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Abstract

The use of Machine Learning (ML) has rapidly spread across several fields, having encountered many applications
in Structural Dynamics and Vibroacoustic (SD&V). The increasing capabilities of ML to unveil insights from data,
driven by unprecedented data availability, algorithms advances and computational power, enhance decision making,
uncertainty handling, patterns recognition and real-time assessments. Three main applications in SD&V have taken
advantage of these benefits. In Structural Health Monitoring, ML detection and prognosis lead to safe operation
and optimized maintenance schedules. System identification and control design are leveraged by ML techniques in
Active Noise Control and Active Vibration Control. Finally, the so-called ML-based surrogate models provide fast
alternatives to costly simulations, enabling robust and optimized product design. Despite the many works in the
area, they have not been reviewed and analyzed. Therefore, to keep track and understand this ongoing integration
of fields, this paper presents a survey of ML applications in SD&V analyses, shedding light on the current state of
implementation and emerging opportunities. The main methodologies, advantages, limitations, and recommendations
based on scientific knowledge were identified for each of the three applications. Moreover, the paper considers the
role of Digital Twins and Physics Guided ML to overcome current challenges and power future research progress. As
a result, the survey provides a broad overview of the present landscape of ML applied in SD&V and guides the reader
to an advanced understanding of progress and prospects in the field.

Keywords: Machine Learning, Structural Health Monitoring, Surrogate Model, Active Vibration Control, Active
Noise Control, Digital-Twin, Physics Guided Machine Learning

1. Introduction

In the current Information Era, unprecedented
amount of information is produced, stored, and trans-
formed into actionable knowledge [1]. However, such a
large amount of data requires processing and translation
abilities beyond human capacity. Machine Learning
(ML) algorithms have been a key part of the Big-Data
revolution, as they play the role of automatically pro-
cessing these copious amounts of data to extract patterns
and make inferences and predictions based on them. In
other terms, digitalization and connectivity provide the
data, and ML translates it into meaningful information.

*Corresponding author at Ecole Centrale de Lyon. 36, Av-
enue Guy de Collongue, 69134, Ecully, France. E-mail address:
barbara.zaparoli-cunha@ec-lyon.fr (B.Z. Cunha)
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Besides the availability of data, ML progress is pow-
ered by constant developments in computing resources
and algorithm improvements. Currently, ML is widely
present in our daily life, such as in health-care deci-
sion making [2], autonomous vehicles [3], economic
forecasts [4], detection of fake-news [5], suggestions
for consumption of content and goods [6, 7], mastering
games [8], image classification and generation [9, 10],
translations and speech recognition [11] and other sub-
jects.

ML methods are also permeating the natural sciences
[12], not only by overcoming traditional data-driven
methods but also by powering or even replacing first-
principle models. The use of ML in scientific fields such
as biology [13], chemistry [14, 15], physics [16—19] and
material science [20, 21] is well developed. The range
of ML applications in these domains includes identify-
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ing behaviors from measured data, speeding up analyses
time, merging data- and domain-based knowledge, find-
ing new materials and components, modeling systems,
and discovering governing equations. Given this trend,
much has been debated about the pros and cons of using
ML in physical science and how it can power research
progress in engineering domains such as fluids dynam-
ics [22], seismology [23, 24], thermal transport [25, 26]
and energy systems [27].

Recently, many relevant works in structural dynamics
and vibroacoustic have used ML in three major applica-
tion areas: Structural Health Monitoring (SHM) using
vibration and noise signals [23, 28-97], Active Noise
and Vibration Control [23, 98-145] and vibroacoustic
Project Design [84, 146-181].

SHM benefits from the ML advantages of extracting
relevant features from big data to detect and classify
failures efficiently and make lifetime predictions. In Ac-
tive Control, ML stands out for identifying light mod-
els of the system, since the mechanistic models are cur-
rently unknown, incomplete, or high-dimensional. Be-
sides that, a miscellaneous of approaches uses ML to
model and optimize the controller design. In Vibroa-
coustic Design, ML-based surrogates result in fast sim-
ulations that enable an optimized and robust design for
Noise, Harshness and Vibration (NVH). The ML work-
flow in these applications should consider the character-
istics of the vibration or sound signals under analysis.

As supported by the numerous results cited through-
out this article, there are many benefits to employing
ML in SD&V problems. However, drawbacks, misuses,
and difficulties can also be spotted and show the poten-
tial for further advancement in the field. The lack of
interpretability and physical basis are the aspects that
raise more apprehension in the use of ML in SD&V
and other physical sciences. Furthermore, although the
wave behavior of SD&V systems encloses frequency in-
formation which is well explored in SHM, it also leads
to non-monotonic and rough functions behaviors, rais-
ing challenges to ML models. Currently, implementa-
tions in the industry are limited by the lack of substan-
tial amounts of labeled data required in Deep Learning
or by the cost of ML simulations in real-time applica-
tions. Another issue still open to debate is reasoning
about when the use of ML is justifiable and brings gains
in time and precision with an adequate level of confi-
dence. The present paper discuss these issues alongside
references and approaches that tried to tackle them, in-
dicating viable solutions.

Therefore, this work focuses on doing an original and
extensive review of the main contributions and on the
emerging opportunities of ML applied in structural dy-

namics and vibroacoustic. The review provides a com-
prehensive state-of-the-use and guidelines of ML ap-
plications in SHM, Active Control, and Product De-
sign and raises the strengths and weaknesses of ML in
each of these fields. The present implementation sce-
nario of each application is presented alongside reason-
ing about method choices and discussion on the identi-
fied research gaps. In-depth theory on ML and vibroa-
coustic are not part of the scope of this review. In that
way, the present work intends to guide vibroacoustic en-
gineers willing to explore ML techniques by providing
the current background and the future opportunities of
the research field merging ML with SD&V.

At first, Section 2 provides the basis of the main ML
methods employed in SD&V literature. Section 3 ana-
lyzes the ML workflow in SHM, especially how to pre-
pare vibration and noise signals to increase the ML ca-
pabilities to identify patterns, and also introduces rele-
vant works in damage detection, diagnosis, and progno-
sis. Section 4 reviews the applications of ML in Ac-
tive Control of noise and vibration, including system
identification, reduced-order models, sensor and actu-
ator placement, and controller design. Section 5 focus
on the use of surrogate models of SD&V simulations to
improve Project Design, with attention to their use in
uncertainty propagation, sensitivity analysis, and opti-
mization. Section 6 addresses the trends and perspec-
tives in the field by analyzing how integration, physics
guidance, and other aspects can leverage the ML im-
pact and applicability in SD&V research and discussing
upcoming opportunities from the integration of these
fields.

2. Overview of Machine Learning Methods

Machine Learning is an Atrtificial Intelligent (AI) al-
gorithm which makes an inference from data and ex-
perience without the use of explicit programming. In
a simplified way, for a dataset X containing some sets
of inputs x, a model m(w, x) with parameters w is de-
fined to represent the relationships and patterns of the
dataset and an assessment criterion called cost function
C(X, m(w, x)) is defined to quantify how well the model
represent the dataset. After an optimization that mini-
mizes the cost function in relation to the model parame-
ters w, the optimal model m(w,,;, x) is used to infer the
relationship of unseen data.

Therefore, three key elements describe an ML model:
representation, which is the chosen way to model
data relations through m(w, x) and establish a hypoth-
esis space of all possible models considered, e.g., deci-
sion trees, neural networks, hyperplane representations;



evaluation, which determines how to access the model
performance employing a cost function C(X, m(w, x)),
e.g., accuracy, squared error, K-L divergence; and op-
timization, that is the search method used to minimize
the cost function, e.g.: gradient descent, greedy search,
quadratic programming [182].

Previously to train an ML model, it is crucial to
conduct correctly the dataset sampling, as well as the
data preprocessing stages to make the data suitable and
more meaningful to the training stage. During the train-
ing stage, the optimization algorithm searches for the
configuration that better represents the training dataset
according to the criteria of the cost function. In other
words, the ML model is learning with data. Once the
model is trained, it can make predictions in new data.

The goal of the ML model is to generalize well for
new unseen data. In other words, the goal is to have
a prediction model of the true hidden distribution and
not a fitting model of a sample of this true distribu-
tion (the training set). Therefore, minimizing the cost
function during training does not guarantee an adequate
predictive model, and the final assessment of the ML
model must be based on its prediction performance in
the new/unseen data from the test dataset.

This leads to a crucial concept in ML, the bias-
variance trade-off, which stands that the generalization
error is a combination of bias, variance, and irreducible
errors in supervised learning, as illustrated in Figure 1-
a. The bias error measures the level of incorrect hy-
potheses in the model and decreases with model com-
plexity. The variance error measures the variability of
model predictions and typically increases with model
complexity. Therefore, a high-bias model oversimpli-
fies the problem, leading to bad predictions in both
training and test dataset (underfitting), while a low-bias
model performs well in the training dataset but might
lead to high-variance error (overfitting). Figure 1-a il-
lustrates this trade-off for a given number of training
points, and Figure 1-a shows how complex models with
low bias become viable with increasing database size.

Techniques used to control overfitting play a leading
role in ML algorithms, setting a good balance between
bias and variance. A key aspect is the hyperparame-
ters selection, which is done manually by experts rea-
soning, or automatically via algorithms of search and
optimization [183—188]. During hyperparameters selec-
tion, the generalization error estimative must use sam-
ples kept out of the training dataset, which is usually
done through cross-validation or by separating a valida-
tion dataset.

Regularization techniques are also an important
strategy to fight overfitting. The regularization tech-

nique varies depending on the ML method, but the mo-
tivation is to penalize model complexity and increase
robustness to ill-posed problems. The most common
regularization strategy is to add a regularization term in
the loss function to account for model complexity.

This ML overview mentions the fundamentals which
guide most ML methods. The reader can refer to the
rich ML bibliography for in-depth theory and method-
ology, as in the classic ML textbooks by Bishop [189],
Friedman et al. [190] and Goodfellow et al. [183]. For
an introduction in ML, the authors recommend the ar-
ticle ”A high-bias, low-variance introduction to Ma-
chine Learning for physicists” from Mehta et al. [17].
This article presents a brief and comprehensible expla-
nation of the main ML concepts, along with tutorials
and Jupyter notebooks of popular ML algorithms. The
article of Domingos [182] is also a reference for provid-
ing valuable expertise in implementing successful ML
algorithms.

Usually, the ML methods are classified according to
the learning approach as:

e Supervised Learning: use labeled output as
ground truth during training. It is a regression
model when the output has continuous values or
a classification if the output are categories or dis-
crete values.

e Unsupervised Learning: no labeled output and
no correct answer is provided. The algorithm
searches for underlying patterns in the data to as-
sume its structures, through clustering or associa-
tion.

o Reinforcement Learning: the algorithm interacts
with an environment, earning points to reinforce
successful decisions.

Hereafter, the most relevant ML methods applied in
recent literature on structural dynamics and acoustics
are outlined. Diversification was an important criterion
in the choice of the methods, to enclose different ap-
plications and ML categories. In Section 2.1 addresses
Neural Networks and Deep Learning methods, since
they are certainly the largest field of ML and due to
their flexibility, they have supervised, unsupervised and
reinforced learning algorithms and handle various data
structures. Section 2.2 explores Decision Tree based
methods, examples of classical ML algorithms which
are extremely popular in supervised learning, in spe-
cial due to their interpretability and their capabilities
when applied with ensemble methods. Section 2.3 is
dedicated to Gaussian Processes models, popular due
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to their probabilistic outputs and mainly used in super-
vised learning with small database. The K-means algo-
rithm is presented in Section 2.4, as a common exam-
ple of unsupervised learning. Finally, a brief discussion
about reinforcement learning and its class of algorithms
called Q-learning is presented in Section 2.5. Certainly,
ML is much richer in methods and details than those
presented here, but the purpose of this section is just to
provide a broad overview of ML methods and to distin-
guish their advantages and applications in vibroacous-
tic.

2.1. Neural Networks

Neural Networks (NN) or Artificial Neural Networks
are a set of ML algorithms inspired in the human brain
which can approximate any function, as stated in the
Universal Approximation Theorem [191, 192]. More-
over, NN is flexible and modular, so its architecture can
be adapted to different purposes in supervised, unsuper-
vised, and reinforced learning. It is by stacking mul-
tiple layers in an NN that Deep Learning (DL) mod-
els are created with improved capabilities of extracting
features and learning complex data representations. No
wonder, NN is a popular algorithm in all fields of ML,
having continually shown impressive results in all kinds
of real-life problems.

The most common and general-purpose NN are the
Fully Connected Feed-forward Neural Network or
Multilayer Perceptron (MLP) [193], which will be used
as a starting point to introduce other NN architectures.
As shown in Figure 2 and as the name illustrates, a NN

is a network of artificial neural units. Each neural unit is
defined by a nonlinear activation function, as ReL.U and
sigmoid, which fires an output based on the weighted
sum of inputs added to a bias. The outputs from one
layer are the inputs for the next one, in a feed-forward
procedure. The last layer outputs are the NN predic-
tions, used to evaluate the NN performance. For exam-
ple, in a supervised problem, the mean squared error be-
tween NN predictions and the true values is often used
as the NN loss function.

The learning procedure consists of finding the set of
weights w and biases b which minimize the loss. The
key to making this optimization viable in big NNs is the
Backpropagation algorithm, whose rediscovery in the
mid-1980s led to the boom in the popularization of NN
[194, 195]. Backpropagation allows to efficiently com-
pute the gradient of the loss function with respect to the
weights and biases, thanks to the Automatic Differen-
tiation (AD) capabilities of NN [196]. Thus, backprop-
agation enables gradient-based optimization algorithms
to be effectively used during training. To reduce mem-
ory requirements and speed up the training, the dataset
might be divided in batches, so that the NN parameters
are updated evaluating NN performance at each batch.
One training epoch has passed when all batches in the
dataset have been used to update the NN. The trained
NN is a system of algebraic equations which can read-
ily predict new outputs.

NN account with regularization techniques as weight

regularization (L1 and L2 regularization), Dropout,
Early Stopping, Data Augmentation, Soft Weight-
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neuron output (a). Supervised training workflow of a Fully Connected Feed-Forward Neural Network with backpropagation of the errors (b).

Sharing, Batch Normalization and Entropy Regulariza-
tion [17, 183, 189, 194]. Besides that, the hyperparam-
eters selection also plays a significant role in NN gen-
eralization, since it tunes the architecture aspects and
regularization parameters. Basic reasoning for hyper-
parameters tuning in NN is already well-known [183],
but automatized approaches are becoming increasingly
popular [197]. In most cases, the use of a validation set
to monitor the NN generalization is a standard proce-
dure.

The number of nodes in the first NN layer is equal to
the input dimension and the number of nodes in the last
layer is equal to the number of output values (regres-
sion problem) or classes (classification problem) of the
analysis. Usually, in the output layer, a linear activation
function is used in regression problems with unbounded
output, a softmax activation function is used for classi-
fication problems with multiple mutually exclusive cat-
egories and sigmoid activation function when you have
not mutually exclusive categories. The number of hid-
den layers, the nodes in each layer and the activation
functions in the hidden layers are hyperparameters to be
tuned. A crucial point in NN performance is data scal-
ing, which makes the data range like the best range for
the operation of the activation function. LeCun et al.
[198] further discusses practical recommendations for
the creation of NN models.

MLP is the most common ML method in the applica-
tions covered in this article, due to its versatility and
easy implementation. However, there are NN archi-
tectures that are appropriate to specific problem struc-
tures. Further comments are presented about Convolu-
tion Neural Networks and Recurrent Neural Network,

for supervised learning of images and time series, re-
spectively; Auto-encoders for unsupervised learning;
and Deep Reinforcement Learning (Section 2.5). Other
important NN architectures that are not discussed here
are Boltzmann machines, deep belief networks, and
generative adversarial networks.

Although the literature on NN is extremely dense and
expands fast, there are several references which man-
age to cover the topic in a didactic way. The book by
Nielsen [192] contains comprehensive explanations of
the NN main elements, while the classic book by Good-
fellow et al. [183] has equally good NN introductions
but also covers more detailed and advanced aspects.
Mehta et al. [17] presents a gentle and summarized NN
guide along with Python code. Implementations guides
are available along with dedicated libraries for NN in
Matlab [199] and in Python, with highlights to Keras
[194] and PyTorch [200] libraries.

The authors recommend the survey by Alom et al.
[201] to get a broad vision on DL methods, from their
basic concepts to state of art algorithms. LeCun et al.
[195] and Schmidhuber [202] reviewed Deep Neural
Networks (DNN) relevant applications and perspec-
tives. Other important topics in DNN include Adaptive
Learning [203], Transfer Learning [204], Online Learn-
ing [205] and Probabilistic NN [189, 206].

2.1.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN or ConvNet)
are NN designed to capture spatial patterns from mul-
tiple arrays input by exploiting the local connectivity
and translational invariance characteristics from data.
To put it more simply, the CNN architecture considers
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Figure 3: Representation of a Convolutional Neural Network. The CNN performs automatic spatial feature extraction from images by successively
applying feature filters that create feature maps (Convolutional layer) and compressing these maps (Pooling layer). Based on the final feature maps,
a fully-connected NN does a prediction, which can be a classification or regression.

that the points in the same region are closely related and
that the identified patterns can be found translated in
the space. Therefore, it is reasonable to use CNN in
problems where the input order and location matter. A
very well-known example is the successful application
of CNN to image processing problems, as evidenced
by the numerous times it has been used to gain Ima-
geNet challenge [207]. CNN can also be handy to ana-
lyze time-series as a 1D array or even by transforming
the time-series into images, usually by applying time-
frequency transformations.

Convolutional Layer is a key element of CNN to ex-
plore the spatial patterns. It consists of applying a kernel
filter to all local regions by sliding it throughout the im-
age, what is called convolving. The kernel filter is just a
matrix of weights associated with a feature. The sum of
the element-wise multiplication of the filter matrix with
the local region values is the resultant value that identi-
fies how strongly the feature is detected in this region.
Therefore, as it slides through the image, a feature map
is created, as illustrated in Figure 3. Each convolutional
layer can contain multiple filters, each of which results
in a feature map which is stacked to each other along the
depth dimension to form the layer output. The filtered
output will also go through some nonlinear activation
functions, being ReLU the most common one. The con-
volving procedure considers the local connections into
each region defined by the size of the filters. Besides
that, as the filter has shared weights for the entire image
at each depth slice, the same feature will be detected

at distinct locations, which contributes to the transla-
tional invariance properties in the network structure.
In this way, the convolutional layer makes use of these
two important characteristics of spatial signals.

In the sequence, the Pooling Layer subsample the
feature map shrinking the image stack, usually by calcu-
lating the maximum value for non-overlapping patches
of the feature map (max-pooling) (Figure 3). The out-
put has a pattern like the input, but with smaller dimen-
sions. This stage collaborates to reduce computational
load and number of parameters, also avoiding overfit-
ting. However, the pooling layer also plays a signifi-
cant role in the identification of spatial patterns, since it
will semantically merge similar features and add invari-
ance to small scaling, shifts and distortions [195]. In
that way, the first layers in a Deep CNN are responsible
for detecting simple features, such as edges and corners
in images and as the CNN depth increase, higher-order
features and complex patterns can be detected. In the
end, Fully Connected Layers perform the final clas-
sification or regression task. The backpropagation al-
gorithm is normally used during optimization to adjust
the weights from the kernel filters (automatically defin-
ing the prominent features to be detected) and from the
fully connected layers.

Comprehensive explanations on CNN methods are
available in the main textbooks of Deep Learning [17,
183, 189, 192, 194] and visual and iterative guide is pro-
vided by [208]. Recent progress was covered in [209].
Transfer Learning is also an important topic in CNN
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[17, 204] since features learned from other datasets can
be useful to new problems, therefore acclaimed CNN
models trained with big datasets, such as LeNet, ZF
Net, AlexNet, VGGNet, GoogLeNet and ResNet, can
be used as a start point to initialize new CNNs, reduc-
ing the need for data.

2.1.2. Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a group of NN
designed to handle dynamical systems, that is, sys-
tems changing over time. While ordinary NN do not
use sequential information to do predictions, RNNs can
use the time history and context. Because of this, they
are extensively used in natural language processing, like
chatbots, machine translations, speech recognition and
generation, in Computer Vision applications and fore-
casting problems in the most diverse fields [210], as in
economy, climate change, weather and diseases progno-
sis. Naturally, they are also applied to analyze dynamic
systems in mechanics, for example, in the prediction of
the system response in function of time [211], or to fore-
cast the remaining useful life of a component [212].

When creating an RNN model, the input is config-
ured as a 2D tensor containing the time steps in one di-
mension and the input features in the other. To have
memory ability, RNNs are constructed in loops over the
time steps. For each time step, the correspondent in-
put features are provided alongside the current state of
the problem to obtain the current output and this out-
put is used as the state of the next time-step, config-
uring the loop [194]. Therefore, the state information
will carry historical information through the RNN by
assuming that outputs of different time steps are depen-
dent on each other. This looping behavior can also be
interpreted as a chain of NN which pass information

to the follower [213], as illustrated in Figure 4. How-
ever, these sequential NN share the same weights, which
are trained by a process called backpropagation through
time. Usually, RNN suffers from exploding or vanishing
gradients over time, but advanced techniques are em-
ployed to overcome the issue [195].

Another frequent problem is that over time steps the
level of accumulated historical information increases
and the RNN cannot define which is the valuable infor-
mation to keep and suffers from a long-term dependency
problem. Long short-term memory (LSTM) network
[214] addresses this problem by using a memory unit
cell with forget, input and output gates which explicitly
defines what are the relevant information to keep and to
output, as illustrated in Figure 4, showing more effec-
tive results than ordinary RNN [195]. The reader can
look for a good introductory explanation about LSTM
functioning provided by Olah [213].

There are many configurations of RNN, to deal
with different dimensions of inputs and outputs, or bi-
directional RNN to address cases where previous out-
puts in the network might be dependent on future”
results, or other configurations to deal with the long-
term dependency problem, as the Gated recurrent units
(GRUs). Generative RNN has also been extensively
used, in special for text and speech generation [194].
More details on RNN theory and its architectures are
available in the textbook by Graves [215], in Chapter
10 by Goodfellow et al. [183], Chapter 13 by Bishop
[189] as well as in [194, 195]. Recent advances in RNN
are reviewed by Salehinejad et al. [216], as new RNN
employing the attention mechanism [217].
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Figure 5: Illustration of an Autoencoder. The encoder stage com-
presses the information in the latent variables and the decoder stages
decompress them. The autoencoder outputs should match the inputs,
therefore it is a self-supervised learning.

2.1.3. Auto-encoders

Dimensionality reduction are techniques which re-
duce data dimension while preserving the critical infor-
mation on it. Due to the curse of dimensionality, this is
the desired tool which allows reducing processing and
storage requirements, especially in problems involving
high-dimension data. As an example, dimensionality
reduction is often used to create Reduced order mod-
els (ROMs) to accelerate complex and large numerical
models of dynamical and control systems [218, 219].
Dimensionality reduction methods are also extensively
used as a data preprocessing stage previously to an-
other ML method, since they automatically perform fea-
ture extraction or/and selection, improving the predic-
tions of classic classification and regression algorithms.

Several unsupervised ML methods perform dimen-
sionality reduction [220], the principal ones being Auto-
encoders, Boltzmann Machines and Principal compo-
nent analysis. For sake of brevity, the authors are going
to cover only Auto-encoders in this article, which have a
straightforward concept and are preeminent to nonlinear
dimensionality reduction [221].

Autoencoders (AEs) are merely Neural Networks that
receive high-dimensional data and encode it to a la-
tent space representation by compressing the informa-
tion through the NN with decreasing layer size until a
bottleneck. The compressed information is then used to
reconstruct the original input in a self-supervised learn-
ing, where the input itself is also used as the target out-
put, as illustrated in Figure 5. Therefore, the data in the
latent space must contain the more relevant information
of the original data to be able to reconstruct it. Once the
AE is trained, the encoder part is used as a dimension
reduction tool.

An advanced version of an AE is the Variational au-
toencoder (VAE) which compresses the data into the
mean and variance of a statistical distribution. During

training a random sample of this distribution is selected
to reconstruct the original data, which forces robustness
and meaningful representations in the latent space and
leads to better performance than ordinary AEs [194].
Chollet [194] and Goodfellow et al. [183] presents de-
tailed AE and VAE methodology and emphasize the
prominence of using VAE decoders as generative mod-
els.

2.2. Decision Tree Ensemble Methods

Decision Trees are statistical learning algorithms that
apply recursive partitions of the space to perform clas-
sification or regression and that are the basic element of
more complex and popular models, like Random Forest
and Gradient Boosting [222]. There are different De-
cision Tree algorithms, CART (Classification and Re-
gression Trees) being the most famous. The CART al-
gorithm performs successively binary partitions starting
from a root node. The partitions are based on the impu-
rity criterion and aim to gather samples from the same
category or with approximate value in the final nodes
of the tree, also called leaves. Random variables are
tested as partition criteria, and the split is performed
with the one that minimizes impurity. As finding the
optimal of each node would be expensive, the algorithm
implementation is greed, using heuristics methods. The
scikit-learn Python library provides an easy implemen-
tation of Decision Trees, as well as good documentation
on the methodology, applied [223].

Decision Trees are interpretable, fast, handle hetero-
geneous data and outliers, exempt data scaling, im-
plicitly perform feature selection, and are nonparamet-
ric, allowing models with nonlinear complex relations
[224]. However, Decision Trees are prone to overfit-
ting, leading to high-variance and greedy solutions [17].
Although pruning is a regularization technique com-
monly applied to reduce this overfitting problem[189],
it is through ensemble methods that Decision Tree mod-
els achieve good generalization.

Ensemble methods are a combination of individual
predictors to yield a better predictor. Any ML method
can be used to create ensemble methods, but ensembles
of Decision Trees are popular since Decision Tree ran-
domized structure and low-cost training make them a
suitable predictor. Bagging and Boosting are reviewed
here, the two most popular ensemble methods. In Bag-
ging each predictor collaborates with a vote in the final
prediction, and the predictors are constructed indepen-
dently in a parallelized framework, reducing mainly the
variance, as is the case of Random Forest. In Boosting
the predictors are connected and sequentially organized,



a-)Decision Tree b-) Random Forest

((Datacat )

|

c-) Gradient Boosting

Dataset ubset ] [ Subset ]
+ +
- -
DeC|smn Tree Demsmn Tree Decision Tree
Result Result
(Voti raging )
Result

Figure 6: Individual decision tree partitions the space minimizing the classification/regression impurity (a). Random Forest uses Bagging to
ensemble decision trees and get the final prediction by majority or average voting (b). Gradient Boosting ensembles decision trees in sequence, so
that the individual prediction of one decision tree is improved by the next and so on (c).

each one trying to improve the prediction of the previ-
ous, reducing mainly the bias, as is the case of Gradient
Boosting. Louppe [224], Chapter 8 by Mehta et al. [17]
and Chapter 14 by Bishop [189] present the theory of
ensemble methods and its close relation with the bias-
variance tradeoff.

2.2.1. Random Forest

Random Forest (RF) is an ensemble method based
on Decision Trees and Bagging. To improve the per-
formance of the individual tree, RF grows several esti-
mators or a forest of trees and makes the final predic-
tion based on the average result of the individual trees,
for regression problems, or based on the majority vote,
for classification problems, reducing the prediction vari-
ability. Each Decision Tree should be different to en-
sure that the final RF generalizes better than individual
Trees. Because of this, the Bagging or bootstrap aggre-
gation procedure is applied, meaning that each Decision
Tree is constructed based on random sampling with re-
placement of the dataset and random selection of subset
features. A straightforward implementation of RG is
possible with scikit-learn [223].

In comparison with NNs [225], RFs are cheaper dur-
ing training and prediction, demand fewer data, and
are more robust to missing data and hyperparameters
choice, besides maintaining the advantages of a single
Decision Tree. Another convenience of RF is that they
intrinsically perform a sensitivity analysis, called out-
of-bag (OOB) based sensitivity-index and are more in-
terpretable than NNs [151, 226]. The sensitivity analy-
sis loses accuracy if the prediction is inaccurate or if the
problem has highly correlated features. Both Random
Forest and NN can model nonlinear complex relations,

but NN usually does it better if big data is available. Be-
sides that, RF has the big drawback of not extrapolating.

2.2.2. Gradient Boosting Trees

Gradient Boosting (GB) trees are also an ensemble of
decision trees based on the Boosting technique. Boost-
ing algorithms rely on the idea that weak predictors
can be sequentially added to each other to result in a
stronger predictor [227]. Thus, a sequence of decision
trees results in a stronger predictor, which also counts
with a differentiable loss function, allowing a gradient-
based optimization of the Decision Tree parameters.
This concept is the base for creating GB methods.

In a regression problem, the first tree predicts the
mean of the data, while the next tree tries to predict the
residuals of the prediction of the first tree while mini-
mizing the loss function, and so forth. Therefore, the
sum of the prediction of all the trees in the sequence
will minimize the error and the problem complexity,
in a process called Additive Training. There are two
main powerful methodologies to implement GB trees:
XGBoost (eXtreme Gradient Boosting) [228] and Ad-
aBoost (Adaptive Boosting) [229], which also count
with handy Python libraries and tutorials [223, 230]

GB methods usually outperform RF [194], with the
downside that the GB algorithm cannot be fully paral-
lelized and does not extrapolate well. Currently, GB
methods such as XGBoost and AdaBoost are, alongside
NN, the most used ML method in the competitions on
the Kaggle website, which is used as an indicator of ML
methods relevance [194].

2.3. Gaussian Process
Gaussian Processes (GPs) in ML are algorithms that
use Bayesian inference to update the GP modeling of
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Figure 7: In Gaussian Process Regression, the prior distribution (left) is defined by kernels functions and the posterior distribution (right) is updated

with information from the observation points using Bayesian inference.

the prior and posterior distribution until it matches the
available data [231]. GP regressors are also commonly
referred to as Krigging. The GP is a stochastic process
that assumes a joint Gaussian distribution over all vari-
ables and, thus, a distribution over functions:

Jap(t) ~ GPm(1), k(1,1)
m(t) = E[ fop(1)]
k(t,1) = Elfep(®) = m)(for(t) = (1)
where m is the mean function and k is the covari-
ance function or kernel, which models the correlation
between the variables (¢, t'). Now, considering that X
and Y are in input and output vectors, respectively, of
the training points and assuming a zero mean GP with
a matrix of covariance given by K(X, X), the posterior

distribution for any set of function inputs X* is inferred
as:

ey

SorOON fop(X) = Y] ~ N(me, k.)
m. = K(x*,X)-K(X,X)- Y
k.= K5, x) + K&, X) - KX, X)™' - K(X, x)

2

Figure 7 illustrates the process of updating the prior
with input data and evaluation of the posterior distri-
bution. Usually, a maximum likelihood estimator ap-
proach is applied to optimize the kernel hyperparame-
ters. In other words, the searching process looks for the
best fit of the output data to the input data evaluated by
the marginal likelihood of data. A detailed explanation,
also including the formulation for GP with non-zero
mean and inference considering a Gaussian white noise
in the observation’s outputs, can be found in the works
by Beckers [231] and Bachstein [206]. The book by
Rasmussen [232] is also a classic reference for Gaussian
Processes. Implementation is also widely supported in
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many libraries in python, like scikit-learn [223], GPy,
GPflow, SMT [233] and GPyTorch.

GP belongs to the class of probabilistic surrogates
that predict a distribution of the outputs, which makes it
possible to access the prediction variance, often used as
a level of trust in the prediction. The variance informa-
tion is used in informed decision-making and in adap-
tive sampling techniques that evaluate where to sam-
ple new training points. Abdar et al. [234] and Bach-
stein [206] do an extensive review of several proba-
bilistic ML methods besides GP, such as Bayesian Neu-
ral Networks, Monte Carlo Drop-out, Deep Ensembles,
Dropout Ensembles, Quantile Regression, etc.

Although several recent techniques try to overcome
the problem, GP typically does not scale well with big
data and therefore is commonly applied when the input
dimension is small and when a limited amount of data is
available, such as to construct surrogate models, where
GP probabilistic properties are useful. Bayesian Opti-
mization is a field that makes extensive use of the GP
as a surrogate model in the optimization of expensive
functions [235, 236].

2.4. K-means

Clustering is an unsupervised learning method that
aims to group data into similar groups, or clusters,
based on some similitude or distance measurement [17].
Clustering is extensively used to explore data and dis-
cover its structure when little or no previous knowl-
edge is available, being especially relevant in Data Min-
ing. Many clustering methods have already been de-
veloped based on different principles and are appropri-
ate for a wide variety of cases, like K-means, support-
vector clustering, hierarchical clustering, mixture mod-
els, density-based. Xu and Wunsch [237] present a sur-
vey on several clustering methods, while the implemen-



tation of several of these methods is provided by Scikit-
learn libraries [223] alongside documentation with tuto-
rials and a summary of the appropriate use cases [238].

The K-means algorithm is one of the simplest and
most used clustering algorithms. K-means is a centroid-
based method that divides data into a pre-defined num-
ber of k disjoint clusters, minimizing the Euclidean dis-
tance between each cluster sample and the cluster cen-
troid, also known as cluster moment of inertia. Accord-
ing to Mehta et al. [17], this can be interpreted as the
minimization of the variance within each cluster.

The algorithm consists of random initialization of the
centroids after which the algorithm iterates through a
loop that first assigns each sample to its nearest cen-
troid and then updates the centroids as the mean value
of the samples assigned to it until the change in the posi-
tion of the centroid is smaller than a defined threshold.
K-means is very efficient and scales well for big data,
however, it performs poorly for irregular and elongated
clusters, it is sensitive to initialization and outliers, and
it requires a pre-defined number of clusters.

2.5. Reinforcement Learning

Reinforcement Learning (RL) is a class of ML algo-
rithms in which an agent interacts with an environment
and learns from the success and errors of these experi-
ences. The agent actions A transform the environment
state S, which generates a reward (Figure 8). The goal
of RL algorithms is to find the optimal sequence of ac-
tions that maximize the Quality function (or value func-
tion), which is a function that models the expected long-
term cumulative reward [239]. The classical book by
Sutton and Barto [239] explains the methodology be-
hind RL, and the work by Li [240] presents an overview
of Deep RL aspects, applications, and relevant refer-
ences. The Q-learning algorithm developed by Watkins
[241] is a popular RL algorithm used here to illustrate
the RL workflow.

Q-learning is an off-policy algorithm which uses
temporal-difference learning (bootstrap approach) to
learn the optimal sequence of actions that maximize the
Q-function based on the Bellman equation. Therefore,
although a partly random policy is used to select the
actions to update the optimal Q-function, the learned
optimal action-value function is independent of a pol-
icy that determines the agent actions [239, 242]. A Q-
table commonly represents the Q-function with discrete
variables, whereas the use of Deep-NN to approximate
the Q-function shows notorious results in Deep RL with
discrete and continuous action spaces [243-245].

Recent outcomes with RL have drawn attention to
how these algorithms might be a key part of the fu-
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Figure 8: Reinforcement Learning framework: the agent performs an
action A, in an interactive environment, resulting in a change from
state S, to state S;;; and in a reward R;,;. The information is used
to update the value function (or Q-function in the case of Q-learning),
which learns the relation between an action performed in a given state
with the reward in the long term. In that way, the agent learns the
actions that optimize the system rewards.

ture of artificial intelligence, with notable autonomous
machines playing games, controlling robots, recogniz-
ing, and classifying images, generating human language
content, proposing financial investments, suggesting
purchases, among many other applications [240]. In
mechanical engineering fields, as the vibroacoustic
field, the use of RL to develop adaptive controlling sys-
tems is a developing research area, as further discussed
in Section 4.2.

3. Structural Health Monitoring by Machine Learn-
ing

SHM deals with the detection, diagnosis, and prog-
nosis of recipient failures, as well as the prediction of
the Remaining Useful Life (RUL) of engineering struc-
tures based on its measurements. The benefits of SHM
are manifold and well known to structural reliability and
integrity management, including avoiding catastrophic
failures, optimizing service time with scheduled main-
tenance, planning missions to minimize wear, tracking
the cause of failures, and reusing healthy components.

Data-driven statistical methods are suitable for SHM
as they incorporate information of the true operat-
ing conditions and the uncertainties involved, while
physical-based models usually fail to model the real
conditions of the system, often unknown and commonly
involve costly simulations, making them unfeasible for
some online SHM applications [246]. The growing
amount of data available after the Big Data revolution
and the fast advance of ML as a powerful data analysis
method paved the way for ML-based SHM to become a
major area of research.

Currently, SHM is the most developed application
of ML in engineering and many successful works and
methodologies exist in the literature, most including



vibroacoustic-related problems. The book by Farrar
and Worden [28] presents an in-depth analysis of all
aspects of SHM related to ML, including main appli-
cations, data collection and processing, and ML algo-
rithms. More recent surveys on SHM driven by ML
were carried out by Khan and Yairi [29], Azimi et al.
[30], Toh and Park [31], Lin et al. [32], Bao and Li
[33], Malekloo et al. [34], Lei et al. [247] and Zhao et al.
[35], most of them focusing on Deep-learning mod-
els. The main applications are in Rotating machinery
[36, 37], Civil Engineering [38—41], Earthquake engi-
neering [23] and Aerospace Structures [42—45].

The ML methodologies applied in SHM are closely
related to the characteristics of the data. Inspection im-
ages, vibration signals, or acoustic signals are the three
most commonly used data sources. In the review by Az-
imi et al. [30], 44 references that use images datasets in
SHM are summarized, most of them using CNN to take
advantage of its image-processing capabilities. How-
ever, in vibroacoustic applications, it is usually more
convenient to use time-domain signals, which can be
continuously monitored, as vibration and noise signals.
Avci et al. [39] presents a review of vibration-based
health monitoring in civil structures.

It is often necessary to transform vibration and noise
signals to reveal their relevant characteristics, as they
might be represented best in the frequency or wavelet
domain. Because of this, Data Transformation is an
important pre-processing step in SHM and much liter-
ature dedicates to investigating it. Analyses in the Fre-
quency domain are usually applied for stationary sig-
nals and can be obtained with Fast Fourier Transform
(FFT) or bispectrum analysis [46—48]. Time-frequency
or Wavelet domain analyses are convenient for non-
stationary signals, and their methods and aspects are re-
viewed by Taha et al. [49]. Many new references can
also be listed employing different Wavelet transform
methods, as Discrete Wavelet Transform (DWT) [50],
Wavelet Packet Transform (WPT) for more noise reduc-
tion and adaptive resolution [51-54], Morlet Wavelet
[55], Short Term Fourier Transform [56, 57], Hilbert-
Huang transform [57] and Empirical model decomposi-
tion [58].

Vibration and noise signals are often transformed into
multiple arrays or images to train a CNN, taking ad-
vantage of the CNN ability to extract features from big
data. However, the transformation method from signal
to image also plays a key role in these cases. For data
in the time-domain, the methods include reshaping the
time-series as matrices [47, 59], Omnidirectional regen-
eration [60], Gramian Angular Displacement Field and
Markov Transition Field [47]. Many works used the
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time-series signals with 1D CNN [66-72]. In frequency
domain, the images are created using Dempster-Shafer
theory [61], 3D image method [46], or combining mul-
tiple sensor data [62, 63]. Wavelet analysis can also cre-
ate spectrograms to analyses in time-frequency domain
[47, 64, 65]. Reshaping statistical features into a matrix
was also used to create images [73].

As data in SHM applications are usually high-
dimensional, it is also crucial to perform Feature Ex-
traction and Selection to reveal and filter the most per-
tinent information. The classical approach has hand-
crafted feature extraction followed by order reduction
methods and, lastly, the ML model. However, Deep
Learning (DL) has been increasingly used in SHM as
its depth enables the extraction of relevant features au-
tomatically, ending the need for handcrafted methods
Khan and Yairi [29]. In this way, even raw data can
be input in DL methods due to its ability to learn high
complex and nonlinear patterns. On the other hand, DL
usually demands more data. The different procedures
of feature selection and extraction in both Classical ML
and Deep Learning are illustrated in Figure 9.

Classical ML methods often use handcrafted features
in cases with little data availability [47, 68, 74, 75, 83].
The extracted features might be in time-domain (e.g.,
Root Mean Square, Skewness and Kurtosis), in the
frequency domain (e.g., Power Bandwidth, Harmon-
ics, and spectral skewness) [47, 248-251] and in the
time-frequency domain, where Wavelet Packet Energy-
Entropy is commonly used to extract features [52, 252—
254]. Other feature extraction methods used in vibroa-
coustic problems are Multi-Domain Statistical Feature
[68, 251, 255-257], Compressed sensing techniques
[52, 65] and Histogram of Oriented Gradients for vi-
bration images [60, 258, 259].

After the feature extraction, feature selection is per-
formed to dimension reduction, currently done by an
Unsupervised ML method. Varanis and Pederiva [252]
compares some feature selection methods and con-
cludes that Linear Discriminant Analysis (LDA) is suit-
able for non-stationary cases, while Principal compo-
nent analysis (PCA) is convenient for stationary signals
and independent component analysis (ICA) for prob-
lems with combined faults. Malekloo et al. [34] also
reviews several supervised and unsupervised feature se-
lection methods. The classical ML approach in SHM
is addressed by Worden and Manson [260] for damage
detection, localization, and assessment problems.

The use of DL algorithms in SHM occurs mainly in
two distinct configurations: an Unsupervised DL al-
gorithm to perform dimension reduction, usually Au-
toencoders (AE) or Boltzmann Machines (BM), fol-
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Figure 9: Structural Health Monitoring workflow: in the classic approach, feature extraction and selection are handcrafted and followed by an ML
method (a); if Deep-Learning is used, feature extraction and selection are performed automatically by the ML method (b).

lowed by a simple ML classifier or regressor, which
can be either a supervised algorithm (as a decision
tree) [54, 74, 80, 93, 261] or an unsupervised algorithm
(as k-means) [79, 94]; or a DL algorithm which per-
forms all stages, that is, feature extraction and selection
and the final prediction, as the case of CNN or LSTM
[47,76,77].

Malekloo et al. [34] provides a complete review of
all processes that should be considered in an ML-based
SHM analysis, from the excitation source, going to
data acquisition, data normalization, data cleaning, data
compression, feature extraction and selection, data fu-
sion, and the prediction. Hereafter, some ML-based
SHM works using vibroacoustic signals are presented
to exemplify applications in damage detection and di-
agnosis - including damage location, extent, and type -
and in the prognosis of RUL and mission planning.

3.1. Failure Detection and Diagnosis

The first level of complexity of SHM problems is fail-
ure detection, that is, identifying if a signal is healthy
or not. Unsupervised learning algorithms are suitable
for these applications, once the failure can be detected
just by identifying anomalies and outliers in the signal,
without the need to have labeled data, which is currently
the case in real applications. Rizzo et al. [78] show an
example of unsupervised learning crack detection us-
ing hand-crafted extracted features by discrete wavelet
transform and outlier analysis. The article also exem-
plifies how hand-crafted features can lead to good accu-

13

racy, but also how laborious it can be to select the best
features to be used. Automatic feature extraction by un-
supervised deep learning approach is implemented by
Reddy et al. [79], that used a deep auto-encoder to ex-
tract features and reconstruct the signal from unlabeled
datasets with raw and heterogeneous data (coming from
different sensors modalities). A threshold in the error of
the reconstruction signal was used to identify unhealthy
signals.

The next complexity level in SHM is fault diagnosis,
which includes the prediction of damage location, ex-
tent, and class [34]. For example, in the work of Reddy
et al. [79], after detecting the fault, a clustering unsu-
pervised method is applied to classify the fault type.
However, supervised methods are more commonly used
when the diagnosis of fault location, class and extent is
required. Sun et al. [80] used a Sparse Autoencoder to
extract features from the vibration signals of an induc-
tion motor, followed by a Dropout NN to classify the
fault.

Gecgel et al. [47] compared several approaches
to identify and classify gear tooth crack based on
simulated-based vibration signals. Various levels of
tooth profile error were also considered, and the noise
was artificially added to the signals to augment the
robustness. Gecgel et al. [47] performed the classi-
cal approach of feature extraction followed by classi-
cal ML methods and compared it with Deep-Learning
approaches without feature extraction, as CNN and
LSTM. The DL methods overcome the classical ap-



proach for all ML algorithms, while among the DL
methods, CNN beat LSTM. However, Gecgel et al. [47]
shows that the CNN accuracy level is highly dependent
on the preprocessing method used to encode the vibra-
tion signals into images.

As indicated by these examples, vibration signals are
the most used inputs in ML-based SHM problems, and
their many uses are reviewed by Toh and Park [31]. ML-
based methods can also use acoustic emission signals to
detect and diagnose failures. The reader can consult the
recent work by Suwansin and Phasukkit [81] or the re-
view by Muir et al. [82] to have more details and refer-
ences, being that the latter focus on diagnosis of com-
posites structures.

Acoustic measurements can also be used as non-
intrusive sensors to failure diagnosis, as investigated by
Janssen and Arteaga [46]. The signals from a micro-
phone array placed close to a vibrating plate were used
to localize a failure in the plate, which was experimen-
tally represented by a disturbance mass attached to the
plate. Janssen and Arteaga [46] investigate processing
and data augmentation methods, as well as the num-
ber of microphones needed for an acceptable accuracy
in the location prediction. The psycho-acoustic fea-
tures extracted from acoustic signals also demonstrated
to be meaningful inputs for failure detection in gears
[83], which can also be indicative of NVH performance.
Li et al. [54] implemented a method to merge acoustic
emission and vibration signals by extracting the signal
features through separately Deep Boltzmann Machines
and merging them with a Random Forest, showing im-
proved accuracy in the classification of gearbox failures
in comparison to other approaches.

Hybrid models integrating physics-based and ML-
based models are also found in the literature for fault de-
tection and diagnosis. Abbiati et al. [84] implemented a
Hybrid Model to detect Euler buckling failure in a beam
using Kriging meta-models and active learning to as-
sess structural reliability. The Hybrid model proposed
by Ritto and Rochinha [85] configures a Digital Twin
due to its bi-directional connection, which allows the
model to be calibrated with data from the physical twin
(real asset) and the digital twin predictions can be used
to update the physical twin operation parameters and
control strategy. The methodology is demonstrated in
a bar structure, which is trained offline using displace-
ment synthetic data to detect damage and identify its
severity and location. The study also analyses the ro-
bustness of the DT to different damage intensities, noise
and uncertainties levels, the number of sensors and the
excitation frequency and location.
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3.2. Prognosis and Mission Planning

More than detection and diagnostics, the potential of
the SHM relies on prognosis. Predictive analyses allow
us to estimate the RUL and therefore, it can be used to
optimize the maintenance schedule, minimize g down-
time, and lead to money savings more safety operation
conditions. Si et al. [86] and Jardine et al. [87] provide
a review of the Data-Driven methods to evaluate RUL
and apply Condition-Based Monitoring.

When degradation historical data is available, the
DT can predict the RUL just based on online-sensor
data and in the component operation conditions. As
an example, an LSTM-based model with an attention
mechanism was implemented by Muneer et al. [88] to
predict RUL curves with uncertainties using a turbo-
fan benchmark dataset, outperforming CNN, RNN, and
GRU models. Zhao and Yuan [89] implemented a CNN
which detects and classifies faults in the outer race, in-
ner race, and the cage of a bearing and, once the fault
is detected, the DT predicts its RUL in real-time with
an online adaptive delay correction method to obtain
an improved accuracy result. Other examples include
a semi-supervised approach using VAE and RNN [90],
an LSTM with dimension reduction methods for multi-
sensor data of machining tools[91], a hybrid model with
NN and GPR to predict fatigue failure time with adap-
tive confidence interval [92], or even just an exponential
fit [262].

Similarity models can also be used when only run-
to-failure data from other similar components are avail-
able. In this case, the RUL is estimated based on a curve
with a similar profile, as implemented in MathWorks
[263] and Liao et al. [93]. Finally, if no degradation
or failure data is available, the failure can be estimated
with relation to an established threshold in some of the
monitored data, just by predicting its future state.

Booyse et al. [94] shows the possibility of using
a dataset only with healthy vibration data to detect
damage, indicate damage severity, and identify failure
mode. To illustrate the methods, analyses were per-
formed in simulated datasets of a gearbox with tooth
damage and of an Aero-Propulsion System with com-
pressor or fan failures, as well as an experimental
dataset with bearing failures. An order tracking prepro-
cessing was applied to normalize the data with respect
to rotational speed, as well as time-synchronous aver-
age over the recording period. Generative Adversarial
Network (GAN) and VAE were used as the ML unsu-
pervised algorithms, being that GAN presented the best
performance.

Recently, DT models have been proposed in SHM to
analyze “what if?” scenarios, perform risk assessments



and optimize the asset operation to maximize its life.
Karve et al. [95] implements a DT which performs fail-
ure diagnosis and prognosis, as well as optimize the op-
erational parameters of the system, resulting in damage-
tolerant planning which minimizes fatigue crack growth
while still ensuring that the mission aim is achieved,
all considering both aleatory and epistemic errors. Dif-
ferent methods of fusion Physics-based and data-based
models are applied in each stage of the DT and experi-
mental results are obtained to validate the methodology.

Kapteyn et al. [96] also developed a data-driven DT to
mission planning based on both component and model
libraries applied to a fixed-wing unmanned aerial ve-
hicle. All assets share the same physics models, and
the analyses are efficiently scaled to the entire sys-
tem because of the component-based approach, which
uses the Static-Condensation Reduced-Basis-Element
method. In addition, a library of physical models is
used, so that the more appropriate model is applied ac-
cording to the scenario detected. The physics models
use model order reduction to speed up the computation
and enable fast predictions. Optimal trees are applied as
interpretable classifiers to select the best physical model
and update the DT based on the sensor data. There-
fore, informed by the level of damage estimated by the
DT, the system decides what maneuvers to do, avoiding
structural failure.

Stender et al. [97] approaches the acoustic brake
squeal problem in two steps: brake NVH assessment
and brake squeal prediction. For the NVH assessment,
a Short-time Fourier transform creates 2D data repre-
sentations, which pass through random modification to
augment the data and avoid overfitting before training
a CNN. The trained CNN identifies the class of brake
noise and indicates when and in which frequency it oc-
curs with accuracy. In the second task, the problem
parameters over time are the inputs of an LSTM algo-
rithm that predicts when the squeal will occur. However,
this methodology showed poor performance when the
brake configuration under analysis differentiates from
the brake used during LSTM training.

4. Active Control powered by Machine Learning

Active Control is the area of study which aims to
model dynamic systems and design control mechanisms
to guide the system behavior to the desired state. Active
Vibration Control (AVC) of flexible structures plays a
significant role in the safety and ergonomics of vehi-
cles, aircraft, machines, and buildings as in manufactur-
ing accuracy [264-267]. Active Noise Control (ANC)
or noise-canceling is based on destructive interference
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and is a subject of longstanding research [268, 269].
The growing importance of user comfort and product
development focused on ergonomic and NVH perfor-
mance [270] increase the efforts to control vibration and
noise. The need for AVC and ANC is greater in the
low-frequency ranges, where the application of passive
control is limited [271].

Active Control and ML are deeply correlated. Both
are data-based science, which development relates to
the popularization of sensors and IoT devices, improve-
ments in signal processing, and growth of computa-
tional memory and power. In addition, ML methods can
be applied in several elements of a control system, as
analyzed in the book by Brunton and Kutz [272].

The Least Mean Square (LMS) filter, used in con-
trol to estimate the state and controller parameters, is a
basic linear ML algorithm. More advanced ML algo-
rithms, in special NN, are also widely used, in special
to model and control nonlinear systems in which linear
control theory might fail. When possible, linear con-
trol methods should still be prioritized, because of their
smaller response time and the well-developed control
algorithms suited to them. Back to the 1990s, many NN
applications in active control have already been iden-
tified with three usual configurations[273-275]: NN-
based Model Predictive Control (MPC), in which an NN
black-box models the forward dynamics of the system
[276]; as an NN-based model-free controller [277]; and
a model reference control, where NN models the plant
and optimizes the controller parameters [278]. The first
and third, use NN in the system modeling stage, as an-
alyzed in 4.1, while the second and third configurations
use NN to learn the optimal control design, as discussed
in4.2.

Brunton’s series of videos, named ”Data-Driven Con-
trol with Machine Learning” [279], covers overall as-
pects of ML applied in Active control. In a recent ar-
ticle, Brunton et al. [22] also reviewed the ML meth-
ods applied to fluid dynamics control. Kim et al. [280]
reviews the ML methods applied in the control of soft
robots, with a focus on soft sensors and actuators. This
paper explores the methods which have been applied to
the vibroacoustic domain, in special ML-based meth-
ods supporting dynamic system modeling, using sys-
tem identification and reduced-order models, intelligent
placement of sensors and actuators, and adaptive control
algorithm. Within this topic, it is included the control of
buildings vibration under seismic activity, also reviewed
by Xie et al. [23]. An extensive, but not an exhaustive
number of applications of ML in ANC and AVC is il-
lustrated in Figure 10.
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4.1. Dynamic System Modeling with Machine Learning

A big part of Active control theory relies on model-
based control techniques in which control needs to
have a mathematical model of the physical system, as
in model predictive control and linear optimal control
[272]. However, in practical situations, there are two
main obstacles:

e The physical model of the system is unknown, or
the model parameters which fit the system equation
are unknown. In this case, it is necessary to apply
system identification techniques.

e The physical model is known, but its complex-
ity is unfeasible for real-time control applications.
Here, it is necessary to apply model reduction
techniques.

4.1.1. System Ildentification

System identification (SI) are techniques that use the
measured data of a system to model the relationship be-
tween the input and output of the system. This descrip-
tion coincides with the definition of ML models of in-
ferring model from data [272, 281]. Therefore, accord-
ing to Duriez et al. [282], classical system identification
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methods - as eigensystem realization algorithm, Kalman
filters, and linear parameter varying - can be considered
an early form of ML. From this, it can be inferred that
modern ML methods should be used for more complex
and nonlinear SI.

Chiuso and Pillonetto [283] and Pillonetto et al. [284]
did a review of SI methods based on ML, especially the
so-called kernel-based methods, highlighting their con-
tinuous structure selection capabilities about classical SI
methods. A comparison of the online learning perfor-
mance of adaptive filters in an ANC application, showed
the superiority of kernel-based models, as Kernel-LMS
and Kernel Affine Projection Algorithms, over classical
LMS and NN algorithms [285, 286].

However, NNs have been similarly applied to classi-
cal SI methods since they are nonlinear autoregressive
exogenous (NARX) models [281]. The sequential dy-
namic structure of RNNs is also suitable for SI of dy-
namics systems [287]. citetljung2020deep analyzes the
similarity of Deep Learning and SI concepts and shows
the workflow and the results of implementing an LSTM
in the identification of a nonlinear state-space model.
NN black-boxes are implemented in AVC of vehicle
suspension Vidya and Dharmana [98], Xu and Fei [99]



and buildings [100].

Another advantage of NNs over classical SI models
is that, besides being able to model nonlinear dynamics,
they can be trained to predict the model output some
steps ahead. This method is convenient in Model Pre-
dictive Control (MPC), which uses a prediction of the
system response based on a model of the plant to op-
timize the control signal over a finite-time horizon in
relation to the control cost function in a feedforward
configuration. Jamil et al. [100] uses an NN Predictive
Control applied to a tall building, combining the good
aspects of pole-placement and Neuro-fuzzy control.

Although state-space representations can be obtained
from ML black-box models [100], they may also
be constructed based on first-principle knowledge of
the system dynamics, as with Kalman filters. ML-
based state-space models which use both data and first-
principles are found in the literature [288—290], but the
authors did not find applications in vibroacoustic.

The use of Koopman theory in dynamic mode decom-
position (DMD) to describe a nonlinear system on a lin-
ear basis has also been leveraged by ML methods, espe-
cially in fluid dynamics [22, 291, 292], allowing the use
of advanced linear control methods. Recently, Saito and
Kuno [101] investigated the application of Data-driven
DMD in structural dynamics problems. The sparse
identification of nonlinear dynamics (SINDy) method
proposed by Brunton et al. [293] to discover governing
equation using ML and sparsity techniques have also
been used to identify the structural dynamics equations
of a geometrically nonlinear system [294], but it was not
implemented in AVC.

4.1.2. Reduced Order Models and Sensors/Actuators
Placement

Reduced Order Models (ROM) are also essential
to construct efficient real-time control, since they use
lower-rank representations of the system without losing
valuable information about its dynamics, balancing ac-
curacy, and efficiency. In that way, ROMs lead to re-
duced response time and memory requirements, key as-
pects in active control. Once more, ML methods play
a significant role, since there is an intrinsic relation be-
tween ML and many ROM.

The first scenario in which ROMs are applied in
control is when there is a high dimensional numerical
model of the system, as a Finite Element Model, which
is computationally expensive for real-time applications.
Therefore, ROMs or meta-models are used to speed up
the simulation of the system prediction in model-based
control. Feedback control might require further reduc-
tion in the space-state representation. Besides the ML-
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based surrogate models presented in section 5, Compo-
nent mode synthesis (CMS) are used for linear ROM
of structures from FEM models, while ROM based on
Proper Orthogonal Decomposition (POD) can be ob-
tained directly from measured data [22, 109].

POD, also known as Principal component analysis
(PCA), is also an ML method, once it is equivalent to
a symmetric autoencoder with a linear activation func-
tion, as demonstrated by Baldi and Hornik [295]. The
POD/PAD applies a coordinate transformation from the
physical coordinates to an orthonormal basis formed by
the system eigenvectors. By selecting only the main
modal contributions, or first principal components, the
system model is represented on a reduced basis, which
is very convenient to model acoustic and structural dy-
namic problems and has for long been used in space-
state vibroacoustic control [102-106].

This modal basis representation also provides use-
ful information on the controllability, observability, and
stability of the system, which are key factors to deter-
mine the optimal placement of sensors and actuators
and therefore PCA has also been used for this purpose
[103, 107]. The location of sensors and actuators is a
crucial aspect in active control design since it influences
the control efficiency, cost, and stability [267].

Real-time predictive control applies other tools com-
bining ML methods with ROM. The following exam-
ples explore these techniques, which could be used in
online control. Liu et al. [108] developed an automatic
FEM model updating by using CMS together with Krig-
ing. Simpson et al. [109] used autoencoder to get non-
linear ROM (or Nonlinear normal modes) of a frame
structure with hysteresis and used it alongside an LSTM
model to predict the system dynamics in near real-time.
A Deep Learning-based ROM of structural dynamic
systems with inertia and geometric nonlinearities is im-
plemented and benchmarked with simulations of a Dou-
bly clamped beam resonator and a MEMS Micromirror
[110]. Using cluster-based ROM, already explored in
fluid control [296] and static structural mechanics [218],
could have potential use in the vibroacoustic domain.

4.2. ML driven Control Design

Another application of ML methods is in the con-
trol design, that is, in optimizing the control signal or
control laws regarding the cost function that quantifies
the control performance. While in the last section ML
computes the forward output of the system, the follow-
ing references use ML to learn effective control laws.
ML-based controllers are mainly used to handle sys-
tems with nonlinearities, epecially using NN methods,
as evidenced in the survey on Nonlinear ANC by Lu



et al. [111]. Several configurations use ML to support
the control design, such as Model Reference Control,
inverse-dynamics control, Machine Learning Control,
neuro-fuzzy control, and Reinforcement Control.

In NN-based Model Reference Control, two NNs
form the control system: one NN plant model predicts
the system response and the other NN defines the con-
troller parameters which are optimized to minimize the
error between system response and the reference sig-
nal. Vidya and Dharmana [98] implemented a Model
Reference Control of a vehicle suspension using an NN
reference model and an RNN controller, claiming that it
leads to better adaptivity and stability. The drawback of
NN reference control is that it uses dynamic backprop-
agation in the optimization, which is computationally
expensive [273].

Adaptive NN controllers are popular in noise and
vibration control with diverse methodologies. One of
them is the NN-based inverse dynamics control, which
consists of training an NN to model the system dynam-
ics and using the NN inverse operations to determine
the controller parameters, as in a regressor-based con-
trol. De Abreu et al. [112] implemented a direct inverse
NN control of a vibratory system by training an NN as
the inverse model of the plant, such that the NN receives
the current state and the desired state and outputs the
actuator signal. Similarly, Ariza-Zambrano and Serpa
[113] applied direct inverse NN control to a beam can-
tilever, in which the NN was trained both with a full
state FEM model and with a reduced model to account
for dynamic uncertainties in practical scenarios, show-
ing more stable results than H-infinity control. Nerves
and Krishnan [114] uses NN direct controller to control
wind-induced vibrations in a building-TMD system, by
considering the plant as the output layer of the NN, as in
a feedback linearization control. Bani-Hani [115] uses
NN to model both a direct forecasting model and an in-
verse model also applied in the control of wind-induced
vibrations.

Model-free NN controllers have also been used in
a different configuration of ANC, as a nonlinear alter-
native to the commonly used adaptive Filtered-X LMS
(FXLMS) algorithm. Park [116] tested different config-
urations of NN as the adaptive controller in a feedback
configuration for different ANC datasets. CNN was
the one that performed the best, followed by MLP and
RNN, all of them with better performance than typical
LMS-based controllers. For the case of a feedforward
noise control system with a nonlinear primary path,
Zhang et al. [117] also obtained better performance with
LSTM based controller than with FXLMS.

Zhang and Wang [118] implement Deep-ANC in a
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feedforward configuration in which a Convolutional Re-
current Network (CNR) is used to estimate the opti-
mal control signal-to-noise cancellation. The super-
vised training of the CNR uses the reference signal as
input and the ideal anti-noise as the target, both in their
spectrogram format. Besides that, the CNR predicts the
canceling signal with some frames in advance, to com-
pensate for the ANC delay. The approach improved
noise canceling in noise-only and noisy speech scenar-
ios in comparison to typical ANC. Other examples of
NN applications are found in the review by Lu et al.
[111] on ANC for nonlinear systems.

Heuristic algorithms, such as genetic algorithm (GA)
and particle swarm optimization (PSO), can search for
an arbitrary optimal control law in Machine Learn-
ing Control (MLC). According to Hansen et al. [271],
MLC can optimally adapt the weights of any nonlinear
filter structure, including an NN. As MLC does not rely
on a fixed structure of the controller, nor on a model of
the system, it gives more flexibility to the optimization,
with the downside that it adapts slowly, preventing its
online application to a transient system. Chapter 2 of
Duriez’s book [282] has a gentle introduction to MLC.
[119] was a pioneer to apply MLC in ANC and AVC
and was followed by many others in acoustics [120—
126] and vibration [127-131] control.

Neuro-fuzzy control systems, especially using adap-
tive network-based fuzzy inference system (ANFIS),
have been widely applied in ANC [132—-135] and AVC
[136, 137], to name a few works. Neuro-fuzzy systems
usually use expert knowledge to set initial fuzzy rules in
an NN-like structure, then the neuro-fuzzy parameters
can be adapted during a training process to fit measured
data. The resultant Neuro-fuzzy systems combine ad-
vantages of using interpretable explicit rules from fuzzy
rules with the learning capabilities of NN.

Finally, noteworthy results are being achieved by
exploring Reinforcement Learning Control (RLC)
[138]. As explained in Section 2.5, in RL the agent
(the controller) can interact with the environment (the
dynamic system) and its actions will affect the output of
the system and, therefore, the Quality function quanti-
fying the long-term performance of the control, which
the algorithm optimizes. In this way, RL interactively
learns information about the system and the controller
behavior altogether, in a similar fashion to human learn-
ing. Detailed RLC explanation and references examples
are presented in [138, 297].

RLC has gained prominence in applications such as
autonomous car control and robot control [298] but has
also shown applicability to control acoustic and struc-
tural dynamic systems, special in problems with high



uncertainty and stochastic behavior [138]. Latifi et al.
[139] shows a successful example in which they ap-
plied RLC to manipulate an acoustic field by controlling
a centrally-actuated vibrating plate (Chladni plate) and
guided a particle towards a target location on the plate
surface. Implemented ANC using Q-learning algorithm
also had satisfactory results, showing the capabilities of
RLC to adapt, as when the secondary path of the noise
changes suddenly [140].

Qiu et al. [141] carried out bending and torsional vi-
bration control via an RL algorithm virtually trained
with a validated FEM model and transferred to an exper-
imental setup where it shows better performance than
PD control. The vibration control of a rotating machine
was also performed through RLC using pad actuators
[142]. Gulde et al. [143] implemented a method to com-
pensate vibrations in an industrial machine tool using
RLC. Eshkevari et al. [144] and Gao et al. [145] also
achieved good controllability of flexible buildings struc-
tures through RLC. Although RLC shows potential as a
real-time decision-making control for complex and un-
certain scenarios, it demands considerable training time
and expensive computational resources and, therefore,
its use may be superfluous to applications already mas-
tered with simpler solutions.

5. Vibroacoustic Product Design by Physics-Driven
Surrogates

Physics-Driven Surrogates or Meta-models are sim-
pler and cheaper replicas of a high-fidelity simulation
constructed based on the information from some input-
output points of the true simulation. They have long
been used as practical and efficient tools for decision
making and risk management in the early stages of
product development, once they make it workable to
carry out domain exploration, uncertainty propagation
analysis, sensitivity analysis, and optimizations, studies
in which many evaluations of the same function are nec-
essary.

In the article "Modelling for Digital Twins — Poten-
tial Role of Surrogate Models”, Barkanyi et al. [299]
coins the term Physics-driven surrogate models (PDSM)
for surrogate generated from a large amount of data
got from a high-fidelity physical model and enumerates
several advantages and applications of DT with surro-
gate models. First, after training, PDSM is much faster
than traditional first-principle simulations. In addition,
despite being a “black-box” algorithm, it is guided by
the physics of the supporting data. Unlike a data-
driven model, PDSM is less susceptible to different bias
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sources, and its uncertainties can be related to the phys-
ical model, so they can be estimated and bounded. As
for drawbacks of the PDSM, Barkanyi et al. [299] men-
tions the lack of interpretability, inability to extrapolate
the prediction to unseen scenarios, and the difficulty of
assimilating long-term historical data. However, some
built-in or implemented methods can increase the inter-
pretability of ML, and Adaptive Sampling can deal with
extrapolation when the prediction uncertainty is high.
Hybrid methods to embed physical knowledge in the
ML can also alleviate these issues.

Despite being a well-known tool, its use in struc-
tural dynamics and acoustic applications is still not well
established, as in other physical domains. The rea-
son might be that many vibration and acoustic analyzes
present a harsh and discontinuous behavior, especially
close to the system resonances, which hinders the ML
generalization ability [146, 300]. One of the main as-
sumptions of ML is that data is locally smooth [17, 182].
Therefore, the ML surrogates smooth the system re-
sponse and underestimate sharp peaks and valleys, re-
gions of interest in vibroacoustic analysis.

Tsokaktsidis et al. [147] uses an NN surrogate to pre-
dict the acceleration response of a source-receiver struc-
ture as a function of the excitation and geometry, show-
ing overall good agreement, but with some inaccuracies
in the peak amplitudes. After going through data reduc-
tion techniques, data from a beam acceleration response
was clustered and used to train NNs aiming to replace
FE models Birky et al. [148], but some prediction curves
still present high percentage errors.

Approaches as Adaptive Sampling [301], Physics
Guided ML methods [302], global surrogates with lo-
cal refinements, Domain-decomposition methods [300]
and Low-bias ML are suitable for dealing with model-
ing of rough functions. For example, a Physics-guided
convolution neural network, with embedded physical
constraints, was used to predict building response un-
der earthquakes excitations [149].

The following sections review the workflow for the
construction of the surrogates and their applications
in acoustics and structural dynamics analyses. Ap-
plications in uncertainty propagation and optimization
problems stand out since there is a cross-fertilization
of research of these domains with surrogate models
[299, 300, 303-305], especially because of the bene-
fits of surrogates when performing several evaluations
of the same function and because of their intrinsic sta-
tistical characteristics. Besides that, ML may also im-
prove similitude techniques to scale models and pro-
totypes during product design, especially for complex
structures with incomplete or distorted data [150].
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5.1. Workflow of Surrogate Construction and Related
Methods

As the name implies, the Physics-driven surrogate
mimics the behavior of a true function f(x) = y. For
this, the surrogate models use statistical methods to map
the relationship between a sample of inputs X and the
corresponding outputs of f(X) = Y, which are called
support points. In this way, the surrogate generates a
new approximate function f(x) ~ f(x), which can gen-
eralize the observed behavior of the true function and
then predict the outputs for a new set of inputs y = f(x)
with low computational cost and accuracy lost, provid-
ing a compromise between computational cost and fi-
delity. Several statistical methods are used as surro-
gates, such as Polynomial Chaos [306, 307], Response
Surface Model (RSM), Polynomial Function, Radial
Basis Function (RBF) [308], Low-rank tensor approx-
imations [304], spectral expansions [300], however, this
work focus in ML techniques, capable of model com-
plex and nonlinear relations.

The basic steps to build a surrogate model are
schematized in Figure 11. The first step is to gener-
ate the support points. As the approximate function is
created based on their information, it is of major impor-
tance to generate an informative set of support points,
according to the Design of Experiments (DOE) the-
ory. Methods as Latin Hypercube Sampling or Quasi-
Monte Carlo are used, since they have good space-
filling properties, providing information in the entire
design domain, including the interaction between pa-
rameters, with an affordable amount of sampling points
[305].

Adaptive Sampling automatically defines regions
where to add support points to update the surrogate
model, as reviewed by Liu et al. [301]. Adaptive Sam-
pling comprises training a surrogate with a sparse ini-
tial database and defining new sampling points based
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on so-called Acquisition Functions to query and update
the surrogate. In that way, Adaptive Sampling increases
the surrogate accuracy near points of interest. This pro-
cedure continues until it reaches a stopping criterion, as
illustrated in Figure 12, showing the entire workflow of
surrogate construction with Adaptive Sampling.

The Acquisition Function, also called Infill Sampling
Criteria, accounts for the surrogate mean and variance
when choosing enrichment points that should present
a compromise between the exploration of new regions
(global search), where the surrogate variance is high
and the exploitation of promising regions (local search),
where the surrogate prediction is of interest, as near
the optimal. The surrogate should use a probabilis-
tic ML method once the prediction variance is neces-
sary. Comparisons of Acquisition Functions are pre-
sented by Chaiyotha and Krityakierne [309] in con-
strained optimization and by Emmerich et al. [310] in
multi-objective optimization.

Figure 12 illustrates a probabilistic surrogate model
prediction with the respective Acquisition Function,
which determines new observation points. Adaptive
Sampling improves the accuracy of the surrogate, espe-
cially in regions of interest, minimizing the number of
points that must be evaluated with the true function to
achieve the required performance and are widely used
in optimization problems, as also illustrated in Figure
12 and further discussed in Section 5.3.

Aspects such as dimensionality, data format, pres-
ence of outliers, non-linearity aspects of the model and
the need for variance information should be considered
when choosing the ML method of the surrogate. Al-
though the surrogate can be a classifier, the target is
more often composed of continuous values which pre-
dict the physical system response. In front of this,
most of the supervised regression methods are appro-
priate to construct surrogates, like Support Vector Ma-
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chines [178], Gaussian Process Regressor or Kriging
[311, 312], Neural Networks [303], Random Forest,
Gradient Boosting, etc. As surrogate models rarely in-
volve high dimensions inputs, since the ML inputs are
the parameters of the physical problem, the choice of
Deep Learning methods is not always as advantageous
as in SHM applications. However, the limited number
of samples and input dimensions make Kriging-based
surrogates viable to use and, because of their probabilis-
tic properties, they become a common choice.

Marelli et al. [300] mentions different classes of sur-
rogate models which perform better in different scenar-
ios. Localized surrogates generate predictions that rely
on the proximity of the support points and are good
at interpolating. Global surrogates have better extrap-
olation capabilities but usually have lower local accu-
racy. Global approximations with local refinements or
domain-decomposition-based methods are suitable for
functions with highly localized behavior in some spe-
cific regions of the input space.

5.2. Uncertainty Quantification with Surrogates

Uncertainties are an inherent part of every phe-
nomenon and computational analysis. Their study im-
proves comprehension of the phenomenon and enables
an adequate level of reliability. The main steps of an Un-
certainty Quantification (UQ) analysis are uncertainty
propagation and sensitivity analysis, being that both de-
mand several evaluations of the system model and are
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used with surrogates (Figure 13).

Sensitivity analysis enables us to understand the
variability of the outputs by the uncertainties in the in-
puts and their combinations. The influence of the inputs
can be studied separately by performing a local sensi-
tivity analysis (LSA), or simultaneously with a global
sensitivity analysis (GSA), which allows capturing ef-
fects of the interaction between inputs [151]. Sensitiv-
ity analysis improves understanding of system behav-
ior and the interpretability of surrogate models and al-
lows the choice of the most influential inputs for the
system response to perform further optimization on a
lower-dimensional problem, without major loss of ac-
curacy. Sensitivity techniques can be based on mul-
tiple solutions for the forward model, so they benefit
from surrogate models. Besides that, surrogate models
have intrinsic properties to evaluate sensitivity indexes,
as they come as a by-product of trained surrogates such
as polynomial chaos expansion, low-rank tensor, and
random-forest [304] or are evaluated with minor effort
in Neural Network [313] and Kriging. Cheng et al.
[314] presents an overview of global sensitivity anal-
ysis evaluated with surrogate models with their perfor-
mance comparison. Focusing on improving surrogate
interpretability, Pizarroso et al. [315] lists several meth-
ods to analyze input-output relationships in ML-based
surrogates. Gradient interpretability is one method stud-
ied for this purpose [316-318].

Chai et al. [151] constructed a surrogate for the Sound



Transmission Loss analyses of sandwich panels using
Random Forest and, as a by-product, got the out-of-
bag (OBB) based global sensitivity analysis method.
Although the RF surrogate presents bias and smooth-
ing effects, Chai et al. [151] showed an overall good
agreement of the sensitivity indexes obtained by the
Fourier amplitude sensitivity test (FAST) and OOB-
based method and highlighted that the latter can be more
easily interpreted. Abbiati et al. [152] show a frame-
work to do global sensitivity analysis in hybrid surro-
gates, which merge physical and numerical substruc-
tures, showing an application in a structural dynamic
problem modeled by polynomial chaos expansion surro-
gates. With a similar method, Abbiati et al. [84] creates
a hybrid model for buckling failure reliability analysis
using a GP classifier, obtaining a failure surface predic-
tion with good accuracy against experimental and ana-
lytical references.

With Uncertainty Propagation analysis, the input
uncertainties propagate through the model to quantify
statistical moments and probability density function
(PDF) of the system response, as well as the failure
probability [304]. Spectral stochastic methods as Poly-
nomial Chaos Expansion (PCE) and direct simulation
methods as Monte Carlo Method (MCM) are used to
propagate the uncertainties [156].

Nobari et al. [153] used MCM to quantify the uncer-
tainties of the squeal instability analysis by using a sur-
rogate model of the Complex Eigenvalue Analysis con-
structed with polynomial regressor and a GP. The model
not only provided the PDF of the instability modes, but
it also allowed an in-depth knowledge of the effects of
each variable on the response, since the global result
given by the surrogate diverged from the local sensi-
tivity result obtained with FEM. Hurtado and Alvarez
[154] implemented surrogates based on MLP and RBF
networks with MCM for analyzing the probability of
failure of structures and showed that RBF performed
better for the cases under static load, but MLP is bet-
ter in nonlinear dynamic analysis, where similar inputs
may lead to distinct outputs. Wang et al. [155] uses
the automatic differentiation property of NN to evalu-
ate the first and second-order derivatives of the surro-
gate model, to get the response bounds by applying the
subinterval method.

Cicirello et al. [146] calls attention to the non-
monotonic behavior of vibroacoustic problems, which
makes Vertex Methods inappropriate for performing un-
certainty propagation of this system. Statistical methods
which involve several evaluations of the system are then
required. To tackle this problem, Cicirello et al. [146]
use Adaptive Sampling techniques with different Acti-
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vation Functions to build GP surrogates that predicted
the upper and lower bounds of the system. This leads
to a decrease in the number of evaluations of the true
function during uncertainty propagation. The upper and
lower bounds estimations consider the GP variance to
lead to more conservative predictions. The proposed
method has good accuracy and is faster than a Sub-
Interval method, but it struggles when applied to more
complex analysis with higher dimensionality. Chapter
8 of [156] reviews traditional uncertainty quantification
methods applied to structural dynamics and vibroacous-
tic problems.

Surrogates may support reliability analysis and risk
assessment, in which a failure threshold is established.
For nonlinear and time-varying analysis, as often met
in vibroacoustic, Extremum Response Surface Method
(ERSM) as a surrogate can be handy, since just the
extreme responses of the system are considered [157].
Kriging surrogate with moving extremum framework
used to model the extreme structural dynamic responses
in an interval of time was implemented by Lu et al.
[158, 159] to evaluate the reliability and sensitivity anal-
ysis of turbine and compressor blisks deformation under
dynamic loads. Guo et al. [160] uses active learning
Kriging to improve computation efficiency in the relia-
bility analysis of resonance fault of pipelines excited by
fluid-structure interactions. Guo et al. [161] used Ac-
tive Sampling with Kriging to do a sensitivity analysis
which quantifies the effects of different variables and the
contribution of each failure mode to the system reliabil-
ity, as for different resonances modes.

The surrogate model implemented by You et al. [162]
used Random Forest and Stacking methods to predict
the probability of failure of tuned mass damper-based
structures under random excitation. The surrogate was
trained to replace the entire Monte Carlo analysis and
not just the computational model, so each call of the
surrogate outputs the probability of failure based on the
input distributions.

Specific strategies have been developed for different
applications and complexities added to the models. For
instance, Bhattacharyya et al. [319] combines Kriging
with NARX applied to UQ in dynamical systems since
time-domain UQ with Monte Carlo is expensive even
when using surrogate models. For high-dimensional
problems in which the surrogates may struggle, Tri-
pathy and Bilionis [320] proposes a deep neural net-
work, which comprises an encoder followed by an MLP,
to reduce the problem dimension and then apply the
uncertainty propagation methods. Luo and Kareem
[321] proposes a Deep convolutional neural network
approach for dealing with uncertainty quantification in
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high-dimensional problems, with no dimension reduc-
tion. Chaudhuri et al. [322] tackled the complex prob-
lem of addressing uncertainty propagation in feedback-
coupled multidisciplinary systems using Kriging sur-
rogates and Adaptive Sampling. Bottcher et al. [303]
used polymorphic uncertainty propagation method in an
eigenvalue problem modeled by Kriging surrogate and
Adaptive Sampling.

5.3. Optimization with Surrogate Models

Surrogate models are suitable for domain exploration
and optimization, being that optimization and multi-
objective optimization are the most common links to
surrogates in the literature review performed by [299].
Once again, this is due to the surrogate ability to speed
up the simulation, allowing to perform several analyses
with affordable cost.

Surrogate-based optimization of the vehicle mass
subjected to NVH and crashworthiness constraints was
performed using an RSM [163] and RBF [164] as sur-
rogate models. The acoustic optimization of an electric
motor was tackled by [165] through local surrogates re-
placing FEM, being that the performance of several ML
methods was evaluated, namely Linear regression, De-
cision Tree, SVM, and GP. Zhang et al. [166] used RBF-
based surrogate to replace the modal and vibroacous-
tic coupling simulation of the volute case of a centrifu-
gal fan in the optimization of the thickness parameters
of the geometry to decrease the radiated sound power
and the total mass. Transmission Loss (TL) optimiza-
tion using Gaussian Process surrogates was performed
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for intake systems [167] and for meta-material proper-
ties [168]. [169] carried out Bandgap optimization of
meta-materials supported by RBF surrogate. A surro-
gate model based on quadratic polynomial regression
also leveraged the aerodynamic and acoustic optimiza-
tion of a fuel cell vehicle fan [323].

Park and Papadimitriou [170] used GP surrogate to-
gether with Dynamic substructuring to perform NVH
Optimization of a vehicle, while [171] used a surrogate-
based in Elman Network, like an RNN, to minimize the
vehicle sound pressure while constraining mass, side-
impact intrusion, and first-order global modal. Instead
of using the vehicle parameters, Tsokaktsidis et al. [172]
used time-domain acceleration at the component level
as input of an NN surrogate which predicts the sound
pressure level in the passenger cabin.

Parametric optimization of the kinematic hardpoints
of a vehicle suspension aiming to decrease road noise
was performed through an NN surrogate model replac-
ing costly FE analysis [173]. The optimization approach
combines criteria that set an FRF curve as an up-limit
and as a matching target, aiming to control both ampli-
tudes in a specific frequency and frequency shift. The
NN-driven optimization achieved good time-saving and
allowed to increase the problem dimensionality in com-
parison with previous polynomial meta-models con-
structed for the same problem. Despite that, inaccura-
cies in the predicted curve are also visible [174]. Inac-
curacies do not invalidate surrogates, once they are used
in the early stages of the design development and later
high-fidelity models and experiments must validate the
final results.



Intelligent space exploration methods such as Adap-
tive Sampling are applied in surrogate-based optimiza-
tions as it may be expensive to obtain enough supporting
points in the entire domain to build an accurate surro-
gate. The exploration from Adaptive Sampling allows
avoiding local minima, while the exploitation guaran-
tees a good accuracy of the surrogate near the predicted
optima. Optimizations using probabilistic surrogates
being updated according to the new points selected by
the Acquisition Function are called Bayesian optimiza-
tion and represent a vast field of research.

Back in 1998, Jones et al. [236] published “Effi-
cient Global Optimization (EGO) of Expensive Black-
Box Functions”, one of the first studies applying op-
timization with GPR surrogates. citetFrean gives an
in-depth explanation of Bayesian optimization, while
Dwight et al. [305] provides a tutorial with codes for its
implementation. Besides that, several toolboxes imple-
ment Bayesian Optimization using GP [233, 324, 325],
although other probabilistic ML methods are suitable.
Mohanasundaram et al. [175] used the EGO approach
in the multi-objective optimization of a disc-pad shape
under squeal noise criteria modeled by Kriging, after
the previous performance of a variance-based sensitiv-
ity analysis. Du et al. [176] applied an Adaptive Hierar-
chical Kriging model to optimize the modal character-
istics of an engine. Adaptive Sampling was applied in
the optimization of a mechanical low-cutting Metafilter
modeled by RBF surrogate [177].

Another use of surrogate models applies to
Reliability-Based Design Optimization (RBDO),
once both reliability analysis and optimization analysis
require several evaluations. Moustapha and Sudret
[178] presents a complete survey on surrogate-assisted
RBDO with detailed implementation details and several
approaches to tackle the reliability analysis. Fei et al.
[179] performed an RBDO of turbine blade radial
deformation under dynamic loads using an Extreme
Support Vector Machine surrogate and Importance
Degree Model. Zhang et al. [180] used a fuzzy
multi-extremum response surface method to perform
an RBDO of fatigue and creep failures of a turbine
bladed disk, showing accuracy as in MCM but in a
fraction of the time. A reliability EGO approach was
implemented to optimize friction-TMD (tuned mass
damper) controlled structures modeled by Kriging
[181].  Polynomial-Chaos-based Kriging was used
as a surrogate to speed up the dynamic simulations
in the RBDO of a Nonlinear Energy Sink, a passive
control device to mitigate vibration [326]. In his
Thesis, Moustapha [327] did a RBDO using GPR and
Adaptive Sampling in the buckling analysis of a column
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under pressure aiming to minimize its cross area while
keeping a constraint in the probability of failure. The
accuracy criterion used in the Adaptive Sampling
algorithm decreases with optimization iterations to
guarantee the surrogate accuracy near the optimal
point. Moustapha also applied this methodology to a
complex real-life application: the RBDO of the crash
analysis of a lightweight vehicle.

Besides adaptive sampling, global approximations
with local refinements and domain-decomposition-
based methods are other techniques to improve the sur-
rogates in the region of interest, as regions near the op-
timal or with highly localized behavior [300]. Impor-
tance sampling is also performed to decrease the num-
ber of evaluation points in uncertainty propagation anal-
ysis [328].

Neural Network-based surrogate model could benefit
from the automatic differentiation (AD) [196] properties
of NN to perform optimization by using the derivative
of the output function. A computational packet with AD
implemented is shown by Bouhlel et al. [329], as well as
an example of optimization implementation using AD.
However, AD is difficult to implement for complex NN
architectures.

6. On Future Trends and Perspectives

Digital transformation is already a reality and has
been changing the way to solve several problems, in-
cluding mechanical problems traditionally solved solely
by physical models. The various works referenced in
this article illustrate how this transformation is taking
place and bringing advantages to acoustic and struc-
tural dynamic field. Despite the current progress, much
should be done to scale DT implementation and to take
full advantage of them.

Integration is a cornerstone on this path and two
main discussions field are raising in this direction: Digi-
tal Twins, which approach the concept of integrating all
levels of simulation and information of an asset through
its life-cycle; and Physics Guided Machine Learn-
ing, in which physics knowledge is embedded into data-
driven methods to support learning of consistent repre-
sentations. Next, these and other topics are discussed
to evaluate future paths in ML research applied to vi-
broacoustic problems through the observation of recent
results of ML in other physic domains and through the
observation of the current gaps in the field.

6.1. Digital Twin
The Digital Twin is a time-evolving highly fidelity
replica of a product/process, with a bidirectional con-
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nection of information. The concept was first addressed
in 2003 by Grieves in a presentation on Product Lifecy-
cle Management (PLM) [330], but it only spread with
the famous article by Glaessgen and Stargel [331]. This
article envisioned the great potential of DT as an in-
tegrated multiphysics and multiscale simulation of the
real system using the best physical models and data
available, to create a virtual copy able to continuously
forecast the system health and create plans to mitigate
the damage or improve performance while accounting
for the system associated uncertainties.

However, the concept of DT is still loose and broad
and is constantly evolving while DT enablers are under
ongoing development and DT applications are spread-
ing to many sectors. In view of this, several works fo-
cused on reviewing the characteristics and achievements
of the DT [85, 302, 332-344].

According to Gardner et al. [312], the Digital Twin
is built from components from four main categories:
simulations which model the physics of the system;
the knowledge from experts and previous experiences
about the product and the environment variables; the
available data of the physical twin; and the connectiv-
ity which links the other elements and gives DT the abil-
ity to evolve with information. These components and
their interconnections are the building blocks for creat-
ing a Digital Twin, as illustrated in Figure 14.

As pointed out by many authors [330, 332, 337, 339,
343, 345-347], the DT must evolve throughout the life
of the product. During the product development, where
DT is called Digital Prototype [332], surrogate models
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are used to explore the design space, leading to op-
timized and robust design. During the usage phase,
monitoring the product and its environment assists in
the early detection of failures, optimization of control
strategies and mission planning. Data can also be pro-
cessed and merged to generate virtual sensors, leading
to more informative operation without extra hardware
[348, 349]. Finally, component life estimation is used to
optimize scheduled maintenance and to support end-of-
life decisions on disposal, reuse and market value [350].
A representation of the Digital Twin components, ad-
vantages and uses throughout the life cycle is shown in
Figure 15.

The information collected throughout the product life
cycle also helps in the design of the next generation, as it
is possible to evaluate the components that were over-or
under-designed. Moreover, DT could make it possible
to investigate the causality of the observed phenomena
by exploring sensitivity features in Section 5.2. There-
fore, a complete DT must store and manage the product
data, as well as integrate data-driven and high-fidelity
simulations, both for an individual product (Digital In-
stance) and an assembly of them (Digital Aggregate)
[332]. In summary, the DT aims to avoid wasting valu-
able data and information.

A complete DT does not exist yet, and its implemen-
tation might take decades of further development, as
predicted by Glaessgen and Stargel [331]. However,
integrating several key elements has led to the devel-
opment of incomplete DTs that are noteworthy. One
example aforementioned is the DT applied to SHM de-

26

veloped by Karve et al. [95], which merges data and
physical-driven methods to perform a mission-planning
that minimizes damage while accounting for uncertain-
ties, meaning that the DT is time-evolving and has a
bi-directional connection.

The DT of an aircraft implemented by Kapteyn et al.
[96] points to an interesting route. The DT identifies the
current damage scenario through a classification method
and selects the proper surrogate model, making an in-
formed decision to replan the maneuvers. Aivaliotis
et al. [349] presents a methodology of DT implementa-
tion in predictive maintenance, including physics-based
modeling, virtual sensors modeling, automatic calibra-
tion of model parameters. The implemented DT is used
to deliver RUL predictions, as demonstrated in the case
study of an industrial welding robot.

Gardner et al. [312] implemented a DT in several
stages. First, measured data was used to calibrate the
physical model parameters. Then the outputs of this
model are used as input of a GPR, which ameliorates
the output prediction to care for uncertainties and non-
modeled physics using online adaptive sampling. The
methodology is demonstrated in the model of the three-
storey structure, as shown in Figure 16. Although the
physical model used was linear, the DT could predict
the nonlinear behavior resulting from the contact be-
tween column and bumper, which occurs at specific ex-
citations. Besides that, as the DT is trained with lagged
information and can make predictions steps ahead in
time, it is conveniently used in the Active Control of
the structure.



Table 1: Advantages of Physics-Guided Machine Learning distinguishing the contributions of the data-driven approach and of the embedded

physics knowledge.

Advantages of PGML provided by the data-
driven model

Advantages of PGML provided by the physics em-
bedded on it

Improve state-of-the-art physical models by compris-
ing unknown relations;

Solve inverse problems and lead to better parameter
identification in the physical model;

Handle noisy input;

Reduce model order;

Estimate aleatory and epistemic errors bounds;
Mitigate instability issues in time integrators;
Provide lagged predictions to active control;
Discover governing equations and unknown physics;

Computationally cheap to evaluate.

6.2. Physics Guided Machine Learning

The big drawback of ML models, especially when
applied to physical problems, is the lack of the theo-
retical base and interpretability, raising skepticism with
ML by part of the scientific community. Indeed, ML
models may lead to physically inconsistent results, may
fail to generalize to unseen scenarios, and rely on the
availability of big data. However, Physical-driven mod-
els (PDM) rely on hypotheses and simplifications of the
real boundary conditions and struggle to account for un-
certainties and historical and environmental conditions.
Physics Guided Machine Learning (PGML) is an incip-
ient but fast-growing research field which suggest merg-
ing physics-driven and data-driven model to take the
best of both worlds, as shown in Table 1 [302, 351-354].

Recent reviews by Willard et al. [302], Karpatne et al.
[351], Rai and Sahu [355] and Wang and Yu [352] clas-
sify and describe PGML works developed in different
domains in the last years. In his thesis, Stender [356]
develops a data science process for mechanical vibra-
tions explicitly considering physics aspects in all steps
of the process, namely obtain, pre-process, transform,
model, and explain (OPTME). Some of the ML applied
in SHM, Active Control, and surrogates from the last
sections might be classified as PGML.

The state-of-art of PGML is described here according
to the configurations in which the physical knowledge
is merged with the ML algorithm, as illustrated in Fig-
ure 17. Two categories can be defined: Physics lever-
aged by Machine Learning, in which ML models are
used to improve the results from the simplified physical
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Improve ML predictions with domain knowledge and
inductive bias;

Provide physically consistent models;

Reduce or end need of data;

Increase interpretability of ML model;

Improve ML generalization for unseen scenarios;
Reduce search space of ML algorithm

Improve long term-forecasting.

models; and Machine Learning leveraged by Physics,
in which physical laws and constraints are intrinsically
embedded into the ML, guiding it to have physical con-
sistent results. Willard et al. [302] presented a simi-
lar categorization and provided a table associating each
PGML configuration with an objective for which it may
be appropriate.

One way in which ML can leverage the results of
physical simulations is when the results of the latter
(and possibly its inputs) are used as ML input in a In-
series hybrid model configuration. The ML is trained
to correct the results of the physical model by using the
output of the real system as the target [312, 357]. Sim-
ilarly, in Residual Modelling, ML learns to model the
PDM error, therefore the ML can correct the PDM out-
put or classify its validity, as in [353, 358-362]. Finally,
the ML can be used just as a sub-process of the PDM to
evaluate one of its parameters [95, 363-367].

In the configurations that physics leverage ML, the
structure is case-specific since it depends on the phys-
ical equations which govern the system. The most
common approach is Physics Guided Loss [357, 368—
374], in which the loss function contains penalization
terms for non-physical predictions, e.g., an unexpected
non-monotonic behavior. A thorough case of Physics
Guided Loss is in Physics-Informed Neural Network
(PINN) [375-385], in which the loss function is solely
composed of the residue of a partial differential equation
formulated in its derivative form. The equation vari-
ables are also the NN inputs, therefore the residue (loss
function) is minimized by using automatic differentia-
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tion of NNs [386] and the equation is solved with no
data needed. PINN also solves inverse problems, dis-
covering equation parameters or constitutive relation-
ships [387-396].

Another popular approach is Physics-guided archi-
tecture, in which a physical behavior is inserted some-
how in the model architecture. At some level, this is
done to insert sequential behavior in RNN, for example.
Expected physical behavior can be embedded through
constraints in weighs and biases [397] or intermediate
variables [371, 398].

Zhang et al. [211] used LSTM and graph-based ten-
sor differentiator to enforce physical constraints in the
architecture and loss-function of metamodels of nonlin-
ear structural systems. Besides improving the predic-
tion accuracy and robustness, the PGML implemented
in [211] models non-observable latent nonlinear state
variables, such as the hysteretic meter, and nonlinear
restoring force, delivering a more interpretable surro-
gate.

Elements of physics-guided loss and physics-guided
architecture are used in Neural ordinary differen-
tial equations (NODE) and Energy-Conserving Neu-
ral Networks (ECNN). In NODE:s, explicit integration
steps are performed in each layer of the NN as one
step evaluation of a common ODE solver [399-403].
In ECNN, the structure of Lagrangian and Hamiltonian
equations have been embedded into the NN construction
to ensure an energy conservative behavior, as reviewed
by Lutter and Peters [404] and implemented in different
structures in [399, 405-413].
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Willard et al. [302] survey presents other approaches,
while Ba et al. [414] merged several PGML approaches
to create an NN able to generalize well to different me-
chanical problems. Although it is a new topic, sev-
eral recent works employed PGML, underlying its po-
tential. However, most PGML research concentrate in
other fields, e.g., fluids dynamics [22, 359, 415], lake
modeling [357, 368, 369, 371, 416], climate modelling
[417, 418] and material science [21, 419, 420]. The
spread of PGML techniques to other domains is a matter
of time.

For example, NODE and ECNN can be used as time
integration solvers for modeling structural dynamics
and acoustics and the physics information can help to
solve the difficulties posed by the rough and discontin-
uous behavior of these systems. Recently, [421] cre-
ated a PGML of a structural dynamic system using an
RNN encoding the equation of motion. The PGML
showed superior results even for scarce and noisy data,
with better generalizability and robustness compared to
purely data-driven. Besides that, it allowed time-saving
by applying big time-steps without facing stability is-
sues from the purely mechanistic approach. NODE and
ECNN are suitable for introducing inductive biases in
dynamic systems. Examples of how this approach can
improve ML performance under high nonlinearities and
discontinuities are presented in recent works which ap-
plied ECNNSs to leverage data efficiency in non-smooth
contact dynamics problems [214, 422].

Yin et al. [423] introduced the APHYNITY frame-
work to augment physical models with data information



applied to dynamics forecasting. The Residual Model-
ing approach considers that the final response consti-
tutes in both physics and ML models while ensuring
that the ML response contribution is minimal so that the
physics explains most of the prediction as possible. In
addition, ECNNSs are used in the APHYNITY frame-
work to ensure physical consistency. The work presents
results for reaction-diffusion equations, wave equations,
and nonlinear damped pendulum, showing better accu-
racy than the simplified physical-based model and the
solely data-driven approach. APHYNITY also lever-
aged the identification of physical parameters.

Thus, PGML could ameliorate ML techniques used
in the applications mentioned in this paper, increas-
ing the coherence, interpretability, and reliability of
ML models in structural dynamics and acoustic. Be-
sides that, a burgeoning discussion explores how to
use PGML to unveil unknown governing equations and
physics intuition based on data [293, 294, 369, 424—
426]. Recently, Lai et al. [427] applied NODE to
learn the governing structural dynamics and experimen-
tally showed its effectiveness in a structure equipped
with a negative stiffness device. Incipient research ap-
plied ECNN to learn the dynamics of the pendulum and
multi-body problems [399, 405, 428, 429]. Further re-
search in the area might consider dynamic system with
flexible elements.

6.3. Research gaps and emerging opportunities

This survey identified drawbacks and difficulties in
the employment of ML in SD&V that should be ad-
dressed in future works. Based on the spotted research
gaps and in the observed research trends in the integra-
tion of ML with other physical sciences, some future
research opportunities that arise are:

e Explore the many configurations of Physics-
Guided ML in vibroacoustic problems to enforce
physics consistency and improve accuracy, as car-
ried out in other physical domains by [211, 404].

e Ameliorate ML interpretability with sensitivity
analysis [162] and PGML [211].

e Use ML to discover governing equations [293,
294, 369, 424-426] and meta-materials [21, 419]
in SD&V problems.

o Create a Digital Twin in the vibroacoustic domain
by using entire life-cycle data, integrating multi-
ple assets information, and performing real-time
decision-making.
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Investigate lifelong learning [430] applied to SHM,
Active Control, and Product Design.

e Overcome problems due to the lack of a dedicated
database in SHM through transfer learning meth-
ods, similitude methods applied to SHM signals,
and crowd-sourcing database [247].

Use trained ML models to identify and mitigate the
cause of failures.

e The research exploring surrogate models in vi-
broacoustic problems is still incipient. To over-
come the difficulties because of the rough be-
havior of the functions, one should investigate
approaches such as learning from the function
derivatives [431], global surrogates with local re-
finements, domain-decomposition methods [300],
Adaptive Sampling [301], and Physics-Guided
Machine Learning methods [302].

e Present a systematic study to clarify in which sce-
narios a surrogate model is justifiable in SD&V
applications, considering the problem dimension-
ality, function smoothness, number of supporting
points, loss of accuracy, and time gains.

e Study methods to improve robustness of ML-based
control of noise and vibration, as adversarial re-
ward learning with reinforcement learning [432],
NN with provable guarantees [433], and many oth-
ers presented in [434].

7. Conclusion and Discussion

This article presents a review of the intersection be-
tween the fields of Machine Learning (ML) and Struc-
tural Dynamics and Vibroacoustic (SD&V). First, the
main ML methods are revised, paving the way for a
broader and more advanced understanding of ML tools
applied in the field. Subsequently, the reviewed liter-
ature reveals the ability of ML to perform critical tasks
in SD&V, often surpassing physics-based methods in ef-
ficiency and accuracy. ML is notable for handling non-
linear analyses, uncertainties, and expensive/unmodeled
physical problems. Three major application areas were
identified: Structural Health Monitoring (SHM), Active
Control of noise and vibration, and vibroacoustic Prod-
uct Design.

The capabilities of ML in extracting and recognizing
fault patterns from monitored signals in the time and
frequency domain make SHM the most developed and
explored of these areas. Recurrently used data transfor-
mation and preprocessing methods are presented with



examples of their significance in prediction accuracy.
The prominence of Deep-learning methods in SHM
is noteworthy since they automatically extract relevant
features and reveal more complex patterns. SHM al-
lows early failure detection and enables Remaining Use-
ful Life predictions. Consequently, SHM avoids catas-
trophic failures and might implement a preventive main-
tenance schedule to optimize uptime, maximizing the
use of component lifetime. In addition, ML methods lo-
cate and classify damage and plan actions to minimize
risks. Therefore, ML for SHM results in operational
safety and economic savings, with simpler implementa-
tions and better efficiency than model-based methods.

The correspondence between the areas of ML and
Active Control of Vibration and Noise is natural since
both have data-based optimization as a pillar. Thus, ac-
tive control theory exploits ML tools by various means.
System identification and reduced-order modeling tech-
niques use ML to model the system under control. ML
methods also support the study of the optimal loca-
tion of sensors and actuators. Various control sys-
tem approaches and configurations use ML methods
to optimize controller parameters and policies, offline
or online. Usually, ML applications in Active Control
are justified and show better performance than tradi-
tional methods in nonlinear and complex scenarios. Al-
though the memory and processing costs of ML algo-
rithms are prohibitive in many control applications, the
computer science advances occurring in parallel should
make them affordable in more scenarios.

Replacing costly high-fidelity simulations with fast
ML-based surrogate models also enhances product de-
sign. The alleviation of the computational cost enables
the evaluation of more designs, allowing uncertainty
propagation and optimization analyses. Moreover, the
statistical ground of ML methods makes them suitable
to handle uncertainties, being that many have built-in
sensitivity analysis to improve the comprehension of the
system physics and ML interpretability. Besides that,
ML surrogates trained with adaptive sampling require
fewer observation points, while ensuring better accu-
racy near regions of interest, being widely used in op-
timizations. Despite the advantages, surrogates are not
used in SD&V as often as in other domains. This oc-
curs mainly because of the difficulties found by ML
when fitting functions with rough behavior, recurrent in
SD&V. However, methods such as domain subdivision,
adaptive sampling, local refinements, and ML guided
by physics are areas of potential study to overcome this
issue.

The wide range of ML application possibilities in
SD&V and the advantages of this integration are ex-
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plicit in this article, justifying the great interest in the
area. Furthermore, the advances of successful recent re-
search, likewise the analysis of ML uses in other fields
of natural science, point to a path of opportunities. Con-
nectivity and data management are the key aspects ex-
plored in the Digital Twins concept, which aims to ben-
efit from the data and knowledge available to improve
Product Lifecycle Management. Incorporating more
theoretical and expert knowledge into ML models, as
studied in Physics Guided Machine Learning models, is
another trend subject of research, onde it leads to more
interpretable models, less need for training data, and
more physically consistent predictions. The drawbacks
and difficulties identified in the application of ML in
SHM, Active Control and Product design also show the
open discussions and room for progress. The authors’
perspectives for the upcoming research fields merging
ML and SD&V were compiled in a list to be used as a
guideline for future research.

The extensive review presented reinforces that ML
can strongly collaborate for the development of SD&V
projects that are safer, more stable, controllable, robust,
and optimized in design and operation. In conclusion,
the union of data-driven and physics-driven methods
can lead to a greater understanding of phenomena in-
volved in SD&V analyses and open the way for further
developments in the field.
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