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Abstract

In this Supplemental Material we provide

� Brief description of the time-dependent tight-binding approach.

� Discussion of the robust character of the results with respect to the plasmon mode broadening

because of the coupling to optical phonons.

� Analysis of the evolution of the plasmon modes for the separated nanoribbon dimer upon

the closing of the dimer gap.

� The electronic band structure of the infinite AGNR-11 and ZGNR-12 nanoribbons.

� The dependence of the optical response of the nanoribbon on the transversal displacement

of the vacancy (the effect of the choice of the carbon atom row) and on the electronic doping

given by the Fermi energy.

� Analysis of the transition to the wide ribbon limit.

TIME-DEPENDENT TIGHT-BINDING METHOD

Atomic units are used in this section unless otherwise stated.

The time-dependent equation

The time-dependent tight-binding (TDTB) method describing the electron density dy-

namics in response to an external potential acting on graphene nanostructures has been de-

scribed in great details elsewhere [1]. Here we give only the brief summary of this technique

developed on the basis of the random phase approximation [2] and, later, density matrix

approaches [3] successfully applied to address plasmonic excitations in graphene nanoflakes

and nanoribbons [2–6]. Thus, the time-dependent wave functions of the occupied orbitals

Ψj(r, t) of graphene nanstructure are represented in the basis of the carbon atom 2p-orbitals,

ψ2p(r− r`), centered on the lattice sites r` of the nanoribbon.

Ψj(r, t) =
∑
`

C`(j, t) ψ2p(r− r`), (S1)
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where index j = 1, . . . , jmax enumerates the occupied orbitals of the ground state system,

and ` = 1, . . . ,N . Here, N is the number of the carbon atoms in the nanostructure.

The tight binding representation given by Eq. S1 results in the non-linear Scrödinger

equation

i∂tC(j, t) = H[q](t) C(j, t) (S2)

for the time-evolution of the vector C(j, t) given by the column of the C`(j, t) coefficients.

The initial conditions C(j, t = 0) are given by the occupied orbitals of the ground-state

system. The off-diagonal elements of the tight-binding Hamiltonian matrix H[q](t) are given

by H``′(t) = −t, where indexes ` and `′ denote the nearest neighbours, and t = 2.7 eV is the

hopping integral. The diagonal elements express the total potential at the carbon lattice

site `

H``(t) = Vext(r`, t) +
∑
`′ 6=`

q`′

|r` − r`′|
+ v``q`. (S3)

In Eq. S3 the first term is given by an external potential, the second term expresses potential

owing to the charges, q`′ , induced at the `′ lattice sites q`′ =
∑

j

[
|C`′(j, t)|2 − |C`′(j, t = 0)|2

]
,

and the last term stands for the onsite Hubbard interaction with v`` = 0.58 [2]. Since the

size of the system under the study is essentially smaller than the relevant wavelength of the

electromagnetic radiation, we use the non-retarded approximation for potentials.

The vacancy at the lattice site `v is introduced by setting to zero the H``v(t) matrix

elements of the Hamiltonian for (` = 1, ...,N ). We also define the vacancy positions with

longitudinal coordinate xv and the number of carbon atom row, Nv, at which the vacancy

is created, where 1 ≤ Nv ≤ N , and N is the total number of carbon atom rows forming the

nanoribbon (see Fig. 1 of the main text).

Equations S2 are solved using the short time-step ∆t propagation based on the Lanczos

technique [7]. Typically ∆t = 1 a.u. From the time-dependent induced charges q`′(t) one

obtains the dipole P(t) or higher-order multipole moments of graphene nanostructure, as

well as the induced current Iind(t, x), and the induced electric field Eind(t, r) created by

graphene nanostructure in response to an external potential. The induced current through

the transversal cross-section of the nanoribbon can be obtained from continuity equation

considering variation of charge within the [x, x+ ∆x] section of the nanoribbon (obviously,

within the TDTB approach, the x-coordinate takes the discrete values).

The frequency-resolved quantities are obtained using the time-to-frequency Fourier trans-
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form. E.g. for the induced dipole

P(ω) =

∫ T

0

P(t) ei(ω+iγ)t dt, (S4)

where T is the finite albeit large propagation time. Similarly, for the induced current char-

acterising the plasmon mode p

Iind(p, x) =

∫ T

0

Iind(t, x) ei(ωp+iγ)t dt, (S5)

where ωp is the plasmon mode frequency. In Eqs. S4 and Eqs. S5, parameter γ introduces an

artificial broadening of the spectral features allowing to phenomenologically account for the

broadening effects beyond the TDTB description. This is the case for the plasmon decay

with optical phonon excitation discussed below.

Excitation

The optical response and plasmon modes of graphene nanoribbons (GNRs) are studied

using the plane wave and point dipole excitation (see the main text for the definition of the

geometry of the system).

Thus, to calculate the response on the excitation with the electromagnetic x-polarized

plane wave we use the impulsive perturbation with an electric field along the nanoribbon

x-axis E(t) = E0 δ(t) so that Vext(r`, t) = E0 x` δ(t). Here x` is the projection of the

position vector r` of the carbon lattice site on the x-axis. The absorption cross-section is

then obtained from

σ(ω) =
4πω

cE0

Im {Px(ω)} , (S6)

where Px is the x-component of the induced dipole P(ω), Im {Z} stands for the imaginary

part of a complex number Z, and c is the speed of light in vacuum. As discussed in the main

text, analysis of σ(ω) reveals the effect of the carbon atom vacancy on the optical absorption

and, via the resonant features in σ(ω), on the dipolar plasmon of the nanoribbon.

The excitation of the nanoribbon with a quantum emitter (QE) allows to visualise the

vacancy effect not only on the dipolar plasmon, but also on the higher order dark and bright

plasmon modes. To this end we use an impulsive dipole perturbation d(t) = d0δ(t) where

d(t) is the x-oriented point dipole located at rd. In this situation, the external potential

Vext(r`, t) = d0 vdip (r` − rd) δ(t), (S7)
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where

vdip (r` − rd) =
êx · (r` − rd)

|r` − rd|3
. (S8)

Here êx is the unit length vector alon x-axis.

The field induced by the nanostructure Eind(ω, r) in response to the point dipole excitation

allows one to calculate the tensor components of Gns, where Gns is the change of the free-

space Green’s tensor because of the presence of the nanostructure. Thus

Gns(r, rd)jx =

[
4π

c2
ω2d0

]−1
êj · Eind(ω, r), (S9)

where (j = x, y, z). Since the imaginary part of the Green’s tensor is related to photonic

density of states [8], it reveals the bright and the dark plasmon modes of the nanoribbon.

Nevertheless, we prefer to discuss in the main text of the paper the Purcell factor F

which characterizes the decay rate of a quantum emitter in plasmonic environment. Thus,

the TDTB results for F illustrate the possibility to tune the decay rate of a quantum emitter

by selecting position of a single carbon atom vacancy within the nanoribbon. The transition

frequency ω-dependent Purcell factor is obtained from [9]

F =
Γ

Γv

= 1 +
6πc

ω
Im {êxGns(rd, rd)êx} , (S10)

where Γ is the decay rate of a QE in presence of GNR, and Γv is the decay rate of a QE in

vacuum. Using Eq. S9 one obtains

F = 1 +
3

2d0

c3

ω3
Im
{
Eind(rd)

}
, (S11)

where Eind(rd) is the x-component of the electric field of graphene nanoribbon induced at

position of the QE in response to the x-oriented point dipole located at the same position,

and oscillating at the QE transition frequency ω. Since the size of the studied system is

much smaller than the relevant wavelength of electromagnetic radiation, the Purcell factor

is determined by the nonradiative decay of the QE because of the interaction with GNRs

[8–10]. This process is well described by our nonretarded calculations. The excitation of the

plasmon modes in GNRs leads to the resonant features in the dependence of F on ω which

allows their energy and lifetime analysis.
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EFFECT OF THE PLASMON DECAY OWING TO THE OPTICAL PHONON EX-

CITATION

For the realistic graphene nanoribbon several factors lead to the broadening of plasmon

resonances. The TDTB approach includes the effect of the plasmon decay and dephasing

owing to the Landau damping by scattering on the edges of the nanostructure or on the

defects of graphene lattice [11–17]. However, the interaction with the substrate and opti-

cal phonons [11, 12, 18, 19] can induce further plasmon decay channels which are beyond

the present TDTB description. The phenomenological account of these effects consists in

introducing an artificial broadening γ of the calculated frequency-dependent results (see

Eq. (S4)).

In the main text of the paper, for the sake of the presentation we used relatively small

γ = 5 meV. This allows to observe the sharp features in the calculated optical response

owing to the excitation of the plasmon resonances of the nanoribbons. Consequently, the

effects of the carbon atom vacancy at the focus of our work appear crystal clear, simplifying

the discussion. This said, for the energies of the plasmon modes above the optical phonon

frequency, ≈ 0.2 eV, the plasmon decay with excitation of the optical phonons in graphene

leads to an appreciable reduction of the plasmon lifetime [11, 12, 18, 19]. The associated

plasmon line broadening can be estimated to be within 15− 60 meV range for the plasmon

modes with frequencies ω ∼ 0.5 eV [19].

We have thus computed the data presented in Fig. 2 and in Fig. 4 of the main text

introducing a broadening γ = 30 meV. As follows from the results presented in Fig. S1 and

in Fig. S2 and their comparison with Fig. 2 and in Fig. 4 of the main text, the consequences

of the presence of the vacancy defect – the blue shift of the bright plasmon modes for

the AGNR-11, and their broadening and quenching for ZGNR-12 – remain clearly visible.

Indeed, at least for the low energy plasmon modes, the energy shift and the broadening

resulting from the presence of the carbon atom vacancy are essentially larger than 30 meV.

This demonstrates the robust character of our results and conclusions with respect to the

plasmon line broadening via different decay mechanisms, and, in particular, optical phonon

excitation.
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FIG. S1. Optical response of the AGNR-11 (panels a,c), and ZGNR-12 (panels b,d). The ZGNR-

12 is electronically doped to Fermi energy EF=0.4 eV, while the AGNR-11 is neutral (EF=0).

The Fermi energy is measured with respect to the Dirac point. The blue curves correspond to the

ideal GNRs. The red curves correspond to defective GNRs with the single carbon atom vacancy

at xv = 0.07 nm, Nv = 5 (AGNR-11), and at xv = 0.12 nm, Nv = 6 (ZGNR-12). a, b: The optical

absorption cross section σ of the GNRs normalized to their area. Results are shown as function

of the frequency of the incident electromagnetic plane wave. c, d: The decay rate enhancement

F × ω3 for the QE with transition frequency ω located in vicinity of GNRs at xd = h − L/2 and

yd = W/2 as indicated in Fig. 1 of the main text. We use h = 1 nm. An artificial broadening

γ = 30 meV has been applied.
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FIG. S2. The same as Fig. 4 of the main text, however for an artificial broadening γ = 30 meV.
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ANALYSIS OF THE EVOLUTION OF THE PLASMON MODES OF THE NANORIB-

BON DIMER UPON CLOSING OF THE DIMER GAP.

In the main text of the paper we have shown that the vacancy placed at the Nv = 5 atomic

row at the middle of the AGNR-11 at xv ≈ 0 blueshifts the energy of the bright plasmon

modes. This effect is attributed to the strong reflection of the electrons propagating along

the nanoribbon by the carbon atom vacancy. The two parts of the nanoribbon at opposite

sites of the vacancy region appear decoupled electronically. As a consequence, the L-long

AGNR-11 responds to an optical excitation as a dimer of the L/2-long nanoribbons.

In Fig. S3, we further analyse the transformation of the coupled L/2 dimer with noncon-

ductive junction into the single L-long nanoribbon, and we trace the corresponding evolution

of the plasmon resonances. As sketched in the panels a-e zooming at the vacancy region,

we start with single L/2-long AGNR-11 and progressively approach the second L/2-long

AGNR-11 (panel b) up to the separation of 0.142 nm corresponding to the L-long nanorib-

bon, where the C-C bonds are broken along the transversal direction (panel c). Then, the

L-long AGNR-11 with the vacancy defect (panel d) and an ideal L-long AGNR-11 (panel e)

are considered.

For the L/2 AGNR-11 dimer the bonding and antibonding plasmon modes are formed

from the plasmon modes of the individual L/2 - long nanoribbons [4, 20, 21]. Upon reducing

the size of the junction of the dimer, its bonding modes are red shifting in energy and finally

transform into to the bright plasmon modes of the L-long nanoribbon. The calculated

here strong red-shift of the plasmon modes upon closing the gap is inline with previous

calculations of the transverse plasmons in wide GNRs [4]. The transformation from the

capacitively coupled dimer with accumulation of the induced charges of opposite sign across

the gap to fully established conductive contact forming the L-long nanoribbon operates

at the single atom level. Indeed, consider the evolution of the plasmon modes upon the

c → d → e geometry transformation. The difference in the bonding plasmon mode energies

obtained with broken C-C bonds (see Fig. S3c) and with single carbon atom vacancy (see

Fig. S3d) might be related to the fact that the induced current near x = 0 is strictly zero in

the former case, but it is finite in the later case (see Fig. 3 of the main text). In other words,

the reflection induced by the vacancy creates a phase shift and slightly changes the energy

of the standing plasmonic wave in the L/2 AGNR-11 resonator [22]. Removing the vacancy
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FIG. S3. Left panels Zoom into the gap geometries of ANGR-11 nanoribbons. a: an individual

L/2-long nanoribbon; b: the dimer of the L/2 nanoribbons separated by the gap of 0.355 nm i.e.

2.5× the C-C bond length; c: idem with gap of 0.142 nm i.e. the C-C bond length; d: an L-long

ANGR-11 with a vacancy; e: idem with no vacancy. The vacancy is at the Nv = 5 carbon atom row

at xv = 0.07 nm indicated by the vertical tick. Right panels The optical response. Top right:

An absorption cross section σ normalized to the area of the nanoribbon(s). Results calculated with

TDTB for different geometries are shown as function of the frequency of the incident x-polarized

electromagnetic plane wave. The geometry is indicated with color and label of the curve. Bottom

right: Waterfall plot of the decay rate enhancement given by F × ω3 for the QE with transition

frequency ω located in vicinity of GNRs as explained in Fig. 1 of the main text. Results for

different geometries are shown as function of the transition frequency. For an ideal L/2 (L) GNRs

the resonances are labelled with their ”quantum number” p′ (p) in order of increasing energy. An

artifical broadening γ = 5 meV has been applied.
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fuses the dimer and results in formation of the dipolar mode of the L-long nanoantenna. The

redshift of the plasmon resonance resulting from this single atom manipulation is comparable

to that calculated for the dimer evolution from an infinite gap width to the gap width given

by the length of the C-C bond.

The antibonding modes of the dimer evolve into the dark plasmon modes of the L-long

nanoribbon. This later case does not involve the transformation of the induced charge density

or appearance of the induced currents across the junction, which explains an extremely small

energy shift of the plasmon modes with closing the gap.
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ELECTRONIC STRUCTURE OF THE NANORIBBON

In Fig. S4 we show the band structure of the (metallic) AGNR-11, and ZGNR-12. The

electronic bands are associated with an electron propagating along the nanoribbon and

confined in transversal direction.

For metallic AGNR-11, the well defined plasmon modes are formed without necessity for

the charge doping because the chirality of the electron wavefunctions propagating along the

ribbon blocks the plasmon decay into electron-hole pairs [23, 24]. For the ZGNR-12, the

charge doping is necessary for plasmonic response. It is worth noting that for the ZGNR

the non-dispersive states at zero energy are the so-called edge states [25].
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FIG. S4. The tight-binding electronic band structure of the metallic AGNR-11 and ZGNR-12

infinite in the longitudinal x-direction. The energies are measured with respect to the Dirac point.

The longitudinal electron momentum is denoted by k. The nanoribbons are periodic along x with

period aac = 0.426 nm (azz = 0.246 nm) for armchair (zigzag) nanoribbons. The electronic bands

at positive energies are labelled with their transversal quantum number n. The lowest energy band

crossing the Dirac point corresponds to n = 0.
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ROLE OF THE TRANSVERSAL POSITION OF THE VACANCY AND OF THE

CHARGE DOPING

In Fig. S5 we show the absorption cross-section calculated with TDTB for an electromag-

netic x-polarised plane wave incident on defective nanoribbons. The carbon atom vacancy

is at the center of the nanoribbon (xv ≈ 0) at different transversal positions given by the

carbon atom row number Nv. For results obtained varying the x-position at fixed Nv see the

main text. The purpose of this section is to provide a more complete picture of the vacancy

effect on the optical response of the GNRs. This also allows to further illustrate the link

between the transport of the optically excited charge carriers in presence of the vacancy and

the effect of the latter on plasmonic modes of the nanoribbon. To this end the calculations

were performed

� For different types of the nanoribbons: the metallic AGNR and the ZGNR showing

different electronic properties and thus different vacancy effect on electron transport;

� For various levels of the electronic doping (expressed in terms of the Fermi EF ) allowing

to change the energies of the electronic states relevant for the optical excitation;

� Varying the transverse position of the vacancy created close to the middle of the ribbon

in longitudinal direction (xv ≈ 0), which allows to change the vacancy effect on the

electron transport.

We start our discussion with results obtained for undoped metallic AGNR-11 and

shown in Fig. S5a. For the transversal displacement of the vacancy among the Nv =

1, 2, 4, 7, 8, 10, 11 atomic rows of the nanoribbon we retrieve the results of the main text

obtained for Nv = 5. Namely, the vacancy plays a role of an efficient reflector of the

optically induced currents. Effectively, the nanoribbon is splitted in two parts forming plas-

monic dimer, which results in the blue-shift of the p = 1 dipolar plasmon (DP) frequency.

However, for Nv = 3j, j = 1, 2, 3 the vacancy has no effect on the plasmon resonance. In

fact, because of the quantization of transversal electron motion, these carbon atom rows

correspond to the nodal lines of the wave functions of the gapless subbands (n = 0) close

to the Dirac point [25–27]. The vacancy placed at these atom rows does not reflect the

corresponding electrons moving along the nanoribbon [27].
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FIG. S5. Optical absorption cross section per area of metallic AGNR-11 and ZGNR-12. Results are

shown as function of the frequency of the x-polarized electromagnetic plane wave. The situations

with undoped AGNR-11 (EF = 0, panel a), and AGNR-11 electronically doped to the Fermi

energy EF = 0.4 eV (panel b) are considered. The ZGNR-12 is electronically doped (EF = 0.4 eV,

panel c). The TDTB results obtained for ideal GNRs are shown with black curves, and the TDTB

results obtained for the GNRs with single carbon atom vacancy are shown with color curves. The

vacancy is created close to the middle of the ribbon in longitudinal direction (xv ≈ 0), and at

different carbon atom rows Nv, as indicated for each data set. Different colors allow to distinguish

main trends (reflector-blue, quencher-green, and idler-red) depending on the lateral position of the

vacancy. An artificial broadening γ = 5 meV has been applied.

With an electron doping up to EF = 0.4 eV (Fig. S5b), the AGNR-11 is still trans-

verse monomode, at least for the electronic states within the energy range studied here (see

Fig. S4). Nevertheless, the optically excited electrons have different (overall higher) energy

range, where the effective reflectivity of the vacancy features the energy dependence [27, 28].

Indeed, for the excitation frequency ω ≈ 0.25 eV the reflectivity of the vacancy is not as

efficient as in the EF = 0 case, while it is high for ω ≈ 0.35 eV. This is clearly witnessed by

the DP spectrum obtained with a vacancy on row Nv = 1 (or Nv = 11), which presents one

peak at ω ≈ 0.34 eV associated with formation of the dimer, together with a broad peak at

ω ≈ 0.25 eV associated with a broadened dipolar plasmon of the AGNR-11 nanoribbon.
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The ZGNR-12 (Fig. S5b) also shows the clear dependence of the optical response on the

transversal vacancy position N . In turn, this can be linked with the dependence of the

electron reflectivity of the vacancy defect on the position of the later [28–31]. The vacancy

created close to the edges of the nanoribon in the Nv = 1, 2, 11, 12 carbon atom rows has

little effect on the electron scattering and thus on the plasmon modes. When the vacancy

is located closer to the center, the situation is more involved. Various effects on the dipolar

plasmon resonance are observed. For Nv = 3, 6, 7, 10, the resonant features in absorption

spectrum are strongly broadened and quenched as discussed in the main text. For Nv = 4, 9

the vacancy does not produce any significant effect on the adsorption spectra. Finally for

Nv = 5, 8 the vacancy behaves as a reflector and blue-shifts the dipolar plasmon resonance.
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TRANSITION TO THE WIDE RIBBON LIMIT

The results presented in the main text of the paper correspond to a width W of the

nanoribbon where the confinement of the electron motion in the transversal y-direction and

its subsequent quantization is such that the single channel conducts the optically induced

currents along the nanoribbon. That is the reason for the strong vacancy effect on the

electron transport and optical response. Indeed, the energy bands corresponding to the

quantized states in transversal direction with larger quantum numbers are unaccessible con-

sidering the frequency range of the plasmon modes ω ≤ 1 eV relevant for our study (see

Fig. S4).

However, increasing the width of the nanoribbon, or electronically doping the nanoribbon

to sufficiently high Fermi energy EF allows the optical excitation into these higher energy

bands. This is because (i) with increasing W the characteristic wavelength corresponding

to the transversal confinement increases so that the energies of the quantized bands down-

shift closer to the Dirac point [25, 26, 32, 33]; and (ii) the optically excited electrons have

energies up to EF + ω eventually allowing to reach the electronic states associated with

higher transversal energies. When several transversal conduction channels contribute to the

optically excited currents, one would expect that the effect of the vacancy decreases. In very

simple terms the electron transport in the system evolves from 1D to 2D. The vacancy scat-

tering becomes a multichannel problem with inter-band transitions so that strong backward

reflection which electronically decouples the nanoribbon in two parts becomes less probable.

One would rather expect the broadening of the plasmon via dephasing and Landau damping

associated with vacancy scattering [11–17].

In order to illustrate the effect of the width of the nanoribbon, we have performed the

TDTB calculations of the optical absorption cross section of the metallic AGNRs (the num-

ber of carbon atom rows N = 3`+ 2, ` = 1, 2, . . . ), and of the ZGNRs of variable thickness.

The nanoribbons are electronically doped to the Fermi energy EF = 0.4 eV, as measured

with respect to the Dirac point (EF = 0 corresponds thus to the undoped nanoribbon). We

considered the x-polarised electromagnetic plane wave incidence, and the frequency range

characteristic for the dipolar plasmon of the nanoribbon. Results are shown in Fig. S6 For

the narrow nanoribbon only the n = 0 bands (see Fig. S4) participate in the optical ex-

citations. Depending on the type of the nanoribbon, and the transverse positions of the
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FIG. S6. The optical absorption cross section σ of the GNRs normalized to their area. Results

are shown as function of the frequency of an incident x-polarised electromagnetic plane wave. The

vacancy is created at different carbon atom rows near the middle of the ribbon (xv ≈ 0). The index

of the carbon atom row Nv containing the vacancy is indicated for each data set in the panels of the

figure. Results obtained with different Nv are vertically offset for clarity. Each vertical set of panels

corresponds to the same type of the nanoribbon (AGNR-N or ZGNR-N), N being the number of

carbon atom rows. The nanoribbons are electronically doped to the Fermi energy EF = 0.4 eV,

as measured with respect to the Dirac point. The panels from the top to the bottom show the

evolution of the absorption spectra with increasing width W of the nanoribbon. The grey shaded

areas corresponds to region where at least two electronic bands are energetically accessible during

the photo-excitation, i.e. ω + EF ≥ En=1. An artificial broadening γ = 5 meV has been applied.

vacancy given by atomic row number Nv, the DP mode may be unaffected, blue shifted,

or broadened as discussed in the previous section. When the width of the nanoribbon W ,

and/or the frequency of the electromagnetic radiation ω, is such that the n = 1 (see Fig. S4)
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band becomes accessible for optical excitation, the vacancy effect is drastically reduced, and

basically one retrieves the broadened plasmon of the L-long nanoparticle with no sensitivity

to the transverse location of the vacancy.
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