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Abstract. Insect wings can undergo significant deformation during flapping
motion owing to inertial, elastic and aerodynamic forces. Changes in shape then
alter aerodynamic forces, resulting in a fully coupled Fluid–Structure Interaction
(FSI) problem. Here, we present detailed three-dimensional FSI simulations
of deformable blowfly (Calliphora vomitoria) wings in flapping flight. A wing
model is proposed using a multi-parameter mass-spring approach, chosen for its
implementation simplicity and computational efficiency. We train the model to
reproduce static elasticity measurements by optimizing its parameters using a
genetic algorithm with covariance matrix adaptation (CMA-ES). Wing models
trained with experimental data are then coupled to a high-performance flow solver
run on massively parallel supercomputers. Different features of the modeling
approach and the intra-species variability of elastic properties are discussed. We
found that individuals with different wing stiffness exhibit similar aerodynamic
properties characterized by dimensionless forces and power at the same Reynolds
number. We further study the influence of wing flexibility by comparing between
the flexible wings and their rigid counterparts. Under equal prescribed kinematic
conditions for rigid and flexible wings, wing flexibility improves lift-to-drag ratio
as well as lift-to-power ratio and reduces peak force observed during wing rotation.
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1. Introduction

The wings of an insect are hundreds of times lighter
than its body, yet they sustain dynamic loads that
exceed the body weight. Consequently, they deform
significantly during flapping flight. To deal with
these large deformations, insects have evolved highly
compliant wings from which they benefit in many
aspects: enhanced aerodynamic efficiency [1, 2], flight
stability [3], enhanced flight control [4], damage
resistance [5], robustness to collisions [6], to name a
few.

For understanding the aerodynamics of insect
locomotion, the fluid–structure interaction problem
must be addressed by coupling fluid with solid
mechanics. Computational methods yield insight
into the instantaneous flow field surrounding the
studied insect and with access to all aerodynamic
quantities, which are difficult to obtain in experiments.
Thus fundamental mechanisms behind the nonlinear
dynamics of the flow can be revealed. However,
numerical studies of insect flight are not trivial due
to their high complexity. For simplification, studies
are usually employing either completely rigid wings
(e.g., [7–9]), or prescribed time-varying deformation
[2, 10]. Fully coupled fluid-structure interaction
simulations of flapping insect wings are still challenging
and give controversial results. While some studies
found advantages of wing flexibility on aerodynamic
performance of insects [1, 11–14], others reported
negative impact on lift production [15–17]. The
anisotropy and inhomogeneity of the elastic properties
of wings are clearly important factors in these studies.

During flight, the architecture and material
properties of insect wings determine predominantly
their deformations, which are mostly passive [18].
Therefore, determining wing stiffness is critical to
the modeling of insect wing dynamics [19, 20]. In
combination with other functional requirements such
as wing folding, hemolymph transport, etc., evolution
has led to complex designs with individual shapes and
sizes of veins, different types of hinges, resilin patches
and varying thickness of the membrane. As a matter
of fact, Young’s modulus of insect wings may change
from tens to hundreds of MPa between species or
even different parts of the wing [21]. Measurement
conditions play also a crucial role in determining the
wing stiffness due to wing desiccation. Altogether, the
distribution of flexural rigidity in insect wings and its
effects on wing dynamics are still poorly known.

In the past, only few numerical studies took
into consideration these complex structures of wings.
Combes and Daniel [22] measured the overall flexural
stiffness EI either in spanwise or chordwise directions
by assuming that wings were homogeneous beams.
The data were then used in a simplified finite element

model of a Manduca wing. Nakata and Liu [1] and
Tobing et al. [14] also set the parameters for their
flexible wing models based on the measurements of
Combes and Daniel. Nakata and Liu proposed an
anisotropic hawkmoth wing model. On the other hand,
Tobing et al. considered a 3D flexible wing model
of bumblebees with uniform and reduced-tip stiffness.
Ishihara et al. [23] employed a model composed of a
rigid leading edge connected with a rigid plate through
a plate spring. The torsional stiffness of the latter
was defined based on dynamic similarity. Nguyen et
al. [24] modeled a fruit fly wing where sharp variations
in material properties of stiff veins and soft adjacent
membrane were taken into account. In our previous
work [20,25], numerical simulations of bumblebees with
flexible wings using the open source framework FLUSI
[26] have been carried out. We studied the impact
of wing flexibility on aerodynamic forces by varying
the Young’s modulus E of the vein system in a chosen
range. Even though these contributions succeeded to
include the venation structure in their wing models,
the identification of the flexural rigidity for both the
veins and the membranes remains a daunting task.

In the present paper, we propose a numerical
method for estimating wing stiffness. It consists of
a relatively simple mass-spring model based on the
wing planform and venation pattern measured from
photographs of the blowfly (Calliphora vomitoria).
The stiffness parameters are now optimized considering
acquired experimental data of real insect wings using
a genetic algorithm with covariance matrix adaptation
strategy. This approach ensures that the model has
the same behavior as the real wing specimens in static
bending tests. The wing model with the optimized
stiffness is then used for three-dimensional unsteady
FSI simulations of flapping wings at high resolution on
massively parallel computers.

The remainder of the manuscript is organized as
follows. In the material and methods section 2, we
describe the wing model, the experimental as well
as the mathematical methods that are used. The
numerical results are then discussed in section 3,
starting with the validation of the optimization.
Finally, conclusions of the study are drawn in section 4
and some perspectives on future work are given.

2. Materials and Methods

2.1. Morphology and Wingbeat Kinematics of Blowfly
Wings

An experimental setup for measuring the elasticity
of female blowfly wings (Calliphora vomitoria) was
designed by Wehmann et al. [21] and the measured
data are used in the present work. As details
on the measurements can be found in [21], we
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Figure 1. Morphology and modeling of wings. (A) Photograph of a blowfly wing. (B) Wing beat kinematics, taken from [27]
during up- and downstroke. (C) Experimental setup used in [21] for force/deformation measurements. A point force is applied
at one of the locations shown in (D) and the deformed wing surface is measured using an optical profilometer. (E) Sketch of the
setup for fluid-structure interaction simulations. We simulate two flapping wings exposed to a mean flow of u∞ = 1.35 m/s. (F)
Computational mesh used in the mass-spring model. Veins are colored for segment distinction, membrane mesh (extension springs)
shown in gray. Vein diameters shown to scale. Black/white marker is the center of mass. (G) Zoom on the membrane mesh, showing
cross-springs. (H) A segment of a vein between two mass points is modeled as conical frustum with varying diameter (I) Joints on
the wing considered in optimization problem.

limit the presentation here to a minimum. Wing
shape and venation structure are extracted from high
resolution photographs of blowfly wings (Fig. 1A),
taken using a camera (EOS-750D, Canon) attached to
a stereomicroscope (Stemi 508, Zeiss) with a resolution
of 0.46 µm/pixel. This high resolution allows us
to determine vein diameters, assuming circular cross
section. In reality, veins are hollow tubes filled with
hemolymph which supplies nutrients and other factors
to the wing’s living tissues [28]. However, this structure
is too complex to be taken into account by our model.
Consequently, veins are considered as solid rods of

cuticle with density ρc = 1300 kg m−3 as given in [29].
This assumption has the tendency to overestimate
vein mass. Ganguli et al. [30] weighed 10 wing pairs
and found their individual mass between 200.3 µg and
272.3 µg with a standard deviation of 22.94 µg. For
our model, total wing mass is set to 250 µg [30]. The
numerical wing length R, averaged over nine wing
models used in our study, is 9.01± 0.18 mm. This
accounts for a relative difference of 3% compared to
the measured wing length 9.29± 0.20 mm given in [21].
The discrepancy can be explained by the fact that the
wing model was built based on detached wings and
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parts of the wing roots were omitted.
Wing beat kinematics vary between individual

flies of the species considered as well as between cycles
in the same individual. There is hence no ‘true’ wing
beat kinematics for a fly. It is therefore appropriate
(cf. the discussion in [27], suppl. mat.) to use the
generic wing kinematic protocol proposed in [27]. The
wing beat is visualized in Fig. 1B. In tethered flight,
mean stroke frequency f in blowflies varies between 127
and 180 Hz with a mean value 158 Hz [31]. Hence, the
stroke frequency f = 158 Hz and the stroke amplitude
Φ = 135◦ are used in our study.

2.2. Measurements of Wing Elasticity

The experimental setup used for measuring local
deformation of blowfly wings under external loads is
illustrated in Fig. 1C. A living blowfly was mounted
on a holder and during the measurements, wings were
kept attached to the living body to limit dry-out
effects. Otherwise, insect wings would quickly stiffen
and become brittle [21, 28]. Point forces were applied
at different locations (Fig. 1D) and with different
magnitudes. Force magnitude was measured by a
small, cantilever force sensor. The surface of wings
with and without force application was measured using
an optical profilometer that projected a grid on the
wing surface and recorded local vertical height z(x, y)
with a resolution of 384 × 512 points in x and y
direction. These data are thus specified in an Eulerian
reference frame. The data from these experiments are
used as reference data for training of our numerical
model (see below).

2.3. Mass-Spring Model for Elastic Wings

The complex compound structure of insect wings poses
significant challenges to mechanical modeling. Our
model must reproduce experimental data while be-
ing computationally efficient and straightforward in its
implementation. We choose a mass-spring approach
and hence model the wing by a system of discrete
mass points connected by linear extension and bending
springs. The training procedure for parameter identi-
fication could in principle identify the underlying me-
chanical structure starting from randomly distributed
mass points and spring coefficients [32, 33]. However,
the training can be greatly accelerated by using an ini-
tial configuration that takes the distinct properties of
veins and membrane into account. This functional ap-
proach [20] is chosen here, resulting in the static com-
putational mesh (Fig. 1F). This distribution of mass
points as well as their connectivity via the springs is
thus predetermined. Veins are composed of bending-
and extension springs, the latter being set to a large
value kev = 1000 N cm−1 to approximate an inextensi-

ble vein. Note that veins composed of perfectly rigid
segments result in a globally coupled numerical prob-
lem with increased computational cost. The membrane
is modeled using only extension springs, where the
spring constant is set to kem = 1000 N cm−1 (Fig. 1F).
While an idealized membrane resists only to stretching
and not to bending, real membrane tissue does have a
slight bending resistance. Hence, we add ‘cross-springs’
(Fig. 1G) to give the membrane a slight bending stiff-
ness [25]. This latter suppresses artifacts at the trail-
ing edge of the wing where no discernible vein supports
the membrane. Both types of extension springs in the
membrane are set to the same stiffness value kem in or-
der to preserve isotropic behavior under stretching [20].

Besides the veins and the membrane, wings
contain multiple discrete joints where the vein is either
interrupted or abruptly changes in stiffness. These
joints were identified by manipulating wings under
a microscope. There are several joints in a blowfly
wing but only 10 joints (Fig. 1I) are included in the
training problem. A sensitivity analysis, determining
how much changes in the joint stiffness parameters
alter the deformation, had been performed prior to
the optimization runs. This helped us to decide which
joints should be included in the training problem.

2.4. Mass Distribution

Since our model is trained using static bending tests
and because wings are lightweight (and consequently,
the effect of gravity is negligible), the mass distribution
does not enter the training problem and is therefore
determined a priori.

Cross sections of veins play an important role
in the identification of wing elastic properties. They
allow us to determine the vein volume and the vein
second moments of area I. However, realistic shapes
of vein sections are varying from wing root to wing tip
and these data are currently unavailable [34]. In our
model, the variation of vein diameter along wingspan
is taken into account by assuming each vein segment
as a conical frustum. The diameters at both ends of
each segment are determined from photographs (see
Supplementary materials, section 2). The distribution
of the mass onto the limiting discrete mass points is
then calculated based on this assumption. We consider
a segment i of a vein as shown in Fig. 1H. The radii are
ri and ri+1, where ri > ri+1. The mass of the segment
mv
i is distributed into the two mass points mMSM

i and
mMSM
i+1 such that the two systems have the same center

of mass. This condition is satisfied by the relation:

him
v
i = mMSM

i+1 (hi + hi+1) = mMSM
i+1 lvi , (1)

where hi is the centroid of a conical frustum,

hi =
lvi
4

(r2i + 2riri+1 + 3r2i+1)

(r2i + riri+1 + r2i+1)
. (2)
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Combining eqns. (1) and (2) yields mMSM
i+1 = mv

i hi
and mMSM

i = mv
i −mMSM

i+1 , which is applied to all veins.
The vein system accounts for 67.41% of the total wing
mass, the remainder is attributed to the membrane.
In bumblebee wings, we previously used the measured
center of gravity to fit a bi-linear mass distribution [35].
This results in the membrane thickness tapering off
toward tip and trailing edge. Such measurements are
not available for blowflies, thus we used the same bi-
linear function, scaled using wing mass and wing length
of blowflies. This yields the mass of the ith point on
the membrane:

mi = (1.75− 1.47xi + 1.01yi) · 10−7 (3)

where mi is the mass calculated in kg, xi and yi are
the distances in cm from the ith mass point to the wing
root and the rotation axis (cf. Fig. 1F), respectively.

2.5. Training of Wing Model with Experimental Data

Besides the mass distribution, the mass-spring model
for the flexible wing features the stiffness distribution
to be determined. In reality, veins are hollow and
the shape of the vein cross section clearly plays
an important role in estimating the wing stiffness.
However, the available published data on this subject
are still sparse [34]. For simplification, we approximate
all veins as having solid circular section of which the
second moment of area can be determined from the
diameter, I ∝ d4. Since the bending rigidity is a
product of the Young’s modulus E and the moment
of area I, a numerical optimization is used to adjust
the Young’s modulus such that the vein model deforms
by the same amount as the real hollow non-circular
veins in static bending tests. In addition, insect wings
contain a number of joints, the flexibility of which
depends on several factors [36]. Consequently, the
flexibility of these joints cannot be estimated based
on the flexural rigidity EI of veins and needs to be
optimized. However, taking into account all joints in
the training process is expensive. In order to reduce the
number of optimized parameters, numerical sensitivity
tests on joints were performed and those having little
impact on the wing deformation were not be included
in the optimization. This results in a total of 10 joints
(Fig. 1I) needed to be optimized. The membrane is
essentially an inextensible sheet with small bending
stiffness (modeled using ‘cross-springs’, Fig. 1G) and
is not included in the training. Thus, a set κ ∈ Rn+
with n = 11 parameters are to be determined from
experimental data.

Measuring dynamic wing deformation at high
frequencies during flight is challenging. Thus, most
qualitative data on wing deformation are based on
photographs and not time-resolved [37]. Even though
some studies succeed in recording the wing surface

deformation during wing flapping motion [12,38], data
on external inertial and aerodynamic forces acting on
the wing are inaccessible. As an alternative, we use
static measurements of wing deformation under known
loads. As long as local deformation is not large enough
to cause non-linear bending behavior, non-linearity in
the model stems only from large deflections (geometric
nonlinearity, [39]) and interactions with the fluid. This
is usually the case in insect wings and consequently
enables using static measurements for training.

In general, for each of the nine individual wings,
a number of Nexp measurements was performed with
different force magnitudes and application points
(Fig. 1D), scoring the complete wing surface in the
deformed state. Some data were too noisy and omitted
from the set, thus 8 ≤ Nexp ≤ 11. For training of
the numerical model, each of these trials is repeated
numerically with the current set of parameters κ.
Damping coefficients are added to the solid model to
achieve a steady state, because fluid is excluded in
these simulations. Then, the quality of κ is assessed by
evaluating a cost function to quantify the error, which
is subsequently used to update κ.

2.5.1. Definition of cost function: For training a
numerical wing model, the Euclidean distance (L2-
norm) between the nodes of the reference model at the
position xri and the learning data at the position xoi is
usually defined as cost function [32]. However, this way
of defining the cost function based on the equilibrium
vertical heights of these nodes can cause some errors.
Our numerical wing is flat when unloaded but the real
blowfly wing has corrugation and camber which lead to
nonzero error even at the initial state when both wings
are at rest. To exclude this error, the cost function
is instead calculated based on the wing deformation,
which measures the difference between the initial and
the equilibrium height (cf. Fig. 2). Moreover, the
displacements of each wing were measured Nexp times,
for each point force (Fig. 1D). As a result, a single cost
function h is calculated for an individual wing including
all Nexp measurements,

h(κ) =

√√√√Nexp∑
j=1

∑N
i=1

(
dexpi,j (κ)− dnumi,j (κ)

)2
Nj

(4)

where N is the number of data points on the wing, dexpi

and dnumi are the deformation of these points belonging
to the reference model xexp

i and the learning model
xnum
i , respectively.

Because the mass points are defined using a
triangular Lagrangian grid, the vertical heights at
grid nodes of the Eulerian grid, projected onto the
modeled wing, need to be interpolated. We consider
an Eulerian grid node x and a triangular element with
three Lagrangian vertices Xi, Xj and Xk whose heights
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Figure 2. Definition of the cost function for training. Shown
is a 2D illustration along the span while actual computations
are done in 3D. The difference between the deformation of the
experimental wing dexp and the deformation of the numerical
wing dnum is used for the calculation of the cost function in
eqn. (4). The penalized zone below the unloaded wing (the
dashed line) corresponds to non-physical solutions while the
penalized zone above the dotted line corresponds to the too
flexible case.

are zi, zj and zk, respectively. When the Eulerian
point is projected onto the triangle, there are two
possibilities:

• The projection of x is outside the triangle and the
interpolation cannot be done;

• The projection of x is inside the triangle or on
one of its three edges. Then, the height of the
projection of x is calculated by using barycentric
interpolation:

z =
Ai
A
zi +

Aj
A
zj +

Ak
A
zk

whereA = Area(Xi,Xj ,Xk), Ai = Area(x,Xj ,Xk),
Aj = Area(x,Xk,Xi) and Ak = Area(x,Xi,Xj).

Based on the nature of the problem, two penalized
zones are specified as shown in Fig. 2. A point force
is applied to the wing from below. Thus, any solution
giving an equilibrium position below the dashed line
will be judged non-physical. On the other hand, if
the horizontal distance from wing root to tip is smaller
than R/2, the wing is considered too flexible. In these
cases, the cost function will be assigned a large value
in order to exclude these sets of parameters.

2.5.2. Covariance matrix adaptation evolution strat-
egy: The algorithm used for optimizing the cost func-
tion h(κ) in eqn. (4) has to be chosen carefully. A
difficulty is the existence of local minima in which an
optimization algorithm can get trapped and classical
methods seem to be ineffective. Amongst alternative

methods, genetic algorithms have appeared as good so-
lutions due to their ability to deal with complex opti-
misation problems and parallelism. In related work,
Nogami et al. [40] estimated stiffness and damping co-
efficients of several mass-spring-damping models using
genetic algorithms. Bianchi et al. [33,41] proposed us-
ing genetic algorithms to optimize the stiffness values
together with the mesh topology. Louchet et al. [42]
used evolutionary algorithms to identify the parame-
ters of a physical model of fabrics. Joukhadar et al. [43]
optimized the physical parameters of a masses/springs
based system such as elasticity, viscosity, plasticity
with a genetic algorithm based approach. In this con-
tribution, we propose an approach to determine the
spring constants of the mass-spring model by using an
evolution strategy.

The CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) is an optimization algorithm based
on the process of natural selection where the most
well-suited individuals are selected for reproduction
of the next generation. The method is developed for
complex non-linear non-convex black-box optimisation
problems in continuous domain [44, 45], especially
in cases where an analytical formulation of the cost
function cannot be easily derived. In other words,
function values at search points are the only accessible
information on the cost function h.

A standard CMA-ES, as described in detail in [44,
45], is used with weighted intermediate recombination,
step size adaptation, and a combination of rank-µ
update and rank-one update. The algorithm addresses
the following optimization problem: minimize a
nonlinear multivariable cost function from search space

S ⊆ Rn+ to R+. Let x
(g)
k be the kth offspring (solution

candidate) at the generation g (iteration). The new
offsprings at the next generation g + 1 are given by:

x
(g+1)
k = m(g) + σ(g)N (0,C(g)) for k = 1...λ (5)

where σ(g) is the overall standard deviation (step size),
N denotes the normal distribution with zero mean and
C(g) is the covariance matrix. After each iteration,
the offspring are evaluated on the cost function h and
sorted in decreasing order as:

{xi:λ | i = 1 . . . λ} = {xi | i = 1 . . . λ}
and

h(x1:λ) ≤ . . . ≤ h(xµ:λ) ≤ · · · ≤ h(xλ:λ),

Only the best-suited µ candidates are chosen as the
parents for the reproduction of the next generation.
Here, m(g) is the mean of the sampling distribution
which is the weighted intermediate recombination of
the µ best candidates from the previous generation:

m(g) =

µ∑
i=1

wix
(g)
i (6)
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A super-linear relation is used for the recombina-
tion, given by:

wi =
ln (µ+ 1)− ln (i)∑µ

i=1 (ln (µ+ 1)− ln (i))
(7)

The second term on the right hand side of
eqn. (5) is a normally distributed random vector which
represents the mutation of the evolutionary strategy.
It is obvious to see that the parameters of the normal
distribution play an important role in the performance
of the optimization. At each iteration, the step size
σ(g) and the covariance matrix C(g) are updated in a
way that will increase the probability of producing the
best offspring for the next generation. In short, the
CMA-ES algorithm implements a principal component
analysis of the previously selected mutation steps to
determine the new mutation distribution. Due to long
and complicated formulae, we refer readers to [44, 45]
for more details as well as the mathematical derivation
of the covariance matrix C. The CMA-ES does not
require manual parameter tuning for its application.
In fact, the choice of strategy internal parameters is
not left to the user (arguably with the exception of
population size λ). Finding good strategy parameters
is considered as part of the algorithm design, and not
part of its application.

2.5.3. Numerical setup of the training process: Since
the evaluation of the cost function is expensive, the
code is run in parallel using the Message Passing
Interface (MPI) where each evaluation of the cost
function is a unique MPI process that is mapped onto
the available cores.

To validate our training approach, we first
exclusively use numerical data as a reference. Given a
set of parameters κ ∈ Rn+, numerical simulations of the
static bending experiment in section 2.2 are performed
using the numerical model (Fig. 3A), with the same
forces and application points as in the subsequent
training with experimental data. Starting from a
random κ0, we then perform training with this data
(Fig. 3B), thus verify if the training recovers κ from
this numerical data.

By default, the population size for CMA-ES is
npop = 3 ln(n) + 4 [46], which yields npop = 12.
However, taking into account the number of available
CPU, npop = 16 was chosen for training, which may
slightly improve convergence. Consequently, we ran
the validation on 16 CPUs for 2500 CPU hours.

In addition, the search space for our problem
was restricted using the two penalized zones shown in
Fig. 2. Some tests had been performed quickly, before
the CMA-ES algorithm was employed, to determine
which value of the Young’s modulus E would give us
an equilibrium position in these two zones. The upper

bound for the Young’s modulus was 100 GPa because
when E was greater than this value, the wing was
too stiff and remained almost undeformed under the
applied forces. On the other hand, the lower bound for
the Young’s modulus was set at 0.1 GPa since smaller
value of E resulted in an equilibrium in the too-flexible
zone. Then based on the relation between the Young’s
modulus and the bending spring stiffness, the bounds
for the joint stiffness were estimated at 0.1 N cm rad−1

for the lower bound and 1000 N cm rad−1 for the upper
bound. These constraints then allow us to speed up
the searching process.

Two stopping criteria were set to determine when
to end the searching process. The first one was when
the cost function h is smaller than a fixed value.
Ideally, it would be zero if we had exactly the same
deformation of both wings. This was however not
probable in practice and we determined the stopping
criterion for the cost function based on the validation
test. When the cost function given by eqn. (4) was
smaller than 10−4, the difference between two wings
is considered negligible. The second criterion was
the maximum number of iterations performed by the
algorithm. Since the maximum wall time for running
the optimization was limited by the supercomputer,
the maximum number of iterations was set to 100 to
prevent the computing time exceeding this restriction.
This corresponds to more than 4250 CPU hours for
each run.

The wing stiffness of nine individuals were then
optimized by this algorithm. To speed up the
convergence, each optimization was run with a larger
population size of 64. Based on a sensitivity analysis,
we found the Young’s modulus E to be the most
important parameter. Consequently, we first optimised
11 parameters, corresponding to the Young’s modulus
E and the stiffness of 10 joints, then E was fixed
and only the stiffness values of the 10 joints were
optimized for the second run. This procedure led to
2 optimization runs for each individual where each run
took more than 4250 CPU hours.

2.6. Coupling between the Wing Model and the Fluid
Solver for Fluid-Structure Interaction Simulations

In order to investigate the aerodynamic performance of
the optimized wings, we developed a solver for simula-
tion of fluid–solid interaction problems. We integrate
the mass-spring model with the incompressible Navier–
Stokes solver FLUSI ‡, details can be found in [26].
FLUSI is a parallel solver based on the Fourier pseudo-
spectral method, which resolves all spatial scales of
the vortical flow about the flapping wings. The no-
slip boundary condition is imposed on the wing sur-

‡ https://github.com/pseudospectators/FLUSI
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faces using the volume penalization method [47]. To
construct the volume penalization mask function for
the fluid forcing, the distance function is computed by
cycling over all the triangles of the Lagrangian grid.
The mask function is assigned the value of the reg-
ularized two-sided step function of the minimum dis-
tance. To transmit forces from the fluid to the solid, we
delta-interpolate the pressure near the external bound-
ary of the mask function and calculate the pressure
differential across the wing. In the relevant range of
the Reynolds numbers (75-4000), wing deformation is
caused mainly by the static pressure and the viscous
fluid tension is considered negligible [48–50]. For time-
stepping, the coupled fluid-solid system is advanced
by employing a semi-implicit staggered scheme, as ex-
plained in [25]. On the one hand, we advance the fluid
by using the second order Adams–Bashforth (AB2)
scheme. On the other hand, the second-order back-
ward differentiation formula (BDF2) is used in the solid
solver. The two modules are weakly coupled such that
the solid solver, at a given time step, uses the pres-
sure differential computed at the previous state of the
solid model. The net fluid-dynamic forces and torques
acting on the wings are evaluated by volume integra-
tion of the penalization term [51]. For further details
on the numerical methods including validation we refer
to [20,25,26].

Fully coupled simulations are then carried out
using the setup shown in Fig. 1E. From an aerodynamic
point of view, the insect body acts as a source of
drag in a tethered flight context, which explains why
we neglect it in this study and simulate the two
wings alone. The computational domain is 36 ×
36 × 18 mm large and discretized equidistantly using
1024 × 1024 × 512 grid points, yielding a total of 537
million grid points (spacing, ∆x =35.19 µm). Due to
the constraint of the volume penalization method, the
wing thickness must be at least 4 grid points. Hence,
wing thickness in our numerical study is constant and
equals 4∆x corresponding to 140.76 µm. Although
it is thicker than the ones found in nature (1 µm
to 10 µm [52]), the convergence study in [53] showed
that our numerical scheme preserved its accuracy in
the limit of thin wings. We consider a tethered
problem, i.e., the wing hinges, located at xpivot,l =
(18, 22.5, 9)Tmm and xpivot,r = (18, 13.5, 9)Tmm §, are
not moving. The wings are kept far apart to avoid any
collision between them. They are exposed to a head
wind with the mean flow accounting for the insect’s
forward velocity (u∞, 0, 0)Tm s−1, which corresponds
to a typical cruising speed of freely flying blowflies
[27,54].

First, we study the influence of intra-species vari-
ability of wing stiffness by comparing the aerodynamic

§ T indicates the transposed

Individual
Wing length
R(mm)

Mean chord
cm(mm)

utip
(m s−1)

u∞
(m s−1)

Kinematic
viscosity
(m2 s−1)

Reynolds
number
Re

1 9.1 3.037 6.775 1.365 1.603× 10−5

2 9.1 3.037 6.775 1.365 1.603× 10−5

3 8.7 2.903 6.478 1.305 1.465× 10−5

4 9.1 3.037 6.775 1.365 1.603× 10−5

5 8.7 2.903 6.478 1.305 1.465× 10−5 1542

6 9.2 3.070 6.850 1.380 1.638× 10−5

7 9.1 3.037 6.775 1.365 1.603× 10−5

8 9 3.004 6.701 1.350 1.568× 10−5

9 9.1 3.037 6.775 1.365 1.603× 10−5

Table 1. The wing length and the mean chord length of nine
individuals and the corresponding numerical parameters used for
the comparison. Individual number 8 is chosen as the reference.
The kinematic viscosity νair = 1.568× 10−5 m2 s−1 and the
cruising speed u∞ = 1.5 m s−1 of this individual are real values
observed nature. For other individuals, these parameters are
scaled based on their wing lengths in order to have the same
Reynolds number Re = 1542.

performance of all nine wing models. For better com-
parison, these models must share geometric, kinematic
and dynamic similarity. The first two conditions are
clearly satisfied since they have the same wing shape
and wing kinematics. The third condition is satisfied
if all the simulations have the same Reynolds number
Re. As the models were tested at forward speed, the
Reynolds number Re is calculated based on both cruis-
ing speed u∞ and mean wing tip velocity utip as:

Re =
(utip + u∞) cm

νair
(8)

where cm is the mean chord length and νair is
the kinematic viscosity of surrounding flow. Among
all the studied individuals, individual number 8 is
chosen as the reference whose cruising speed is u∞ =
1.35 m s−1 and the kinematic viscosity of air is νair =
1.568× 10−5 m2 s−1. Because each individual has
different wing length, the fluid viscosity as well as the
cruising speed of other individuals must be adjusted to
match the common Reynolds number. These values
are presented in table 1. Therefore, any difference
in aerodynamic properties between individuals can be
explained by the differences in their wings’ flexibility.

In the following, in order to investigate the impact
of wing flexibility, individual number 8 with the
corresponding numerical parameters (cf. table 1) is
compared with rigid wings.

For the aforementioned setup, a thin vorticity
sponge outlet, covering the last 20 grid points in x-
direction, is used to minimize the upstream influence
of the computational domain due to the periodicity
inherent to the spectral method. The sponge
penalization parameter is Csp = 0.05 [26], larger than
the permeability Cη = 2.476× 10−4. By construction,
the sponge term is divergence-free and hence does not
influence the pressure field [26].
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3. Results and Discussion

3.1. Validation of Wing Model Training Algorithm

First, we validate our training algorithm. After
training, the cost function is h = 4.45 · 10−5, and
the Young’s modulus E (Fig. 3D) is very close to
the reference value with a relative error smaller than
10−6. This parameter governs the overall deformation
of the entire wing and is the most sensitive to the
cost function. Thus, it is easier for the algorithm
to find the optimal value of E. On the other hand,
the joints’ stiffness values (Fig. 3E) are more difficult
to find since each joint solely has effects on the local
deformation. By definition, the cost function does not
reflect the local deformation of the wing because it
averages the Euclidean distance between all the nodes
of the reference and the optimized wings.

Figure 3C shows the deformation of the reference-
and trained wing in the equilibrium state. Although
the difference in joint stiffness coefficients (Fig. 3E)
is noticeable, the deformations of the optimizing wing
and the reference wing are almost identical. By this
criterion, the algorithm is reliable to be used for the
optimization.

3.2. Model Training with Experimental Data

Results of the optimized stiffness parameters are
presented in Fig 4A in the form of boxplots. There
is no optimization run succeeding at finding a set
of parameters which gives a cost function smaller
than 10−4. All runs were stopped by exceeding the
maximum number of iterations at 100.

The average value over individuals of Young’s
modulus is 12.58 GPa with a standard deviation
3.03 GPa. This value is somewhat larger than the
value known from previous direct measurements of
the Young’s modulus of wing cuticle samples, 5 GPa
[29, 55]. On the other hand, the joints’ stiffness varies
significantly among individuals because it depends on
various factors such as the distribution of resilin, the
shape of veins or the existence of vein spikes [36].
Nevertheless, the large spread in parameters can also
be explained by non-biological reasons. Firstly, the
training process included also the uncertainty of the
measurements which cannot be distinguished from the
inter-individual differences. Secondly, by definition,
the cost function does not reflect the local deformation
of the wing because it averages the Euclidean distance
between all the nodes of the reference and the
optimized wings. Yet, the vein joints solely have effects
on the local deformation.

The deformations of individual number 8, one
of the best solutions with the second smallest cost
function, are shown in Fig. 4B. The left figures

represent the deformation measured from experiment
while the right figures show the deformation calculated
by the wing model. All data are presented in
centimeters. In total, 10 measurements corresponding
to 10 force locations are plotted.

3.3. Variance of Wing Stiffness amongst Blowfly
Individuals

In this section, the aerodynamic performance of
different individuals with wings of individually tuned
stiffness is investigated. We have in total nine sets of
stiffness parameters that were optimized in section 3.2.
In the following, all quantities are normalized using
the wing length R, the wing beat frequency f and the
density of air %air = 1.225 kg m−3, unless SI units are
explicitly given.

The normalized aerodynamic forces (F ∗vertical,
F ∗horizontal) and the normalized aerodynamic power
(P ∗aerodynamic) generated by nine individuals in time
are presented in Fig. 4A. Since the wings started at
rest and they need some time to stabilize, the data
are shown for the 4th flapping cycle. In general,
the aerodynamic performance of all individuals is
almost identical. For each individual, most of the
lift (cf. Fig. 4A) is generated during the downstroke,
followed by a peak and a valley caused by the wing
reversal from a downstroke to an upstroke, i.e. the
supination. Almost no lift is produced during the
upstroke and the wing reversal from an upstroke to a
downstroke, or the pronation, produces another peak
and valley. The same pattern is observed for the drag
and the aerodynamic power. The difference between
these individuals is noticeable at the mid-downstroke
where the maximum lift generated by individuals 5 and
6 reach 8.8 while the other peaks are around 8.0. This
amounts to a difference of 10%. The corresponding gap
between the aerodynamic power at this instant goes up
to 22%.

Another way to compare among the individuals is
to look at the cycle-averaged values of these quantities.
Figure 4C shows the boxplots of the averaged values
calculated for the last two cycles. The ratios between
the overall spread, shown by the extreme values at the
end of two whiskers, and the median for the three
quantities (normalized lift, drag and aerodynamic
power) are 5.12%, 45.16% and 5.14%, respectively.
The lengths of the boxes representing the dispersion
of the data are small. This indicates the aerodynamic
similarity among these individuals even though their
wing stiffness vary significantly.
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Figure 3. Validation of the training algorithm. (A) Numerical experiments with known parameters κref are used to generate data
for training. Only four out of the ten force application points are shown. (B) starting from a random set of parameters κ0, the
training is done using the numerical reference data, resulting in κopt. (C) Final deformation fields show good agreement with input
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3.4. Influence of Wing Flexibility on Aerodynamic
Performance of Blowflies

As shown in the previous section, since the aero-
dynamic performance varies little among individuals,
only individual number 8 is chosen for the next part of
our study. The flexible wings will be compared with
the rigid wings for studying the influence of wing flex-
ibility on aerodynamic performance of blowflies.

3.4.1. Aerodynamic performance: The time history
of the vertical and horizontal forces generated by the
rigid and the flexible wings, as well as the required
aerodynamic power, are shown in Fig. 5A. Compared
to the rigid wings, the stroke reversal, characterized by
a peak and a valley of forces, is delayed in the case of
flexible wings due to their inertia. Nevertheless, both
rigid and flexible wings produce most of the lift during
the downward movement and the maximum lift occurs
at the middle of the downstroke.

Wing model Lift Drag Aerodynamic Lift-to-drag Lift-to-power

power ratio ratio

(mN) (mN) (mW)

Rigid 0.754 0.167 5.228 4.513 0.144

Flexible 0.513 0.062 3.128 8.294 0.164

Table 2. Cycle-averaged forces and power calculated with the
rigid wing model and the flexible wing model. Overall, the rigid
wings generate larger forces than their flexible counterparts. The
flexible wings have however better performance with higher lift-
to-drag and lift-to-power ratios.

The flexible blowfly wings generate less aerody-
namic forces than their rigid counterparts, similar to
the result obtained for bumblebee wings studied in [25].
While the two rigid wings produce a maximum lift of
2.49 mN, the one generated by the flexible wings only
reaches a maximum value of 1.58 mN. This reduction
of 36.55% is due to the wing deformation at the mid-
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downstroke (0.25 stroke cycle). Figure 5B (a-c) shows
the cross-section of the right rigid wing (blue) super-
imposed on the right flexible wing (gray) at 0.25, 0.5
and 0.75 wing length. At this instant, the wings move
almost in parallel with the oncoming flow and the an-
gle of attack can be approximated as the angle be-
tween the mean flow velocity u∞ and the wing. As
can be seen from the figure, at the proximal (a) and
the middle part (b), the leading edge of the flexible
wing remains undeformed compared to the one of the
rigid wing. The trailing edge is however much more
flexible because there are fewer veins to support the
membrane. As a result, the trailing edge is pushed
upward and adapts its shape to align with the mean
flow. This mechanism is caused by the flexibility of the
membrane part. It lowers the effective angle of attack,
but at the same time reduces the projected area of the
wing with respect to the oncoming airflow. The rela-
tionship between the effective angle of attack α and
the lift-to-drag ratio during translation was derived by
Usherwood and Ellington [56] as follows:

1

tan(α)
=

Lift

Drag
(9)

It is then understandable that a lower effective angle
of attack results in higher lift-to-drag ratio. Likewise,
the required aerodynamic power is smaller because the
drag relatively decreases. Characterized by higher lift-
to-power ratio (8.294 > 4.513) and higher lift-to-drag
ratio (0.164 > 0.144), flexible wings outperform their
rigid counterparts, as presented in table 2.

Figure 5B (d-f) shows the spanwise vorticity
around the flexible wing while Fig. 5B (g-i) shows
the same kind of data for the rigid wing. From the
vorticity distribution in these figures, the development
of the leading-edge vortex (LEV) along the spanwise
direction of the wing can be seen. For both wing
models, the LEV gradually expands toward the wing
tip and appears to burst at 75% of the wing length.
The size and strength of the LEV generated by the
rigid wing are, however, larger than the one created by
the flexible wing.

On the other hand, during the upstroke, the
dynamic behaviors of both flexible and rigid wings are
very similar as little forces are generated. Figure 5C
shows the wing deformation as well as the spanwise
vorticity of the left flexible wing and the corresponding
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rigid wing at the mid-upstroke. The flexible wing
almost aligns with the rigid one and the intensities
of spanwise vorticity generated by the two models are
quite small.

3.4.2. Pressure distribution and wing deformation:
Figure 6 presents the dimensionless pressure distribu-
tion on the ventral and dorsal wing side. The data are
shown for the third cycle.

During the mid-downstroke (t = 2.2−2.3), a large
part of the dorsal side becomes a suction zone with
low pressure (p ≤ −10). This low-pressure area is
located at the leading edge and expands from the root
to the tip. The suction footprint is consistent with the
development of the conical LEV observed on the wing
surface in Fig. 8. This finding is anticipated since the
existence of LEV on insect wings is associated with
the improvement in overall lift production. Figure 7
shows the wing deformation in both chordwise and
spanwise directions under the inertial and aerodynamic
loading. The deformation in the chordwise direction
is understandable since there is no vein to support
the membrane belonging to the trailing edge of the
wing. The spanwise deformation is, on the other
hand, thought-provoking. Combes and Daniels [22]
reported that spanwise flexural stiffness is 1-2 orders
of magnitude larger than chordwise flexural stiffness
when measuring the forewings of 16 insect species.
However, the external forces acting on the wing are
strong enough to make the wing deform in both
chordwise and spanwise directions. The maximum
deflection of the wing leading edge occurs at the wing
tip during the mid-downstroke and corresponds to 10%
of the wing length. For comparison, Lehmann et al. [57]
observed a maximum wing tip deflection approximately
27° at the beginning of the stroke reversal in freely
flying blowflies. On the other hand, during the
reversals, the wing is deformed only in chordwise
direction due to strong inertial force caused by the
wing rotation. The dominant contribution of inertial
effect to wing torsion at the stroke reversals was earlier
pointed out by Ennos [58, 59] for Diptera and agrees
with what we observe in our study. Finally, during the
upstroke, the pressure difference is weakened since the
wings move in the same direction as the mean flow,
resulting a low relative oncoming airspeed.

From a 3D point of view, the flow generated by
the flexible wings is presented in Fig. 8 for one cycle.
The flow structure is visualized by the iso-surfaces of
vorticity magnitude |ω|. The development of LEV
during the downstroke is considered as the basic
aerodynamic mechanism behind the lift production of
flapping wings. This spiral structure of the LEV starts
to form at the beginning of the downstroke and remains
stable until the reversal. The centrifugal force creates

a spanwise flow going from the root to the tip which
has been explained as the main mechanism helping to
stabilize the LEV. However, at approximately three-
quarters of the wing length, the LEV starts to detach
from the wing surface and forms a wing-tip vortex.
During the upstroke, these vortices are weakened and
can hardly be seen.

4. Conclusion

A flexible blowfly wing model has been developed
based on the experimental data. The sophisticated
structures of the wings were taken into account by
distinguishing the vein and the membrane during the
meshing procedure. The membrane was modeled as
a 2D planar sheet whose tensile strength was much
larger than its bending stiffness and the veins were
modeled as rods whose bending stiffness values were
calculated based on their flexural rigidity EI. While
the second moment of area I can be estimated using
the vein diameters, the Young’s modulus E remains
somewhat uncertain due to the vast range of known
cuticle’s property [29].

As mechanical properties of insect wings are
essential for insect flight aerodynamics, we here
presented a numerical method to evaluate the Young’s
modulus of veins and the joint stiffness of blowfly
wings. The mathematical optimization tool CMA-
ES [46] was employed for determining the right elastic
properties by comparing the wing model with static
experimental measurements. The method allowed us
to find appropriate stiffness values for approximating
the static deformation behavior of real insect wings
under external point forces. We obtained here nine sets
of stiffness parameters for the Calliphora wing model.

The high-resolution numerical simulations of a
Calliphora wing model with the optimized stiffness,
flapping in a moving airflow, allowed us to gain insight
into the dynamic behavior of insect wings, as well as
the influence of wing flexibility on the aerodynamic
performance of insects. Firstly, we performed
numerical experiments with the full set of stiffness
parameters optimized based on the measurements
conducted on nine different individuals. We found
that even though wing stiffness can vary among
individuals, their aerodynamic properties are very
similar by comparing dimensionless parameters at the
same Reynolds number. With this conclusion, it is
necessary to point out that our findings are restricted
to a simple selected wing kinematics pattern. A fly
might adapt the wing kinematics according to its
wing stiffness. This hypothesis can be tested out by
optimizing the wing kinematics based on wing stiffness.
However, such studies are computationally expensive
or even prohibitive and are left for future work.
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Figure 5. Comparison between the aerodynamic performance of the flexible and rigid blowfly wing models. (A) Time evolution
of vertical force and horizontal force generated by the rigid wings (blue) and the flexible wings (red) along with the corresponding
aerodynamic power requirement. The time is normalized by the wingbeat period T = 1/f . Ellipses represent the cycle-averaged
value of forces and power. (B,C) Spanwise vorticity, normalized to wing stroke frequency f , and wing deformation at the middle of
the downstroke (0.25 stroke cycle) and the upstroke (0.75 stroke cycle), respectively. The visualizations show the cross-section of
the left rigid wing (blue) superimposed on the left flexible wing (gray) at 0.25 (a,d,g), 0.5 (b,e,h) and 0.75 (c,f,i) wing length.

We further studied the influence of wing flexibility
by comparing between the flexible wings and their
rigid counterparts. Under equal prescribed kinematic
conditions for rigid and flexible wings, wing flexibility
does not enhance lift production but allows better lift-
to-drag ratio and lift-to-power ratio. This can simply
be explained by changing the effective angle of attack
due to wing flexibility. Moreover, from a biological
point of view, another benefit can come from the
way how forces are distributed throughout the stroke
cycle. The decrease of peak force observed during
wing rotation helps to reduce stress on muscles and
the skeletomuscular system of insects.

In forthcoming work, we will consider detailed nu-
merical investigations of houseflies (Musca domestica)
for which experimental wing data have been acquired
including micro-CT scans of the body.
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