Bismuth oxybromide/reduced graphene oxide heterostructure sensitized with Zn-tetracarboxyphthalocyanine as a highly efficient photocatalyst for the degradation of Orange II and phenol - Archive ouverte HAL Access content directly
Journal Articles Journal of Environmental Chemical Engineering Year : 2022

Bismuth oxybromide/reduced graphene oxide heterostructure sensitized with Zn-tetracarboxyphthalocyanine as a highly efficient photocatalyst for the degradation of Orange II and phenol

Abstract

The preparation of heterostructured photocatalysts associating BiOBr, reduced graphene oxide (rGO) and zinc tetracarboxyphthalocyanine (ZnPc(CO2H)4) and their performance for the degradation of the Orange II dye and of phenol are reported. The BiOBr/rGO/ZnPc(CO2H)4(0.25) photocatalyst displays a superior activity than BiOBr and BiOBr/rGO, indicating that ZnPc(CO2H)4 enhances both the visible light absorption and the charge carrier separation, which is confirmed by photoluminescence, photocurrent responses and electrochemical impedance spectroscopy Nyquist plots. Scavenging experiments show that the main active species involved in the degradation of Orange II and phenol are superoxide radicals and holes and a mechanism is proposed. Due to its high stability, the BiOBr/rGO/ZnPc(CO2H)4(0.25) catalyst shows high potential for real environmental remediation.
Fichier principal
Vignette du fichier
JECE-D-21-09703.pdf (1.57 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03563552 , version 1 (08-11-2022)

Identifiers

Cite

Seydou Ouedraogo, Bilel Chouchene, Thomas Gries, Christophe Desmarets, Lavinia Balan, et al.. Bismuth oxybromide/reduced graphene oxide heterostructure sensitized with Zn-tetracarboxyphthalocyanine as a highly efficient photocatalyst for the degradation of Orange II and phenol. Journal of Environmental Chemical Engineering, 2022, 10 (2), pp.107332. ⟨10.1016/j.jece.2022.107332⟩. ⟨hal-03563552⟩
137 View
68 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More