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The Anderson impurity model with a narrow-band host: from orbital physics to the
Kondo effect
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Faculté des Sciences de St Jérôme, 13397 Marseille, France

(Dated: September 27, 2010; revised manuscript March 25, 2011)

A particle-hole symmetric Anderson impurity model with a metallic host of narrow bandwidth is
studied within the framework of the local moment approach. The resultant single-particle spectra are
compared to unrestricted Hartree-Fock, second order perturbation theory about the noninteracting
limit, and Lanczos spectra by Hofstetter and Kehrein. Rather accurate analytical results explain
the spectral evolution over almost the entire range of interactions. These encompass, in particular, a
rationale for the four-peak structure observed in the low-energy sector of the Lanczos spectra in the
moderate-coupling regime. In weak coupling, the spectral evolution is governed by orbital effects,
while in the strong coupling Kondo limit, the model is shown to connect smoothly to the generic
Anderson impurity with a flat and infinitely wide hybridization band.

PACS numbers: 71.27.+a Strongly correlated electron systems; heavy fermions – 71.28.+d Narrow-band
systems; intermediate-valence solids – 71.55.-i Impurity and defect levels – 75.20.Hr Local moment in com-
pounds and alloys; Kondo effect, valence fluctuations, heavy fermions

I. INTRODUCTION

Five decades of intense experimental and theoreti-
cal research have boosted the Anderson impurity model
(AIM)1 far beyond the scope of the “localized mag-
netic states in metals” that it was initially designed
for. In the first three decades, its concept of a sin-
gle level with on-site Coulomb repulsion coupled to a
host without electronic interactions was mainly used to
describe magnetic transition metal impurities dissolved
in otherwise nonmagnetic bulk metals. The last two
decades’ extraordinary progress in nanotechnology, how-
ever, brought a myriad of new and rather surprising
implementations of what in the meantime had become
one of the theorists’ favourite toys, ranging from tunable
quantum dots2,3 over carbon nanotubes4,5 and adsorbed
organic molecules6 to single-electron7 or single-molecule
transistors.8

The vast majority of theoretical work, comprehensively
reviewed in Ref. 9, focuses on AIMs with metallic hosts
of large bandwidth. In the limit of infinite bandwidth,
the exact static and thermodynamic properties can be
deduced from the Bethe ansatz solution.10–12 A power-
ful and versatile alternative is provided by the numerical
renormalization group (NRG),13,14 recent extensions of
which have also been able to address the dynamics of the
model to excellent accuracy.15–21

Yet another field of application is the Mott metal-to-
insulator transition in high spatial dimensions:22–24 here,
dynamical mean-field theory (DMFT)23 reduces the at
first sight unrelated problem of interacting electrons on
a high-dimensional lattice to an effective AIM immersed
in a bath of identical sites whose properties have to be
determined self-consistently. It was within this context
that the possibility of an AIM with a metallic host of nar-
row bandwidth was first evoked25 since it naturally arises,
in the vicinity of the Mott-Hubbard transition,26 within

the now widely accepted scenario of a metallic state sur-
rounded by a preformed gap.23 At the time, W. Hofstet-
ter and S. Kehrein argued, on grounds of their Lanczos-
determined single-particle spectra for a corresponding
AIM,25 that this incipient gap might be populated by
localized states. Although these states have not actually
been observed inside the preformed gap of the infinite-
dimensional Hubbard model, recent high-resolution dy-
namic density-matrix renormalization group (DDMRG)
data27–29 do indeed show very narrow features on the
inner band edges of the Hubbard satellites in the appro-
priate regime of interactions.

Independent from the relevance for the Mott-Hubbard
transition, several questions about these sharp features
may arise: (i) what are the underlying physical pro-
cesses? (ii) do these processes depend on correlations
within the DMFT bath? (iii) why do these features dis-
appear for both, small and large values of the Coulomb
repulsion? (iv) are they related – and if yes, in which
manner – to the series of peaks observed in the low-energy
sector of Lanczos-determined spectra of an AIM with a
correlationless narrow-band host?25 and (v) why, in the
latter case, are the peaks organized in a four-set struc-
ture?

Some of the above questions have already been ad-
dressed in a previous article,30 in which the AIM was
mainly studied perturbatively about the noninteracting
limit; others, in particular those concerning the rich low-
energy structure at moderate interaction strengths or the
strong-coupling Kondo regime, lie out of reach for per-
turbative approaches and remain unanswered thus far. It
is these questions, among others, that shall be addressed
in the present article, primarily within the framework of
the so-called local moment approach (LMA). This non-
perturbative many-body Green function formalism, de-
veloped by D. Logan and co-workers,19,31,32 introduces
the concept of local moments from the outset. At pure
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mean-field level, this would lead to a doubly degener-
ate ground-state, as appropriate for an insulator, but in
manifest contradiction to the Kondo singlet observed for
impurities hosted in metals. The LMA aims to tran-
scend this deficiency by accounting for dynamical tunnel-
ing processes between the two mean-field ground-states,
at a rate which has to be determined in consistency with
Fermi-liquid behaviour on the lowest energy scale. The
resulting formalism is equally well adapted to impuri-
ties in metallic31 and insulating33 hosts, be it in the
particle-hole symmetric limit31 or away from it.32 The
LMA has so far been applied and adapted to a variety
of impurity and lattice problems with strong electronic
correlations, where its ability to cope with essentially all
interaction regimes and to correctly describe all energy
scales has proven very valuable.34–39 In the present case
of an impurity hosted in a narrow band, the LMA has
to be generalized by using a renormalized, sum-rule com-
pliant version of the original ladder-sum propagator for
the transverse spin fluctuations. This extension is nec-
essary, especially in the regime of moderate interaction
strengths, to correctly capture the subtle low-energy dy-
namics (see Secs. III A and IV B).

The article is outlined as follows: after a brief presenta-
tion of the model, Sec. II defines the narrow-band regime
and presents two different mean-field solutions. Sec. III
starts with a review of the LMA, followed by a discus-
sion of the physically relevant transverse spin fluctuations
and of two important sum rules for the associated po-
larization propagator; its last paragraph is dedicated to
the self-energy approximation implemented in practice.
Sec. IV presents the LMA impurity spectra for different
regimes defined by the strength of the on-site Coulomb
interaction U ; the spectra are compared to correspond-
ing Hartree-Fock or perturbation theory results and,
where available, to Hofstetter and Kehrein’s Lanczos-
determined spectra.25 A Conclusion section closes the
paper.

II. HAMILTONIAN AND MEAN FIELD
THEORIES

The Hamiltonian for the AIM is given in standard no-
tation by

Ĥ =
∑
kσ

εkn̂kσ +
∑
σ

εin̂iσ + Un̂i↑n̂i↓

+
∑
kσ

(
Vikc

+
iσckσ + h.c.

)
(1)

where the first term describes electrons (of spin σ =↑, ↓)
in a metallic host band of dispersion εk. The following
two terms refer to the impurity, with εi the impurity level
and U the on-site Coulomb interaction. The final term
describes the one-electron hybridization between the im-
purity and host.

Throughout this article, as in Refs. 25 and 30, the
particle-hole symmetric AIM, obtained by setting εi =

−U/2, will be studied. In this case, the empty and dou-
bly occupied impurity states are degenerate, whence for
all interaction strengths the Fermi level remains fixed
at its noninteracting value and the impurity charge is
ni = 〈 n̂i↑ + n̂i↓ 〉 = 1. Regardless of the interaction
strength, single-particle spectra are thus symmetric with
respect to the Fermi level, ω = 0. Persistent charge fluc-
tuations guarantee the system’s metallic character, allow-
ing for the possibility to recast the exact single-particle
impurity Green function as an infinite-order perturbation
series, with each diagram depending solely on U and the
noninteracting Green function

g(ω) =
[
ω + i0+sgn(ω)−∆(ω)

]−1
. (2)

In the latter expression, ∆(ω) = ∆R(ω)− i sgn(ω)∆I(ω)
stands for the hybridization function

∆(ω) =
∑
k

|Vik|2

ω + i0+sgn(ω)− εk
(3)

which condenses all relevant information about the host
dispersion εk and the hybridization matrix elements Vik.

In this section, the single-particle impurity spectra
of the AIM will be calculated in two different mean-
field descriptions: Restricted Hartree-Fock (RHF), on
the one hand, implements spin symmetry from the outset
via identical impurity occupation numbers for both spin
species; unrestricted Hartree Fock (UHF), on the other
hand, seeks to determine the occupation numbers self-
consistently — thus allowing for solutions with different
impurity occupancies for ↑ and ↓-spins at an intermedi-
ate stage — and restores the full spin symmetry only at
the very end.

In both versions of the theory, the (causal) single-
particle impurity Green function Giσ(ω) = ReGiσ(ω) −
i sgn(ω)πD0

iσ(ω) can be deduced via standard techniques,
e.g., the equation-of-motion method, after Hartree-Fock
factorizing the 2-body term in the Hamiltonian (1),
n̂i↑n̂i↓ ' n̂i↑ 〈 n̂i↓ 〉 + 〈 n̂i↑ 〉 n̂i↓ − 〈 n̂i↑ 〉 〈 n̂i↓ 〉, yielding

Giσ(ω) =
[
ω + i0+sgn(ω)− εiσ −∆(ω)

]−1
(4)

where εiσ = εi + U
2 (ni − σµ) denotes the Hartree-Fock

corrected impurity level. In the particle-hole symmetric
AIM, where εi = −U/2 and ni = 〈 n̂i↑ + n̂i↓ 〉 = 1, the
Hartree-Fock corrected impurity level solely depends on
the impurity moment µ = 〈 n̂i↑ − n̂i↓ 〉, viz.

εiσ = −U
2
σµ (5)

with σ = + (−) for ↑ (↓) spins. As a consequence of
the Hamiltonian’s invariance under spin inversion, solu-
tions with a nonvanishing magnetic moment are doubly
degenerate, µ = +|µ| and −|µ|.

The present paper focuses on AIMs with narrow metal-
lic host bands, whose width is much smaller than the hy-
bridization strength at the Fermi level, ∆0 = ∆I(ω = 0).
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The physics of such a narrow-band AIM is naturally
rather insensitive to the precise form of the hybridization,
meaning that, without loss of generality, ∆I(ω) may be
assumed to consist of a single flat band of intensity ∆0,
ranging from −D to +D, with D � ∆0. As for any time-
ordered Green function the real part follows via Hilbert
transform,

∆R(ω) = P
+∞∫
−∞

dω′

π

∆I(ω
′)

ω − ω′
, (6)

so that in total

∆(ω) =
∆0

π
ln

∣∣∣∣ω +D

ω −D

∣∣∣∣ − i∆0 sgn(ω) θ(D − |ω|) . (7)

A. Restricted Hartree-Fock (RHF)

The spin-reversal invariance of the Anderson Hamilto-
nian (1) implies that the average number of ↑ and ↓-spin
electrons on the impurity has to be the same for any in-
teraction strength. RHF theory acknowledges this fact
from the outset by enforcing 〈 n̂i↑ 〉 = 〈 n̂i↓ 〉 for all inter-
actions strengths, thus entailing εiσ ≡ 0 in eq. (4). As a
result, RHF recovers the noninteracting Green function
for both spin species and all interaction strengths:

GRHF
σ (ω) ≡ g(ω) =

[
ω + i0+sgn(ω)−∆(ω)

]−1
(8)

The associated single-particle spectrum D0
iσ(ω) con-

sists of two contributions: (i) a continuum for ω ∈
[−D,D], arising from the nonzero imaginary part of the
hybridization; and (ii) two poles, one lying above and the
other symmetrically below the continuum. The fraction
of spectral weight residing in the poles depends strongly
on the bandwidth of the host metal. In the usual wide-
band model, D � ∆0, most of the spectral intensity is
concentrated in the single-particle band, while the poles
are exponentially weak and hence irrelevant in practice.

The situation is, however, radically different in the
present narrow-band model, defined by D � ∆0. Here,
almost the entire spectral intensity resides in the poles,
occurring at frequencies ±ω0 far outside the band. By
analogy with an H2 molecule, these poles can be viewed
as a bonding and an anti-bonding orbital, thus suggest-
ing that the narrow host band to which the impurity is
coupled behaves effectively as a single site or level.25,40

In this case, the pole frequencies and weights can be
obtained to good accuracy from eq. (8) by using the ex-
pansion ∆R(ω) ∼ (2/π)∆0D/ω, valid for |ω| � D:

ω0 '
√

2
π∆0D (9a)

q ' 1

2
− 8D

π∆0
. (9b)

The “bonding energy” ω0 corresponds to the integrated
hybridization, or the total hopping between host and

impurity;30 subject to D � ω0 � ∆0, it defines a second
low-energy scale relevant in the narrow-band regime.

In the following, it will sometimes be helpful to con-
sider D and ω0 as independent parameters. In particular,
in the limit of an infinitely narrow host band, D → 0, this
allows us to treat the host as a single level which couples
via a finite bonding energy ω0 to the impurity – a picture
henceforth referred to as the two-site approximation.

In addition to the orbital levels of the two-site approx-
imation, the full noninteracting single-particle spectrum
encompasses the aforementioned Fermi liquid continuum
stemming from the hybridization band on the lowest en-
ergy scale, |ω| ≤ D. Its integrated weight is of the order
O (D/∆0) and thus weak in the narrow-band regime.

The RHF description, naturally exact in the nonin-
teracting limit, is expected to break down if U is much
larger than the “molecular” bonding energy ω0: in this
case, the extra electron probed by Gσ is most likely to be
introduced on an already singly occupied impurity which
involves an energy cost of the order of the interaction
strength U ; the single-particle spectra will then be domi-
nated by Hubbard poles separated by the Coulomb inter-
action U rather than the molecular orbitals at ω = ±ω0.

B. Unrestricted Hartree-Fock (UHF)

In UHF theory, the magnetic moment residing on the
impurity will be determined self-consistently from the
impurity Green function Giσ itself. For small interac-
tion strengths, it is found to be zero, and UHF recovers
the noninteracting solution g. This nonmagnetic solution
becomes unstable above some critical interaction U c

0 —
which turns out to be related to the “molecular” bond-
ing energy ω0 — and UHF then converges to a solution
with a finite impurity moment. The Hamiltonian (1) is,
however, still invariant under spin inversions, thus guar-
anteeing for any mean-field ground state with positive
moment µ = +µ0 the existence of another degenerate
ground state with opposite moment, µ = −µ0. Sub-
sequently, quantum mechanical tunneling processes be-
tween these mean-field ground states ensure their occur-
rence with equal probability:

GUHF(ω) =
1

2
[GAσ(ω) + GBσ(ω)] (10)

Throughout the present paper and without loss of gener-
ality, A- (B-) type impurities are assumed to be predomi-
nantly ↑ (↓) spin occupied, implying µ0 ≥ 0. The ↑↓ spin
symmetry of the Hamiltonian entails GAσ(ω) = GB−σ(ω),
thus guaranteeing the spin independence of GUHF(ω) in
eq. (10).

The necessity of the mixing process (10) becomes par-
ticularly obvious in the atomic limit, defined by vanishing
hybridization matrix elements, Vik ≡ 0. In this limit, the
impurity propagator is GAL(ω) = 1

2 ([z+U
2 ]−1+[z−U

2 ]−1)
[with z = ω + i0+sgn(ω)]. Each of the two contribu-
tions in eq. (10) yields one term of this exact result [via
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∆(ω) ≡ 0 and µ0 = 1]: an ↑-spin electron can only be
retrieved from an A-type impurity (first term), and can
only be added to a B-type impurity (second term).

In practical terms, the Green function GAσ(ω) =
ReGAσ(ω) − i sgn(ω)πD0

Aσ(ω) is obtained from eqs. (4)
and (5) with an impurity moment µ = +µ0, calculated
self-consistently from

µ0 =

0∫
−∞

dω
[
D0

A↑(ω)−D0
A↓(ω)

]
; (11)

[GBσ(ω) follows equivalently for µ = −µ0]. In Fig. 1, the

0 0.5 1
U/∆

0

0

0.5

1

µ
i

µ
0

FIG. 1: Magnetic impurity moment vs. Coulomb repulsion U
for an AIM with bandwidth D = 0.01∆0, where ω0 ' 0.08∆0.
Filled circles: numerically determined LMA moment µ, as re-
quired by eq. (35); open circles: numerically determined UHF
moment µ0. Solid lines: corresponding approximate analyti-
cal expressions, eqs. (36) and (13). The critical interactions
are Uc ' 0.23∆0 for the LMA, and Uc

0 ' 0.32∆0 in UHF.

self-consistent UHF moment µ0, eq. (11), is plotted as a
function of the interaction strength U for a narrow-band
AIM with host bandwidth D = 0.01∆0.

The spectral density D0
A↓(ω) consists of a low-energy

continuum for |ω| < D, of net weight O (D/∆0), aris-
ing from the finite imaginary part of the hybridization,
and two pole contributions, one above the single-particle
band, at ω = ω> > +D, and the other one below it,
at ω = −ω< < −D. Assuming both poles to occur far
outside the single-particle band, the pole frequencies and
weights can be obtained rather accurately by expansion
of the hybridization function (7), ∆R(ω) ∼ (2/π)∆0D/ω:

ω≷ ' ω0

(√
y20 + 1± y0

)
(12a)

q≷ '
√
y20 + 1± y0
2
√
y20 + 1

(12b)

with y0 = Uµ0/4ω0.
For the above expansion to hold, ω≷ � D is required,

thus limiting the validity of eq. (12) for the low-energy
pole at ω = −ω< to interactions Uµ0 � 4

π∆0 (while
no restrictions follow for the high-energy pole ω>). In
this range of interactions, the renormalization effects
in the single-particle continuum are still small and the
UHF moment µ0 can be obtained very accurately by

only retaining the pole contributions of D0
Aσ(ω) in the

self-consistency equation (11). This yields the following
expression which corresponds to the lower solid line in
Fig. 1:

µ0 '

{√
1− (U c

0/U)
2

for U > U c
0 := 4ω0

0 for U < U c
0

(13)

For U < U c
0 , the self-consistently determined moment

vanishes and the UHF Green function coincides with the
noninteracting or RHF solution, eq. (8). Above U c

0 , by
contrast, a finite local moment forms on the impurity,
and saturates rapidly as U is increased. With increas-
ing µ0, the pole at ω = ω> shifts rapidly away from
its noninteracting value ω0 towards higher frequencies
and gains in intensity. For U � U c

0 , it becomes the
upper Hubbard satellite at ω> ' U/2, which overwhelm-
ingly dominates the spectrum D0

A↓(ω) with a pole weight

of q> ' 1 − O
(
[ω0/U ]2

)
. Simultaneously, the pole at

ω = −ω< moves from −ω0 towards the lower band edge
−D and loses weight. For U c

0 � U . ∆0, its position
and weight are given to good accuracy by

ω< '
2ω2

0

U
=:

J

2
, (14a)

q< '
(

2ω0

U

)2

. (14b)

The first equation defines a third low-energy scale, J =
4ω2

0/U , which lies between bandwidth and bonding en-
ergy, D � J � ω0, and accounts for the antiferromag-
netic exchange between impurity and host.

If U is increased to values of the order of ∆0, the an-
tiferromagnetic exchange J approaches the bandwidth
D, and the above analysis — while still valid for the
Hubbard level at ω = ω> — breaks down for the low-
energy pole at ω = −ω<. If, like in the present case,
the hybridization band ∆I(ω) has a discontinuity at the
lower band edge −D, the logarithmic divergence of the
related real part, ∆R(ω), still guarantees the existence of
a low-energy pole; in the present model with a flat hy-
bridization band it occurs, for U � ∆0 (where µ0 ' 1),
exponentially close to the band edge and carries expo-
nentially small weight, which renders it insignificant in
practice:

ω< ' D

[
1 + 2 exp

(
− πU

2∆0

)]
(15a)

q< '
2πD

∆0
exp

(
− πU

2∆0

)
(15b)

Finally, according to eq. (10), the full UHF impu-
rity spectrum can be obtained by superposing D0

A↓(ω)

and D0
B↓(ω), the latter of which follows by symmetry,

D0
B↓(ω) = D0

A↑(ω). As illustrated in Fig. 2, DUHF(ω)

consist of a continuum for |ω| < D, and two pairs of
poles at ω = ±ω> and ω = ±ω<. Before the onset
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FIG. 2: UHF impurity spectra, π∆0D
UHF(ω) vs. ω/∆0, for

bandwidth D = 0.01∆0, i.e., ω0 ' 0.08∆0 and Uc
0 ' 0.32∆0,

and interaction strengths U/∆0 = 0, 0.5, 1, 2 (from top to
bottom). In the bottom panel, the Hubbard satellites at ω '
±U/2 = ±∆0 lie off plot range. Discrete levels are represented
by vertical lines. The Fermi energy is ω = 0.

of moment formation, i.e., for U < U c
0 , the two pairs

merge into the single pair of molecular orbitals shown in
the first graph, at ω = ±ω0 and of net weight q ∼ 1/2
each, and UHF coincides with the noninteracting solu-
tion. As U exceeds U c

0 , the orbitals split up progressively
into a stronger growing high- and a weaker growing low-
energy component, as depicted in the second and third
graphs of Fig. 2. In the second panel, where U = 0.5∆0

is only moderately greater than U c
0 ' 0.32∆0, the im-

purity moment is already well established, µ0 ' 0.78,
and the “Hubbard satellites” at ω ' ±0.22∆0 are not
far from their terminal position, ω ' ±U/2 = ±0.25∆0,
carrying together more than 88% of the spectral inten-
sity. Approximately a further 11% of the weight reside in
the low-frequency poles at ω ' ±0.030∆0 (expected at
ω ' ±J/2 ' ±0.025∆0 from eq. (14a)), while the central
low-energy continuum carries only less than 1% of the
spectral intensity. In the third graph, where U = ∆0,
roughly 98% of the spectral weight reside in the Hub-
bard satellites at ω ' ±0.49∆0, while the low-energy
poles at ω ' ±0.015∆0 appear close to the central con-
tinuum, the latter being strongly renormalized from its
noninteracting shape. Finally, these renormalization ef-
fects are still enhanced for U = 2∆0 (bottom panel),
not yet fully in the strong coupling regime, resulting in
a considerable violation of the Friedel sum rule (see be-
low); here, almost all intensity resides in the Hubbard
satellites (off plot range), and exponentially weak low-
energy poles, with total weight 0.3%, are located slightly
outside the central continuum [see eqs. (15)].

The above scenario, with a spectral evolution governed
by ω0 '

√
2∆0D/π in weak coupling, and by U and

J = 4ω2
0/U in moderate coupling, U c

0 � U . ∆0, con-

curs qualitatively with second order perturbation the-
ory in U (2PT),30 and can be rationalized in terms of
a simple two-site model in which the host is carica-
tured by a single level coupled to the impurity.40 De-
spite these encouraging results, UHF suffers from several
severe limitations: (i) in the two-site limit, D → 0 al-
beit with finite ω0, exactly captured by 2PT, the low-
energy single-particle levels are expected at ω ' ±3J/2
for U � U c

0 , i.e., three times the corresponding UHF
pole frequency (14a); (ii) the UHF single-particle band,
present for |ω| < D, is generally not a Fermi liquid: for
interactions above U c

0 , a nonzero impurity moment µ0

forms, and the UHF zero-frequency behaviour DUHF(ω =
0) = (1/π∆0)/[1 + (Uµ0/2∆0)2] violates the Friedel sum
rule9,41 that compels the impurity spectra of the particle-
hole symmetric AIM, for arbitrary interaction strengths,
to be pinned at the Fermi level to their noninteracting
value, D(ω = 0) = 1/π∆0; and (iii), relatedly, due to the
absence of dynamics UHF completely fails to capture any
of the Kondo physics expected to govern the low-energy
spectrum in the strong coupling regime, U � 4∆0.

The present paper aims to transcend these shortcom-
ings within the framework of the local moment approach
(LMA).

III. LOCAL MOMENT APPROACH (LMA)

The LMA19,31,32 expresses the impurity Green func-
tion in a formalism employing two self-energies. At pure
mean-field level this description reduces to UHF, dis-
cussed in the previous section, with each of the self-
energies arising from impurities with predominant ↑- or
↓-spin occupation. For an impurity hosted by an insula-
tor with a sufficiently large gap, this doubly degenerate
ground-state is actually observed.33,42–44 Conversely, for
a metallic host, dynamical tunneling between the two
broken-symmetry states can (and will) still lower the en-
ergy and ultimately lead to the formation of a “Kondo”
singlet ground-state with fully restored spin symmetry
on the longest timescales.31,32 The tunneling mechanism
requires a (virtually) doubly occupied or empty impurity
at some intermediate stage, implying that its rate – and
the corresponding energy scale – diminish with increas-
ing interaction strength. The LMA incorporates such a
mechanism by coupling the single-particle dynamics to
energetically low-lying flips of the impurity moment. In
order to obtain a successful description of insulating and
metallic phases within the same framework, this has to
be done in a manner encompassing the possibility of self-
consistent restoration of the spin symmetry at low en-
ergies, as necessary for the preservation of Fermi-liquid
behaviour on this scale.

The implementation of the LMA follows Refs. 31 and
32. For reasons analogous to those discussed in the con-
text of eq. (10), the full impurity Green function G is
again obtained by superposing A- and B-type impurity
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propagators in a spin-rotationally invariant fashion,

G(ω) =
1

2
[GAσ(ω) + GBσ(ω)] . (16a)

Making use of spin symmetry, GBσ(ω) = GA−σ(ω), yields
the equivalent expression

G(ω) =
1

2
[Gα↑(ω) + Gα↓(ω)] . (16b)

Here, G is independent of the impurity type and the in-
dices α may be suppressed for convenience, meaning that
the individual (broken-symmetry) Gσ(ω) in eq. (16b) will
henceforth be implicitly considered “A-type”, i.e., of im-
purity moment µ ≥ 0, unless stated otherwise. Each
of the Gσ(ω) can be expressed in terms of a Dyson
equation,51

Gσ(ω) =
[
g−1(ω) − Σ̃σ(ω)

]−1
, (17)

thus defining the two self-energies Σ̃↑(ω) and Σ̃↓(ω) cen-
tral to the present approach. Without loss of general-
ity, the two self-energies can be separated into static and
dynamic contributions, Σ̃σ(ω) = Σst

σ + Σσ(ω): diagram-
matically, the former are suitably approximated by the
Hartree tadpole (while the contribution of the Fock open
oyster diagram vanishes), amounting to

Σst
σ = −σU

2

0∫
−∞

dω
[
D0

A↑(ω)−D0
A↓(ω)

]
; (18)

and the dynamical Σσ(ω) are defined to contain “every-
thing else”. Eq. (17) may thus be rephrased as

Gσ(ω) =
[
G−1σ (ω) −

(
Σst
σ − εiσ

)
− Σσ(ω)

]−1
. (19)

This choice is particularly convenient if – as for the LMA
– the dynamic self-energy contributions Σσ(ω) are to be
diagrammatically constructed from the UHF propagators
Gσ rather than from the noninteracting g, since it entails
the sum of the static contributions (in braces) to vanish
if the UHF moment µ0, determined self-consistently from
eq. (11), is used.

The present two-self-energy description is by now well
established and by no means exclusive to the LMA, but
likewise emerges in other approaches as, e.g., in the NRG
where it occurs for odd iterations of the renormaliza-
tion group.20 Nevertheless, it is desirable to connect it to
the conventional single self-energy, defined by the Dyson
equation G(ω) = [g−1(ω)− Σ(ω)]−1:31,32

Σ(ω) = 1
2

[
Σ̃↑(ω) + Σ̃↓(ω)

]
+

(
1
2

[
Σ̃↑(ω)− Σ̃↓(ω)

])2
g−1(ω)− 1

2

[
Σ̃↑(ω) + Σ̃↓(ω)

] (20)

Before specifying the class of diagrams to be retained
to approximate the dynamical self-energies Σσ(ω), the
conditions necessary for Fermi-liquid behaviour to pre-
vail at low frequencies shall be reviewed.32 According
to Luttinger,45 the imaginary part of the single self-
energy Σ(ω) is required to vanish as O

(
ω2
)

at the Fermi

level ω = 0, which for the two self-energies Σ̃σ(ω) =

Σ̃R
σ (ω)−i sgn(ω)Σ̃I

σ(ω) employed by the present approach
translates to the following two conditions:

Σ̃I
σ(ω) ∼ O

(
ω2
)

for ω → 0; (21a)

Σ̃R
↑ (ω = 0) = Σ̃R

↓ (ω = 0) . (21b)

The fulfilment of the first condition shall be assumed
from now on, and will be explicitly shown in Sec. III B for
the class of diagrams chosen in the following. The second
condition requires the broken symmetry Σ̃σ(ω) to coin-
cide with the fully symmetric single Σ(ω) at the Fermi
level, thus expressing the concept of a restored spin sym-
metry on the lowest energy scales32 which was alluded
to in the beginning of this section. Here, the additional
particle-hole symmetry, Σ̃↑(ω) = −Σ̃↓(−ω), in combina-

tion with eqs. (21), require both self-energies Σ̃σ(ω) to
vanish at the Fermi level. This, in turn, automatically
guarantees the Friedel sum-rule pinning of the spectra,
D(ω = 0) = 1/π∆0.

In its self-energy diagrams, the LMA incorporates
transverse spin fluctuations responsible for a dynamical
reversion of the impurity moment. At the simplest level,
to be implemented in the following, this is achieved by
coupling the ladder-sum polarization propagator to the
single-particle Green function,

Σσ(ω) ≡ Σσ[{Gσ}] ∼
σ

−σ

≡

σ

−σ

−σ

(22)

where wavy lines represent the interaction U and left-
going (right-going) solid lines stand for a UHF-like parti-
cle (hole) propagator Gσ. Note, however, that symmetry
restoration is generally not automatically guaranteed by
the above class of diagrams, but can be obtained through
self-consistent determination of a free parameter. In the
following, the impurity moment µ will serve as such, im-
plying that it will generally differ at self-consistency from
its UHF value µ0 (see Sec. III B below).

The above approximation for the self-energies Σσ(ω)
has been motivated and discussed in detail in Ref. 31,
32,34; here, its basic properties shall only be briefly re-
viewed: (i) in weak coupling, before the onset of moment
formation, the UHF propagators Gσ coincide, for both σ,
with the noninteracting Green functions g; up to (and in-
cluding) second order in U , eq. (22) is hence equivalent to
an ordinary diagrammatic perturbation expansion about
the noninteracting limit. (ii) For arbitrary interaction
strengths, the self-energy diagram (22) describes pro-
cesses where after having added at t = 0, say, a σ =↓-spin
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electron to a −σ =↑-spin occupied impurity, the original
↑-spin electron hops away, thus effectively flipping the
impurity spin until its return at some later time t: this
is precisely the dynamical spin-flip scattering, comprised
in the second order of Anderson’s poor man’s scaling (see
Ref. 9), which allows us to restore spin symmetry and
to capture the strong coupling Kondo limit. (iii) In the
atomic limit, where Vik ≡ 0 and therefore ∆0 = 0, the
self-energy (22) vanishes, since the −σ-spin electron can-
not leave the impurity at all. The LMA reduces to simple
UHF, and thus becomes exact in this limit, predicting an
impurity moment of µ0 = 1 and single-particle poles at
ω = ±U/2. This is salutary, since the atomic limit may
be considered as an extreme of the local moment phases
observed in a gapped AIM;33,42–44 it also plays an impor-
tant role in the context of the breakdown of the skeleton
expansion30 taking place already in the metallic regime
close to a Mott metal-insulator transition.25,26

Before discussing the LMA impurity spectra in Sec. IV,
the spin fluctuations and their dynamical coupling to the
single-particle Green function will be examined in the
following two paragraphs.

A. Transverse spin fluctuations

As already mentioned in the previous paragraph, one
of the main ingredients for the LMA self-energy is given
by dynamical spin-flip scattering processes opening the
possibility to restore the spin symmetry on the lowest
energy scale. Embodied in the transverse impurity-spin

polarization propagators, Π+−(t) = i
〈
T̂{S+

i (t)S−i (0)}
〉

and Π−+(t), these scattering processes are at the sim-
plest level accounted for by a sum of repeated particle-
hole interactions, as depicted by the ladder bubble in the
rightmost self-energy diagram in eq. (22) which, for σ =↓
(−σ =↑), leads to the familiar expression

Π+−(ω) =
0Π+−(ω)

1− U0Π+−(ω)
, (23)

where

0Π+−(ω) = i

+∞∫
−∞

dω′

2π
G↓(ω′)G↑(ω′ − ω) (24)

is the bare transverse-spin bubble. [The second po-
larization propagator follows by particle-hole symmetry,
Π+−(ω) = Π−+(−ω).]

Using the Hilbert transform relation (6) for Gσ(ω) on

the right-hand side (rhs) of eq. (24), yields31

1

π
Im 0Π+−(ω) = θ(ω)

+|ω|∫
0

dω′D0
↓(ω
′)D0

↑(ω
′ − ω)

+θ(−ω)

0∫
−|ω|

dω′D0
↓(ω
′)D0

↑(ω
′ − ω).

(25)

The first term describes a spin-flipping particle-hole ex-
citation where an electron is removed from an occupied
↑-spin state below the Fermi surface (ω′ − ω < 0) and
placed into an unoccupied ↓-spin state above the Fermi
surface (ω′ > 0). Similarly, the second term accounts for
the recombination of an ↑-spin electron into an empty
↓-spin level below the Fermi surface.

In the present AIM with a narrow host band, these pro-
cesses operate mainly between the UHF orbitals, giving
rise to poles in 1

π Im 0Π+−(ω) at ω = 2ω> and ω = −2ω<
with respective pole weight q2≷.

For a vanishing impurity moment, as appropriate for
weak coupling, the UHF levels coincide with the “molec-
ular” orbitals of the noninteracting limit, entailing poles
in 1

π Im 0Π+−(ω) at frequencies ω = ±2ω0 and of spec-
tral weight q ' 1/4 each. Conversely, in moderate to
strong coupling, particle-hole excitations between the
lower and the upper UHF Hubbard level become domi-
nant, producing a high-frequency pole at ω = 2ω> ' U of
weight q2> ' 1 in 1

π Im 0Π+−(ω), and a corresponding low-
frequency pole at ω = −2ω< whose intensity decreases
rapidly (first algebraically for U c � U . ∆0, where
q2< ∼ [2ω0/U ]4, and then exponentially for U � 4∆0).

In addition to the pole contributions 1
π Im 0Π+−(ω)

contains three weak continua stemming from processes
involving the narrow UHF single-particle band at the
Fermi level. Two of these continua have their origin in
electronic transfer between the single-particle band and
one of the UHF levels; they are found at ω ∈ [ω>, ω>+D]
and at ω ∈ [−ω< −D,−ω<], with respective net weight
O
(
q≷D/∆0

)
, and turn out to be of little importance in

the following. The third continuum appears at low fre-
quencies, |ω| ≤ 2D, and owes its existence to particle-hole
excitations within the narrow UHF single-particle band
itself. According to eq. (25), its behaviour in the vicinity
of the Fermi level is essentially governed by the overlap
of the two D0

σ(ω)-bands; for a metallic host, the intensity
of the latter being finite at the Fermi level ω = 0, this
results in a continuum vanishing linearly for small ω,

1

π
Im 0Π+−(ω)

|ω|�D∼ |ω|D0
↓(0)D0

↑(0) , (26)

a property that is needed to prove the fulfilment of con-
dition (21a) by the present theory.31
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1. Stability of the ladder sum propagator.

From the Hilbert transform relation (6) for Π+−(ω),
and the positivity of its imaginary part, one deduces an
analyticity condition for the polarization propagator,31

Re Π+−(ω = 0) =

+∞∫
−∞

dω′

π

Im Π+−(ω′)

|ω′|
> 0 , (27)

which naturally holds for 0Π+− and the exact Π+−.

Conversely, for an approximate polarization propaga-
tor, like the present ladder-sum Π+−, eq. (27) is not auto-
matically satisfied, but rather constrains the applicability
of the approximation to a certain range of parameters U
and µ.

According to eq. (23) and granted Im 0Π+−(ω = 0) =
0, the behaviour of Re Π+−(ω = 0) is solely controlled
by the bare Re 0Π+−(ω = 0). For a vanishing impurity
moment, as enforced in RHF and found self-consistently
in UHF for U < U c

0 ≡ 4ω0, Re 0Π+−(ω = 0) ' 1/4ω0

follows to good accuracy from the two-site approxima-
tion, implying that the corresponding ladder-sum Π+−

satisfies the positivity condition (27).

Above U c
0 , the µ = 0 ladder-sum Π+− — which cor-

responds to an ordinary random phase approximation
(RPA) in the transverse spin channel — becomes un-
stable to spin excitations since the underlying mean-field
theory predicts a transition to a phase with a finite mag-
netic moment. A finite µ, on the other hand, allows for
a direct calculation of Re 0Π+−(ω = 0) from eq. (24) by
means of the identity G↑(ω) − G↓(ω) = −UµG↓(ω)G↑(ω)
and of particle-hole symmetry D0

σ(ω) = D0
−σ(−ω):

URe 0Π+−(ω = 0) =
1

µ

0∫
−∞

dω
[
D0
↑(ω)−D0

↓(ω)
]

.

(28)
The latter equation shows that if the moment is de-
termined self-consistently from the UHF propagators,
µ = µ0 as given in UHF by eq. (11), the rhs evaluates to
unity and the corresponding ladder-sum Π+−, eq. (23),
has a pole at ω = 0. While appropriate for an insulator,
where flipping the impurity spin costs no energy, in a
metallic host such a spin flip is expected to be governed
by the Kondo effect and thus to involve a finite energy.

In the framework of the LMA, this picture emerges nat-
urally if µ is increased above its UHF value µ0, thereby
shifting the pole in Π+−(ω) from ω = 0 to a small but
positive frequency ωm — closely related to the Kondo
energy — and rendering Π+− analytic in the sense of
eq. (27).

2. Sum rules and renormalized ladder-sum propagator.

Any acceptable approximation for the spin-flip polar-
ization propagator should fulfil the following sum rules: +∞∫

0

±
0∫

−∞

 dω

π
Im Π+−(ω) =

〈[
c+i↑ci↓, c

+
i↓ci↑

]
±

〉

=

{
ni↑ + ni↓ − 2 〈 n̂i↑n̂i↓ 〉
µ

(29)

which naturally hold for the noninteracting 0Π+−(ω),
and likewise for the exact Π+−(ω).

The second sum rule reflects the fact that, in weak
coupling, Im Π+−(ω) is symmetric about the Fermi level
since the impurity is found to be occupied by electrons of
both spin species with equal probability; after the onset
of moment formation (and before symmetry restoration),
the impurity is predominantly ↑-spin occupied and spec-
tral intensity at positive energies, associated with pro-
cesses flipping the impurity spin from ↑ to ↓, should dom-
inate.

As for the first sum rule, its rhs is comprised between
1/2 and 1 for the particle-hole symmetric AIM, since the
expectation to find a doubly occupied impurity 〈 n̂i↑n̂i↓ 〉
varies from 1/4 in weak to 0 in strong coupling and, in
any case, ni↑ + ni↓ = 1; both limits are captured by
the approximate expression 1

2 [1 + µ2] which follows by

recasting the double occupancy as 〈 n̂i↑n̂i↓ 〉 = 1
4 (
〈
n̂2i
〉
−〈

µ̂2
i

〉
) and subsequently factorizing the quartic Fermion

operators via a Hartree-Fock decoupling.
For the present narrow-band AIM, the above sum rules

are naturally fulfilled in weak coupling, where Π+−(ω)
reduces essentially to the noninteracting 0Π+−(ω). More
surprisingly, also in the strong coupling (Kondo) regime,
U � 4∆0, both sum rules are found to be approximately
satisfied for values of the magnetic moment required by
symmetry restoration.

Problems are found to arise primarily for moderate
interactions, large enough to find the impurity moment
well established, but far from the Kondo limit. For this
range of interactions, the main features of the ladder-sum
polarization propagator Π+−(ω) are accurately described
in the two-site approximation; it reduces to two poles,
with frequencies and weights given analytically by

ω±m = 2ω0

[
γy ±

√
(γy)2 + γ

]
, (30a)

q±m =

[
γy ±

√
(γy)2 + γ

]2
4γ
√

[y2 + 1] [(γy)2 + γ]
, (30b)

where y = µU/U c
0 and γ = 1 − U/Uc

0√
y2+1

. Inciden-

tally, eqs. (30) encompass the bare (broken symmetry)
0Π+−(ω), which follows for γ = 1, as well as the nonin-
teracting polarization bubble, obtained by setting U = 0
and γ = 1.
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Within the two-site approximation, appreciable sum-
rule violations occur for U � U c

0 , where the stability
criterion (27) and the definition of the magnetic moment
itself constrain µ to the narrow interval between the UHF
moment µ0 and 1. In this regime, the deviation of the
moment from its UHF value defines a small positive pa-
rameter δ = µ − µ0. The position and weights of the
ladder-sum poles, eqs. (30), can then be expanded in
terms of the square root of this parameter which, using
γ ' µ0δ +O(δ2), yields

ω±m ' ±2ω0

√
µ0δ +

U

2
µ2
0δ +O

(√
δ
3
)

, (31a)

q±m '
ω0

U
√
µ0δ
± µ0

2
+O

(√
δ
)

. (31b)

By consequence, the integrals in eq. (29) evaluate to q+m+

q−m = 2ω0/U
√
µ0δ+O(

√
δ) and q+m− q−m = µ0; the 1/

√
δ-

singularity of the first result indicates a strong violation
of the first sum rule (while the second is found to be
fulfilled to leading order even in this regime).

Within the present approach, this problem can be over-
come by renormalization of the ladder-sum propagator,
i.e., by multiplication of Im Π+−(ω) with two different
constants above and below the Fermi level, ω = 0, cho-
sen to comply with both sum rules (29). [The corre-
sponding real part can subsequently be calculated from
the Hilbert transform (6).] In the two-site approxima-
tion, the renormalized weights — which have to be used
instead of eq. (30b) — are explicitly given by

q±m = 1
4 (1± µ)2 . (32)

Henceforth, unless explicitly stated otherwise, Π+−(ω)
will always stand for such a renormalized spin-flip ladder
sum.

3. The full spin-flip polarization propagator.

Beyond the two-site approximation, where the polar-
ization propagator solely consists of two poles, with fre-
quencies given by eq. (30a) and renormalized weights
(32), the full ladder-sum Π+− contains the following ad-
ditional features:

(i) The full Π+−(ω) inherits its continua from the
bare 0Π+−(ω); these are located at frequencies ω ∈
±[ω≷, ω≷ +D] and |ω| ≤ 2D.

(ii) For moments µ which only exceed the correspond-
ing UHF moment very slightly, as appropriate in strong
coupling, U � 4∆0, the pole frequencies (30a) may lie
within the low-energy continuum |ω| ≤ 2D; instead of
poles, the full Π+−(ω) will thus have sharp resonances at
these frequencies.

(iii) In addition to the above mentioned poles, the full
Π+−(ω) shows a third collective pole, induced by the
RPA-like structure of eq. (23) and the logarithmic singu-
larity of Re 0Π+−(ω) at the upper edge of the polariza-
tion band found for ω ∈ [−ω< −D,−ω<]; of tiny weight

throughout the whole range of interactions, this pole can
be safely neglected in practice.

B. The LMA self-energy

For a ↓-spin electron, the self-energy diagram (22)
translates to

Σ↓(ω) = U2

+∞∫
−∞

dω′

2πi
Π+−(ω′)G↑(ω − ω′) ; (33)

and the ↑-spin self-energy follows by particle-hole sym-
metry Σ↑(ω) = −Σ↓(−ω).

In analogy to the calculus of the spin-flip polariza-
tion propagator, useful expressions for the self-energy
Σ↓(ω) = ΣR

↓ (ω) − i sgn(ω)ΣI
↓(ω) are obtained by insert-

ing the Hilbert transforms for the broken-symmetry Π+−

and G↑ in the integrands on the rhs of eq. (33), yielding
for the imaginary part

ΣI
↓(ω) = θ(ω)U2

+|ω|∫
0

dω′ Im Π+−(ω′)D0
↑(ω − ω′)

+θ(−ω)U2

0∫
−|ω|

dω′ Im Π+−(ω′)D0
↑(ω − ω′); (34)

and a corresponding real part, ΣR
↓ (ω), which follows by

Hilbert transform.
The evaluation of the integrals in eq. (34) is greatly fa-

cilitated by the structure of the polarization propagator
Π+−(ω), whose spectral intensity resides — as pointed
out in Sec. III A — throughout the entire range of inter-
actions almost exclusively in two sharp low-energy modes
at ω = ω±m. Except in strong coupling, U � 4∆0, the
dominant contribution to the self-energy arises by cou-
pling these modes to the UHF ↑-spin orbitals, resulting
in two poles or sharp resonances in ΣI

↓(ω), the first oc-

curring at ω = ω+
m + ω< > 0 (net weight U2q+mq<), and

the second at ω = ω−m − ω> < 0 (net weight U2q−mq>).
The self-energy pole at positive frequencies is associ-

ated with single-particle excitations where an extra ↓-
spin electron is introduced on the impurity, and the initial
↑-spin impurity electron hops off to the host. The same
result could have been obtained from the original ground-
state by placing the extra electron directly in the empty
↑-spin UHF orbital (energy cost ω<) and simultaneously
flipping the impurity moment from ↑ to ↓ (energy cost
ω+
m). Analogously, the ΣI

↓-pole at negative frequencies is
caused by a ↓-spin electron being taken off the impurity
and subsequently replaced by an ↑-spin electron from the
host, yielding an ↑-spin electron in the UHF orbital be-
low the Fermi level (energy gain ω>) and a flip of the
impurity moment from ↓ to ↑ (energy gain |ω−m|). As this
requires the impurity to be initially ↓-spin occupied, the
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latter self-energy contribution will decline as the impu-
rity moment µ approaches saturation.

In addition to these collective modes, eq. (34) predicts
several sets of narrow self-energy continua that arise from
band contributions in D0

↑ and Π+−; such continua occur

for ω ≥ ω+
m, for ω ≤ ω−m and for |ω| ≥ ω> + ω< (all of

width D), for |ω| ≥ ω≷ (width 2D), and for |ω| ≤ 3D.
All these continua remain generally weak over the whole
range of parameters, albeit with one exception: as the im-
purity moment µ approaches its UHF value from above,
µ → µ0 + 0, and consequently ω±m → 0 — a situation
that becomes relevant in the strong coupling Kondo limit
discussed in Sec. III B 2 below — the minor UHF single-
particle pole vanishes exponentially [see eq. (15b)], and
the dominant self-energy contribution is transferred to
the low-energy continuum located at |ω| ≤ 3D.

That the low-frequency behaviour of the latter con-
tinuum fulfils the first condition for symmetry restora-
tion, eq. (21a), may be seen as follows: the continuum is
generated, as in eq. (34), by convoluting the UHF band
for ↑-spin electrons with the low-frequency continuum of
Im Π+−; the latter vanishes linearly in ω as ω → 0 [a
consequence of eq. (26) in combination with the analyt-
icity condition (27), which for a ladder-sum propagator
implies 1 − URe 0Π+−(ω = 0) > 0], entailing their con-

volution to behave as [Σ̃I
↓(ω) ≡]ΣI

↓(ω) ∝ ω2 for |ω| � D.

The second condition, eq. (21b), by contrast, is not
automatically fulfilled by the present theory. As pointed
out before, it reduces under particle-hole symmetry to
Σ̃R
↓ (ω = 0) = Σstat

↓ + ΣR
↓ (ω) = 0, which, under the as-

sumption Σstat
↓ ' Uµ/2, becomes

ΣR
↓ (ω = 0) +

U

2
µ = 0 . (35)

Within the LMA, this condition will be satisfied by
tuning the impurity moment µ within the interval µ0 <
µ ≤ 1, prescribed by the analyticity condition (27). De-
spite the generally narrow range of possible values, a so-
lution can always be found since the dynamical contri-
bution, ΣR

↓ (ω = 0), is very sensitive to the exact posi-
tion of the majority self-energy pole and hence implic-
itly to the spin-flip scale ω+

m. The latter quantity is
highly responsive to changes of the impurity moment
and thus effectively controls the condition (35). In a
more general perspective, ω+

m — which vanishes for an
ordinary UHF ground-state with finite impurity moment
(see Sec. III A 1) — may be considered as a new order pa-
rameter that, for a state with local moments, determines
whether Kondo physics takes place or not.

The above analysis is corroborated by the numerical
results displayed in Fig. 1, confirming that, for a wide
range of interactions, U � U c

0 , the impurity moment µ
needed to comply with condition (35) is indeed very close
to the UHF moment µ0.

In the remaining two paragraphs of this section, condi-
tion (35) in combination with the LMA self-energy will be
studied in two regimes for which analytic results can be

worked out: (i) the two-site limit, appropriate for weak
to moderate interactions; and (ii) the strong coupling
Kondo limit.

1. The self-energy in the two-site limit.

The two-site approximation —D → 0 albeit with finite
ω0 '

√
2∆0D/π — allows for the LMA self-energy to be

written in simple analytical terms and, more importantly,
suggests a two-pole structure for Σσ(ω) that, for ω �
|D| and up to moderate interactions U . ∆0, correctly
reproduces the main results of a complete version of the
LMA for the present narrow-band AIM.

In weak coupling, U � U c
0 , UHF predicts a solution

with a vanishing impurity moment, µ0 = 0, and single-
particle propagators which, independent of spin and im-
purity type, reduce to the noninteracting Green function,
Gσ(ω) ≡ g(ω). The corresponding self-energies Σσ(ω)
are hence odd functions of ω and their real parts sat-
isfy the condition (35) by symmetry. As obvious from
eq. (22), the leading contribution to the self-energy dia-
grams stems from ordinary 2PT about the noninteracting
ground state and is hence overwhelmingly dominated by
poles at ω ' ±3ω0 of weight Q ∼ U2/8 each.

Above some critical interaction U c — which is of the
same order of magnitude but slightly smaller than the
corresponding UHF critical interaction U c

0 — the non-
magnetic solution becomes unstable and a finite mo-
ment forms on the impurity. As illustrated in Fig. 1,
the LMA moment µ saturates rapidly with increasing U ,
and its numerical values fit accurately to a square-root
law [which, in contrast to and despite the similarity with
eq. (13), is not even exact in the two-site limit]:

µ '

{√
1− (U c/U)

2
for U > U c := 2

√
2ω0

0 for U < U c
. (36)

As pointed out above, symmetry restoration and con-
sequently the Fermi-liquid nature of the single-particle
excitations hinge, in this regime, almost exclusively on
the energy cost ωm for flipping the impurity moment.
For simplicity, in what follows, the latter quantity will
be thought of as an independent parameter, to be de-
termined from condition (35), and the impurity moment
will be kept at its UHF value µ0 instead.

Under these assumptions (which are in concord to
leading-order with the analysis in Sec. III A 2), Π+−

is dominated by poles at ω±m = ±ωm, of renormal-
ized weights q±m = 1

4 (1 ± µ0)2, and Σ↓(ω) is consti-
tuted by a majority pole at ω = ωm + ω< (net weight
U2q+mq< ≡ 4ω2

0q>) and a minority pole at ω = −ωm−ω>
(net weight U2q−mq> ≡ 4ω2

0q<). The magnetic energy
scale follows finally from eq. (35), viz.

ωm = −U
4

+ J +

√(
U

4

)2

+ J2 + ω2
0 , (37)
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where, again, J ≡ 4ω2
0/U stands for the antiferromag-

netic exchange coupling constant.
At the critical interaction for moment formation in

UHF, where U = U c
0 and U/4 = J = ω0, the magnetic

energy starts out at ωm =
√

3ω0, and then decreases as
ωm ∼ 3J/2 for interactions U � U c

0 (the relevance of
the two-site approximation being subject to ωm � D, or
equivalently U . ∆0 as previously).

Due to the simplicity of the two-site approxima-
tion, two further virtues of the LMA become mani-
fest: first, the renormalization procedure of Π+−(ω)
— which enforces the sum rules (29) — guarantees
the LMA self-energy (33) to fulfil an analogous set

of sum rules for the interaction self-energy Σ̃↓(ω) ≡
U2
〈〈
ci↓δn̂i↑; δn̂i↑c

+
i↓

〉〉
ω

,

 +∞∫
0

±
0∫

−∞

 dω

π
Σ̃I
↓(ω) = U2

〈[
ci↓δn̂i↑, δn̂i↑c

+
i↓

]
±

〉

' U2

4

(
1− µ2

0

)
×

{
1

µ0
,

(38)

the sole condition being that the many-body expectation
values on the rhs are evaluated by a Hartree-Fock factor-
ization, as shown on the second line of eq.(38) (which,
again, correctly captures the limits of weak and strong
coupling).

The second virtue concerns the conventional single self-
energy Σ: in Lanczos calculations by Hofstetter and
Kehrein,25 this Σ(ω) is found to have poles on an energy
scale ω ∼

√
∆0D which cannot be explained in any or-

der of the skeleton expansion.25,26 Moreover, these poles
have been shown to depend little or not at all on the
interaction strength,30 occurring in the limits of strong
and weak coupling exactly at ω = ±3ω0, with net spec-
tral weight Q ∼ U2/8 each. Responsible in the atomic
limit Vik ∼ ω0 = 0 for the Σ(ω) ∼ 1/ω characteristics of
the insulator, they are an intrinsic feature of the narrow-
band AIM.44

It has been argued in the beginning of this paragraph
that, in weak coupling (U ≤ U c), both LMA self-energies
coincide and inherit their main properties from 2PT,
whose poles in turn precisely respect the desired prop-
erties. But also for U � U c, where the impurity moment
saturates and ωm ' 3

2J , such poles occur on a similar
energy scale in the symmetry-restored single LMA self-
energy, Σ(ω). The latter depends, as in eq. (20), on the

self-energies Σ̃σ which in the limit U � U c reduce to

Σ̃↓(ω) '
U
2 ω
[
ω + U

2

]
ω2 + U

2 ω − 4ω2
0

(39)

and Σ̃↑(ω) = −Σ̃↓(−ω); insertion of which into eq. (20)
generates a single self-energy constituted, to leading or-
der in J ∼ 1/U , by poles at ω ' ±

√
5ω0 of spectral

weight Q ∼ U2/8 each. Hence apart from the pole fre-

quency prefactor (
√

5 ' 2.23 instead of 3), the LMA
self-energy matches the above mentioned properties of
the exact solution also for U � U c. The discrepancy in
the prefactor is possibly due to the inability of the two-
site approximation to describe the true strong coupling
regime, U � 4∆0.

2. The self-energy in the Kondo limit.

In genuinely strong coupling, U � 4∆0, the polar-
ization propagator Π+−(ω) consists in essence of a sin-
gle sharp resonance peaked at a frequency ωm which is
tiny compared to any other frequency scale involved in
the problem, even D. The corresponding self-energy,
obtained by convoluting this resonance with the single-
particle UHF propagator as in eq. (34), is thus governed
by resonant spin-flip scattering within the metallic single-
particle band at the Fermi level itself, i.e., the Kondo
effect, whereas the orbital contributions, predominant in
the two-site limit, vanish exponentially [see eq. (15b)].

Under these circumstances, and granted µ0 ' 1,
condition (35) can again be solved analytically, yield-
ing an exponentially small spin-flip energy, ωm '
D exp[−πU/8∆0], which — apart from the prefactor —
concurs with the LMA results for the AIM with a flat
and infinite wide hybridization band.31 Far from the band
edges of the low-energy continuum, the interaction self-
energy can be written as a function of a single parameter,
ω̃ = ω/ωm, viz.

Σ̃↓(ω)
|ω|�D∼ 4∆0

[
1

π
ln |1− ω̃| − iθ(ω̃ − 1)

]
, (40)

and is otherwise independent of the original parameters
U and D.

This low-fequency scaling behaviour of the self-energy
– which is ultimately responsible for the scaling prop-
erties of the single-particle resonance – is a hallmark
of AIMs with metallic hosts.19,31,32 The associated pre-
diction of an exponentially small magnetic energy scale,
closely related to the Kondo temperature, emerges sim-
ilarly from Anderson’s poor man’s scaling46 for the s-d
model, and from a strong-coupling expansion of the ex-
act Bethe ansatz solution for the AIM.10

IV. SPECTRAL EVOLUTION IN THE
NARROW-BAND REGIME.

In this section, the numerically obtained LMA im-
purity spectra D(ω) = − 1

π sgn(ω)ImG(ω) [with G(ω)
the spin-symmetric single-particle Green function of
eq. (16b)] will be presented next to corresponding UHF
and 2PT results. The section also comprises a compar-
ison of the LMA spectra with Lanczos calculations per-
formed by Hofstetter and Kehrein25 for an 11 + 1-site
Anderson star with host bandwidth D = 10−4∆0.
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Further analytic rationales reveal how the spectrum
evolves with interaction strength and suggest an interpre-
tation of its main features in simple physical terms: for
weak to moderate interactions, U . ∆0, the reasoning is
based on the two-site approximation where the host band
is taken to be infinitely narrow; conversely, in strong cou-
pling, U � 4∆0, similarities with the opposite case of an
infinitely wide host band emerge in the immediate vicin-
ity of the Fermi level, and ultimately lead to the charac-
teristic scaling behaviour of the Kondo resonance.19,31

A. Weak coupling: U � Uc

For U much smaller than the critical interaction for
moment formation, U c, the LMA connects smoothly to
2PT (see Sec. III B 1), which in turn exactly captures the
two-site limit for any interaction strength. By analogy
to the latter, extensively discussed in Ref. 30, the LMA
single-particle spectrum (depicted in the last graph of
Fig. 3) is overwhelmingly dominated by the “molecular
orbitals,” occurring at minimally lower frequencies |ω| .
ω0 than in the noninteracting limit. Additionally, for
any nonzero U , a pair of weak poles arises at ω ' ±3ω0:
these are the precursors of the Hubbard satellites, and
start out with net spectral weight q ∼ O

(
[U/ω0]2

)
each.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

1

π
 ∆

0D
i(ω

)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

1

π
 ∆

0D
i(ω

)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
ω/∆

0

0

1

2

π
 ∆

0D
i(ω

)

FIG. 3: UHF (top), 2PT (middle), and LMA (bottom) impu-
rity spectra, π∆0D(ω) vs. ω/∆0, for bandwidth D = 0.01∆0,
i.e., ω0 ' 0.08∆0 and Uc ' 0.23∆0, and interaction strength
U = 0.1∆0. Discrete levels are represented by vertical lines.
The Fermi energy is ω = 0.

Fig. 3 depicts the impurity spectra for D = 0.01∆0

and U = 0.1∆0, i.e., an interaction strength that is weak
compared to ∆0, but already appreciable with respect
to U c ' 2

√
2ω0 ' 0.23∆0 (or U c

0 ≡ 4ω0 ' 0.32∆0).
Since U < U c, the LMA converges to a solution without
magnetic moment, and the numerically computed LMA
spectra (bottom panel) carry mainly the signature of 2PT

(middle panel), namely: (i) the “molecular orbitals”, oc-
curring at ω ' ±0.077∆0, dominate the spectrum and
carry in total more than 92% of the intensity; (ii) the
outer set of poles, at ω ' ±0.22∆0, carrying approxi-
mately 6.6% of the total spectral weight, occur slightly
inside their 2PT counterparts at ω ' ±0.25∆0; (iii) vari-
ous weak band contributions which (with one exception)
also bear great similarity with 2PT, the most prominent
being the essentially unrenormalized Fermi-liquid con-
tinuum of width 2D and net spectral weight O (D/∆0)
around the Fermi level. These results clearly contrast
with UHF, in the top panel of Fig. 3, whose spectra, for
the reasons already pointed out in Sec. II B, coincide with
the noninteracting limit.

B. Moderate coupling: Uc � U . ∆0

In the regime of moderate interaction strengths — de-
fined by U c � U . ∆0 or, equivalently, D � J � ω0 —
a well-established local moment resides on the impurity.
The energy cost ωm ' 3

2J for flipping this moment being
large compared to the host bandwidth D, the two-site
scenario of Sec. III B 1 remains appropriate — except,
of course, within the low-energy Fermi-liquid continuum
|ω| < D itself.
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FIG. 4: UHF (top), 2PT (middle), and LMA (bottom) impu-
rity spectra, π∆0D(ω) vs. ω/∆0, for bandwidth D = 0.01∆0,
i.e., ω0 ' 0.08∆0 and Uc ' 0.23∆0, and interaction strength
U = 0.5∆0 (J ' 0.05∆0). Discrete levels are represented by
vertical lines. The Fermi energy is ω = 0.

For a host of bandwidth D = 0.01∆0, chosen in Fig. 4
for clear resolution on all relevant energy scales, the
above conditions of moderate interaction strengths are
never truly met, since U c ' 0.23∆0 and ∆0 are of sim-
ilar orders of magnitude. Nevertheless, for U = 0.5∆0

(as in the figure), where the LMA impurity moment is
well established (µ ' 0.89 vs. µ0 ' 0.78 for UHF,
see Fig. 1), the moderate coupling regime of the two-
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site approximation is a good starting point for the anal-
ysis of the impurity spectra. Their most prominent
feature, accounting for approximately 68% of the spec-
tral intensity, are the high-energy Hubbard satellites at
|ω| ' 1

2U + 3
2J ' 0.33∆0. They are found to occur re-

markably close to their 2PT counterparts at |ω| ' 0.35∆0

(expected in the two-site limit of 2PT at |ω| ' 1
2U+ 5

2J '
0.38∆0), whereas the UHF correction to the atomic limit
(where |ω| ≡ U

2 ) operates in the opposite direction,

|ω| ' 1
2U −

1
2J ' 0.22∆0. A new feature on the high en-

ergy scale are the side bands for |ω| ≥ ω>+ω< ' 0.27∆0

(and, very faint, for |ω| ≥ ω> ' 0.25∆0), stemming
from many-body self-energy continua (see Sec. III B):
strongly enhanced with respect to their 2PT progenitors
(located in the middle panel at |ω| = 2ω0 ' 0.16∆0 and
ω0 ' 0.08∆0), these side bands will, for larger U , eventu-
ally merge with the Hubbard levels, thereby destroying
their discrete nature. This, in turn, may be viewed as
an extreme version of the many-body broadening effect
generic to the AIM and likewise observed for hosts of
large bandwidth.31,32

In the low-energy sector — governed by the antiferro-
magnetic scale J = 4ω2

0/U ' 0.05∆0 and the bandwidth
D = 0.01∆0 — the LMA impurity spectra reveal a much
richer structure than their UHF or 2PT counterparts.
While all three approaches predict the low-energy con-
tinuum, ranging from ω = −D to D and accounting for
0.4% of the total spectral intensity, to suffer very little
renormalization with respect to the noninteracting limit,
the spectra differ significantly on the J-scale, where sim-
pler UHF and 2PT both predict a single pair of discrete
levels (which can be viewed as remnants of the molecular
orbitals). An additional, second pair of levels emerges in
the LMA already in the framework of the two-site ap-
proximation: the pole equation for the ↓-spin electron,
ω−∆R(ω)−Σ↓(ω) = 0, with Σ↓(ω) from eq. (39), yields
the upper Hubbard satellite together with two low-energy
poles at, to leading order in J ,

ω1,2 ' −
1±
√

17

4
J , (41)

while, the ↑-spin pole equation, leads to the lower Hub-
bard satellite and poles at ω = −ω1,2.

The low-energy poles at ω = ±ω1,2 can be interpreted
in the following way: the outer levels at |ω| = |ω1| '
1.28J ' 0.065∆0 (of net weight q1 ' 0.51[J/ω0]2), re-
sult from a shift of the UHF orbital remnants, initially
found at |ω| = ω< ' 1

2J , and occur remarkably close to

their 2PT counterparts at |ω| ' 3
2J ' 0.076∆0; the inner

poles, at frequencies |ω| = ω2 ' 0.78J ' 0.04∆0 and of
net weight q2 ' 0.12[J/ω0]2, are entirely new features,
which owe their existence to resonant spin-flip scatter-
ing as accounted for by the majority self-energy pole at
ω = ω< + ωm ' 2J . In UHF, this pole is naturally ab-
sent due to the total lack of dynamics; but it also misses
in 2PT, albeit for subtler reasons: assuming a perfect
parity between host and impurity, as appropriate for an
actual two-site problem, a resonance process that tends

to localize a spin flip on the impurity rather than on the
host is ruled out in 2PT by construction.

Despite the rather poor concord with the definition
of moderate coupling, the numerically calculated LMA
spectrum of Fig. 4 corroborates the above analysis to
reasonable accuracy, displaying in the low-energy sector
a four-peak structure with (i) levels at |ω| ' 0.05∆0 ' J
(instead of the expected 1.28J) and carrying about 21%
of the spectral intensity; and (ii) sharply peaked continua
at |ω| ' 0.7J ' 0.035∆0, accounting for roughly 8% of
the spectral weight, stemming from the merger of the
above mentioned inner poles, expected at ω ' ±0.78J ,
with self-energy bands.

C. Comparison with Lanczos spectra.

In their article,25 Hofstetter and Kehrein present low-
frequency Lanczos spectra for an Anderson impurity cou-
pled to a host of 11 sites, with a bandwidth of D =
10−4∆0, entailing a “bonding energy” of ω0 ' 0.008∆0 ≡
80D. They study two different interaction strengths: the
first, U = 0.2∆0, implies J ' 12.7D much larger than
D but much smaller than U c ' 230D, thus matching
the above definition of moderate coupling; the second,
U = 4∆0, implying J ' 0.63D slightly smaller than the
bandwidth, is in the crossover region between moderate
coupling and the Kondo regime. Fig. 5 shows LMA spec-
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FIG. 5: Low-frequency sector of the LMA impurity spectra,
π∆0D(ω) vs. ω/∆0, for bandwidth D = 10−4∆0, i.e., ω0 '
0.008∆0 = 80D, and interaction strengths U = 0.2∆0 (top),
U = 4∆0 (middle), and U = 10∆0 (bottom). Discrete levels
are represented by vertical lines. The Hubbard satellites at
|ω| ' U/2 lie outside the plot range.

tra for the same parameters, along with an additional
third calculation for U = 10∆0 — which is in the true
strong coupling regime difficult to reach for the Lanczos
method.

Hofstetter and Kehrein’s Lanczos spectrum for U =
0.2∆0 is dominated by Hubbard satellites at energies
as high as |ω| ' U

2 = 0.1∆0 ≡ 1000D which are ex-

cluded from their plots.25 In the physically more relevant
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low-energy sector, their spectrum may be divided in two
parts: (i) a central continuum for |ω| ≤ D ≡ 10−4∆0

which in shape is very similar to the Fermi-liquid band
of the noninteracting limit; and (ii) two sets of narrow
peaks on the antiferromagnetic scale O (J ' 12.7D), the
first located at |ω| ' 0.0018− 0.0021∆0 (i.e., 18− 21D)
and the second at |ω| ' 0.0025−0.0026∆0 (i.e., 25−26D).
Although it is not clear how these sets will evolve with
a larger number of sites in the Lanczos calculations, a
structure with at least two features will most likely pre-
vail in this region.

The corresponding LMA results, displayed in the top
panel of Fig. 5, reproduce — at least qualitatively — all
characteristics of the Lanczos spectra: excellent agree-
ment is found on the highest energy scale (off plot-range
in the graph), governed by the Hubbard satellites at
ω ' ±0.1∆0 with almost 97% of the total spectral in-
tensity; good agreement is also observed on the low-
est energy scale D, occupied by the central Fermi-liquid
continuum, of net weight O (D/∆0) ∼ 0.01%, and es-
sentially unrenormalized from the noninteracting-limit,
since, throughout the whole continuum, the interaction
self-energies Σ̃σ(ω) ∼ O

(
U2/∆0

)
[eq. (39)] are weak in

comparison to the hybridization ∆(ω) ∼ O (∆0), and
have thus very minor influence on the quasi-particle prop-
erties. Nevertheless, conceptually much simpler 2PT and
UHF are similarly successful on the two latter energy
scales.

On the intermediate energy scale, J ' 12.7D, by con-
trast, where UHF and 2PT both predict a single set
of levels (see Sec. IV B), solely the LMA produces a
rich structure which qualitatively resembles the Lanczos
spectra.25 The dominant features are two sets of poles at
ω = ±ω1,2 [eq. (41)]: the first, with 2q1 = 2.4% of the to-
tal spectral intensity and located at |ω| = |ω1| ' 1.28J '
0.0016∆0 ≡ 16D, corresponds to shifted “orbital rem-
nants”; the second, with 2q2 = 0.6% of the net spectral
weight and situated at |ω| = |ω2| ' 0.78J ' 0.001∆0 ≡
10D, is the novel feature related to resonant spin-flip
processes (which has been discussed in the previous
paragraph). Additionally, of the various sets of single-
particle bands arising from the self-energy continua (see
Sec. III B), only the two most prominent are visible in the
graph: the first, at |ω| ≥ ωm ' 3

2J ' 0.0019∆0 ≡ 19D
and of width D, stems from spin-flipping impurity scat-
tering of the metallic host electrons close to the Fermi
level — a process driving the Kondo physics in the strong-
coupling limit U � 4∆0 (see Sec. IV D); a second, almost
imperceptible set of continua of width 2D is located at
|ω| ≥ ω< ' J/2 ' 0.000 64∆0 ≡ 6.4D and involves cou-
pling the UHF orbitals to the low-lying spin-flip continua.

In summary, contrary to UHF and 2PT, the LMA re-
produces the main aspects of the Lanczos spectra also
on the intermediate energy scale, but somewhat under-
estimates the antiferromagnetic exchange J . A better
quantitative match would require a renormalized spin
exchange constant J ′ ∼ 1.6J , or equivalently a Coulomb
coupling U ′ screened by the same factor for the spin chan-

nel only.
For U = 4∆0, not yet in the strong coupling regime,

both the LMA and the Lanczos-determined spectra con-
sist only of two appreciable contributions: the Hubbard
satellites at ω ' ±2∆0 on the high energy scale, and, on
the other extreme, the low-energy Fermi-liquid contin-
uum of width O (D) surrounding the Fermi level, ω = 0.
The latter contribution, with its emergent central Kondo
resonance, is plotted for the LMA in the middle panel
of Fig. 5. The corresponding Lanczos graph by Hof-
stetter and Kehrein confirms this scenario, albeit with
a slightly less developed Kondo resonance, and sharper
peaks at the band edges ω = ±D. The overall agree-
ment of the spectra is good, but could again be improved
by renormalizing the LMA spin exchange, even though
the mismatch might also partly stem from the artificial
Lorentzian broadening or the small number of sites used
in the Lanczos calculations.

Finally, the Fermi-liquid continuum for U = 10∆0,
plotted in the last panel of Fig. 5, illustrates the exponen-
tial narrowing of the Kondo resonance with interaction
strength which is one of the hallmarks of the strong cou-
pling regime to be discussed in the next section.

D. Strong coupling: U � 4∆0

In an AIM with a narrow metallic host, the single-
particle spectra suggest the following phenomenological
definition of the strong coupling regime: an interaction
strength belongs to the latter if (i) the metallic band at
the Fermi level is dominated by a narrow central res-
onance whose shape is almost identical to Kondo reso-
nances belonging to even larger interaction strengths; (ii)
the Hubbard satellites appear as sharply peaked continua
instead of discrete levels; and (iii) the spectrum contains
no other visible features.

For U = 6∆0 and 12∆0, the LMA single-particle spec-
tra do indeed comply with the last two of the above
conditions. Whether however the shape of the Kondo
resonance in the low-frequency sector of the spectra —
displayed in the bottom row of Fig. 6 — is already scaling
invariant is less obvious, but can be worked out in anal-
ogy to the AIM with an infinitely wide metallic host:19,31

for U � 4∆0, and far from the band edges, |ω| � D,

the contributions to Gσ(ω) = [ω − ∆(ω) − Σ̃σ(ω)]−1 of
both, ω and ∆R(ω) ' 2∆0ω/πD, are negligible com-
pared to the remaining two terms, given by ∆I(ω) ' ∆0,

and the interaction self-energy Σ̃σ(ω). In the frequency
range considered here, the latter is proportional to ∆0

and scales in terms of the single variable ω̃ ≡ ω/ωm,
with ωm(U) ' D exp[−πU/8∆0] [see eq. (40)]. This, in
turn, leads to scaling invariance for the part of the single-
particle continuum closest to the Fermi level, |ω| � D,
i.e., for the central Kondo (or Abrikosov-Suhl) resonance.

The limiting curve for U/∆0 → ∞, plotted with red
dashes in Fig. 7, is identical for any symmetric AIM
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FIG. 6: Low-frequency impurity spectra, π∆0D(ω) vs. ω/∆0,
for UHF (top), 2PT (middle), and LMA (bottom), for band-
width D = 0.01∆0 and interaction strengths U = 6∆0 (left
column) and U = 12∆0 (right column). The high-energy
Hubbard satellites are far off plot range.

-8 -6 -4 -2 0 2 4 6 8
ω/ω

m

0

1

π
 ∆

0D
i(ω

)

FIG. 7: Scaling of the Kondo resonance in the LMA impurity
spectra, π∆0D(ω) as a function of ω/ωm, with ωm the (U -
dependent) spin-flip or Kondo energy, for bandwidth D =
0.01∆0 and interaction strengths U/∆0 = 4, 6, 8, 12 (solid
lines from top to bottom), and in the limit U/∆0 → ∞ (red
dashed line). Full discussion in text.

with a metallic host. It comprises two parts, the first
being the narrow central region between the cusps at
|ω| ' ωm, within which the line shape mostly carries the
Lorentzian signature of Landau quasi-particles of weight
Z = {1− [∂Re Σ(ω)/∂ω]ω=0}−1, while the second region,
outside the cusps, is characterized by long logarithmically
decaying spectral tails.1952 (The cusps in the spectrum
at |ω| ' ωm are artefacts stemming from the RPA-like
structure of the polarization propagator and can be re-
moved by a more realistic ansatz for the latter,31 produc-
ing LMA line shapes which then excellently agree with
corresponding NRG data.19)

The graphs in the first two rows of Fig. 6 show clearly
that such subtle effects are out of reach for the other
two methods studied here: UHF, on the one hand, sup-
presses for U/∆0 →∞ all spectral intensity close to the

Fermi level as a result of an incipient transition towards
an insulating atomic-limit state; 2PT, on the other hand,
correctly captures the persistent metallic character of the
system – manifest in the Friedel sum rule pinning of the
spectra at the Fermi level – but misses the exponential
narrowing and the non-Lorentzian shape of the Kondo
resonance.

Relatedly, on the high energy scale |ω| ∼ U , the LMA
correctly predicts sharply peaked Hubbard bands instead
of genuine levels, ensuing from the absorption of the Hub-
bard “levels” at |ω| ' U

2 + 3J
2 by their former “side bands”

at U
2 . |ω| . U

2 + 2D; again, UHF and 2PT both fail to
catch this many-body broadening effect.

Finally, all methods — UHF, 2PT, LMA, and also
Lanczos — agree in the large spectral gap ranging from
the low-energy continuum of width D to the high-energy
Hubbard satellites. Especially the orbital remnants,
which in weak and moderate coupling are found inside
this gap, are now missing. A more rigorous analysis
shows that they in fact still exist, occurring exponentially
close to the band edges |ω| = D, but are undetectable be-
cause their spectral weight vanishes exponentially.

V. CONCLUSIONS

In this article, a symmetric AIM with a narrow metal-
lic host has been studied with three different theoretical
approaches: UHF, 2PT, and the LMA.

The persistent metallic character of the system –
which renders diagrammatic perturbation expansions
(like 2PT) viable in the first place – entails that its dy-
namics hinges on the impurity Coulomb repulsion U and
the noninteracting Green function g(ω). The latter, in
turn, depends solely on the hybridization ∆(ω), which,
for the present case of a narrow host band, is mainly de-
termined by its width D and strength at the Fermi level
∆0. Despite this reduced set of ultimately three param-
eters – ∆0, D, and U – the single-particle spectra are
found to be rich, in particular in the physically relevant
low-energy sector close to the Fermi surface, indicating
the competition of various physical processes and their
associated energy scales. These encompass Fermi-liquid
behaviour within the low-energy continuum of width D,
molecular orbital formation related to the bonding energy
ω0 ∼

√
∆0D, antiferromagnetic phenomena driven by the

exchange coupling J = 4ω2
0/U , and finally the Kondo ef-

fect with its magnetic scale ωm ' D exp[−πU/8∆0].
Up to moderate interaction strengths, U . ∆0, the

low-energy physics is dominated by the integrated hop-
ping between host and impurity, ω2

0 = 1
π

∫
dω∆I(ω), and

the antiferromagnetic exchange, J , which are both in-
sensitive to the details of the hybridization function. The
precise form of ∆(ω) therefore only determines the essen-
tially unperturbed metallic band surrounding the Fermi
level. In the opposite limit of large interactions, U � ∆0,
the low-energy physics is governed by the Kondo effect.
This leads to a spectral scaling, in terms of ω/ωm, which,
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again, does not depend on any details of the hybridiza-
tion function.

The LMA has been shown to produce meaningful re-
sults over the entire range of interaction strengths. For
small interactions, U . ω0, it predicts a vanishing im-
purity moment and connects smoothly to 2PT, yielding
single-particle spectra carrying the signature of prevail-
ing orbital physics.

For moderate coupling strengths, ω0 � U . ∆0 (or
alternatively D � J � ω0), in addition to the high-
energy Hubbard levels and the essentially unrenormal-
ized Fermi-liquid continuum on the lowest energy scale,
the LMA produces rich spectra on the J-scale: here,
two pairs of poles along with several accompanying side-
bands can be observed. Similar structures were found in
corresponding Lanczos-determined spectra by Hofstetter
and Kehrein.25 Their main contributions can be rational-
ized as follows: one pair of poles may be considered as
remnants of the molecular bonding and anti-bonding or-
bitals which similarly occur in UHF and 2PT; the other
pair – which misses in the latter approaches and also in
other state-of-the art techniques like, e.g., slave-boson
based methods47 – is a somewhat unexpected feature
and arises due to resonant collective spin-flip processes
between the impurity and the UHF orbital remnants.
Similar spectral contributions, in the form of sharp reso-
nances at the inner band edges of the Hubbard satellites,
have been observed numerically in the metallic phase
close to the Mott transition, which occurs in the infinite-
dimensional Hubbard model.27–29 These features have
been dubbed antipolarons by Karski et al. who suspect
them, mainly on energetic grounds, to take their ori-
gin in bonding/antibonding phenomena between heavy
quasiparticles and collective spin excitations.28 Although
the same authors admit in a subsequent publication29

that this “complex composite excitation is not yet un-
derstood,” their original idea is supported by the above
interpretation of the corresponding AIM features. Karski
et al.’s results for the Hubbard model clearly indicate
that sharp features will prevail in the presence of host or

bath correlations, although their aspect may naturally be
altered, especially if they coincide with another band.

In the limit of large interaction strengths, U � ∆0,
of the three investigated methods only the LMA cap-
tures simultaneously the many-body broadening of the
high-energy Hubbard satellites and the relevant low-
energy phenomena embodied in the exponentially nar-
rowing Abrikosov-Suhl or Kondo resonance with its dis-
tinct logarithmically decaying wings.19,32 Moreover, the
observed Kondo resonance has been shown to possess the
universal shape and scaling properties characteristic for
symmetric AIMs with a metallic host.

The fairly accurate analytic solutions obtained within
the framework of the LMA suggest a classification into
two regimes, which cover almost the entire range of in-
teractions: the first englobes weak and moderate inter-
actions, U . ∆0, and its Fermi-liquid properties are pri-
marily inherited from the noninteracting system, while
its orbital contributions follow directly from the two-site
approximation where the narrow host is treated as a sin-
gle site; in marked contrast to the latter is the second
regime, suitable for large interactions, U � ∆0, where
the narrow host band behaves as infinitely wide in com-
parison to the exponentially small Kondo energy.
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