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and Piecewise Determined Mixing Models
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Abstract—Blind source extraction (BSE) aims at recovering
an unknown source signal of interest from the observation of
instantaneous linear mixtures of the sources. This paper presents
Cramér-Rao Lower Bound (CRLB) for the complex-valued BSE
problem based on the assumption that the target signal is
independent of the other signals. The target source is assumed to
be non-Gaussian or non-circular Gaussian while the other signals
(background) are circular Gaussian or non-Gaussian. The results
confirm some previous observations known for the real domain
and yield new results for the complex domain. Also, the CRLB for
Independent Component Extraction (ICE) is shown to coincide
with that for Independent Component Analysis (ICA) when the
non-Gaussianity of background is taken into account. Second,
we extend the CRLB analysis to piecewise determined mixing
models, where the observed signals are assumed to obey the
determined mixing model within short blocks where the mixing
matrices can be varying from block to block. This model has
applications, for instance, when separating dynamic mixtures.
Either the mixing vector or the separating vector corresponding
to the target source is assumed to be constant across the blocks.
The CRLBs for the parameters of these models bring new
performance limits for the BSE problem.

I. INTRODUCTION

Blind source separation (BSS) aims at recovering a set of
unobservable signals, called sources, from a set of observed
mixtures of the sources [1]. This problem has drawn a lot
of attention from the signal processing and machine learning
communities over the last two decades, especially due to the
vast amount of application domains where it is pertinent and
has produced useful results. When the sources are statistically
independent, BSS can be solved through the statistical tool of
independent component analysis (ICA). Blind source extrac-
tion (BSE) is a related problem where the goal is to estimate
a particular source of interest (SOI) in the set of unobservable
signals. BSE is motivated by the fact that, often, targeting the
SOI may be considerably more cost-effective than separating
the whole set of sources from the observed mixture.

A wide variety of signal processing methods for BSS and
BSE have been proposed in the literature; a thorough review
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can be found in [1]. Because different methods may typically
provide different results, a fundamental question is the perfor-
mance limits that can be attained in a given scenario regardless
of the methods employed. Cramér-Rao lower bounds (CRLB)
are useful for this task, and have been therefore studied, e.g.,
in [2]–[5].

The present paper focuses on the BSE problem where the
SOI is assumed to be independent from the background, a
problem closely related to ICA. Our contribution is two-fold.
In the first place, the standard determined mixing scenario
is considered, where the BSE problem is formulated through
the recently proposed approach called independent component
extraction (ICE) [6], based on a particular parameterization
of the mixing system. In the second place, we focus on the
piecewise determined mixing model that is usually designed
for dynamic mixtures, e.g., the moving source in a static
background is studied in [7].

In the assumed model, the observed samples are partitioned
into several blocks where the samples in each block obey
the standard determined model. Piecewise models extend the
standard BSS/BSE problem, typically defined in the context
of instantaneous mixtures, to the more general case of con-
volutive mixtures, as they naturally arise when transforming
the observations into the frequency domain. We compute the
CRLBs of two piecewise determined mixing models used for
BSE.

The paper is organized as follows. The BSS and BSE prob-
lems are recalled in Section II, together with the main results
found in the literature. Section III is devoted to the standard
determined mixing model and the above mentioned issues
related to the CRLBs. Section IV introduces the piecewise
determined mixing models, and derives the related CRLBs
using the results of Section III. The computed theoretical
bounds are discussed and compared in Section V by analyzing
several special cases. An experimental validation is presented
in Section VI, while the conclusions of Section VII bring the
paper to the end.

II. PROBLEM STATEMENT

A. Mathematical Notation

Throughout the paper, plain, bold lowercase and bold
capital letters denote, respectively, scalars, vectors and ma-
trices. Symbols (·)T , (·)H and (·)∗ denote, respectively,
transposition, conjugate transpose and complex conjugate.
The Matlab convention for matrix/vector concatenation and
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indexing will be used, e.g., [1; g] = [1, gT ]T , and (A)j,:
is the jth row of A. Notation E[·] stands for the expec-
tation operator. In this paper, complex-valued signals and
parameters will be considered. A complex random vector
x is called circular if its pseudo-covariance, defined as
pcov(x) = E

[
(x− E[x]) (x− E[x])

T ], is null. Otherwise, x
is non-circular. The second-order circularity coefficient ρ of a
complex-valued random variable x with zero mean, see [8], is
defined as in [9] ρ =

∣∣E[x2
]∣∣ /E[|x|2]. Thus, ρ ∈ [0, 1], and

ρ = 0 for circular random variables.

B. Signal Models

Classical BSS considers the instantaneous linear mixing
model

x = Au (1)

where x is a d×1 vector representing d observed signals, u is a
n×1 vector of source signals, and A is a d×n mixing matrix.
Throughout the paper, we will consider the more general
case of complex-valued sources and mixing matrices; the real-
valued case will be addressed in Section IV.F.

The goal of BSS is to separate u from x using only
information provided by the observed samples [1]. BSE aims
at separating only one source, referred to as the SOI, from
the remaining sources in x, which are called background. The
standard model considers the so-called determined or square
case, where the number of sources is the same as that of the
observed signals, n = d and A is hence a square d× d non-
singular matrix. ICA is a popular BSS method based on the
assumption that the source signals are mutually independent.
Under this assumption, the estimation of A and of A−1 is
equivalent to the separation of u, which can be carried out by
finding a square de-mixing matrix W such that

û = Wx (2)

are as independent as possible. Identifiability and separability
conditions are analyzed in [8].

Another interesting model often arises when separating
convolutive mixtures in the frequency domain [10], in the
problem of independent vector analysis (IVA) [11] or yet in
joint BSS, where several instantaneous mixtures are observed:

xk = Akuk, k = 1, . . . ,K. (3)

Here, k plays the role of the mixture or dataset index, e.g.,
the frequency bin index when transforming a convolutive
mixture into the frequency domain. The source signals uk =
[uk1 , . . . , u

k
d]T are assumed to be mutually independent while

vector components ui = [u1
i , . . . , u

K
i ]T , i = 1, . . . , d, have

elements that can be mutually dependent. The latter property
is exploited for joint separation of the set of mixtures.

In piecewise determined mixing models, it is assumed that
the observed samples of mixed signals can be partitioned into
M blocks where the samples in each block obey the standard
determined model (1). The mth block is thus described by

xm = Amum, m = 1, . . . ,M, (4)

where the source signals um = [um1 , . . . , u
m
d ]T are indepen-

dent. The mixing matrices A1, . . . ,AM as well as the source

signals (their distributions) may vary from block to block.
The model thus involves dynamic mixing as well as a special
underdetermined case (more sources than sensors) since there
can be up to Md sources. As we will see later in the paper, the
fact that the mixtures are determined within the blocks allows
the analytic computation of the CRLB.

The ideas of the joint mixing and of the piecewise deter-
mined mixing models can be yet combined together (dataset
and block indices are needed) [12]. Also, since the algebraic
definitions (3) and (4) are formally identical, IVA can be
considered for solving the latter problem; see, e.g., [13]. In
this paper, we will focus on the single-dataset mixing models
(1) and (4); the other variants exceed the scope of this paper.
Before presenting our contribution, we turn to a review of the
existing literature.

C. Overview of Existing Results
1) Independence-based BSS/BSE methods: BSE methods

based on source non-Gaussianity had been studied even be-
fore ICA was formulated [14], [15] in Comon’s pioneering
paper [16]. Then, the theory of ICA has been established since
90s; see, e.g., [1], [2], [17], [18]. The relation of the non-
Gaussianity based BSE methods has been described through
information theory and the properties of the Kullback-Leibler
divergence (mutual information) and entropy [19]. ICE is a
recent revision of this relation based on an algebraic mixing
model, as will be recalled in Section III, and maximum
likelihood estimation [6].

ICA has been used for blind separation of convolutive
mixtures in the frequency domain [10], where the mixture
is transformed into a set of complex-valued instantaneous
mixtures, with one mixture per frequency. The problem, called
frequency-domain ICA (FDICA), is formally described by (4),
however, m plays the role of the frequency bin index. When
ICA is applied separately to each mixture, the indeterminacy of
the order of separated component gives rise to the permutation
problem [20], and the separated frequency components must
be reordered in order to allow for the separation of signals in
the time domain.

To avoid the permutation problem, IVA has been proposed
[11]. Here, the algebraic model given by (3) remains the
same as in FDICA while the statistical model involves the
assumption that independent components belonging to the
same source are mutually dependent and form so-called vector
components. The idea of IVA have become very popular due to
its wide applicability far beyond audio source separation [21]–
[23]. Its variant for BSE appeared, e.g., in [24], and has been
recently formulated as independent vector extraction (IVE)
in [6].

Another recent advance in this line represents independent
low rank matrix analysis (ILRMA) where the statistical model
of a vector component (representing one source) assumes that
its spectrogram has a low-rank structure. For example, ILRMA
combines IVA and nonnegative matrix factorization (NMF)
in [25], [26].

In BSS/BSE, there is a wide class of methods based on
Gaussian statistical signal models, as compared to the non-
Gaussianity-based methods considered in this paper. Those
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methods exploit only second order statistics (SOS) and their
algebraic properties. For example, the analogy of the standard
ICA problem based on SOS boils down to the problem of joint
approximate diagonalization (JAD) of covariance matrices;
see, e.g., [27]–[30] and references therein. Similarly to IVA,
the SOS-based methods were considered in [31], [32]; see also
[33].

2) Locally Determined Models for Underdetermined BSS:
When the mixing model (1) involves more sources than
observations (n > d), the source extraction/separation and the
mixing matrix identification problems are no longer equivalent.
Therefore, they are typically treated separately in two step
procedures. For example, the estimation of A can be done
by applying a decomposition to a tensor that is built from
covariance matrices [34] or higher-order based statistics [35],
[36]. Then, various array processing methods can be applied
to extract the sources [37], [38].

There are also BSS methods that treat the underdetermined
problem by assuming a certain local condition guarantee-
ing that the every sample or time-frequency point involves
maximally d sources. Most typically, blind speech separation
methods exploit the time-frequency sparsity of speech signals
[39], [40]. Other methods assume that there are single-source
points or regions and the separation mainly relies on a detec-
tion of these regions [41], [42]. Locally determined mixing
is considered, e.g., in [43]. The ICA models presented in
Section III could be considered as members of the class of
locally determined models for BSE, where identification and
extraction proceed jointly.

3) Performance bounds: Performance limitations of ICA
based on the standard determined mixing model have been
well investigated in the literature. It is known that A in (1)
can be identified up to the order and scales of its columns if it
holds that at most one source signal has the complex Gaussian
pdf or that no two complex Gaussian source signals have the
same circularity coefficient [8]. Then, a de-mixing matrix W
can be estimated as such that G = WA ≈ PΛ, where P and
Λ is a permutation and diagonal matrix (with nonzero diagonal
entries), respectively. G reflects the separation accuracy as its
ijth element, Gij , determines the presence of uj in the ith
separated signal ûi, so there is a clear correspondence between
the elements of G and the Interference-to-Signal Ratio (ISR)
of the separated signals. For the real-valued (and similarly for
the complex-valued) ICA problem, it was derived using the
CRLB that the ISR of the ith separated source obeys

E[ISRi] ≥
1

N

d∑
j=1,j 6=i

κj
κiκj − 1

(5)

where N is the number of i.i.d. samples [3], [5]; κi = E[|ψi|2]
where ψi(x) = −∂/∂x log pi(x) is the score function related
to pi, and κi = κiσ

2
i where σ2

i is the variance of ui; κi
corresponds to κi when pi is normalized to unit variance. It
holds that κi ≥ 1, and κi = 1 if and only if the ith pdf is
circular Gaussian. Hence, the denominator in (5) approaches
zero when both the ith and the jth source signals are close to
circular Gaussian.

This brings some issues into question regarding the BSE
problem. Without loss on generality, let (d−1) source signals
in the mixture be circular Gaussian but not so the first source
(SOI). Then, A is no more identifiable, and the CRLB (5)
formally does not exist. However, BSE methods exploiting
the non-Gaussianity of the SOI are known for their ability
to blindly extract that source; see, e.g., [3]. Moreover, their
asymptotic performance analyses have shown that their accu-
racy is limited by

E[ISR] ≥ 1

N

d− 1

κ− 1
, i = 2, . . . , d (6)

where κ = κ1; see, e.g., [3], [44], [45]. This asymptotic bound
coincides with the right-hand side of (5) when considering
i = 1 and κj = 1 for j = 2, . . . , d.

A formal confirmation of this bound for the real-valued
case has been proven recently in [46] through computing the
CRLB for the ICE mixing model, that is, assuming that the
mixing matrix is structured as described by (8) and that the
background signals are Gaussian.

D. Summary of our Contribution

In the first part of this paper (Section III), we generalize
the above result for the complex-valued case where the SOI
is assumed to be non-Gaussian or non-circular Gaussian. The
background is modeled as circular Gaussian or circular non-
Gaussian. We avoid the case with non-circular background,
for simplicity, as it is computationally less tractable and its
analysis goes beyond the scope of this paper. We show that
the CRLB of ICE coincides with the bound for ICA when the
background is circular Gaussian, as in the real-valued case.
Moreover, we also show that these bounds coincide when the
background modeling in ICE takes into account possible non-
Gaussianity of the background. In the second part of the paper
(Section IV), these results are generalized to the piecewise
model (4) and to its special variants by extending the ICE
parameterization. The results of the former part fill in the
gaps currently existing in the theory of ICA/ICE performance
bounds. To the best of our knowledge, the results of the
latter part are completely original as this is the first work that
considers the performance bounds of the piecewise determined
mixtures.

III. CRLB FOR DETERMINED MIXING

A. Algebraic Model

We begin our development by briefly explaining the ICE 
parameterization recently proposed in [6]. It is assumed, with-
out loss of generality, that the separation system is designed to 
extract the first source u1, which plays the role of the SOI in 
(1). Then the mixing matrix can be partitioned as A = [a, A2] 
and the observations x can be written as

x = Au = as + y (7)

where s = u1, y = A2u2 and u2 = [u2, . . . , ud]T. Since 
neither u2 nor A2 need to be estimated in order to extract 
s, we can consider any auxiliary background signals z such 
that y = A2u2 = Qz, where the columns of Q span the
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same subspace as that of the columns of A2. Compared to
u2, the elements of z need not be independent, so Q can
be arbitrary in this sense. Now, according to the ICE model,
the mixing matrix and its inverse (de-mixing) matrix can be
parameterized, respectively, as

AICE =
(
a Q

)
=

(
γ hH

g 1
γ

(
ghH − Id−1

)) (8)

WICE = A−1
ICE =

(
wH

B

)
=

(
β∗ hH

g −γId−1

)
(9)

where a denotes the first column of A, which is the mixing
vector related to u1 partitioned as a = [γ; g], and w is the
separating vector such that wHx = u1, partitioned as w =
[β; h]. Symbol Id denotes the d×d identity matrix, and β and
γ are linked through

β∗γ = 1− hHg. (10)

To understand the structure of parameterizations (8) and (9),
one just needs to take into account that a satisfactory source
extraction fulfills the following three conditions

Ba = 0 (11)

wHQ = 0T (12)
WICEAICE = Id. (13)

The first two conditions are, in fact, included in the third one.
These conditions ensure that wHx = s and Bx = z, in other
words, that WICE is de-mixing, i.e., it extracts s from x and
separates it from z. The ICE algebraic model can thus be
written as

x = AICEv (14)

where v = [s; z].
Remark that this parameterization does not impose any

restriction in the sense that the mixing matrix A in (1) must
obey the structure given by (8) in order to extract u1. In
fact, the extraction of the background subspace is ambiguous
because any transformation of that subspace does not affect
the independence of the background from the SOI, and (8),
resp. (9), is just a particular choice guaranteeing Ba = 0. The
ICE formulation enables us to compute the CRLB as we did
in [46] for the real-valued case and Gaussian background. As
compared to [46], the contribution here is that the bound is
derived for the complex-valued case and it involves also the
non-Gaussian background.

B. Statistical Model

The fundamental assumption of ICA/ICE states that s and
z are independent, which means that their joint pdf can be
factorized as the product of marginal pdfs. Let the pdfs of s
and z be denoted ps(s) and pz(z), respectively. Using (14),
the pdf of x is

px(x) = ps(w
Hx)pz(Bx)|det(WICE)|2 (15)

where det(WICE) = (−1)d−1γd−2.

C. Indeterminacies

ICE involves that same indeterminacies as ICA as the
problem is solved through finding vector parameters w and
a such that s and z are independent. It follows that any
independent component of x could play the role of s, because
of the order indeterminacy of the original components in (1).
In this work, this problem can be overlooked as the CRLB
analysis is local. In practice, any estimating algorithm must
be properly initialized in order to extract the desired source.

The scales of s and of a are ambiguous in the sense that s
and a can be substituted, respectively, by αs and α−1a with
any α 6= 0. This is know as the scaling ambiguity problem.
Since Interference-to-Signal Ratio is invariant to the scaling,
we can later cope with this ambiguity by fixing some scalar
parameter in the mixing model. In this section, we put γ = 1.
According to (15), this choice guarantees |det(WICE)| = 1,
thus ensuring the non-singularity of the separating matrix.

D. Interference-to-Signal Ratio

Let ŵ be an estimated separating vector w. Using (7), the
extracted signal is equal to ŝ = ŵHx = ŵHas + ŵHy =
ŵHas+ ŵHQz. The ISR of the signal is

ISR =
E[|ŵHy|2]

E[|ŵHas|2]
=

qH2 Czq2

|q1|2σ2
s

≈ 1

σ2
s

qH2 Czq2 (16)

where qH = [q1, qH2 ] = [ŵHa, ŵHQ], and Cz stands for
the covariance matrix of z. The last approximation in (16)
is valid for sufficiently small estimation error in ŵ, which is
of the stochastic order of Op(N−1/2), having covariance of
the order of O(1/N). Here, Op(·) represents the stochastic
order symbol [47]. Note that the ISR has the same asymptotic
variance, of the order of O(1/N), as the corresponding CRLB.
In the approximation (16), we ignore a term of the stochastic
order of Op(N−3/2), because q ≈ e1 + Op(N

−1/2), where
e1 is the unit vector. Then, the mean ISR value reads

E [ISR] ≈ 1

σ2
s

E
[
qH2 Czq2

]
=

1

σ2
s

tr
(
CzE

[
q2q

H
2

])
. (17)

Hence, (17) can be written as

E [ISR] ≈ 1

σ2
s

tr (Czcov (q2)) (18)

where we can see that the covariance matrix of q2, denoted
as cov (q2), characterizes the accuracy of ŵ. By replac-
ing cov (q2) by the corresponding CRLB, we obtain the
algorithm-independent Cramér-Rao-induced bound (CRIB) for
ISR [4].

E. Cramér-Rao-induced Bound

Let the parameter vector be θ = [a; w]. In the following, we
exploit a transformation rule saying that the Fisher Information
Matrix (FIM) of θ, denoted as Fθ, and the FIM of a linearly
transformed version ϕ = Kθ, where K is a non-singular
matrix, are related through [48]

Fϕ = K−1FθK−H . (19)
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This property will be used to show that we can derive the CRIB
for (18) by considering CRLB when the mixing parameters are
h = 0. This property is related to the equivariance of the BSS
mixing model (1), see, e.g., [1], [49].

Now, consider the special case when h = g = 0, for which
the parameter vector is equal to θI = [e1; e1]. The transform
between θ and θI is given by

θ =

(
AICE 0

0 WH
ICE

)
︸ ︷︷ ︸

K

θI = KθI (20)

where AICE and WICE are, respectively, given by (8) and (9).
According to (19), it holds that

Fθ = KFθI
KH . (21)

Similarly, we can consider a transformed parameter vector

θq =

(
WICE 0

0 AH
ICE

)
︸ ︷︷ ︸

K−1

(
a
w

)
= K−1θ (22)

and it holds that Fθq = K−1FθK−H , which, together with
(21), results in

Fθq = FθI
. (23)

Hence, from (23) it follows that the CRIB for (18) can be
obtained by replacing cov (q2) by the corresponding CRLB,
which is equal to the CRLB for the unbiased estimation of h
when its true value is h = 0. Finally,

E [ISR] ≈ 1

σ2
s

tr(Czcov(ĥ)) ≥ 1

σ2
s

tr (CzCRLB (h) |h=0)

(24) 
where CRLB(h)|h=0 denotes the diagonal block of the inverse 
matrix of the FIM corresponding to the parameter vector h 
when h = 0. The inequality between the mean ISR and the 
corresponding lower bound is approximate, but its leading 
term is the same on both sides. Ignoring higher-order terms is 
common in the literature.

F. Fisher Information Matrix

To compute the CRLB, we use the approach for the
complex-valued parameters described in [48]. By putting
γ = 1, as justified in Section III-C, the only free parameters of
the mixing model (14) are h and g, so let the parameter vector
be θ = [h; g]. According to [48], for any unbiased estimator
of θ, it holds that

cov (θ) � J−1 (θ) = CRLB (θ) , (25)

where J (θ) is the FIM, and C � D means that C−D is a
positive semi-definite matrix. J (θ) can be partitioned as

J (θ) =

(
F P
P∗ F∗

)
, (26)

where

F = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)H]
, P = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)T]
(27)

and where the derivatives in (27) are defined according to
Wirtinger calculus. L(·) denotes the log-likelihood function
of (15), namely,

L(h,g|x) = log ps(w
Hx) + log pz(Bx). (28)

The derivatives of the log-likelihood function (28) are as
follows:

∂L(x|θ)

∂g∗

∣∣∣
h=0

= −ψz(z)s∗ (29)

∂L(x|θ)

∂h∗

∣∣∣
h=0

= ψ∗s (s)z (30)

where ψs(s) = −∂ ln ps(s,s
∗)

∂s∗ and ψz(z) = −∂ ln pz(z,z∗)
∂z∗ are

the score functions. Using (29),(30), F in (27) is calculated as

F =

(
σ2
sκz −Id−1

−Id−1 κsCz

)
, (31)

where

κs = E[|ψ(s)|2], (32)

σ2
s = E[|s|2], (33)

κz = E
[
ψz(z)ψHz (z)

]
. (34)

Now, we describe the computation of P in (26). Let P be
partitioned as

P =

(
Pg,g Pg,h

PTg,h Ph,h

)
. (35)

Then,

Pg,g = E
[
ψz(z)ψTz (z)

]
E
[
s∗2
]

(36)

Ph,h = E
[
ψ∗s (s)2

]
E
[
zzT

]
(37)

Pg,h = 0. (38)

G. Circular Sources

In general, the analytic computation of the inverse matrix
of (26) is not tractable. Therefore, we investigate two special
cases in the following subsections.

Here, we assume that s and z have general circular pdf. Un-
der this assumption, the FIM (26) obtains the block-diagonal
structure, because Ph,h = Pg,h = 0 due to the circularity of
z and Pg,g = 0 due to the circularity of s, and, then,

J (θ) =

 σ2
sκ
−1
z −Id−1 O

−Id−1 κsCz O
O O F∗

 . (39)

CRLB(h)|h=0 is obtained as the upper right diagonal block of
the inverse matrix of (39), which reads

CRLB(h)|h=0 =

(
κsCz −

1

σ2
s

κ−1
z

)−1

. (40)

Applying the transformation theorem in (34), it can be shown
that, for z̃ = Tz, it holds that

κz = Tκz̃T
H (41)

where T is a non-singular transformation matrix. By taking
T = C

− 1
2

z , which is a matrix satisfying that C
− 1

2
z C

− 1
2

z =
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C−1
z , then κz̃ corresponds to the statistic of uncorrelated and

unit-scaled z. Hence, (40) can be written as

CRLB(h)|h=0 = C
− 1

2
z

(
κsId−1 −

1

σ2
s

κ−1
z̃

)−1

C
− 1

2
z . (42)

By putting (42) into (24), the CRIB for ISR, when consid-
ering N observations, is

E [ISR] ≥ 1

N

1

σ2
s

tr

[(
κsId−1 −

1

σ2
s

κ−1
z̃

)−1
]
. (43)

Next, we can use the identity (41) again by considering
T such that elements of Tz̃ are statistically independent
random variables. Since elements of z̃ are uncorrelated and
normalized, such T must be unitary, i.e., TTH = Id−1. Also,
provided that all but one components in the original model (1)
are non-Gaussian, the entire mixture is separable, so Tz̃ must
be equal to u2 up to their order and scales. Without any loss
of generality, we can assume that T is such that Tz̃ = u2

and that u2 have unit variance. Then, κTz̃ is diagonal having
diagonal elements equal to κ2, . . . , κd, and (43) simplifies to

E [ISR] ≥ 1

N

d∑
j=2

κj
σ2
sκsκj − 1

. (44)

This bound corresponds with (5) for i = 1 since σ2
sκs =

κs = κ1, which means that the same extraction accuracy can
be achieved by ICE as by ICA. It should be, however, noted
that the multivariate score function ψz(·) must be known for
maximum likelihood estimation to be carried out [50].

In our considerations, we can go also slightly beyond the
standard ICA. Let the observed signals obey the model (14)
but not (1), that is, there need not exist T such that Tz̃
are independent (no independent components u2, . . . , ud are
assumed, only the independence between s and z). Since κz̃

is positive definite, we can consider its decomposition

κz̃ = UDUH (45)

where UH is the unitary matrix of eigenvectors of κz̃, and D
is diagonal with diagonal entries denoted as ω2, . . . , ωd. Then,
the CRIB presents a form similar to (44):

E [ISR] ≥ 1

N

d∑
j=2

ωj
σ2
sκsωj − 1

. (46)

H. Circular Gaussian Background

Here, we assume that s can be arbitrary non-circular and
non-Gaussian while z is circular Gaussian. Under this assump-
tion, Ph,h = 0, and since κz = C−1

z , also Pg,g = 0 thanks to
the circularity of z. The FIM thus shows a structure similar
to (39), namely,

J (θ) =

 σ2
sC
−1
z −Id−1 O

−Id−1 κsCz O
O O F∗

 . (47)

Hence,

CRLB(h)|h=0 =

(
κsCz −

1

σ2
s

Cz

)−1

=
σ2
s

κsσ2
s − 1

C−1
z .

(48)

Therefore, for N observations, the CRIB for ISR says that

E [ISR] ≥ 1

N

d− 1

κs − 1
. (49)

This result confirms the asymptotic bound given by (6) for
complex-valued non-circular SOI.

IV. CRLB FOR PIECEWISE DETERMINED MIXING

We now turn to the piecewise determined mixtures, in
general, described by (4). To deal with this model, we begin
by proposing a generalization of the ICE concept as follows.

A. Algebraic Model

Without any further assumption, (4) corresponds to a se-
quential application of the standard mixing model, which is
straightforward for on-line signal processing but does not bring
any advantage. Therefore, we propose special parameteriza-
tions useful for the BSE problem assuming that the SOI is
active in all blocks and some mixing parameters related to the
SOI are joint to all the blocks. Specifically, we parametrize
A1, . . . ,AM similarly to (8) and consider two special variants:

Am
CMV =

(
γ (hm)H

g 1
γ

(
g(hm)H − Id−1

)) (50)

Am
CSV =

(
γm hH

gm 1
γ

(
gmhH − Id−1

)
.

)
. (51)

The models will be referred to as constant mixing vector
(CMV) and constant separating vector (CSV), respectively,
because in CMV the mixing vectors a1, . . . ,aM are constant
over blocks and are equal to a while in CSV the separating
vectors w1, . . . ,wM are all equal to w. CMV is useful
for situations where the SOI is a static source while the
background is varying. CSV involves a moving SOI (varying
mixing vector) under the assumption that a constant separating
vector such that extracts the signal from all blocks exists.
These models have been considered for the first time in [12],
where they were applied to blind audio source extraction. This
paper provides their theoretical analysis through the CRLB
theory.

B. Interference-to-Signal Ratio

For simplicity, let the number of available samples in each of
M blocks be the same, equal to Nb. It holds that M ·Nb = N .
The variance of the SOI and the covariance matrix of the
background signals in the mth block will be denoted by σ2

sm

and Czm , respectively.
Let ŵm be an estimated separating vector for the mth block,

m = 1, . . . ,M . The ISR of the extracted signal evaluated over
the entire data is equal to

ISR =

∑M
m=1 E[|(ŵm)Hym|2]∑M

m=1 E[|(ŵm)Hamsm|2]
=

=

∑M
m=1(qm2 )HCzmqm2∑M

m=1 |qm1 |2σ2
sm

=

∑M
m=1 tr

(
Czmqm2 (qm2 )H

)
∑M
m=1 |qm1 |2σ2

sm

,

(52)



7

where (qm)H = [qm1 , (qm2 )H ] = [(ŵm)Ham, (ŵm)HQm].
Assuming “small” estimation errors, i.e., qm ≈ e1, similar
approximation to that in (16) gives

ISR ≈ 1∑M
m=1 σ

2
sm

M∑
m=1

tr
(
Czmqm2 (qm2 )H

)
. (53)

Using the equivariance property described in Section III-E, the
CRIB is, in general, obtained through

E [ISR] ≥ 1∑M
m=1 σ

2
sm

tr

(
M∑
m=1

CzmCRLB (hm) |hm=0
gm=0

)
.

(54)

C. Blockwise ICE

To extract the SOI from each block of data (4), the ICE
approach can be used. Then, the mixing and separating vectors
are estimated as parameters that are independent of the other
blocks. We will refer to this approach as block ICE (BICE).

Assuming that the background is circular Gaussian, the
CRIB for BICE follows from the results of Section III-H.
By putting (48) into (54) and using the fact all data are
independently distributed, the CRIB is given by

E[ISR] ≥ 1

Nb

d− 1∑M
m=1 σ

2
sm

M∑
m=1

σ2
sm

κsmσ
2
sm − 1

. (55)

It is worth comparing this bound with CRIBs derived for the
CMV and CSV models given by (50) and (51), respectively,
which is the subject of the following subsections.

D. Constant Mixing Vector

In the CMV model, a is constant over M blocks while
the separating vector can be varying from block to block.
Therefore, there are M(d−1)+d free parameters. The scaling
ambiguity can be resolved by putting γ = 1, which is the
first element of a, so there are finally (M + 1)(d − 1) free
(complex-valued) parameters in the mixing model represented
by parameter vectors g and h = [h1; . . . ; hM ].

From (28), it follows that the log-likelihood function for
one sample data of the mth block is given by

Lm(xm|g,h) = log psm
(
(wm)Hxm

)
+ log pzm(Bxm).

(56)
Since the data are i.i.d. inside each block and independently
distributed among the blocks, the log-likelihood function of
the entire batch of data is equal to Nb

∑M
m=1 Lm(xm|g,h).

The derivatives of (56) are computed similarly to (29) and
(30), that is,

∇m
g

def.
=

∂Lm(xm|g,h)

∂g∗

∣∣∣
h=0

= −ψzms
m∗, (57)

∇m,n
h

def.
=

∂Lm(xm|g,h)

∂hn∗

∣∣∣
h=0

= δn,mψ
∗
smzm, (58)

where ψzm = −∂ ln pzm
∂z∗ , ψsm = −∂ ln psm

∂s∗ , and δn,m stands
for the Kronecker delta.

Now, the FIM of data from all blocks is a square matrix
of dimension 2(m+ 1)(d− 1) consisting of (m+ 1)× (m+

1) blocks each of dimension (d − 1) × (d − 1). Let ∇m =
[∇m

g ;∇m,1
h ; . . . ;∇m,M

h ]. The FIM has the structure

J (g,h) = Nb

M∑
m=1

Jm(g,h) = Nb

(
F P
P∗ F∗

)
, (59)

where
Jm(g,h) =

(
Fm Pm
Pm∗ Fm∗

)
(60)

is the FIM for one sample of the mth block, and

Fm = E
[
∇m(∇m)H

]
, Pm = E

[
∇m(∇m)T

]
. (61)

Then the blocks of (59) are, respectively, equal to

F =


∑M
m=1 κzmσ

2
sm −Id−1 . . . −Id−1

−Id−1 κ1
sCz1 0... 0

. . .
−Id−1 κMs CzM

 , (62)

and P is the diagonal matrix

P = diag
( M∑
m=1

E[ψ2
zm ]E[(sm∗)2],E[(ψ∗s1)2]E[(z1)2], . . . ,

E[(ψ∗sM )2]E[(zM )2]
)

(63)

where κsm = E[|ψsm |2], κzm = E[ψzmψ
H
zm ], σ2

sm =
E[|sm|2], Czm = E[zm(zm)H ].

For the sake of simplicity, we will consider only the special
case when the background is circular Gaussian. Then, similar
simplifications to those in Section III-H hold, P = 0, κzm =
C−1

zm , and the block of J−1 corresponding to hm is

CRLB(hm)|h=0 =
1

Nb

{
1

κsm
C−1

zm+

1

κsm
C−1

zm

(
M∑
i=1

σ2
siκsi − 1

κsi
C−1

zi

)−1

1

κsm
C−1

zm

}
. (64)

By combining (54) and (64), the CRIB says that

E [ISR] ≥ 1

Nb
∑M
m=1 σ

2
sm

M∑
m=1

1

κsm
×

tr

Id−1 +

(
M∑
i=1

κsi − 1

κsi
C−1

zi

)−1

1

κsm
C−1

zm

 . (65)

E. Constant Separating Vector

In the CSV mixing model (51), w is constant over the
blocks while the mixing vector can be varying. Therefore, the
scaling ambiguity can be resolved by putting β = 1 while
considering γ1, . . . , γM as dependent variables, where by (10)
it follows that γm = 1 − hHgm. The free parameter vectors
of the model are g = [g1; . . . ; gM ] and h.

Using (15), the log-likelihood function for one sample of
the mth block is

Lm(xm|g,h) = log psm
(
wHxm

)
+ log pmz (Bmxm)+

+ 2(d− 2) log
∣∣1− hHgm

∣∣ , (66)
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where we use the identity det (WICE) = (−1)d−1(1 −
hHgm)d−2.

The structure of the FIM is the same as for the CMV model,
described by (59)-(61). The blocks of (59) are given by

F =


κz1σ2

s1 0 −Id−1

0
. . .

...
κzMσ

2
sM −Id−1

−Id−1 . . . −Id−1

∑M
m=1 κ

m
s Czm

 , (67)

and P is diagonal

P = diag
(
E[(ψz1)2]E[(s1∗)2], . . . ,E[(ψzM )2]E[(sM

∗
)2],

M∑
m=1

E[(ψ∗sm)2]E[(zm)2]
)
. (68)

Here, we also consider only the special case that the back-
ground is circular Gaussian, for which P = 0, κzm = C−1

zm .
Then, CRLB(h)|h=g=0 is obtained as the block of the inverse
matrix of FIM corresponding to the lower right-corner block
of F, which gives

CRLB(h)|h=g=0 =
1

Nb

(
M∑
m=1

κms Czm −
1

σ2
sm

Czm

)−1

.

(69)
By putting this result in (54), the CRIB says that

E [ISR] ≥ 1

Nb
∑M
m=1 σ

2
sm

×

tr

( M∑
m=1

κsm − 1

σ2
sm

Czm

)−1 M∑
m=1

Czm

 . (70)

F.

In this subsection, we show that the CRIB expressions for
the ISR in the CSV and CMV models (65) and (70) remain
valid also in the simpler scenario composed of real-valued
signals and mixing parameters. In this case, the pdf of mixed
signals in (15) becomes

px(x) = ps(w
Tx)pz(Bx)|det(WICE)|. (71)

Next, the fact that the Gaussian pdf of background is real-
valued has to be taken into account. Then, the FIM in (59)
reduces to

J (g,h) = NbF. (72)

Matrix F can be shown to have exactly the same form as (62)
for the CMV model and as (67) for the CSV model. Therefore,
formally the same CRLBs are finally obtained in the real-
valued scenario.

V. DISCUSSION

The expressions in brackets in (65) and (70) subject to
the matrix inverse operation are non-negative combinations of
positive definite matrices (C−1

zm or Czm ). It follows that the
sums are also positive definite unless all coefficients of the
linear combinations are zero. The latter case appears only if

κsm = 1 for all m, that is, when the SOI is Gaussian on all
blocks. Otherwise, the obtained CRIBs are all finite.

In the following, we discuss several special cases in order
to compare the derived bounds.

1) Only one block: When M = 1, the piecewise determined
models coincide with the standard ICE model. The reader can
easily verify that, for this particular case, the bounds given by
(49), (55), (65) and (70) coincide as well.

In further discussions, we will assume the piecewise model
with M > 1.

2) An i.i.d. SOI: When the SOI has the same pdf (and also
variance) in all blocks, we can denote κms = κs and σ2

sm =
σ2
s since these statistics become independent of m. Then, the

CRIBs (55), (65) and (70) can be, respectively, written in the
form

BICE: E[ISR] ≥ M

N

d− 1

κs − 1
(73)

CMV: E[ISR] ≥ d− 1

N

(
1

κs − 1
+
M − 1

κs

)
(74)

CSV: E[ISR] ≥ 1

N

d− 1

κs − 1
(75)

A necessary condition for the identifiability of these models
is that κs > 1, which means that the SOI must have non-
Gaussian pdf. The CRIB for BICE is always higher than
those for CSV and CMV, which is caused by the higher
complexity of BICE. CSV and CMV take advantage of the
joint parameters.

3) SOI with varying variance: Let the variance of the SOI
be changing from block to block while the normalized pdf of
the SOI be constant. It means that σ2

sm depends on m while
κsmσ

2
sm = κs is constant over the blocks. Then, the CRIBs

can be written as

BICE: E[ISR] ≥ M

N

d− 1

κs − 1
, (76)

CMV: E[ISR] ≥ M(d− 1)

Nκs
+

M

Nκs(κs − 1)
TCMV, (77)

CSV: E[ISR] ≥ M

N(κs − 1)
TCSV, (78)

where

TCMV = tr

 M∑
m=1

σ2
sm∑M

j=1 σ
2
sj

(
M∑
i=1

Si

)−1

Sm

 , (79)

TCSV = tr

 1∑M
j=1 σ

2
sj

(
M∑
i=1

1

σ2
si

Czm

)−1 M∑
m=1

Czm

 ,

(80)

where Sm = σ2
smC−1

zm .
The bound given by (76) coincides with (73), which means

that the dynamic envelop of the SOI does not have any
influence on the achievable performance when ICE is inde-
pendently applied to each block. By comparing (77) with (74)
and (78) with (75), we obtain more interesting results.
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It can be easily shown that

TCMV ≤ d− 1, (81)

TCSV ≤
d− 1

M
. (82)

It follows that the bound (78) is always lower than the one
given by (75), moreover, the equality of the bounds holds if
and only if σ2

sm is constant. It means that the non-stationarity
of the SOI improves the blind extraction under the CSV
model. This is not that surprising because similar conclusions
follow from Cramér-Rao analyses for the standard BSS models
that involve signals’ non-stationarity. There, more dynamical
signals improve the achievable separation accuracy; see, e.g.,
[27], [30], [51].

For the upper limit in (81), the bound coincides with (76).
It means that the achievable ISR by CMV is never worse
than that by BICE. Next, it is easily seen that TCMV = d−1

M
when σ2

sm is constant, for which case the bound obviously
coincides with (74). It means that the nonstationarity of the
SOI can improve as well as worsen the extraction accuracy
under the CMV model! A deeper analysis can show that the
latter case is more typical, because, for the improved accuracy,
background must be vanishing or badly conditioned in some
block. When Czm is constant over blocks, then TCMV = d−1

M
is the lower bound, and the SOI’s nonstationarity can only
worsen the achievable accuracy under the CMV model.

4) All but one blocks of SOI are circular Gaussian : When
the SOI has the circular Gaussian pdf on the kth block, then
κsk = 1. Hence, the CRIB (55) is infinite when there is a
block where the SOI is circular Gaussian. By contrast, CRIBs
(65) and (70) are finite provided that the SOI is non-Gaussian
or non-circular at least on one block. In the special case when
all blocks of the SOI but the kth block have circular Gaussian
pdf, the CRIBs (65) and (70) say that

CMV: E[ISR] ≥ 1

Nb

1∑M
m=1 σ

2
sm

× (83)

tr

(
M∑
m=1

1

κsm
Id−1 +

κsk

κsk − 1
Czk

M∑
m=1

1

κsm
C−1

zm

)
,

CSV: E[ISR] ≥ 1

Nb

1∑M
m=1 σ

2
sm

σ2
sk

κsk − 1
× (84)

tr

(
C−1

zk

M∑
m=1

Czm

)
.

Consequently, for the identifiability of the CVM and CSV
models, it is sufficient that the SOI is not circular Gaussian on
at least one block, which is a significant advantage compared
to BICE.

5) Gaussian SOI and vanishing background: When the SOI
is circular Gaussian on all blocks, all the CRIBs discussed
in the section are infinite, and the SOI cannot be extracted.
However, we can consider a special situation where, in some
block (the kth one), the SOI is close to be Gaussian and,
simultaneously, the background covariance is getting close to
zero. The previous special case says that the CRIBs for CMV
and CSV are still finite until κsk > 1.

Let us consider κsm = 1 for m 6= k, and

Czk = ε(κsk − 1)T, (85)

where T is a positive definite matrix, and ε > 0 is a constant.
Now, consider κsk → 1 while σ2

k = 1, which means that the
SOI is becoming circular Gaussian on the kth block while
its variance is constant. Eq. (85) says that the background
is vanishing proportionally to the “gaussianity” of the SOI
(expressed through the proximity of κsk to one).

The reader can verify, that, in that special case, the CRIB
of CSV (70) is becoming infinite while that for CMV (65)
approaches a finite value. This can be explained through the
fact that the SOI, in the kth block, is observed without noise
when Czk = 0. Therefore, its corresponding mixing vector
can be identified through finding the principal component in
that block, which is sufficient for the identifiability of the CMV
model although the SOI is (almost) circular Gaussian in all
blocks.

VI. EXPERIMENTAL VALIDATION

In the following numerical simulations, we compare the
theoretical bounds with empirical mean ISR achieved by
selected ICA/ICE algorithms. Here, we have to cope with the
permutation ambiguity causing that a given algorithm need not
converge to the desired SOI. In case of BSE/ICE algorithms,
the convergence is arranged through their proper initialization.
For ICA methods, the SOI is identified as the separated signal
with the lowest ISR. Since the algorithms do not converge
to the right SOI in some runs, the trimmed mean of ISR is
computed instead of the mean, by discarding 10% of the lowest
and greatest values. Therefore, the reader should keep in mind
that the empirical results can be slightly biased.

A. Determined Mixing Model

1) Gaussian background: Here, the CRIB given by (49)
assuming circular Gaussian background is compared with the
empirical ISR achieved by four methods. First, non-circular
FastICA (NC-FastICA) from [52], is an ICA algorithm de-
signed particularly for signals belonging to the complex Gener-
alized Gaussian Distribution (GGD) family [9], which involves
also non-circular signals. Second, OGICE (Orthogonally Con-
strained ICE) from [53] is an ICE algorithm derived based on
maximum likelihood principle. Third, Natural Gradient (NG)
is a basic ICA algorithm from [54]. In OGICE, the background
is modeled as circular Gaussian, therefore, this method can
asymptotically attain the CRIB in this experiment provided
that the true score function of the SOI is used as the internal
nonlinear function. Fourth, the RobustICA algorithm from [55]
is a BSE method based on the optimization of the kurtosis
contrast function. It is valid for real as well as complex-valued
sources, with circular and non-circular distributions.

In a trial, d = 5 independent complex-valued signals are
generated. The target signal is drawn from the complex-valued
GGD with zero mean, unit variance, shape parameter α ∈
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(0,+∞), and a circularity coefficient γ ∈ [0, 1]. The pdf is
given by [5]

p(s, s∗) =
αρ exp

(
−
[
ρ/2
γ2−1

(
γs2 + γ(s∗)2 − 2ss∗

)]α)
πΓ(1/α)(1− γ2)

1
2

,

(86)
where ρ = Γ(2/α)

Γ(1/α) , and Γ(·) is the Gamma function. The other
(background) signals are circular Gaussian, which corresponds
to α = 1 and γ = 0 in (86). All signals are mixed by a random
mixing matrix A with elements drawn from CN (0, 1).

OGICE is initialized by a randomly perturbed first column
of A, Natural Gradient is initialized by the randomly perturbed
mixing matrix A, RobustICA is initialized by the randomly
perturbed demixing matrix W, while the initialization of NC-
FastICA is random in full. In OGICE and NG, the nonlinearity
is the same as the true score function corresponding to (86),
that is,

ψ(s, s∗) =
2α(ρ/2)α

(γ2 − 1)α
(
γs2 + γ(s∗)2 − 2ss∗

)α−1
(γs− s∗) .

(87)
It is worth noting that the true score function is not known in
a fully blind situation, where ψ must be replaced by a suitable
nonlinearity; see, e.g., [56], [57]. It can be shown that [5]

κ = E
[
|ψ(s)|2

]
=

α2Γ(2/α)

(1− γ2)Γ2(1/α)
. (88)

Finally, note that NC-FastICA is endowed by the nonlinearity
proposed in [52], the accuracy seems to be closest to the CRIB
for α = 0.8. RobustICA is using kurtosis [55] and seems to
be efficient for sub-gaussian sources α > 1.

Figs. 1–3 show average ISR achieved by the algorithms in
100 trials, respectively, for varying N , α, and γ. The average
ISRs achieved by OGICE are very close to the bound (49),
which is in a good agreement with the theory. Also RobustICA
attains the bound for greater number of samples N . The
performance of NC-FastICA appears to be limited, which can
be explained by the nonlinearity used. The performance of NG
is also limited due to convergence issues, especially, in cases
of sub-gaussian (α > 1) SOI.

In Fig. 2, the ISR for sub-gaussian (α > 1) and super-
Gaussian (α < 1) SOI is shown. For α = 1, all signals,
including the SOI, are circular Gaussian, in which case the
mixing coefficients are not identifiable. Here, the algorithm’s
empirical ISRs drop down to 0 dB (a highly biased value as
ISR higher than 0 dB is evaluated as convergence to a different
source), which should be interpreted as failings in finding the
SOI.

In Fig. 3, the non-circular Gaussian SOI with varying circu-
larity is considered. The ISR achieved by OGICE approaches
the CRIB, which confirms the fact that a non-circular Gaus-
sian signal can be extracted from the other Gaussian signals
when their circularity coefficient is different. This condition
becomes violated as γ approaches 0, which corresponds with
the decaying ISR. NC-FastICA and RobustICA are designed
to be robust to circularity changes, however, for Gaussian
sources they do not benefit from non-circularity. Therefore,
their performance does not show any dependence on γ and is
the same as for the circular Gaussian SOI [52].
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Fig. 1. Average ISR for d = 5, α = 2, and varying N .
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Fig. 2. Average ISR for d = 5, N = 2500 and varying α.

2) Non-Gaussian background: As shown in Section III-G,
there is a coincidence between the CRIBs for ICA and ICE
when, in ICE, the non-Gaussianity of background is taken
into account. In this section, we simulate the case mentioned
at the end of that section, that is, when background signals are
dependent (a transformation decomposing them into indepen-
dent components as assumed in ICA need not to exist). The
theoretical CRIB for this simulation is given by (46).

In a trial, d = 4 real-valued signals are generated. The
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Fig. 3. Average ISR for d = 5, N = 2500, α = 1 (Gaussian SOI) and
varying circularity coefficient γ.
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Fig. 4. Average ISR for non-Gaussian background when pdfs of all signals
are varying with respect to α.

background is drawn according to the joint pdf given by

p(z1, . . . , zd−1) ∝ exp

(
−

(
λ

d−1∑
i=1

|zi|2
)α)

(89)

where λ > 0, and α 6= 1 (for α = 1, the pdf is Gaussian).
To scale the marginal pdfs of background signals to the unit

variance, we put λ =
Γ( 5

2α )
3Γ( 3

2α )
. Then, it holds that

(κz)kk =
4

3
λα2 Γ(2 + 1

2α )

Γ( 3
2α )

. (90)

The SOI is drawn from the real-valued GGD family [58] with
zero mean, unit variance and a shape parameter α̃, where α̃ =
α+1. Note that for the real-valued GGD, the SOI is Gaussian
when α = 1; see Appendix B in [58].

We compare three algorithms with the CRIB given by
(46): OGICE [53], EFICA [58], and NG-OGICE [50]. OGICE
is designed for ICE with Gaussian background, where the
CRIB is given by (49) (which we show as well for the
sake of completeness). EFICA is an asymptotically efficient
ICA algorithm provided that all original signals are drawn
from the real-valued GGD. NG-OGICE is an ICE method
considering the non-Gaussianity of background, in which the
true multivariate score function of background must be known
to achieve the optimum performance.

In Fig. 4, the ISRs averaged over 100 trials achieved by
OGICE, EFICA and NG-OGICE are compared. The bound
(46) is denoted by CRIBNG−ICE and the one for the Gaussian
background (49) is denoted by CRIBICE. The results show
that the mean ISRs by OGICE are close to the bound given
by (49) (which is in a good agreement with the results of
asymptotic performance analyses (6) [45]). The results by
EFICA and NG-OGICE are closer to (46). NG-OGICE is even
slightly more accurate than EFICA, which is caused by a more
accurate modeling of the background’s pdf.

For α = 1, all signals are Gaussian, which means that the
SOI cannot be separated from the background. With increas-
ing non-Gaussianity of the mixture, which means increasing
distance from α = 1, the separation accuracy gets better.
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Fig. 5. Average ISR for CMV mixing model when d = 5, N = 5040, and
varying number of blocks M .

B. Piecewise Determined Mixtures with Circular Gaussian
Background

To validate the bounds for CMV and CSV, both are com-
pared with empirical results achieved by block-wise versions
of OGICE introduced in [12]. The methods will be jointly
referred to as BOGICE (in [12], BOGICEa is the variant for
CMV while BOGICEw is for CSV). It should be noted that no
other methods for CMV/CSV currently exist in the literature
to our best knowledge. For completeness, the BICE method is
compared to BOGICE in both cases.

In experiments here, we consider two statistical models of
signals: The SOI is either i.i.d. non-Gaussian over all blocks
or i.i.d. within blocks with the same distribution but varying
variance over blocks. The background is assumed circular
Gaussian i.i.d. with unit variance in all blocks in both cases.

In trials, d = 5 independent complex-valued signals are
generated. The SOI is drawn from a circular complex GGD
with zero mean, unit variance, α = 2. The other signals
are circular Gaussian, which corresponds to α = 1. The
nonlinearity is given by the true score function. M blocks
of the same length are considered. Each block is mixed by a
random mixing matrix. The mixing matrices obey the mixing
models CMV or CSV, respectively.

The empirical ISRs achieved by BOGICE and BICE are
compared with the CRIB corresponding to the mixing model
used in the given simulation and with that of BICE. For
completeness, we also show the hypothetical CRIB of the
alternative piecewise mixing model that would be valid when
the mixing matrix obeyed the model and the SOI had the
same statistical properties. Nevertheless, it should be kept
in mind that CMV and CSV are incompatible unless all
the mixing parameters related to the SOI are constant over
the blocks (which is not the case of the experiments here).
The comparison of the models thus has to be done after
considerable deliberation.

1) An i.i.d. SOI: Fig. 5 corresponds to the simulation
considering the CMV model for varying number of blocks,
that is, M = 1, 2, 5, 10. It shows the mean ISR achieved by
BOGICE averaged over 500 trials and the CRIB given by (74)
(CMV) and, for comparison, also the CRIBs (73) (BICE) and
(75) (CSV). Similar simulation was done with the CSV model;
the results are shown in Fig. 6. As can be seen from (73), (74)
and (75), bounds for BICE and CMV depend on the number
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Fig. 6. Average ISR for CSV mixing model when d = 5, N = 5040, and
varying number of blocks M .

of blocks, but the CRIB for CSV does not. Hence, the CSV
curve is flat as predicted by our theoretical analysis.

Figs. 5 and 6 show the coincidence between the empirical
results by the variants of BOGICE and the CRIBs corre-
sponding to the mixing model of the given simulation. The
performances of the methods follow the same dependence on
the number of blocks M as these CRIBs. The results also
show that BOGICE takes the advantage of the special mixing
model CMV/CSV compared to BICE, as its mean ISR is lower
that the CRIB (73), unless M = 1 where all mixing models
coincide.

2) SOI with varying variance: In this special case, the SOI
with the same pdf but varying variance over blocks is assumed.
In a trial, M = 5 blocks and four different settings of SOI’s
variances are considered: Specifically, type A is σ2

sm = 1 for
m = 1, . . . , 5, type B corresponds to σ2

s1 = σ2
s2 = 1, σ2

s3 = 2,
σ2
s4 = σ2

s5 = 3, type C corresponds to σ2
sm = m, and type D

is for σ2
sm = m2, m = 1, . . . , 5.
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Fig. 7. Average ISR for CMV mixing model when d = 5, N = 5000, and
varying σsm over blocks.

We have analyzed in Section V-3 that the nonstationarity
of the SOI improves the separation accuracy under the CSV
mixing model but typically worsens the accuracy under the
CMV model. The results in Figures 7 and 8 confirm this
property, although the drop in performance in case of the CMV
model due to the SOI’s nonstationarity is not that substantial,
in this experiment.

VII. CONCLUSIONS

The present contribution has computed the CRLB-induced
bounds for the ISR in the ICE model, i.e., in BSE under
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Fig. 8. Average ISR for CSV mixing model when d = 5, N = 5000, and
varying σsm over blocks.

statistically independent sources. The developed CRLBs are
valid for both circular and non-circular sources, and include
the scenarios of determined mixing and piecewise (block)
determined mixing. The derived bounds depend on the target
signal distribution and on the length of data, and they coincide
with that for ICA when all but the target signals are circular
Gaussian (shown for the standard mixing model). A variety
of experimental results confirm the validity of the derived
CRIBs. In particular, the CRIB was shown to be attainable by
the OGICE algorithm when the target signal is non-Gaussian
or non-circular Gaussian, under the assumption that the true
nonlinearities (score functions) defining the pdf of the SOI
are known in advance. Similarly, the variants of BOGICE can
attain the CRIBs valid for the CMV and CSV mixing models.
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[51] Z. Koldovský, J. Málek, P. Tichavský, Y. Deville, and S. Hosseini,
“Blind separation of piecewise stationary non-gaussian sources,” Signal
Processing, vol. 89, no. 12, pp. 2570 – 2584, 2009, special Section:
Visual Information Analysis for Security.

[52] M. Novey and T. Adali, “On extending the complex fastica algorithm
to noncircular sources,” in IEEE Trans. Signal Processing, vol. 56, May
2008, pp. 2148–2154.
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