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Abstract: The Light-Induced Excited Spin-State Trapping (LIESST) process allows tuning the electronic state of 

spin-crossover materials from low (LS) to high spin (HS) states. The photoinduced HS state is long-lived, up to a 

characteristic temperature, T(LIESST), above which the system relaxes rapidly to the LS state. We study the effect 

of light irradiance on competing LS→HS up-conversion and HS→LS thermal relaxation on the [Fe(phen)2(NCS)2] 

system. Raman spectroscopy and magnetic measurements are used to investigate this phenomenon. An empiric 

model describes the competition between up conversion and thermal relaxation mechanisms and the stabilization 

of photo-stationary state towards higher temperature.  



 

 

Introduction 

Light is a tool to access states of matter, sometimes hidden at thermal equilibrium, which provides 

opportunities for photonic technologies. Spin Crossover materials (SCO) are textbook examples of 

bistable systems, which undergo spin-state conversion from low-spin (LS) to high-spin (HS) state.1-3 The 

relative stability of HS and LS states is balanced under the effect of various external parameters, 

including temperature and pressure. For example, the LS to HS conversion at thermal equilibrium comes 

from the entropy change between LS and HS phases.4-13 This includes both the spin multiplicity 

contribution and the vibrational entropy contribution due to the shift of vibrational frequencies.3 In addition, 

optical excitation involving electronic transition around metal center can lead to LS→HS spin-state 

switching as a result of the Light-Induced Excited Spin-State Trapping (LIESST) process.14 A crucial 

point for observing transient LIESST, or reverse-LIESST, is the lifetime of the photoinduced state. In the 

first study of the LIESST effect, performed in solution, McGarvey et al. used nanosecond laser excitation 

and flash photolysis to induce and probe the dynamics of the spin equilibrium on the hundreds of ns 

timescale.15 Decurtins et al. investigated the LS→HS solid-state photoswitching in crystals at low 

temperatures (below 50 K)14 where the long-lived photoinduced HS state can be probed by more 

conventional techniques such as optical spectroscopy. During the last decade, ultrafast spectroscopic 

techniques have been intensively used to study the LIESST effect on few Fe(II) compounds. LIESST 

occurs typically within 150 fs for metal-to-ligand charge-transfer excitation and within 70 fs for d-d 

excitation,16-25 and is driven by the activation and damping of the molecular breathing mode that elongate 

the Fe-ligand bonds.16-17, 19-21, 26 The reverse LIESST process is much slower and occurs within 40 ps.27 

Ultrafast techniques allow probing relaxation from photoinduced HS to ground LS states, but more 

interestingly also allow probing the multi-step conversion process in solid states where, in addition to 

sub-ps molecular photo-switching, delayed cooperative elastic conversion and thermal conversion also 

occur.28-34 

The lifetime of the photo-induced state and the temperature at which photoswitching occurs are crucial 

aspects for various applications.35-36 In this way, for spin-crossover materials, the T(LIESST) temperature 

corresponds to a characteristic relaxation temperature, where the lifetime of the metastable 

photoinduced state, which is photoinduced at low temperature, becomes short in the dark. For comparing 

the lifetime of the photoinduced HS state in various systems, the T(LIESST) temperature was defined 

as the inflexion point of the relaxation from the HS state, photoinduced at 10 K, upon slow warming in 

the dark with a heating rate of 0.3 K/min.35, 37 It is important to find techniques that can evidence LIESST, 

without requiring ultrafast techniques or very low temperature measurements (below liquid Nitrogen), 

and which can be used on µm-sized single crystals, since the amount of sample is sometimes limited. In 

the present work, instead of studying the evolution of the sample in the dark, we use continuous light 

irradiation to study its photo-stationary evolution. Here we show that micro-Raman spectroscopy allows 

observing LIESST above T(LIESST) and that the laser fluence is a control parameter for observing this 

phenomenon. Indeed, the competition between photoinduced LS→HS conversion and thermal HS→LS 

relaxation allows reaching a photo-stationary state with appropriate laser fluence.  



 

 

The [Fe(phen)2(NCS)2] material studied here is a well-known prototypical SCO system.4, 17, 31, 38-40 At 

atmospheric pressure it undergoes a weakly first-order phase transition around 173 K from LS (S=0, 

t2g
6eg

0) to HS (S=2, t2g
4eg

2) states, where t2g and eg orbitals refer to Fe d-orbitals. As it is the case for 

many SCO materials, [Fe(phen)2(NCS)2] exhibits photomagnetic and photochromic properties upon 

optical excitation around 650 nm, where d-d and MLCT bands are found.16-17, 31, 39-43 Herber et al. used 

variable-temperature infrared spectroscopy to follow the thermal evolution of the metastable 

photoinduced HS state of [Fe(phen)2(NCS)2], by using the IR spectroscopic fingerprints of the HS and 

LS states. In this way, they found that the photoinduced HS state relaxes around T(LIESST)=63 K.44 The 

spin-state switching is associated with important structural reorganizations,17, 39, 45 as the less bonding 

HS state leads to the expansion of the Fe-ligand distance, from <Fe-N>LS= 1.97 Å to <Fe-N>HS=2.16 Å, 

as reported for many FeII SCO materials.46 This structural reorganization gives rise to an energy barrier 

between the HS and the ground LS state, which stabilizes the photoinduced state at low temperature.17, 

39, 45 An important signature of the spin-state switching is the frequency shift of the different N−CS 

stretching modes, which can be probed by Raman or IR spectroscopies.4, 7, 47-48  

 

Experiment 

We performed Raman Spectroscopy with an Invia Spectrometer from Rénishaw. We used two different 

laser wavelengths: 633 nm obtained from a HeNe laser and 785 nm with a laser diode. The temperature 

was controlled by a HFS600E-PB4 stage from Linkam. Incident excitation light was linearly polarized 

along the b axis of the crystal, which corresponds to the C2 molecular axis.38 In the backscattering 

configuration of the microscope, only the parallel polarization of backscattered Raman signals was 

recovered using a linear analyzer for the output. Since the unit cell in the crystal contains 4 molecules, 

there are 8 N−CS stretching modes of symmetry Ag, Au, B1g, B2g, B3g, B1u, B2u or B3u (mmm point group).38 

Only the g modes are Raman-active and in the single crystal. The bb polarizations of the selected fields 

allow probing the Ag mode only, avoiding the superposition of signals from other modes of different 

symmetries. For both measurements performed at 633 nm and 785 nm we used a microscope objective 

to focus the laser on a ≃4 µm2 spot on a single crystal.  

The photomagnetic measurements were carried out on a thin layer of polycrystals of [Fe(phen)2(NCS)2], 

using a laser diode coupled to an optical fiber through the cavity of a MPMS-5 Quantum Design SQUID 

magnetometer. The standardized procedure for registering the T(LIESST) properties was as previously 

published.35,37 After slow cooling to 20 K (in the LS state), the sample was irradiated at 650 nm, at various 

fluences (from 10 to 80 mW/cm²). The magnetization change was followed until the photo-saturation 

point was reached. The temperature was then increased at a temperature scan rate of 0.5 K/min, keeping 

the light irradiation on, until the compound fully relaxes to the LS state. In the absence of irradiation, the 

magnetization was also measured from 10 to 300 K to follow the thermal spin transition and obtain a 

reference curve. 

 

  



 

 

Results and discussion 

 

 

 

Fig. 1. Temperature dependence of bb polarized Raman spectra measured on a [Fe(phen)2(NCS)2] single crystal 

with 633 nm excitation. The frequency shift of the Ag Raman N−CS stretching modes is characteristic of the 

transition between the HS and LS phase.   

 

The thermal dependence of the vibrational modes of [Fe(phen)2(NCS)2] has already been presented in 

the literature,4, 7, 38 and there are many modes exhibiting frequency shifts between LS and HS states. 

Here we focus our attention on the high frequency range (1900-2200 cm-1) in order to probe modes 

involving essentially the C≡ N bonds. Moreover, we take advantage of light polarization for probing the 

single NCS stretching mode of Ag symmetry. Fig. 1 displays Raman spectra recorded for Ag symmetry 

(bb polarization) at different temperatures above and below the spin transition temperature. At 293 K, 

the system is fully in the HS state, as characterized by the NCS stretching mode at ≃2070 cm-1. At 

133 K, the system is fully in the LS state, as characterized by the Ag NCS stretching mode at 

≃2114 cm-1. Just above the phase transition, at 193 K and 173 K, a small fraction of the molecules 

converts to the LS state, while at 163 K a weak signal of HS molecules is also observed. All these 

features are in good agreement with magnetic susceptibility data providing a phase transition 

temperature T1/2 ~173 K with partial conversion on each side.40 This confirms the sensitivity of Raman 

spectroscopy to probe the spin state reported in various systems,6, 49-50 even though the measurement 

may be affected by a weak heating from the laser, lower than 5 K.  

Figure 2 shows Raman spectra excited at 633 nm with irradiances of 100 W/cm2 and 200 W/cm2 in the 

lower temperature range. For both fluences, a single Raman peak is observed around 2114 cm-1 at 123 K, 

which corresponds to the LS mode. However, at 113 K, while the main peak is centered at 2114 cm-1, 

another weak peak appears at 2070 cm-1, which corresponds to the HS state. As temperature is lowered 

to 103 K and 93 K, there is a spectral weight transfer from the LS signal to the HS signal. At 88 K, the 

LS signal has almost disappeared for a fluence of 200 W/cm2, while it is still present at 100 W/cm2. For 

both laser fluences the system is mainly in the HS state at 83 K under the 633 nm excitation of the 

Raman set-up.  



 

 

The black spectra at the bottom of Fig. 2 show Raman measurements performed at 785 nm excitation 

at laser fluences similar to 633 nm excitation (100 W/cm² and 200 W/cm²). At 785 nm excitation, only the 

LS peak is present at 83 K, and there is no conversion towards the HS state, in opposition to the 

observation made at 633 nm. The HS state observed for 633 nm excitation is therefore photoinduced. 

Indeed, the d-d and MLCT bands driving LIESST for [Fe(phen)2(NCS)2] are around 650 nm.16-17 However, 

785 nm excitation cannot induce electronic transition: the photon energy is lower than the gap of the LS 

state found by theoretical calculations,16-17 which is characterized by a lack of absorption above 750 

nm.40, 51 At last, since the observed effect decreases as temperature increases (Fig. 2) we can  underline 

that the photoinduced HS state observed here upon 633 nm excitation is not due to laser heating. Kato 

et al reported similar phenomena by using x-ray diffraction for monitoring the effect of light excitation. 

They demonstrated the on-off optical control of spin-state switching and excluded laser heating effect.52 

 

 

Fig. 2. Temperature dependence of the frequency of the Ag Raman NCS stretching mode in low temperature 

region and measured at 633 nm (colored) and 785 nm (black).  

 

 

As the impact of light fluence on the Raman spectra was important, we conducted SQUID measurements 

under light for different light fluences. Fig. 3 shows the evolution with temperature and under continuous 

light excitation of the fraction  of molecules in HS state, extracted from magnetic susceptibility. Even 

though the laser fluence is much lower than for micro-Raman, it is clear that the photo-stationary HS 

fraction is stabilized towards higher temperature as laser fluence increases. The photo-stationary half 

conversion temperature 𝑇1
2

ℎ𝜐, where   =
1

2
 under light irradiation, shifts from 59 K (0.01 W/cm2) to 62 K 

(0.08 W/cm2).  



 

 

 

Fig. 3. Temperature dependence of the photo-stationary HS fraction  extracted from SQUID measurements. 

 

 

The observed photo-stationary population of the HS state is due to the well-known competition between 

the photoinduced LS→HS photo-conversion and thermally-activated HS→LS relaxation. In order to 

discuss this phenomenon, we use a simplified version of the model introduced by Desaix et al,53 which 

describes the competition between photoexcitation driven by permanent light irradiation and relaxation 

towards the non-excited state. These authors considered a relaxation rate depending on the HS fraction 

, due to cooperative interactions, which modulate the energy barrier. The following master equation 

from Desaix et al, describes the evolution of  under competing photoinduced LS→HS conversion and 

thermally-activated HS→LS relaxation: 

𝑑𝛾

𝑑𝑡
= ∅𝐿𝑆→𝐻𝑆 − ∅𝐻𝑆→𝐿𝑆 = 𝐼0𝜔(1 − 𝛾) − 𝛾𝑘∞exp⁡(−

𝐸𝑎(0)

𝑘𝑇
)exp⁡(−𝛼𝛾) 

Where 𝐼0𝜔 is the probability per time unit for a LS molecule to absorb a photon and switch to the HS 

state, with 𝐼0 the beam fluence (in photons/s/cm2) and 𝜔 a proportionality factor, which includes the 

absorption cross-section of the optical transition driving LIESST.⁡𝛼 is the self-acceleration factor, which 

is important for describing non-exponential relaxations. In the case of the [Fe(phen)2(NCS)2] system 

investigated here, the cooperative interactions are not so strong: the thermal conversion exhibits 

pretransitional conversion and at high temperature the relaxation curves from the photoinduced HS state 

are close to exponential.54 In this case, we can simplify Desaix's model and neglect the self-acceleration 

factor in a first approximation and for a non-cooperative system, the equation can be reduced to  

𝑑𝛾

𝑑𝑡
= 𝐼0𝜔(1 − 𝛾) − 𝛾𝑘∞exp⁡(−

𝐸𝑎
𝑘𝑇

) 

 

The photo-stationary state is then found for   

𝑑𝛾

𝑑𝑡
= 0 

𝐼0𝜔(1 − 𝛾) = 𝛾𝑘∞ exp (−
𝐸𝑎
𝑘𝑇

) = 𝛾𝑘(𝑇) 



 

 

𝑘(𝑇) is the temperature dependence of the HS→LS relaxation rate for an exponential decay. This is 

reasonable since Badle et al have reported an almost linear evolution of ln⁡(𝑘(𝑇))  with 
1

𝑇
 for 

[Fe(phen)2(NCS)2].40, 54 In this way, the photo-stationary HS fraction depends on the thermal relaxation 

rate and on the laser fluence, which rescales 𝑘(𝑇) to 𝑟(𝑇) 

𝛾(𝑇) =
1

1 +
𝑘(𝑇)
𝐼0𝜔

=
1

1 + 𝑟(𝑇)
 

The half-conversion photo-stationary equilibrium,  =
1

2
, occurs when 𝑘(𝑇) = 𝐼0𝜔, i.e. when the LS→HS 

conversion and HS→LS relaxation rates are equal. We define  𝑇1
2

ℎ𝜐(𝐼0𝜔) as the temperature for which 

half-conversion is reached under laser fluence 𝐼0 for a non-cooperative system, with known 𝑘(𝑇) and 𝜔. 

In this way, the light fluence 𝐼0 is the control parameter for reaching photostationary equilibrium.  

Fig. 4a shows the calculated dependence of the photo-stationary HS fraction with temperature, using 

the 𝑘(𝑇) values reported by Baldé et al.54 Since the relaxation rate in SCO materials is known to change 

by 12 orders of magnitude with temperature,55 the laser fluence also has to change by orders of 

magnitudes to shift 𝑇1
2

ℎ𝜐 . For example, Baldé et al measured 𝑘(85⁡𝐾) = 1 .54 Photo-stationary half-

conversion at 𝑇1
2

ℎ𝜐 =85 K is then possible when 𝐼0𝜔 = 1, which corresponds to 1 photon absorbed per 

molecule and per second, as the quantum efficiency of LS→HS photoconversion is close to 1. For 

reaching photo-stationary half conversion at 𝑇1
2

ℎ𝜐 =60 K, where 𝑘(60⁡𝐾) = 0.0002,54 the laser fluence 

should therefore be reduced by almost 4 orders of magnitude compared to 85 K. This agrees with light 

fluence used for Raman experiments (100 W/cm2) where  =
1

2
 at 𝑇1

2

ℎ𝜐 =90 K and SQUID experiment 

(0.01 W/cm2) where  =
1

2
 at 𝑇1

2

ℎ𝜐 = 60 K. The model, considering the 𝑘(𝑇)  data reported for 

[Fe(phen)2(NCS)2],54 predicts a shift of 𝑇1
2

ℎ𝜐 from ≃55 to ≃90 K if the light fluence increases by 4 orders 

of magnitude (Fig. 4b). During the SQUID experiment, the limited increase in light fluence from 0.01 to 

0.08 W/cm2 allows for a small shift of 𝑇1
2

ℎ𝜐of about 3 K.  

 



 

 

 

Fig. 4. a) Calculated temperature dependence of the photo-stationary HS fraction. b) Evolution of 𝑇1
2

ℎ𝜐
 with 𝐼0𝜔. 

 
 

Fig. 5 summarizes the experimental and theoretical results. In addition to Raman and SQUID data, we 

include reflectivity measurements published in ref. 16 with an intermediate fluence, more difficult to 

estimate since reflectivity mainly probes changes induced by a white light excitation close to surface, 

where optical excitation is higher than in the bulk. The fit of the experimental data with the model, 

provides some 𝐼0𝜔 values (𝐼0𝜔 = 1 for Raman 𝐼0𝜔⁡= 0.001 for SQUID data) which confirms that for 

[Fe(phen)2(NCS)2] it is necessary to increase the laser fluence by 4 orders of magnitude to shift 𝑇1
2

ℎ𝜐 30 

K above T(LIESST). The different shapes of the experimental data compared to the fit may come from 

the approximation that [Fe(phen)2(NCS)2] is a non-cooperative system. However, the order of magnitude 

of the shift of 𝑇1
2

ℎ𝜐 with 𝐼0𝜔 is in good agreement with experimental data.  

Another study by Kato et al52 evidenced that the photoresponse of this materials is more important under 

excitation at 532 nm, which allows a 88% conversion at 92 K with 𝐼0= 2 W/cm2. The highest absorption 

at 532 nm translates in higher 𝜔, compared to 633 nm in our experiment, and finally the products 𝐼0𝜔 

are comparable in both experiments.   

 



 

 

 

Fig. 5. Temperature dependence of the photo-stationary HS fraction from SQUID (black), reflectivity (blue) and 
micro-Raman (red) measurements. The continuous lines are a fit of the data with 𝐼0𝜔 as free parameter. 

 

 

4 Conclusions 

This paper discusses the possibility to investigate the LIESST processes in SCO materials well above 

T(LIESST) under high light fluence. A simple model explains that, for no or weakly cooperative systems, 

a photo-stationary half photo-conversion is observed when the when the number of absorbed photons 

per second equals the relaxation rate. With this respect, µ-Raman technique allows observing LIESST 

at lower cost by using liquid-nitrogen operating cryostats instead of He-operating ones, without using 

sophisticated time-resolved technique and with the possibility to investigate micro-crystals. Tracking how 

photo-stationary half-conversion evolves with temperature and light fluence is then another approach for 

measuring HS→LS thermal relaxation rates.  
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