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Abstract. Let X be a quasi-projective curve, compactified to (Y, D) with X = Y −D.
We construct a Deligne–Hitchin twistor space out of moduli spaces of framed λ-
connections of rank 2 over Y with logarithmic singularities and quasi-parabolic structure
along D. To do this, one should divide by a Hecke-gauge groupoid. Tame harmonic
bundles on X give preferred sections, and the relative tangent bundle along a preferred
section has a mixed twistor structure with weights 0, 1, 2. The weight 2 piece corresponds
to the deformations of the KMS structure including parabolic weights and the residues
of the λ-connection.
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1. Introduction

In [17], Hitchin gave a hyperkähler structure on the moduli space of local systems over
a smooth compact Riemann surface. By Penrose theory, this leads to a twistor space.
Deligne gave an interpretation of the construction of the twistor space in terms of the
moduli space of λ-connections. This viewpoint is amenable to generalization to the case
of quasiprojective varieties. For rank 1 local systems on an open curve, a weight 2 property
for the local monodromy transformations around the punctures came into view [42], and
this was related to parabolic structures.

In the present paper, we would like to consider how to move to higher rank local systems
on an open curve. We will look at the case of rank 2 bundles with logarithmic connection.
The fundamental picture is an interplay between the notions of quasi-parabolic structure
and parabolic structure, that were introduced by Seshadri [36] and developed further in
[27] and the subsequent literature.

Before stating the results in §1.4, we will first have a look at the classical twistor
space theory, the original case of a compact Riemann surface, then the rank 1 case over a
quasiprojective curve.

This article is part of the “Special Issue in Memory of Professor C S Seshadri”.
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1.1 Twistor space

Let H = R〈1, I, J, K 〉 be the algebra of quaternions. The space of complex structures
κ ∈ H, κ2 = −1 is identified with the two-sphere S2 and provided with a complex
structure making it into P

1. With coordinate on the main chart A1 denoted by λ, the
complex structure I corresponds to λ = 0 and J corresponds to λ = 1. The antipodal

involution κ �→ −κ corresponds to σ : λ �→ −λ
−1

, it is a real structure on P
1 with empty

set of real points.
Suppose V is an H-module, i.e., a quaternionic vector space. The product V ×P

1 has a
global complex structure inducing κ on V × {κ}, making it into the total space of a vector
bundle V/P1. We call the sections of V of the form {v} × P

1 the preferred sections .

PROPOSITION 1

This twistor space construction is an equivalence between finite dimensional quaternionic
vector spaces, and bundles V/P1 of finite rank, provided with an involution covering σ ,
such that V is semistable of slope 1 (i.e., V ∼= OP1(1)⊕2d ). The underlying R-vector
space is recovered as V = �(P1,V)σ . For each κ ∈ P

1, the projection V → Vκ is an
isomorphism of real vector spaces inducing the complex structure κ on V .

This linear picture extends to the nonlinear case [18]. If M is an integrable quaternionic
manifold, its twistor space is

Tw(M) := M × P
1

with complex structure and antilinear involution σ obtained in the same way. The horizontal
“preferred sections” {m} × P

1 are holomorphic, σ -invariant, and for any κ ∈ P
1, the fiber

M × {κ} is given the complex structure Mκ determined by the action of κ ∈ H on the
tangent spaces of M . The “integrability” condition says that these are integrable complex
structures, and the general Penrose theory yields an integrable complex structure on the
total space Tw(M).

The relative tangent bundle along a preferred section is the vector bundle given by Propo-
sition 1, in particular, it is semistable of slope 1—we say it has weight 1. Locally around a
preferred section, the σ -invariant sections are all preferred sections, and a neighborhood
in the space of these sections maps isomorphically to a neighborhood in any one fiber Mκ ,
thanks to the weight 1 property. These however can fail for general σ -invariant sections
not assumed to be near to preferred ones. A general study is given in [2,3,7].

1.2 Hitchin’s twistor space in the compact case

The moduli space M of local systems on a smooth compact Riemann surface X has
a quaternionic and indeed hyperkähler structure [17], the latter meaning that there is a
Riemannian metric Kähler for all the complex structures. We obtain the twistor space
Tw(M). In what follows, we look only at the smooth points of the moduli space without
further mention.

For the complex structure κ = I corresponding to λ = 0 in P
1, the complex moduli

space M0 is the moduli space of Hitchin pairs or “Higgs bundles” (E, ϕ) on X . We may
call this the Dolbeault moduli space denoted MDol in view of the analogy with Dolbeault
cohomology. For the complex structure κ = J corresponding to λ = 1 in P

1, the complex
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moduli space M1 is the moduli space of vector bundles with integrable connection (E,∇)

on X . We call this the de Rham moduli space denoted MdR in view of the analogy with de
Rham cohomology.

Furthermore, for all the complex structures κ corresponding to λ 
= 0,∞ the moduli
spaces Mκ are naturally isomorphic, so they are all isomorphic to MdR = M1, which is in
turn analytically isomorphic to the “Betti” moduli space of local systems or representations
of the fundamental group.

Deligne, having discussed with Witten, gave a reinterpretation of Tw(M) as follows:
Each Mλ is the moduli space of vector bundles with λ-connection (E,∇). For λ 
= 0, the
rescaling λ−1∇ is just a connection, yielding the isomorphisms referred to above, whereas
for λ = 0, a λ-connection is the same thing as a Higgs field ϕ.

We may make an algebraic geometry construction of the family of moduli spaces over
A

1 ⊂ P
1, which for reasons of analogy with the Dolbeault and de Rham terminology, we

call MHod for Hodge. This space together with its C∗-action may be viewed as the “Hodge
filtration” relating de Rham to Dolbeault [40].

The isomorphisms between different nonzero λ ∈ A
1 − {0} = Gm fit together to give

an analytic trivialization
(
Gm ×A1 MHod

)an ∼= (Gm × MB)an ,

where MB is the “Betti” moduli space of representations of the fundamental group.
Then, the condition of existence of an antipodal involution covering σ motivated Deligne

to define a glueing between MHod(X) and MHod(X̄), where X̄ denotes the complex con-
jugate variety, using the isomorphism

π1(X) ∼= π1(X̄) whence MB(X) ∼= MB(X̄)

and applying the involution λ �→ −λ−1 on Gm. Glueing the two pieces together yields a
space

MHod(X) ∪ MHod(X̄) =: MDH → P
1

and one can define an antipodal involution using the fact that the moduli space MHod is a
canonical algebraic geometry construction so it supports a complex conjugation operation.

PROPOSITION 2

The Deligne–Hitchin moduli space constructed by Deligne’s glueing is isomorphic to the
twistor space for Hitchin’s quaternionic structure:

MDH ∼= Tw(M)

↘ ↙
P

1
.

The preferred sections of the twistor space correspond to sections of the fibration
MDH → P

1 that we also call “preferred sections”. These are maps P
1 → MDH that

are obtained whenever we have a harmonic bundle

(E, ∂, ∂̄, ϕ, ϕ†, h)

corresponding to a solution of Hitchin’s equations. For λ ∈ A
1, the point in the moduli

space of holomorphic vector bundles with λ-connections is

(Eλ := (E, ∂̄ + λϕ†), ∇λ := λ∂ + ϕ).
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These preferred sections are compatible with the antipodal involution. The fact that this
construction gives the twistor space of a quaternionic manifold comes from the following
property.

PROPOSITION 3

Suppose ρ : P1 → MDH is a preferred section defined as coming from a harmonic bundle
in the above way. Let

Tρ = ρ∗T (MDH/P1)

be the pullback of the relative tangent bundle, or equivalently, the normal bundle of MDH
to the section. Then Tρ is a semistable vector bundle of slope 1 over P1.

An analogy with Hodge structures motivates us to call the property of being semistable
of slope 1, a property of weight 1. Thus, the fact that we have a quaternionic structure on
the moduli space comes from a weight 1 property for the tangent bundle to the preferred
section.

Fundamentally, the calculation going into the proof uses the observation that the tangent
space of the moduli space is an H1, calculated by some kind of harmonic forms. Then,
the fact that they are 1-forms means that the transition functions needed to pass from the
A

1 neighborhood of λ = 0 to the A
1 neighborhood of λ = ∞ involve λ−1 leading to the

semistable of slope 1 property.
This weight 1 property is the nonabelian cohomology analogue of the statement in

the usual Hodge theory that H1
dR(X) has a weight 1 Hodge structure, and similarly for a

variety over Fq that the étale cohomology H1
et(XFq

,Q
) has weight 1 in the sense that the

eigenvalues of Frobenius have norm q1/2.

1.3 A weight two property in the quasiprojective case

In usual cohomology, recall that for X = P
1 − {0,∞}, the mixed Hodge structure on

H1(X) is one-dimensional of weight 2, and in the arithmetic setting H1
et(X,Q
) ∼= Q
(1)

is a Tate twist having weight two. The weight two property is localized at the punctures,
for example, from arithmetic geometry the inertia group has the form of a Tate twist, so it
has weight −2 and the space of representations of the inertia group should be thought of
as having weight 2.

Therefore, one may naturally conjecture that the weight 1 property for the twistor space
would become a weight 2 property for the local monodromy transformations around punc-
tures. Pridham [35] indeed does this for deformations of 
-adic representations. For the
case of moduli spaces of local systems of rank 1 over an open curve, this was discussed in
the paper [42].

Let us review some of the details under the simplifying assumption that X = P
1−{0,∞}.

The only data of a local system is then a single local monodromy at a puncture. A line
bundle on X is trivial, and a logarithmic λ-connection has the form

∇(λ, a) = λd + a
dz

z
.



Proc. Indian Acad. Sci. (Math. Sci.)          (2022) 132:54 Page 5 of 26    54 

There is an action of change of the trivialization making (λ, a) equivalent to (λ, a + kλ)

for any k ∈ Z. The singularity of this action at λ = 0 is one of the difficulties of the open
curve situation.

Let G ∼= Z be this “gauge group” acting. We note that the gauge transformations may
also be viewed as Hecke transformations at the singular points. In this example, to maintain
a trivial bundle, we do simultaneous Hecke transformations at both points, one up and one
down.

The moduli space may be described as

MHod := A
1 × C/G

using A
1 for the λ variable and C for the coefficient a. Note that the group acts discretely

over λ 
= 0 but the stabilizer group of the fiber over λ = 0 is the full G = Z. It is therefore
not completely clear what kind of structure is best to accord to the quotient. We will discuss
more on this aspect later.

The Riemann–Hilbert correspondence over λ 
= 0 sends the connection λ−1∇(λ, a) to
the monodromy around the loop generating π1(X):

Gm × C/G
∼=−→ Gm × C

∗ (λ, a) �→ (λ, exp(2π ia/λ)).

We would like to use this identification to glue MHod to the other piece in the Deligne
glueing. Let μ := −λ−1 denote the coordinate of the other chart A1 ⊂ P

1. A point
(μ, b) ∈ MHod(X̄) has monodromy transformation exp(2π ib/μ) along the generating
loop for π1(X̄).

The topological isomorphism X top ∼= X̄ top takes the generator to minus the generator,
so the Deligne glueing should associate (λ, a) with (μ, b) (up to the G action) when

exp(2π ia/λ) = exp(−2π ib/μ).

Lifting over the action of the gauge group, this condition becomes

a/λ = −b/μ = −b/(−λ−1) = λb, i.e., a = λ2b.

This is the glueing condition for the line bundle OP1(2) over P1, yielding the weight 2
expression for the Deligne–Hitchin space:

MDH = Tot(OP1(2))/G .

There is also a natural antipodal involution, and the preferred sections are the sections that
are compatible with σ . Recall from the compact case that we wanted to look at the space of
σ -equivariant sections of MDH/P1. Here let us lift over the action of the gauge group and
look at the space of σ -equivariant sections of OP1(2). Before asking for σ -equivariance,
we have �(P1,OP1(2)) ∼= C

3.

Lemma 4.

�(P1,OP1(2))σ ∼= R
3.

For any κ ∈ P
1, the restriction morphism from these sections to the fiber Cκ = OP1(2)κ

is a surjection

R
3 → Cκ .

There is a natural splitting as R3 ∼= R × Cκ such that the generator of the gauge group
has the form (1,−λ(κ)). �
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The extra real parameter, kernel of the restriction map, turns out to be the parabolic
weight parameter. If (E, ∂, ∂̄, ϕ, ϕ†, h) is a tame harmonic bundle of rank 1 over X then
it yields a σ -invariant section, and for λ ∈ A

1, the corresponding point in R×C is (p, e),
where p is the parabolic weight and e the eigenvalue of the residue of the λ-connection.
The parabolic weight expresses the growth rate of the harmonic metric h near a puncture.
The fact that we have this extra real parameter may be seen as a manifestation of the fact
that the monodromy transformations around punctures lie in a space whose Hodge weight
is 2.

Recall that Mochizuki defines the notion of KMS-spectrum of a harmonic bundle on X
at a puncture y ∈ D. This is the set of residual data consisting of a parabolic weight and an
eigenvalue of the residue, for the asymptotic structure of the harmonic bundle near y. Each
element of the KMS spectrum is a vector in the space R3 that we have seen above; such a
point is interpreted as a pair (p, e) consisting of a parabolic weight and an eigenvalue, in
a way that depends on λ.

Sabbah [37] and Mochizuki [29] gave formulas for the variation of parabolic weight p
and eigenvalue e as a function of λ, generalizing my formulas [39] for λ = 1.

We will use the notations of [29] (Sabbah’s notations are slightly different but equiva-
lent). Starting with (a, α) ∈ R×C at λ = 0, the parabolic weight of the parabolic structure
at λ, giving the growth rate of holomorphic sections for the holomorphic structure ∂ +λϕ†,
is

p(λ, (a, α)) = a + 2Re(λᾱ). (1)

The eigenvalue of the residue of the logarithmic λ-connection ∇λ = λ∂ + ϕ is

e(λ, (a, α)) = α − aλ − ᾱλ2. (2)

These formulas may be derived [42] as a consequence of the weight 2 twistor space
interpretation, with the expression of R×C, depending on λ, as corresponding to a unique
R

3 independent of λ.

1.4 The rank 2 case

We would like to extend this picture to higher rank local systems on an open curve. Let us
look at some potential difficulties in light of the previous discussion. Many of these issues
have been raised by Nitsure and others [16,28,29,33,34].

Although G was a group acting in the above example, it is necessary, in general, to
consider the action of a groupoid, that we will call the Hecke-gauge groupoid.

A first observation is that the action of this groupoid becomes singular over λ = 0, in
the above example, the entire G = Z stabilizes the full fiber over λ = 0. For this reason,
we will tend to not really look at the quotient space, but to retain just the action groupoid
instead. One possible solution here would be to invoke the notion of diffeological space.

A next observation is that we have side-stepped any discussion of stability. From the
compact case, recall that the construction of MDol requires the notion of stability of a Higgs
bundle, so this information is needed in the fiber over λ = 0 for the construction of MHod.
However, in the quasiprojective case, defining stability (this is needed for all values of λ,
see [21]) requires knowing the parabolic weights, but we are trying to recover the parabolic
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weights from the twistor space construction itself as happened in rank 1. Without a notion
of stability, we are going to be getting moduli spaces that are not of finite type but only
locally of finite type, even over λ 
= 0 [15]. This should be accepted.

A third difficulty for making the construction is that, from the formulas (1), (2) for the
variation of eigenvalue of the residue as a function of λ, a preferred section is always going
to have some points where the eigenvalues are resonant, so we are not able to just impose
a non-resonance condition on the residues. We do however impose some conditions on the
fiber over 0 so as to improve somewhat the moduli problem. As a result, the discussion
will work for most although not all “preferred sections”.

To get a mixed twistor property for the relative tangent space along a preferred section,
we apply the theory of Sabbah [37] and Mochizuki [29]. Although we use only a small and
early fraction of their theory, our application highlights some of the subtleties involved
and might therefore serve as a gentle introduction.

Here is a summary of what we do, as stated in Theorems 6, 7 and 8. Those will then be
proven in the subsequent sections.

Let Y be a compact Riemann surface and D ⊂ Y a reduced divisor. Set X := Y − D,
and choose a base-point x ∈ X . We look at bundles of rank 2.

A framed quasi-parabolic bundle with logarithmic λ-connection is

(λ, E,∇, F, β),

where λ ∈ A
1, E is a rank 2 vector bundle on Y , ∇ is a logarithmic λ-connection, i.e.,

∇ : E → E ⊗ 1
Y (log D), ∇(ae) = a∇(e) + λd(a)e,

F = Fy ⊂ Ey is a one-dimensional subspace preserved by resy(∇), and β : Ex ∼= C
2 is

a framing over the base-point.

Hypothesis 5. Let (λ, E,∇, F, β) be a framed quasi-parabolic logarithmic λ-connection.
We make the following hypotheses:

1. The only quasi-parabolic endomorphisms of (E,∇, F) are scalars.
2. If λ = 0, the spectral curve of ϕ = ∇ (which is a Higgs field in this case) is irreducible

of degree 2 over the base.
3. When speaking of a harmonic bundle, we assume furthermore that the two KMS

spectrum elements (parabolic weight, residue eigenvalue) modulo Z are distinct at
each y ∈ D. This may be measured at λ = 0 in (R/Z) × C.

Note that (2) ⇒ (1) at λ = 0 since a Higgs bundle corresponds to a rank 1 torsion-free
sheaf over the spectral curve and its only endomorphisms are scalars. We also note that (1)
implies directly that the framed object is rigid, i.e., there are no nontrivial endomorphisms
respecting the framing. We will see in Lemma 17 that (1) implies the moduli problem is
unobstructed and hence smooth.

Theorem 6. There exists a separated algebraic space, smooth and locally of finite type,
parametrizing the framed quasi-parabolic logarithmic λ-connections (λ, E,∇, F, β) sat-
isfying Hypothesis 5,

M̃Hod(X)
λ−→ A

1.

Denote by M̃dR(X) the fiber over 1 ∈ A
1.
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We would then like to define an equivalence relation on M̃dR(X) identifying different
logarithmic connections that correspond to the same Betti local system data.

Let M̃B(X) denote the moduli space of tuples (L , F, β), where L is a rank 2 local system
on X , F = {Fy} is a sub-local system of the restriction of L to a punctured disk around
y, and β : Lx ∼= C

2 is a framing. Impose the analogue of Hypothesis 5(1), namely that
the only endomorphisms preserving the subspaces are scalars. Let M̃B(X) be the moduli
space for such framed quasi-parabolic local systems.

Forgetting the framing at x would provide a map to an open subset defined by 5(1) of
the X moduli space of Fock–Goncharov [14].

Define the Betti gauge groupoid GB acting on M̃B(X) to be the groupoid consisting of
partially defined morphisms from M̃B(X) to itself, generated by the operation:

(P): defined on the open set where the eigenvalues of the local monodromy transfor-
mation are distinct, sending (L , F, β) to (L , F⊥, β), where F⊥

y is the eigenspace of the
local monodromy that is different from Fy .

This defines an étale groupoid, with quotient MB(X) = M̃B(X)/GB a non-separated
algebraic stack. This quotient stack behaves as in Kollár’s observation [23], since the
operation is partially defined and étale.

Theorem 7. There is an étale groupoid

GdR → M̃dR(X) × M̃dR(X)

such that the Riemann–Hilbert correspondence gives an equivalence of analytic groupoids

(
M̃dR(X), GdR

) ∼= (M̃B(X), GB).

This extends in a natural way to an étale groupoid on the Hodge moduli space

GHod → M̃Hod(X) × M̃Hod(X).

The isomorphism of topological spaces between X top and X̄ top gives an equivalence

(M̃B(X), GB) ∼= (M̃B(X̄), GB).

Using the Riemann–Hilbert correspondence, we can then make a Deligne glueing. In terms
of groupoids, this can be viewed as follows: let

M̃DH := M̃Hod(X) � M̃Hod(X̄)

with Hecke-gauge groupoid GDH combining the GHod on both pieces, together with pieces
identifying points that correspond to elements of the Betti moduli space that are identified
under the previous equivalence:

MDH = (M̃DH, GDH).

The quotient of this groupoid would be some kind of non-separated analytic stack but with
stabilizer groups that are not very well behaved. Although we do not identify the precise
framework for such a quotient, we note that the tangent bundle of the “quotient” MDH(X)

may be defined, since the groupoid is étale. This gives, in particular, the pullback of the
tangent bundle by a section.
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Theorem 8. Suppose (EX , ∂, ∂̄, ϕ, ϕ†, h) is a tame harmonic bundle on X , satisfying our
Hypothesis 5, and choose a framing β : Ex ∼= C

2 taking hx to the standard hermitian
metric on C

2. Then we get in a natural way a section of the Deligne–Hitchin groupoid

ρ : P1 → (M̃DH(X), GDH).

Let Tρ be the pullback by ρ of the tangent bundle of MDH(X). It has a filtration

0 ⊂ W0Tρ ⊂ W1Tρ ⊂ W2Tρ = Tρ,

where W1Tρ is the set of tangent vectors that preserve the eigenvalues of the residues,
and W0Tρ is the tangent space of the change of framing. Then (Tρ,W·) is a mixed twistor
structure [41], meaning that Wk/Wk−1 is a semistable bundle on P

1 of slope k (for k =
0, 1, 2).

The weight 1 property of the graded piece corresponding to deformations fixing the
eigenvalues of the residues, corresponds to the fact—well-known in the physics literature—
that moduli spaces of flat bundles with fixed conjugacy classes have a Hitchin-type hyper-
kähler structure, see for example [19].

We will base our proof on the pure twistor D-module theory of [29,37]. The more
general and full theory of mixed twistor D-modules [30] should allow for a more direct
proof. Mochizuki has communicated the suggestion to consider the mixed twistor D-
module T[∗D][!x], where T is the extension associated to End(E); one would still need
to show a compatibility with the moduli space construction.

2. Logarithmic connections

Throughout this paper, Y is a smooth compact Riemann surface and D = {y1, . . . , yk} is
a nonempty reduced divisor. We set X := Y − D and fix a base point x ∈ X .

A quasi-parabolic logarithmic λ-connection of rank 2 consists of λ ∈ C, a vector bundle
E of rank 2 over Y together with a logarithmic λ-connection operator

∇ : E → E ⊗OY 1
Y (log D) ∇(ae) = a∇(e) + λ(da)e

and for each y ∈ D a subspace Fy ⊂ Ey of rank 1, preserved by the residue resy(∇).
A framing at the base point x ∈ X is an isomorphism β : Ex ∼= C

2.
These all have versions relative to a base scheme S, where λ : S → A

1 and E becomes
a bundle on Y × S.

We usually consider Hypothesis 5 on (λ, E,∇, F, β), implying, in particular, that the
framed object is rigid.

Let M̃Hod(Y, log D, x) denote the moduli functor of quasi-parabolic logarithmic λ-
connections of rank 2 on (Y, D), framed at x and satisfying Hypothesis 5. This functor
associates to a scheme S the set of relative data (λ, E,∇, F, β)onY×S, up to isomorphism.
It maps via λ to A

1.
Construction of a moduli space is by now a classical subject. Some references, includ-

ing a few further directions are [1,4,5,8,9,15,16,21,22,24,25,31,32,43], but it would be
impossible to mention all of the relevant articles here.
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PROPOSITION 9

This moduli functor M̃Hod(Y, log D, x) is represented by a separated algebraic space
M̃Hod(Y, log D, x) that is locally of finite type over A1.

Proof. We can cover the moduli functor by subsets Uk consisting of points where the
maximum degree of a subbundle of E is k. These are bounded. The usual theory allows
us to represent each of these as a quotient of a quasiprojective scheme by the action of a
group of the form GL(N ) for some large N . Since objects are rigid by Condition (1) of
Hypothesis 5, the stabilizer groups are trivial. Luna’s étale slice theorem implies that the
quotient is an algebraic space. The union of these spaces of finite type is locally of finite
type, although not of finite type [15, Lemma 4.13].

To show separatedness, we use the condition (2) of Hypothesis 5. Note that the moduli
space is covered by finite type algebraic spaces and we may assume given two curves in
one of those. That is to say, we assume given a pointed smooth curve (S, 0) and denote
by Sη := S − {0}, and we are given two maps S → U that agree on Sη. We obtain two
bundles E and E ′ on Y × S (together with all their data) that are isomorphic over Y × Sη,
and suppose either λ(0) 
= 0 or ∇0 and ∇′

0 have irreducible spectral curves. We would
like to show that the two maps agree on S, in other words, that the isomorphism extends
to Y × S.

In the case λ(0) 
= 0, reason complex-analytically. The framed representation space of
the fundamental group of X = Y − D is separated, so the isomorphism extends to an
isomorphism of flat holomorphic bundles on X × S, hence to an isomorphism of bundles
on Y × S, by Hartogs’ theorem. Again by Hartogs’ theorem, the connection operator also
extends, and the framing extends since x ∈ X . Our isomorphism preserves the subbundles
F{y}×S away from the origin of S, it follows that these subbundles are also preserved at
0 ∈ S. Although the construction was analytic, the resulting isomorphism of bundles is
algebraic since Y is proper.

We need to treat the case λ(0) = 0 assuming that the spectral varieties of ∇(0) and ∇′(0)

are irreducible. Let t denote the coordinate on S. Let g : Eη
∼= E ′

η be the isomorphism
of bundles with respective connections. There is a power of t so that tag extends to a
morphism

tag : E → E ′,

that is, nonzero for t = 0. But this morphism preserves the connections, i.e., the Higgs
fields at t = 0. Since the spectral varieties are irreducible, this implies that the morphism is
an isomorphism over t = 0 too. Now the condition that g preserves the framing implies that
a = 0, so g extends to an isomorphism as required. As before, it preserves the sub-bundles
F{y}×S . �

This proposition is the construction of moduli spaces for Theorem 6, see Corollary 18
for smoothness.

We note that the rescaling of a λ-connection to λ−1∇ provides an isomorphism on the
open set Gm ⊂ A

1, where λ 
= 0 and

M̃λ
=0(Y, log D, x)
∼=−→ Gm × M̃λ=1(Y, log D, x).
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This is equivariant for the Gm-action by rescaling on the left-hand side and the trivial
action on the right-hand side. Here and below, we write M̃λ
=0, etc. for the fibers of M̃Hod
over various values of λ.

2.1 Riemann–Hilbert morphism

For each y ∈ D, choose a point ηy ∈ X near y. Given a local system L on X , the nearby
fiber to y ∈ D is the fiber Lηy , and it has a local monodromy operator induced by the loop
based at ηy going once around y.

Let M̃B(X, D, x) denote the moduli space of local systems L on X provided with a
subspace Fy of the nearby fiber at each y ∈ D, invariant under the local monodromy, such
that Hypothesis 5 is satisfied, together with a framing β : Lx ∼= C

2.
Consider the open subset of points called nonresonant,

M̃nr
λ
=0(Y, log D, x) ⊂ M̃λ
=0(Y, log D, x)

defined to be the set of (λ, E,∇, F, β) such that, if ay denotes the eigenvalue of resy(∇)

on Fy , and by the eigenvalue on Ey/Fy , then

by − ay /∈ λ · Z<0

for any y ∈ D.
LetUy be a small disk around y. If (λ, E,∇, F, β) satisfies the non-resonance condition,

then letting L := Eλ−1∇ denote the local system of flat sections, there is a unique sub-
connection of rank 1,

FUy ⊂ E |Uy

whose fiber over y is Fy . We denote by FL ,y the fiber of FUy at the nearby point ηy .
Hypothesis 5 implies that (L , F) has only scalar endomorphisms (the condition for inclu-
sion in M̃B). This serves to define the Riemann–Hilbert morphism. Beyond Deligne [11],
some other references include [9,10,12,21,33,34], although it would again be impossible
to give a complete list.

PROPOSITION 10

The Riemann–Hilbert correspondence is a morphism of complex analytic spaces

M̃nr
λ
=0(Y, log D, x)

RH−→ Gm × M̃B(X, D, x)

sending (λ, E,∇, F, β) to (λ, L , FL , β), where L := Eλ−1∇ and β is the same framing
on L as on E , and FL ,y is defined as in the previous paragraph.

2.2 Morphisms and equivalences of groupoids

If Z is an algebraic or analytic space, a groupoid acting on Z is an algebraic (resp. analytic)
space G with maps

(s, t) : G → Z × Z , m : G ×Z G → G , e : Z → G , i : G → G
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making (Z ,G ) into a groupoid in the category of algebraic (resp. analytic) spaces. If Z ′ is
another space, then a map Z ′ → (Z ,G ) consists of an étale open covering (resp. usual open
covering) {Ui } of Z ′, morphisms zi : Ui → Z , and morphisms gi j : Ui j → G compatible
with the previous morphisms via the source and target maps, and satisfying a cocycle
condition. We may similarly define the notion of a map of groupoids (Z ′,G ′) → (Z ,G ):
a quick way is to view it as a functor, defined after possibly replacing Z ′ by an open
covering. The previous definition may be seen in this manner.

A natural isomorphism between two maps is a natural transformation of functors after
refinement, given in the concrete notation by a common refinement {U ′′

k } of the two cov-
erings plus a collection of maps U ′′

k → G satisfying the natural intertwining condition
between the source and target map data. The set of maps as objects related by natural
isomorphisms forms a groupoid Hom((Z ′,G ′), (Z ,G )) in the algebraic sense. In general,
elements here can have automorphisms, but in the case where (s, t) is a monomorphism
(as shall be the case for us over λ 
= 0), the groupoid of maps is equivalent to a set.

A map is an equivalence if there is a quasi-inverse, that is to say, a map going in the
opposite direction such that the two compositions are equivalent by natural isomorphisms
to the identities. These standard definitions (going back to Ehresmann and Satake) serve
as a replacement for taking some kind of quotient stack of the groupoid, allowing us to
sidestep the issue of how precisely to view the quotient stacks.

One says that the groupoid is étale if the source and target maps G → Z are étale, and
in this case that the groupoid is smooth if Z is smooth. We can then define the tangent
bundle, and maps have differentials in the usual way.

2.3 Hecke-gauge groupoid on residues

For y ∈ D, we define the residual space at y to be Ry := A
1 × C

2 with coordinates
noted as (λ, ay, by). Of course, this is just C3, the notation is meant to distinguish the
λ-direction from the two residual ones. If (λ, E,∇, F, β) ∈ M̃Hod(Y, log D, x), then we
get the residue

Resy(λ, E,∇, F, β) = (λ, ay, by) ∈ Ry

where ay is the eigenvalue of resy(∇) on Fy , and by is the eigenvalue on Ey/Fy . Set

R := Ry1 ×A1 × · · · ×A1 Ryk

and we obtain the residue vector Res(λ, E,∇, F, β) = (λ, a, b) ∈ R.
We define a residual Hecke-gauge groupoid acting on Ry , in a way intended to be

compatible with the Hecke-gauge groupoid that we will define on M̃Hod below. Consider
the operations (the third one being only partially defined)

hy,h−1
y ,py : Ry → Ry

given by

hy(λ, a, b) = (λ, b − λ, a), h−1
y (λ, a, b) = (λ, b, a + λ),

and

py(λ, a, b) = (λ, b, a) defined when a 
= b.

This latter operation means that the graph of py is the open subset of R complement of the
diagonal.
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Let GR,y be the groupoid generated by these operations subject to the relations that h−1
y

is inverse to hy , p2
y = 1, and py commutes with h2

y .
Here is a more explicit description. Note that hypy(λ, a, b) = (λ, a − λ, b) defined

when a 
= b. We have (hypy)
k(λ, a, b) = (λ, a − kλ, b) defined on the open subset,

where

b /∈ {a, a − λ, . . . , a − (k − 1)λ}.
For ε = 0, 1, k ∈ N and m ∈ Z, let

gy(ε, k,m) := pε
y(hypy)

khmy ,

and we can similarly write down the open subsets of definition of these operations depend-
ing on ε, k,m. The graph is a locally closed subset Graph(gy(ε, k,m) ⊂ Ry × Ry , iso-
morphic to the open subset of definition of gy(ε, k,m) in Ry .

Lemma 11. This groupoid GR,y is étale, and has the following description as a disjoint
sum of locally closed subvarieties of Ry × Ry :

GR,y =
∐

ε,k,m

Graph(gy(ε, k,m)).

The map GR,y → Ry ×A1 Ry is a monomorphism over λ 
= 0.

Now define GR to be the product groupoid acting on R, where the operations at different
points commute. It is an étale groupoid with an analogous structure statement, and again
GR → R ×A1 R is a monomorphism. Notice that, although the image is a closed subset,
GR is not isomorphic to its image.

The quotient R/GR would be a non-separated space somewhat along the lines of the
“bug-eye” spaces introduced by Kollár [23].

We may similarly define the Betti residual space RB,y = C
∗ × C

∗. Then RB :=∏
y∈D RB,y , and we let GRB be the groupoid generated by the partially defined operations

py(αy, βy) := (βy, αy) defined when αy 
= βy , subject to the relations p2
y = 1 and they

commute for different values of y.

Lemma 12. We have an analytic equivalence of groupoids

(R,GR)an
λ
=0

∼=−→ (
Gm × (RB,GRB )

)an

given by

(λ, a, b) �→ (λ, e2π ia, e2π ib).

2.4 Hecke-gauge groupoid

Define, at each point y ∈ D, an operation Hy , its inverse H−1
y and a partially defined

operation Py on M̃Hod(Y, log D, x). The first Hy is the well-known Hecke operation, or
elementary transformation, as has been considered in [21] and more recently by [13,20,26].
Given (λ, E,∇, F, β), we set

E ′ := ker(E → Ey/Fy)
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and let F ′
y be the image of E(−y)y in E ′

y . At the other points, yi 
= y and keep the same
F ′
yi := Fyi ; note that E ′|X = E |X . The condition that F is preserved by the residue of ∇

implies that ∇|X extends to a λ-connection ∇′ on E ′, again with residue preserving F ′.
We can take β ′ := β since x ∈ X .

Let Ty(E) := E ⊗OY (y) with the induced subspaces, and put H−1
y := TyHy = HyTy .

This is inverse to Hy .
The operation Py is going to be only partially defined. Let

M̃Hod(X, log D, x)(y) ⊂ M̃Hod(X, log D, x)

denote the open subset consisting of points where the eigenvalues of resy(∇) are distinct.
We define

Py : M̃Hod(Y, log D, x)(y) → M̃Hod(Y, log D, x)

to be the operation that replaces the subspace Fy by its complementary eigenspace of
resy(∇), keeping the same F at the other points of D.

Define the Hecke-gauge groupoid GHod to be the groupoid of operations on M̃Hod(Y, log
D, x) generated by the operations Hy , H−1

y and Py subject to the relations that the first
two are inverses, that P2

y = 1, that Py commutes with H2
y , and that the operations for

different values of y commute.

PROPOSITION 13

This defines an étale groupoid with the structural map

GHod → M̃Hod(Y, log D, x) ×A1 M̃Hod(Y, log D, x)

that is a monomorphism over λ 
= 0. The residue gives a morphism of groupoids

(M̃Hod(Y, log D, x),GHod)
Res−→ (R,GR).

Proof. Hypothesis 5 is preserved by our operations. As before, one may consider the
composed operations

Gy(ε, k,m) := Pε
y (Hy Py)

k Hm
y

for ε = 0, 1, k ∈ N and m ∈ Z. The domain of definition of Gy(ε, k,m) is the pullback,
under the residue at y, of the domain of definition of gy(ε, k,m). Using the given relations,
any element of GHod may be expressed uniquely as a product over y ∈ D of Gy(ε, k,m),
and this gives the expression

GHod =
∏

y∈D

⎡

⎣
∐

ε,k,m

Graph
(
Gy(ε, k,m)

)
⎤

⎦ .

We see that GHod is an étale groupoid. The operations Hy, H−1
y , Py on M̃Hod(X, log D, x)

are compatible with the operations hy,h−1
y ,py on residues, so the residue map descends

to a map of groupoids.
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The (source, target) structural map is a monomorphism over λ 
= 0, since the different
pieces of the decomposition map to the corresponding pieces of GR and these are disjoint.

�

The Betti gauge groupoid is defined in a corresponding way. Let M̃B(X, D, x)(y) denote
the subspace where the eigenvalues of local monodromy operator at y ∈ D are distinct,
and let PB,y : M̃B(X, D, x)(y) → M̃B(X, D, x)(y) denote the operation of replacing
the eigenspace Fy by its complementary eigenspace. Let GB be the groupoid acting on
M̃B(X, D, x), generated by the partially defined operations PB,y with relations P2

B,y = 1
and that for distinct values of y the operations commute.

This is again an étale groupoid, and the local monodromy maps give a morphism of
groupoids

(M̃B(X, D, x),GB) → (RB,GRB ).

In this case, the groupoid has an algebraic space quotient

M̃B(X, D, x) → MB(X, D, x)/GB .

Theorem 14. The Riemann–Hilbert correspondence gives an equivalence of analytic
groupoids

(M̃λ
=0(Y, log D, x),G )
∼=−→ Gm × (M̃B(X, D, x),GB)

compatible with the residue morphisms.

Proof. It suffices to consider the fiber over λ = 1. Using the operations of GHod and tensor-
ing with a rank 1 connection, we may move any small neighborhood in M̃λ
=0(Y, log D, x)
into a small neighborhood where the residues (ay, by) lie inUy ×Vy forUy, Vy ⊂ C small
neighborhoods such that the map w �→ exp(2π iw) is injective on Ux ∪ Vy . These map
isomorphically to the corresponding neighborhoods in M̃B(X, D, x) by [11]. The action
of GB corresponds to that of GHod whenever Uy and Vy overlap. �

This completes the proof of Theorem 7.

2.5 The Deligne–Hitchin twistor space and preferred sections

Let

M̃DH := M̃Hod(X, log D, x) � M̃Hod(X̄ , log D̄, x̄).

On this, we have a groupoid GDH defined as the disjoint union of GHod for X with the same
for X̄ , together with the pieces defining the identification obtained by Theorem 14 from

(M̃an
B (X, D, x),GB,X ) ∼= (M̃an

B (X̄ , D̄, x̄),GB,X̄ ).

We obtain a complex analytic space with étale groupoid

(MDH,GDH ) → P
1.
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Theorem 15. Suppose (EX , ∂, ∂̄, ϕ, ϕ†, h) is a tame harmonic bundle of rank 2 on X
satisfying the conditions of Hypothesis 5. Fix a framing β : Ex ∼= C

2. Then we obtain a
canonical corresponding preferred section to the groupoid

ρ : P1 → (M̃DH,GDH )

yielding the standard construction of family of Higgs bundles and λ-connections over X.

Proof. Suppose y ∈ D. Let u = (a, α) and u′ = (a′, α′) be the two parabolic weight
and residual eigenvalue pairs at λ = 0 for the point y. Hypothesis 5(3) says that these
KMS spectrum elements are distinct modulo Z, i.e., u− u′ /∈ Z×{0}. Recall the formulas
from [29], given in the Introduction as (1) and (2) giving the parabolic weight p(λ) and
eigenvalue e(λ) corresponding to u, and p′(λ) and e′(λ) corresponding to u′.

The main problem, related to what Mochizuki [29] calls “difficulty (b)” and to Sabbah’s
picture [37, page 70], is that the parabolic weights might become equal, for some values of
λ, and similarly, the eigenvalues could become resonant. Luckily, these two things do not
happen simultaneously. Indeed the modifications given by (1) and (2) are always bijective.
Thus, the pairs (p(λ), e(λ)) and (p′(λ), e′(λ)) are distinct modulo the action of Z for each
λ.

This allows us to use the groupoid GHod to move around enough to define the quasi-
parabolic structures in a holomorphically varying way.

Look at a small neighborhood λ0 ∈ U ⊂ P
1. We may assume one of the two cases:

either

(a) p(λ) 
= p′(λ) in R/Z for all λ ∈ U , or
(b) p(λ0) = p′(λ0) + k, k ∈ Z, but e(λ) 
= e′(λ) − kλ for all λ ∈ U .

We can assume (possibly by reducing the size of U ) that there is some b ∈ R/Z that
is distinct from p(λ) and p′(λ) for all λ ∈ U . This leads to a family of bundles with
logarithmic λ-connections (E(λ),∇(λ)) for λ ∈ U .

For y ∈ D, in case (a), the parabolic structure on E(λ) has distinct parabolic weights
for all λ, so we get a rank 1 subbundle of Ey (these are a bundle with subbundle in terms
of the parameter λ). In case (b) at y, the two eigenvalues of the residue on E(λ) are e(λ)

and e′(λ) − kλ; since they are distinct, we can choose in a uniform way one of the two
eigenspaces of the residue of ∇(λ) over λ ∈ U .

Either way, we obtain a rank 1 subbundle of Ey required to define a quasi-parabolic
structure.

We note that at each point λ, the associated quasi-parabolic logarithmic λ-connection
satisfies the conditions of Hypothesis 5. Indeed for λ = 0, the irreducibility of the spectral
curve is an assumption on our harmonic bundle. In turn, this implies that the harmonic
bundle is indecomposable, so the associated canonical parabolic objects are stable for any
λ. In our construction, the quasi-parabolic structure may be different so an argument is
needed when λ 
= 0. There exists a set of parabolic weights for the quasi-parabolic structure
that makes it stable. In case (a), we keep the given parabolic weights, whereas in case (b)
we choose parabolic weights for the subbundle that are very close to p(λ) ≈ p′(λ) + k.
Stability of the canonical parabolic object implies stability of this parabolic object. Now,
the only quasi-parabolic endomorphisms would be endomorphisms of the stable parabolic
object so they are scalars, giving part (1) of Hypothesis 5 in the case λ 
= 0.
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Now that we know Hypothesis 5 holds, this gives the data required to define a section
U → M̃Hod(X, log D, x) if U ⊂ P

1 − {∞}, or similarly U → M̃Hod(X̄ , log D̄, x̄) if
U ⊂ P

1 − {0}.
A different choice of b and/or a different choice of one of the eigenvalues, leads to a

section that differs by a section U → GHod. Therefore, on intersections of open sets U
these glue together to give a well-defined section to the target modulo the groupoid, as
stated. �

This theorem gives the first part of Theorem 8.

3. Tangent spaces and cohomology

3.1 Deformations of quasi-parabolic logarithmic connections

The deformation theory is well-known, see for example [24] and subsequent literature for
the Higgs case, or [21] for parabolic logarithmic connections.

Suppose (E,∇, F, β) is a framed quasi-parabolic bundle with logarithmic λ-connection
on (Y, D). We would like to write down the complex governing its deformations. Let
End(E) = E∗ ⊗ E denote the endomorphism bundle. For y ∈ Y , we have a map
End(E) → Hom(Fy, Ey/Fy). Combining these together, define the sheaf of quasi-
parabolic endomorphisms to be the kernel in the exact sequence

0 → EndQ(E) → End(E) →
⊕

y∈D
Hom(Fy, Ey/Fy) → 0,

where the sheaf on the right is a direct sum of skyscraper sheaves located at y ∈ D. Let
Ry := End(Fy) ⊕ End(Ey/Fy) denote the space of residue eigenvalues at y. We have a
map EndQ(E) → Ry and we define the sheaf of strongly quasiparabolic endomorphisms
to be the kernel in the exact sequence

0 → EndSQ(E) → EndQ(E) →
⊕

y∈D
Ry → 0.

Furthermore, recall that x ∈ X is our base point; let EndQ,x (E) be the kernel of
EndQ(E) → End(Ex ).

Consider the Zariski tangent space T := T(E,∇,F,β)M̃λ(Y, D, x). Let W0T ⊂ T be the
tangent space to the changes of framing, and let W1T be the subspace of deformations
that preserve the eigenvalues of the residue of ∇ on Fy and Ey/Fy . Set W−1T := 0 and
W2T := T .

Lemma 16. The operator ∇ induces a logarithmic λ-connection on End(E) and this

restricts to an operator EndQ(E)
d∇−→ EndSQ(E) ⊗ 1

Y (log D). We get a complex, and
also, complexes from any compositions in the sequence

EndQ,x (E) −→ EndQ(E)

↓
EndSQ(E) ⊗ 1

Y (log D) → EndQ(E) ⊗ 1
Y (log D).
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The Zariski tangent space T = T(E,∇,F,β)M̃λ(Y, D, x) to the moduli space at (E,∇, F, β)

is the first hypercohomology

T = H
1(EndQ,x (E)

d∇−→ EndQ(E) ⊗ 1
Y (log D)).

The subquotients WkT/WnT are those induced by the various complexes obtained from
the above sequence, for example,

W1T/W0T = H
1(EndQ(E)

d∇−→ EndSQ(E) ⊗ 1
Y (log D)).

Lemma 17. Suppose that E has no strictly quasi-parabolic endomorphisms, i.e., there are
no ∇-invariant sections of EndSQ(E). Then

H
2(EndQ(E)

d∇−→ EndQ(E) ⊗ 1
Y (log D)) = 0

and the moduli functor is smooth at (λ, E,∇, F, β). Suppose the only quasi-parabolic
endomorphisms are scalars. Then the sequences

0 → C → End(Ex ) → W0T → 0

and

0 → W2T/W1T →
⊕

y∈D
Ry → C → 0

are exact.

Proof. We may apply Serre duality to the complex

[EndQ(E)
d∇−→ EndQ(E) ⊗ 1

Y (log D)].

Some care must be taken with the fact that the differential is a first-order operator; the
Serre dual becomes

[EndQ(E)∗(−D)
d∇−→ EndQ(E)∗ ⊗ 1

Y ]
∼= [EndSQ(E)

d∇−→ EndSQ(E) ⊗ 1
Y (log D)].

Thus, the H
2 in the first part of the lemma is dual to the space of strictly quasi-parabolic

endomorphisms, yielding the first statement. Furthermore, H2 is the obstruction space for
the deformation theory, so if it vanishes, the moduli functor is smooth. For the last part,
we use some exact sequences together with the hypothesis that

H
0(EndQ(E)

d∇−→ EndSQ(E) ⊗ 1
Y (log D)) = C.

�
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COROLLARY 18

The moduli space M̃Hod(Y, log D, x) is smooth and hence also the disjoint union
M̃DH(Y, log D, x) is smooth.

Proof. Recall that M̃Hod was defined as the moduli space of objects satisfying Hypothesis
5. Condition (1) of the hypothesis implies, since by assumption D 
= ∅, that there are no
strictly quasi-parabolic endomorphisms, so Lemma 17 applies. �

This corollary completes the proof of Theorem 6.
Suppose (EX , ∂, ∂̄, ϕ, ϕ†, h) is a tame harmonic bundle on X , satisfying Hypothesis 5,

leading to a preferred section ρ : P1 → (M̃DH,GDH ) by Theorem 15. By Corollary 18,
M̃DH is smooth. We obtain the pullback by ρ of the relative tangent bundle T M̃DH/P1,
that is furnished with glueing data to obtain a bundle Tρ over P1.

Let W0Tρ denote the subbundle of relative tangent vectors corresponding to change of
framing β. Let W1Tρ be the subbundle of relative tangent vectors whose projection to the
tangent of the space of residues (R,GR) is trivial, and let W2Tρ := Tρ and W−1Tρ := 0.
These definitions are compatible with the ones in Lemma 16.

The goal of this section is to prove that with this weight filtration, Tρ becomes a mixed
twistor structure, in other words, WkTρ/Wk−1Tρ is a semistable bundle of slope k on P

1.
The idea is to apply [29,37].

3.2 Identification with a pure twistor cohomology

We look in the neighborhood of a point y ∈ D.
Let u = (a, α) and u′ = (a′, α′) be the two KMS spectrum elements, in coordinates at

λ = 0. Hypothesis 5(3) says that u − u′ /∈ Z × {0}. Let p(λ) and e(λ) be the parabolic
weight and eigenvalue at λ corresponding to u, and p′(λ) and e′(λ) corresponding to u′.

The endomorphism bundle decomposes as a direct sum

End(E) = O ⊕ S,

where S := End0(E) is the trace-free endomorphism bundle. This latter has rank 3, and
the KMS spectrum elements are (u − u′), 0, (u′ − u).

The case of rank 1 systems was dealt with in [42] so we may focus here on the defor-
mations parametrized by the trace-free part S.

Choose a point λ0 
= 0, and set

p := p(λ0), p′ := p′(λ0), e := e(λ0), e′ := e′(λ0).

There are two basic cases, depending on whether p − p′ is an integer.

Case 1. Suppose p − p′ ∈ Z. The parabolic weights of S are integers. Let

e′′(λ) := e′(λ) − λ(p − p′)
be the eigenvalue corresponding to the transition of e′(λ) from parabolic weight p′ to
parabolic weight p′′ := p, and let e′′ := e′′(λ0).

We obtain the locally free sheaf in the parabolic structure E := Ep+ε for some small ε,
defined in a small neighborhood U (λ0) of λ0 in the λ-line. Put

GE := Ep+ε/Ep−ε .
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It is a rank two bundle over {y} × U (λ0). We recall from [29] that it has a decomposition
according to the eigenvalues of the residue. Those eigenvalues are, as functions of λ,

e(λ), e′′(λ).

The hypothesis of distinct KMS spectrum elements implies that e 
= e′′, so we may identify
the sections e(λ) and e′′(λ) by the notations e and e′′. The eigenspaces of resy(∇) acting
on GE may therefore be denoted by GE,e and GE,e′′ and

GE = GE,e ⊕ GE,e′′ .

This decomposition is valid over the neighborhood U (λ0), so resy(∇) acts by e(λ) on GE,e

and by e′′(λ) on GE,e′′ .
Choose one of the two subspaces, say for example, GE,e to be Fy in the quasi-parabolic

structure over our neighborhood U (λ0).
For the trace-free endomorphism bundle, we obtain a locally free sheaf from the

parabolic structure S = Sε for some small ε, defined in the neighborhood U (λ0) possibly
reducing its size. Put

G := Sε/S−ε .

It is a rank three bundle over {y}×U (λ0). It has a decomposition according to the eigenvalues
of the residue. We recall that there are three different eigenvalues here:

e(λ) − e′′(λ), 0, e′′(λ) − e(λ).

Denote the corresponding subspaces by G(e−e′′), G0 and G(e′′−e), so

G = G(e−e′′) ⊕ G0 ⊕ G(e′′−e).

We have locally free subsheaves

Q′ := End0
SQ(E) ⊂ Q := End0

Q(E) ⊂ S = End0(E)

of trace-free endomorphisms that strictly preserve (resp. preserve) the quasi-parabolic
structure. Along {y} × U (λ0), the endomorphisms not preserving the parabolic structure
are the ones that send GE,e to GE,e′′ , that is to say they have eigenvalue (e′′ − e). The ones
in Q that act trivially on the graded pieces are Q′, and these are the ones mapping to zero
in G0. Thus, we have exact sequences

0 → Q → Sε → G(e′′−e) → 0 (3)

and

0 → Q′ → Sε → G0 ⊕ G(e′′−e) → 0. (4)

In order to define the bundle overU (λ0) ⊂ A
1 that corresponds to the Sabbah–Mochizuki

pure twistor structure on cohomology, following the discussion in the Appendix of [29], we
should consider the germs of holomorphic bundles of sections of the parabolic extension
that are locally L2 with respect to the Poincaré metric. Here these are germs around the
point λ0 in the λ-line.

We will denote these by L2, and we have the complex with two bundles

L2(S(∗D)) → L2(S ⊗ 1(∗D)).
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In the present setting,L2(S) = L2(S(∗D)) is the sheaf of sections of Sε whose projection
into G lies in the piece G0; in other words, we have an exact sequence

0 → L2(S) → Sε → G(e−e′′) ⊕ G(e′′−e) → 0.

We recall that this is due to the fact that a section projecting into one of the other pieces
will go, on a half-disk centered at λ0, into a piece where the parabolic weight is > 0, so it
would have a growth rate of |z|a with a > 0 for values of λ in that half-disk of U (λ0). By
definition, here we are looking at germs around λ0.

A similar description works for holomorphic one-forms, taking coefficients with log-
arithmic poles. However, in that case we should introduce the W−2 term of the weight
filtration on the G0 piece. Here, all the KMS spectrum eigenspaces have rank 1 so the
weight filtration is trivial, thus W−2 = 0 in the G0 piece. This means we have an exact
sequence

0 → L2(S ⊗ 1
Y (∗D)) → Sε ⊗ 1

Y (log D) → G(e−e′′) ⊕ G(e′′−e) ⊕ G0→0

hence

L2(S ⊗ 1
Y (∗D)) = S−ε ⊗ 1

Y (log D) = Sε ⊗ 1
Y .

A word about notation: these objects are all really over U (λ0) but we do not write, for
e.g., D × U (λ0) ⊂ Y × U (λ0) etc., and also the space of residues 1(∗D)y is a trivial
bundle (over U (λ0)). A trivialization is chosen and used in the expressions, for example,
the one-prior exact sequence.

Using the description of [29], the bundle of cohomology of the pure twistor D-module
has, as germ around λ0, the first hypercohomology of the complex L2(S) → L2(S ⊗
1

Y (∗D)) or isomorphically

[L2(S) → S−ε ⊗ 1
Y (log D)].

Let us compare this with the complex that governs the deformations of the quasi-
parabolic logarithmic bundle (E,∇, F). Recall from the previous discussion that this
complex is

[Q → Q′ ⊗ 1(log D)]
and that we have exact sequences (3) and (4). Comparing with the exact sequences for the
L2 sheaves, we get

0 → L2(S) → Q → G(e−e′′) → 0

and

0 → L2(S ⊗ 1(∗D)) → Q′ ⊗ 1(log D) → G(e−e′′) → 0.

Therefore our two complexes fit into a diagram

L2(S) −→ L2(S ⊗ 1(∗D))

↓ ↓
Q −→ Q′ ⊗ 1(log D)

↓ ↓
G(e−e′′)

∼=−→ G(e−e′′)

.
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COROLLARY 19

In Case 1, there is a natural quasi-isomorphism of complexes

[L2(S) → L2(S ⊗ 1(∗D))] q.i.−→ [Q → Q′ ⊗ 1(log D)].

Case 2. Suppose p − p′ /∈ Z. Then the parabolic weights of S are not integers. This holds
at λ0 so we may choose our small neighborhoodU (λ0) so that it holds on the neighborhood,
and furthermore the neighborhood is made small enough so that the various inequalities
we will state below also hold on U (λ0).

Choose a representative (up to the Hecke-gauge group action and tensoring with a rank
1 system) such that the parabolic weights b, b − q of E , depending on λ, that are in the
interval (−1, 0) differ by q with 0 < q < 1.

We use E := Eb(λ0)+ε as the bundle, and this is locally free. The parabolic weight
subspace

Fy := Eb+ε−q/Eb+ε−1 ↪→ Eb+ε/Eb+ε−1 = E |{y}×U (λ0)

will be used to define our quasi-parabolic structure over the neighborhood U (λ0).
The bundle of trace-free endomorphisms S = End0(E) has a three-step parabolic struc-

ture whose parabolic weights in the interval (−1, 0] are

0, −q, q − 1.

Although the weights q − 1 and −q might cross over, they remain bounded away from 0
and −1 over the neighborhood so the sheaves Sε and S−ε are well defined.

The sub-bundle of endomorphisms that preserve the quasi-parabolic structure is Q =
End0

Q(E) = Sε , whereas the sub-bundle of those that also act trivially on the graded pieces

is Q′ = End0
SQ(E) = S−ε . This is uniform over λ ∈ U (λ0).

The locally L2 sections of S (which are the same as those of S(∗D)) are

L2(S) = Sε

since the KMS spectrum element has constant eigenvalue equal to 0 here and the eigenspace
has rank 1, so it is equal to its W0 piece. The W−2 piece is zero in the associated-graded,
so

L2(S ⊗ 1(∗D)) = W−2Sε ⊗ 1(D) = S−ε ⊗ 1(D).

In this case, we conclude that the L2 complex and the deformation theory complex are
actually equal.

COROLLARY 20

In Case 2, the complex of locally L2 forms is equal to the deformation complex for the
quasi-parabolic structure

[L2(S) → L2(S ⊗ 1(∗D))] = [Q → Q′ ⊗ 1(log D)].

3.3 Globalization

Now go back to the global case and put these two corollaries together. Let H1(End0(E))

denote the Sabbah–Mochizuki [29,37] pure twistor structure for the cohomology of the
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pure twistor D-module corresponding to the trace-free endomorphisms of our harmonic
bundle. For the central or scalar part, let Hi

DH(X) denote the twistor structure of weight i
associated to the pure Hodge structure on the cohomology of X .

The relative tangent bundle of our Deligne–Hitchin groupoid is pulled back along the
preferred section to give ρ∗T (MDH/P1). We defined a three-step filtration

0 = W−1 ⊂ W0 ⊂ W1 ⊂ W2 = ρ∗T (MDH/P1),

where W0 is the deformation of the framing, W1/W0 is the deformation of the quasi-
parabolic logarithmic λ-connection conserving the eigenvalues of the residue, and W2/W1
is the deformation of the residual data. The filtrations coming from the two MHod pieces
glue over Gm, because they coincide with the similarly defined filtrations on the tangent
to MB pulled back along the preferred section.

Theorem 21. We have a natural isomorphism

GrW1 ρ∗T (MDH/P1) ∼= H1(End0(E)) ⊕ H1
DH(X).

In particular, GrW1 is a pure twistor structure of weight 1. For i = 0, 2, we also have that
GrWi is a pure twistor structure of weight i ; in other words, our tangent space with the
given weight filtration is a mixed twistor structure.

Proof. In the previous subsections, we have shown that there is a natural quasi-
isomorphism between the complex calculating deformations of the quasi-parabolic loga-
rithmic λ-connection, and the complex of locally L2 forms shown by [29] to calculate the
twistor H1. This was done for germs in the neighborhood of any λ0 ∈ A

1.
It needs to be checked that this natural isomorphism is compatible with the glueing to the

other chart of the twistor P1. In the Sabbah–Mochizuki theory, this glueing is done using
the sesquilinear pairing in Sabbah’s definition of R-triple [37], whereas for the tangent of
deformation theory, it comes from comparison with the Betti moduli spaces.

To make the comparison with [37], recall that an R-triple has two RX -modules that
are related by a sesquilinear pairing. The first module is the minimal extension of the
harmonic bundle (in this case, S = End0(E)) from A

1 × X to A
1 × Y , and the second

one is the same for X̄ , but complex-conjugated back to being an object over A1 × Y . The
sesquilinear pairing, defined over the unit circle |λ| = 1, takes values in distributions. The
precise structure is complicated near points of the divisor D since the modules involve
meromorphic sections, so this brings into play the division of distributions [38] and Mellin
transform. Over points of X , the pairing is just the same identification between local
systems on X and X̄ that we are using.

The higher direct image in [37] is calculated using the Dolbeault resolution, then the
pairing on the cohomology (i.e. higher direct image to a point) involves wedging forms,
pairing the RX -module coefficients, and integrating it [37, §1.6.d].

We can avoid having to look too closely at the behavior near singularities. This is because
we need to understand the Betti glueing vs. the sesquilinear pairing, for classes in H1. It
suffices to verify that the identifications are the same for general values of λ on the unit
circle. We may therefore assume that the two residue eigenvalues at any y ∈ D do not differ
by integer multiples of λ. Our cohomology space in question then has the property that it is
the image of the map H1

c (X, S∇λ) → H1(X, S∇λ) from compactly supported cohomology
to cohomology over X . We may therefore represent cohomology classes by forms that are
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compactly supported on X , and pair them with other forms that are compactly supported
on X in order to check the identifications.

In this setting, the pairing formula from [37, §1.6.d] is just the usual cup-product of
cohomology classes via the identification between de Rham cohomology of a λ-connection
and Betti cohomology. That identification is the one that occurs for the tangent spaces of
our moduli spaces under the identification between tangent spaces, hence deformation
spaces and cohomology spaces. This gives the compatibility.

From the general theory of [29,37], we get that H1(End0(E)) is a pure twistor structure
of weight 1 meaning that as a bundle it is a direct sum of copies of OP1(1). We therefore
obtain that required weight property for GrW1 ρ∗T (MDH/P1).

For the GrW0 piece, it is easy to see that the deformations of change of framing give
a trivial bundle over P

1 since the framing does not depend on anything. The space of
deformations of change of framing, globalized over the twistor line, is End(O2

P1)/H
0
DH(X)

taking the quotient by the subspace H0
DH(X) = OP1 of scalar endomorphisms of the bundle.

This has a weight 0 twistor structure.
For the GrW2 piece, we refer to the discussion of [42] for the weight two property of the

space of deformations of the residual data. Here again there is a modification by H2
DH(X),

namely, we have an exact sequence

0 → GrW2 →
⊕

y∈D
Ry,DH → H2

DH(X) → 0

corresponding to the condition that the sums of all the residues should vanish. It is a
condition happening on the determinant bundle. The morphism on the right is a morphism
of weight 2 twistor structures so the kernel GrW2 is a weight 2 twistor structure.

This concludes the proof that the full relative tangent space, along the preferred section,
has a mixed twistor structure with weights 0, 1, 2. �

This in turn, completes the proof of Theorem 8.
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