.ugr.es/keel/

description of the algorithms and their tuned hyper-

parameters are described on the Table A1-A7 in the

Appendix.

For each run of a classifier C over a dataset D, we

generated 1000 different combinations of their hyper-

parameters configurations. This process resulted in an

average of 8000 pipelines per dataset. In particular, for

each classifier, we have generated a list of all possible

and reasonable combinations where we conducted, for

each dataset, a random search among them [42].

During the training phase, we used a 5-fold strat-

ified cross-validation strategy to construct our meta-

datasets. As a result, our knowledge base consists of

more than 3 millions evaluated classification pipelines.

It is noted that due to the different number of algo-

rithms hyper-parameters, not every algorithm had the

same number of configurations / evaluations.

Measures : As part of our core idea, we aim to recom-

mend high-performing ML pipelines for a given combi-

nation of datasets and evaluation measure. The point

that most of state-of-the-art systems do not take into
account, the proposed system supports various classi-
fication performance measures to evaluate the perfor-
mance of the ML pipelines (ML algorithms and related

hyper-parameters configuration). Table 5 shows sup-

ported measures details.

4.1.2 The recommending phase

The recommending phase is initiated when a new
dataset to be analyzed occurs. At this point, the user se-

lects a predictive analytic metric to be used for the anal-
ysis (e.g. Accuracy, Recall, F1 score), and then the sys-
tem automatically recommends a set of machine learn-
ing algorithms and their related hyper-parameters con-

figuration to be applied, such that the predictive per-

formance is the first-rate. To do so, the system first, ex-

tracts the dataset characteristics (meta-features). Then,

the extracted meta-features are fed to the meta-model

to provide the candidate pipelines. Finally, the sug-

gestion engine, according to the meta-knowledge base,

ranks the pipelines in respect to the provided analytic

metric. The recommending process is shown in figure 5.

Meta-model : After having generated a meta-dataset
with all the necessary metadata, the goal is to build a

predictive meta-model that can learn the complex re-

lationship between a task meta-features and the utility

of specific ML pipelines to recommend the most useful

configuration Θnew given the meta-features M of a new

task tnew.
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Table 5 Supported classification measures.

Measures Description Importance

Precision Precision considered as a measure of exactness or qual-
ity.

Precision is used to retrieve fraction of instances that
are relevant.

Recall Recall is a measure of completeness or quantity. Recall is used to retrieve fraction of relevant instances
that are retrieved.

Accuracy The accuracy is the proportion of the total number of
predictions that were correct. Accuracy is related to
the degree of bias in the measurements

Accuracy is used to represent the correct answer or
percentage of accurate classification.

F1 score F1 score or F-measure is defined as the harmonic mean
of precision and recall. Commonly used as a single met-
ric to evaluate the classifier performance.

A value closer to one implies that a better combined
precision and recall is achieved by the classifier

Fig. 5 Recommending phase workflow.

Formally, each task tj ∈ T is described by a vector

m(tj) = (mj,1, . . . ,mj,K) of K meta-features mj,K ∈

M , the set of all known meta-features. This can be
used to define the task similarity measure based on,

for instance, the Euclidian distance between m(ti) and

m(tj), so that we can transfer information from the

most similar tasks to the new task tnew.

One of the aims of our work is to produce an
enriched meta-model able to recommend the top-

performing classification configuration(s) for a combi-

nation of an unseen dataset and classification evalua-

tion measure. For this purpose, two state of the art

learning algorithms were used to produce meta-models

able to predict the most appropriate pipelines for the

dataset at hand : Random Forest (RF) and k-Nearest

Neighbor (k-NN). Thus, when the meta-learning system

is applied to a new dataset, the meta-model returns a
ranking of the most suitable classification algorithms
and configurations, based on its meta-feature values.

Ranking using KNN classifier is a commonly used
strategy to obtain the top-K rankings. When a new

dataset is presented to the meta-learning system, the

k-NN identify the closest neighbors of the candidate

dataset in the meta-knowledge base, using the Euclid-

ian distance metric, a weighted average of each indi-

vidual neighbor’s is used for forecasting the optimal

pipeline configuration based on the relevant measure.

While for the Random forest meta-model, we produce
for each supported classification evaluation measure Mi

a large labeled training set using the following process :

1. For each combination of d ∈ D and lc ∈ L ( D is

the 360-learning datasets, lc a learning algorithm

configuration from the 3 millions evaluated configu-
rations) we retrieve the set of all best predictive re-

sults R(m, d, lc) for each evaluation metric m (e.g.,
accuracy, F1-score, recall and precision).

2. For each d ∈ D we designate the learner algorithm

configuration lc as Class 1 (top performer algorithm

configuration for the dataset) if its best predictive

results for the dataset are greater than or equal to

the highest performance achieved by all other al-

gorithm configurations. Otherwise we label the lc
for the dataset as Class 0 (low performer algorithm

configuration).

3. For each combination of d ∈ D and lc ∈ L we gen-

erate a joint set M = {Md ∪Mlc}, where :

– Md : the dataset’s meta-features generated in the
learning step.

– Mlc : a discrete feature describing the learning

configuration lc.

4. The joined meta-features vectors M are used to fit

the RF meta-model for the top performing algo-

rithms configurations, using the meta-features vari-

ables as predictors and the learner’s labels as tar-

gets of the meta-model. For our Meta-Model, we
have been mainly interested for optimizing the pre-
diction recall of Class 1 (the classifier has the po-
tential to be among the best performing classifiers).

Therefore, we had to consider different levels of the

decision tree model hyperparameters configuration

where the configuration: {class weight : {1 : 1, 0 :

0.7}, criterion : gini,max features : None} pro-

vided the best meta-model result.

Figure 6 presents Random Forest and KNN meta-

models performances on suggesting the best predic-

tive pipeline configuration. The KNN based meta-
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model clearly performs better than the random for-

est classifier based meta-learner according to the ac-

curacy metric.

4.1.3 The evaluation of robustness

In this evaluation, we investigate the performance that
can be achieved by using the proposed recommending
module on various manufacturing related problems. We

evaluate its ability to predict the ML algorithms with

related hyper-parameters configurations that shall pro-

vide the best result of the analysis. We benchmark on a

highly varied selection of datasets (30 datasets) cover-

ing binary and multi-class classification problems from
different industry 4.0 levels with a sample size from
1000 to 90000 instance (this is a common sample size

for general real-world datasets).

The proposed system uses the meta-model to predict

all the pipelines in the meta-knowledge base with re-

spect to the analyzed dataset and then returns its top-
ranked pipelines according to the provided performance
criteria. The top-ranked pipelines are then fitted on the
datasets that was split into train and test sets using a

70% / 30% ratio. The results of this evaluation were

used to compare the performances of AMLBID to those

of the TPOT and Auto-sklearn state-of-the-art frame-

works. It is important to stress again, that while the
majority of state-of-the-art frameworks evaluate a set of
pipelines by running them on the dataset at hand before
the recommendation step, which demands considerable

computational budget that is not always available and

takes a huge amount of time in the majority of cases,

making them unpractical solutions in real world prob-

lems as in the industrial ones, AMLBID immediately
produces a ranked list of potential top pipelines con-
figurations using its meta-model and meta-knowledge

base at an imperceptible computational cost (in term

of time and computational resources). The evaluation

results are presented in Table 6.

Table 6 Performances of selected AutoML frameworks on
the benchmark datasets.

Dataset AMLBID TPOT Auto-sklearn

[43] 93.74 91.20 92.83
[44] 99.41 99.07 99
[45] 97.06 95.17 93.56
APS Failure 99.10 99.33 98.4
Higgs 72.6 72.6 72.9

CustSat 85.59 82.76 82.90

As shown in Table 7, it is clear that the perfor-

mances of AMLBID are comparable and even better

than those of the baselines even though it does not run

any pipeline on the dataset prior to the recommenda-

tion.

Table 7 Number of datasets for each baseline AutoML sys-
tem for which the optimal algorithm configuration has been
recommended.

System Number of Datasets with Top Performance

Autosklearn 3 (10%)
TPOT 6 (20%)
AMLBID 21 (70%)

As state of the art systems support only the predic-

tive accuracy as the performance measure of the rec-
ommended configuration, further robustness compari-
son on different performance measures such Recall, F1

score and Precision could not be done. Whereas in some

concrete cases, Recall or Precision may be more im-
portant and informative than the predictive accuracy.

Therefore, the proposed system is the first AutoML sys-

tem to support different predictive performance mea-

sures (Precision, Recall, Accuracy and F1score).

Beyond their black box nature, one of the most

shortcomings of AutoML solutions is their computa-

tional complexity, requiring a huge budget of time and

resources. On the contrary, AMLBID has the advantage

of the O(1) computational complexity, generating the
recommendation in a negligible amount of time. Table 8

presents the running time of AMLBID, TPOT and Au-
tosklearn on the benchmarked datasets.

Fig. 6 Predictive performance of the KNN and RF meta-
models.

Noting that the rather ”long” time taken by some

massive datasets for AMLBID relates to the calcula-

tions made for extracting the dataset’s characteristics

(Metafeatures).
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Table 8 The running time of AMLBID and the baseline Au-
toML frameworks on the benchmark datasets. The running
time format is HH:MM:SS.

Dataset Ds size AMLBID TPOT Autosklearn

[43] 95 00:00:05 00:08:14 01:23:47
[44] 61000 00:05:29 03:42:09 04:19:05
[45] 2000 00:00:12 00:13:57 01:49:21
APS Failure 60000 00:05:39 05:23:35 03:58:39
Higgs 110000 00:06:16 05:43:24 07:37:55
CustSat 76020 00:04:06 04:09:36 05:07:03

4.2 The explainer module

AMLExplainer is implemented as a client-server tool in-

tegrated with the recommender module. The server co-

ordinates as an AutoML support system. As the client,

the visual interface provides graphical interaction with

AutoML results and maps the summary data for visu-

alization through a set of different visual summary lev-
els of the recommended models. AMLExplainer users
are allowed to explore the models provided by the Au-

toML process at four main levels of detail (i.e. Au-

toML Overview, Recommendation-level View, What-if

analysis-level View, and Refinement-level View). Mean-

while, AMLExplainer provide end users with a guid-

ance, when AutoML returns unsatisfying results, to im-
prove the predictive performances. Thence increases the
transparency, controllability, and the acceptance of Au-

toML. The tool documentation and a detailed list of

features with an illustrative example is available in the

github repository 9.
The workflow of the proposed auto-explanatory Au-

toML system consists of two main components :

– The AutoML component, which shows the high-

level of the AutoML process from recommendations

to refinements.

– The recommended configuration component, that

allows users to inspect the recommended model’s

inner working and decision’s generation pro-

cess (include the Recommendation-level and What-

if analysis-level views).

The AutoML Overview : the AutoML overview

level (Figure 7) summarizes high-level information of

the AutoML process. Users will be able to compare and

choose between the top K recommended configurations.

They can focus their analysis on the top model config-

uration on the next level view, which highlights the

corresponding algorithm in the detail views.

The recommendation-level View : the

recommendation-level view enables users to in-

spect recommendations with respect to performance

9 https://github.com/LeMGarouani/AMLBID

distribution. As shown in (Figure 8), a detailed ex-

planation about the top performed recommendation

is generated through multiple granularity levels,

such as statistics about the configuration perfor-

mances (Figure 8(A)), and a tree based explanation of

the conducted predictions (Figure 8(B)).
By providing intelligible explanations about the pro-

cess and reasoning behind an individual prediction, as

illustrated in the Figure 8, it is clear that the decision-

maker whether a manufacturing engineer or a machine

learning practitioner is much better positioned to make

decisions since He / She usually have prior knowledge

about the data and the application domain, which can

use to trust in and accept or reject a prediction if the

reasoning behind it is well explained.

The What-if analysis-level View : (Figure 9) is de-

signed to investigate the machine learning models. It

enables understanding models by enabling end users to

investigate attribution values for individual input fea-

tures in relation to model predictions. Explaining the

inner working of the model helps to gain an understand-

ing of what the model does and does not do. This is im-

portant so that they can gain an intuition for when the

model is likely missing information and may have to be

overruled. Therefore explore scenarios, test, and evalu-

ate / validate business assumptions, and gain intuition

for modification.

The refinement-level View : (Figure 10) shows the
correlation between performances and hyperparameters

of a recommended algorithm. To accomplish that, we

takes as input performances data gathered with dif-

ferent hyperparameter settings of the algorithm (from

the recommender module’s knowledge-base) , fits a ran-

dom forest to capture the relationship between hyper-

parameters and performances, and then we apply func-
tional Analysis of variance (ANOVA [46]) to assess how
important each of the hyperparameters and each low-
order interaction of hyperparameters is to performance.

Guided by this in-depth analysis, end users have a guid-

ance, when AutoML returns unsatisfying results, to im-

prove to predictive performances.

4.3 Demonstration test case : Application to
Manufacturing Quality Prediction

Our auto-explainer module works for any predictive
modeling problem where machine learning is used. As
our work’s goal is to show the feasibility to achieve

maximum possible performance for a specific predictive

modeling problem and automatically explaining results

for any machine learning predictive model, we evalu-

ated our automatic explanation method on a Manufac-

turing Quality Prediction use case. The data contains
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Fig. 7 AutoML overview.

Fig. 8 Recommendation-level view.

187.156 historical 1-year records of a production unit.

Among these records, 74.39% were diagnosed as com-

pliant products.

4.3.1 Expert interview

To evaluate the proposed white-box AutoML system as
a decision support system, we conduct interviews with
two closely collaborating experts (E1 and E2) with par-

ticular expertise in machine learning. We collected their

feedback about the AutoML module as a black-box de-

cision support system assisting the experts to choose

and configure ML models for their problems initially

and afterwards with the entire system (recommender

module and the explanatory one). Based on their feed-

back, we summarize two main appreciation of the pro-

posed tool:

– AutoML can help stakeholders (neophyte as well

as experts) to better apply machine learning al-

gorithms. AutoML enables quick experimentations

with a large number of models and configurations,

whose results could provide useful knowledge to

ML researchers and domain practitioners. On the

test set, the recommended machine learning pre-

dictive model configuration achieved an accuracy of

97.81% while their configuration based on their un-

derstanding of the algorithms and their observation
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Fig. 9 What-if analysis-level view.

Fig. 10 Refinement-level view.

of the data achieved a predictive accuracy of 91.42%.

These findings can inform users of the importance of

hyperparameter tuning for ML algorithms. E2 com-

mented that being able to match prior knowledge

about machine learning to the visualizations pro-
duced by AMLExplainer creates confidence in the
underlying AutoML process and increases the like-
lihood of adopting AutoML.

– Both experts appreciated the human-machine inter-
action introduced in AMLExplainer. They believed
such interaction could improve an AutoML process

and enhance user experience and make such power-

ful black boxes trusty. E1 commented, ”Users with

more domain knowledge, such as myself, are usually

critical of automated methods and like to be in con-

trol. I do not like getting a score back and hearing
trust me”.

Our well-documented real-world evaluation case illus-

trates how to overcome the intransparency problem of

AutoML systems as decision support systems, namely,

the absence of human interaction and analysis of the

inner working and reasoning of such tools. This could

extend the use of and trust in the intelligent AutoML
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systems to areas where they were so far neglected due

to their insistence on comprehensible models. Separat-

ing the selection and configuration of machine learning

algorithms from model explanation is another benefit

of expert and intelligent systems.

5 Discussion and conclusion

There has been significant progress in democratizing
the application of ML to non-experts of data analy-
sis by providing them with ”off the shelf” solutions.

However, these powerful support systems fail to provide

detailed instructions about the recommended configu-

rations and the inner working of these models, thence

making them less trustworthy highly performant black-

boxes. In this work, we present a novel transparent and
self-explained AutoML system along with an interac-
tive visualization module that supports machine learn-

ing experts and neophytes in analyzing the automatic

results of an AutoML DSS.

To our knowledge, the proposed system is the first
application of the general explanation methods of Au-

toML systems as decision support systems. We explore
several levels of explanations, ranged from individual
decisions to the entire model’s recommendations and

predictions. The explanations of the prediction models

and what-if analysis proved to be an effective support

for manufacturing related problems. A set of evalua-

tions demonstrate the utility and usability of AMLBID

in a real-world manufacturing problem. We show how

powerful black-box ML systems could be made trans-

parent and help domain experts to iteratively evalu-

ate and update their beliefs. Based on the promising

findings presented in this paper, further validation of

the proposed framework in other real-world applica-

tions with a larger and more diverse group of users shall

improve the visualization and presentation of explana-

tions. We plan to provide the proposed system as an

open source python package, which we are currently in
process of publishing.
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[20] B. Bilalli, A. Abelló, T. Aluja-Banet, R. F. Mu-
nir, and R. Wrembel. “PRESISTANT: Data Pre-
Processing Assistant”. In: Information Systems

in the Big Data Era. Ed. by J. Mendling and

H. Mouratidis. Lecture Notes in Business Infor-
mation Processing. Cham: Springer International

Publishing, 2018, pp. 57–65. doi: 10.1007/978-

3-319-92901-9_6.
[21] U. Khurana, H. Samulowitz, and D. Turaga.

“Feature Engineering for Predictive Modeling Us-

ing Reinforcement Learning”. In: arXiv e-prints

1709 (2017), arXiv:1709.07150.

[22] F. Nargesian, H. Samulowitz, U. Khurana, E. B.

Khalil, and D. Turaga. “Learning Feature Engi-

https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1109/BigData.2017.8257923
https://doi.org/10.1109/BigData.2017.8257923
https://doi.org/10.1007/978-3-030-32236-6_51
https://doi.org/10.1007/978-3-030-32236-6_51
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s10845-020-01623-9
https://doi.org/10.1007/s10845-020-01712-9
https://doi.org/10.1109/ICPHM.2019.8819404
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/s10044-012-0280-z
https://doi.org/10.1007/s10044-012-0280-z
https://doi.org/10.1007/978-3-319-45547-1_16
https://doi.org/10.1007/978-3-319-92901-9_6
https://doi.org/10.1007/978-3-319-92901-9_6


16 Moncef Garouani 1, 2, 3 et al.

neering for Classification”. In: (2017), pp. 2529–

2535.
[23] R. Vainshtein, A. Greenstein-Messica, G. Katz,

B. Shapira, and L. Rokach. “A Hybrid Approach

for Automatic Model Recommendation”. In: Pro-

ceedings of the 27th ACM International Con-
ference on Information and Knowledge Manage-

ment. CIKM ’18. New York, NY, USA: Associa-
tion for Computing Machinery, 2018, pp. 1623–

1626. doi: 10.1145/3269206.3269299.

[24] M. Feurer, J. T. Springenberg, and F. Hutter.

“Initializing Bayesian Hyperparameter Optimiza-

tion via Meta-Learning”. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial In-

telligence. AAAI’15. Austin, Texas: AAAI Press,

2015, pp. 1128–1135.

[25] B. Komer, J. Bergstra, and C. Eliasmith.

“Hyperopt-Sklearn: Automatic Hyperparameter

Configuration for Scikit-Learn”. In: Proceedings
of the 13th Python in Science Conference (2014),

pp. 32–37. doi: 10.25080/Majora- 14bd3278-

006.

[26] H. Jin, Q. Song, and X. Hu. “Auto-Keras: An Ef-

ficient Neural Architecture Search System”. In:

Proceedings of the 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery &

Data Mining. KDD ’19. New York, NY, USA:

Association for Computing Machinery, 2019,

pp. 1946–1956. doi: 10.1145/3292500.3330648.

[27] M. Garouani., A. Ahmad., M. Bouneffa., A.

Lewandowski., G. Bourguin., and M. Hamlich.

“Towards the Automation of Industrial Data Sci-

ence: A Meta-learning based Approach”. In: Pro-
ceedings of the 23rd International Conference

on Enterprise Information Systems - Volume 1:
ICEIS, INSTICC. SciTePress, 2021, pp. 709–716.

doi: 10.5220/0010457107090716.

[28] M. Maher and S. Sakr. SmartML: A Meta

Learning-Based Framework for Automated Selec-
tion and Hyperparameter Tuning for Machine
Learning Algorithms. 2019. doi: 10.5441/002/

edbt.2019.54.
[29] D. Shin and Y. J. Park. “Role of Fairness, Ac-

countability, and Transparency in Algorithmic

Affordance”. en. In: Computers in Human Behav-

ior 98 (2019), pp. 277–284. doi: 10.1016/j.chb.

2019.04.019.
[30] R. L. Heath and J. Bryant. Human Communi-

cation Theory and Research: Concepts, Contexts,

and Challenges. English. 2nd edition. Mahwah,

N.J: Routledge, 2000.

[31] D. Gunning, M. Stefik, J. Choi, T. Miller, S.

Stumpf, and G.-Z. Yang. “XAI—Explainable Ar-

tificial Intelligence”. In: Science Robotics 4.37

(2019). doi: 10.1126/scirobotics.aay7120.
[32] D. Castelvecchi. “Can We Open the Black Box

of AI?” In: Nature News 538.7623 (2016), p. 20.

doi: 10.1038/538020a.

[33] M. T. Ribeiro, S. Singh, and C. Guestrin. “An-
chors: High-Precision Model-Agnostic Explana-

tions”. en. In: Proceedings of the AAAI Confer-

ence on Artificial Intelligence (2018).

[34] A. W. Harley. “An Interactive Node-Link Visu-

alization of Convolutional Neural Networks”. In:

Advances in Visual Computing. Ed. by G. Bebis

et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015, pp. 867–
877. doi: 10.1007/978-3-319-27857-5_77.

[35] S. M. Lundberg et al. “From Local Explanations

to Global Understanding with Explainable AI
for Trees”. In: Nature Machine Intelligence 2.1

(2020), pp. 56–67. doi: 10.1038/s42256-019-
0138-9.

[36] G. Montavon, S. Lapuschkin, A. Binder, W.

Samek, and K.-R. Müller. “Explaining Nonlinear
Classification Decisions with Deep Taylor Decom-
position”. en. In: Pattern Recognition 65 (2017),
pp. 211–222. doi: 10.1016/j.patcog.2016.11.

008.
[37] M. D. Zeiler and R. Fergus. “Visualizing and Un-

derstanding Convolutional Networks”. In: Com-

puter Vision – ECCV 2014. Ed. by D. Fleet, T.

Pajdla, B. Schiele, and T. Tuytelaars. Lecture
Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2014, pp. 818–833. doi:

10.1007/978-3-319-10590-1_53.
[38] J. Müller, M. Stoehr, A. Oeser, J. Gaebel, M.

Streit, A. Dietz, and S. Oeltze-Jafra. “A Visual

Approach to Explainable Computerized Clinical

Decision Support”. en. In: Computers & Graphics

91 (2020), pp. 1–11. doi: 10.1016/j.cag.2020.

06.004.

[39] T. Spinner, U. Schlegel, H. Schäfer, and M. El-
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Table A1 SVM hyperparameters tuned in the experiments.

Hyperparameter Values Description

complexity (or: ‘C’) [1e−10, 500] (log-scale) Soft-margin constant, controlling the trade-off between model simplicity
and model fit.

Kernel {’poly’, ’rbf’} The function of kernel is to take data as input and transform it into the
required form (linear, nonlinear, polynomial, radial basis function (RBF),
and sigmoid).

coef0 [0., 10] Additional coefficient used by the kernel (sigmoid kernel only).
gamma [1e−3, 1.01] (log-scale) Length-scale of the kernel function, determining its locality.
Degree [2, 3] Degree for the ‘poly’ kernel.

Table A2 Random Forest & Extra Trees Hyperparameters tuned in the experiments.

Hyperparameter Values Description

bootstrap {true, false} Whether to train on bootstrap samples or on the full train set.
Max features [0.1, 0.9] Fraction of random features sampled per node.
Min samples leaf [1, 20] The minimal number of data points required in order to create a leaf.
Min samples split [2, 20] The minimal number of data points required to split an internal node.
imputation mean, median, mode Strategy for imputing missing numeric variables.
split criterion {entropy, gini} Function to determine the quality of a possible split.

Table A3 Adaboost Hyperparameters tuned in the experiments.

Hyperparameter Values Description

algorithm {SAMME, SAMME.R} Determines which boosting algorithm to use.
N estimators [50, 501] Number of estimators to build.
learning rate [0.01, 2.0] (log-scale) Learning rate shrinks the contribution of each classifier.
Max depth [1, 11] The maximal depth of the decision trees.

Table A4 Decision Trees Hyperparameters tuned in the experiments.

Hyperparameter Values Description

max features [0.1, 0.9] Number of features to consider when computing the best node split.
min samples leaf [1, 21] The minimum number of samples required to be at a leaf node.
Min samples split [2, 21] The minimum number of samples required to split an internal node.
criterion {’entropy’, ’gini’ } Function used to measure the quality of a split.

Table A5 Logistic Regression Hyperparameters tuned in the experiments.

Hyperparameter Values Description

C [1e−10, 10.] (log-scale) Regularization strength.
penalty {’l2’, ’l1’ } Whether to use Lasso or Ridge regularization.
Fit intercept True, False Whether or not the intercept of the linear classifier should be computed.

Table A6 SGD Classifier Hyperparameters tuned in the experiments.

Hyperparameter Values Description

loss {’hinge’,’perceptron’,’log’,
’squared hinge’,’modified huber’}

Loss function to be optimized.

penalty {’l2’, ’l1’, ’elasticnet’ } Whether to use Lasso, Ridge, or ElasticNet regularization.
learning rate {’constant’, ’optimal’, ’invscaling’ } Shrinks the contribution of each successive training update.
fit intercept {True, False} Whether or not the intercept of the linear classifier should be

computed.
l1 ratio [0., 1.] Ratio of Lasso vs. Ridge regularization to use. Only used when

the ‘penalty’ is ElasticNet.
eta0 [0., 5.] Initial learning rate.
Power t [0., 5.] Exponent for inverse scaling of the learning rate.
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Table A7 Gradient Boosting Hyperparameters tuned in the experiments.

Hyperparameter Values Description

Learning rate [0.01, 1] Shrinks the contribution of each successive decision tree in the ensemble.
criterion {’friedman mse’, ’mse’ } The function to measure the quality of a split.
N estimators [50, 501] Number of decision trees in the ensemble.
max depth [1, 11] Maximum depth of the decision trees. Controls the complexity of the

decision trees
Min samples split [2, 21] The minimum number of samples required to split an internal node.
Min samples leaf [1, 21] The minimum number of samples required to be at a leaf node.


	Introduction
	Related works
	Explainable AI
	The conceptual framework
	Discussion and conclusion

