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Abstract. A functional extension is given for the diagonal fixed point result

in Cirić and Prešić [Acta Math. Comenianae, 76 (2007), 143-147] involving

multistep type iterations.
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1. Introduction

Let (X, d) be a metric space. Further, let S ∈ F(X) be a selfmap of X. [Here,
for each couple A,B of nonempty sets, F(A,B) denotes the class of all functions
from A to B; when A = B, we write F(A) in place of F(A,A)]. Denote Fix(S) =
{x ∈ X;x = Sx}; each point of this set is referred to as fixed under S. Concerning
the determination of such points, the basic result in this area is the 1922 one due
to Banach [2]. Call the subset Y of X, almost singleton (in short: asingleton),
provided [y1, y2 ∈ Y implies y1 = y2]; and singleton if, in addition, Y is nonempty;
note that in this case Y = {y}, for some y ∈ X. Then, let us say that S is Banach
(d;α)-contractive (where α ≥ 0), if

d(Sx, Sy) ≤ αd(x, y), for all x, y ∈ X.

Theorem 1.1. Assume that S is Banach (d;α)-contractive, for some α ∈ [0, 1[.
In addition, let X be d-complete. Then,

(11-a) S is fix-singleton: Fix(S) = {z}, for some z ∈ X
(11-b) S is a strong Picard operator: limn S

nx = z, ∀x ∈ X.

This result (referred to as: Banach fixed point theorem) found some basic appli-
cations to the operator equations theory. As a consequence, many extensions for it
were proposed. From the perspective of our present exposition, the diagonal ones
are of interest; these consist in the initial selfmap S being viewed as the diagonal
part of a mapping T : Xk → X (for some k ≥ 1); i,e.,

Sx = T (xk), x ∈ X;

where, for each x ∈ X, we denoted

xk = the element (z0, ..., zk−1) ∈ Xk, with (zi = x; 0 ≤ i ≤ k − 1).

In this context, denote

Fixd(T ) = Fix(S)(= {z ∈ X; z = Sz});
each element of this set will be called a diagonal fixed point of T .

The existence and uniqueness of such points is to be discussed in the context
below. Given U0 := (u0, ..., uk−1) ∈ Xk, the sequence (un;n ≥ 0) in X given as

(iter) un=the above one, 0 ≤ n ≤ k − 1; un = T (un−k, ..., un−1), n ≥ k
1
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will be called the iterative process generated by U0; and denoted (for simplicity) as
(un = TnU0;n ≥ 0). The determination of these points is to be performed upon
the directions below, comparable with the ones in Rus [18, Ch 2, Sect 2.2]:

pp-0) Let us say that T is fixd-asingleton, if Fixd(T ) = Fix(S) is an asingleton;
and fixd-singleton, provided Fixd(T ) = Fix(S) is a singleton

pp-1) Call U0 = (u0, ..., uk−1) ∈ Xk, a Prešić point (modulo (d, T )), provided
the associated iterative sequence (un := TnU0;n ≥ 0) is d-Cauchy. If each U0 =
(u0, ..., uk−1) ∈ Xk is a Prešić point (modulo (d, T )), then T will be referred to as
a Prešić operator (modulo d)

pp-2) Call U0 = (u0, ..., uk−1) ∈ Xk, a strong Prešić point (modulo (d, T )),
provided the associated iterative sequence (un := TnU0;n ≥ 0) is d-convergent and
z := limn(un) is an element of Fixd(T ) = Fix(S). If each U0 = (u0, ..., uk−1) ∈ Xk

is a strong Prešić point (modulo (d, T )), then T will be referred to as a strong Prešić
operator (modulo d).

Sufficient conditions for such properties involve metrical contractions. Given
Γ := (γ0, ..., γk−1) ∈ Rk

+, let us say that T is Prešić (d; Γ)-contractive, provided

(P-contr) d(T (x0, ...xk−1), T (x1, ..., xk)) ≤
γ0d(x0, x1) + ...+ γk−1d(xk−1, xk), for each (x0, ..., xk) ∈ Xk+1.

The regularity condition imposed upon the vector Γ appearing here is

(norm-sub) Γ = (γ0, ..., γk−1) is norm subunitary:
|Γ| := γ0 + ...+ γk−1 < 1.

The following 1965 fixed point result obtained by Prešić [14] is our starting point.

Theorem 1.2. Suppose that T is Prešić (d; Γ)-contractive, where Γ = (γ1, ..., γk) ∈
Rk

+ is norm subunitary. In addition, let X be d-complete. Then,
(12-a) T is fixd-singleton: Fixd(T ) = Fix(S) = {z}, for some z ∈ X
(12-b) T is a strong Prešić operator (modulo d): for each (starting point) U0 :=

(u0, ...uk−1) ∈ Xk, the iterative sequence (un = TnU0;n ≥ 0) fulfills un
d−→ z.

Concerning the imposed conditions, note that for each x, y ∈ X,

d(Sx, Sy) = d(T (xk), T (yk)) ≤
d(T (xk), T (xk−1, y)) + ...+ d(T (x, yk−1), T (yk)) ≤
γ0d(x, y) + ...+ γk−1d(x, y) = |Γ|d(x, y).

As a consequence of this,

S is Banach (d; |Γ|)-contractive, where |Γ| < 1;

which, along with Banach fixed point theorem yields

Fixd(T ) = Fix(S)=singleton.

In other words, the existence and uniqueness part of Theorem 1.2 are directly
assured by the ambient conditions; so, its novelty consists in the underlying diagonal
fixed point being approximated via Prešić type iterative processes.

In particular, when k = 1, Theorem 1.2 is just the Banach contraction principle.
Hence, the question of extending it is not without interest. A basic contribution in
this area is the 2007 one due to Cirić and Prešić [4]. Let us say that T is Cirić-Prešić
(d;β)-contractive (where β ≥ 0), provided

(CP-contr) d(T (x0, ..., xk−1), T (x1, ..., xk)) ≤
βmax{d(x0, x1), ..., d(xk−1, xk)}, for each (x0, ..., xk) ∈ Xk+1.
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Theorem 1.3. Assume that T is Cirić-Prešić (d;β)-contractive, for a certain β ∈
[0, 1[. In addition, let X be d-complete. Then, the following conclusions hold:

(13-a) T is fixd-asingleton, whenever

(S-snex) S is d-strictly-nonexpansive:
d(Sx, Sy) < d(x, y), ∀x, y ∈ X, x 6= y

(13-b) T is strong Prešić (modulo d): for each U0 := (u0, ...uk−1) ∈ Xk, the

iterative sequence (un = TnU0;n ≥ 0) fulfills un
d−→ z as n → ∞, for some

diagonal fixed point z ∈ Fixd(T ) = Fix(S).

Having these precise, it is our aim in the following to extend from a functional
perspective this last class of results. Further aspects will be delineated elsewhere.

2. Main result

Let (X, d) be a metric space, and k ≥ 1 be a natural number. Further, let
T : Xk → X be a mapping, S : X → X be its associated diagonal map, and
Fixd(T ) = Fix(S) stand for the class of diagonal fixed points of T . The basic
setting of our problem was already sketched. It is our aim in the following to give
a functional version of the Cirić-Prešić fixed point result. Some conventions are in
order. Given a function ϕ ∈ F(R+), call it regressive provided

ϕ(0) = 0 and ϕ(t) < t, for all t ∈ R0
+ :=]0,∞[;

the class of such functions will be denoted as F(re)(R+). Further, let us introduce
the sequential properties over F(re)(R+)

(M-a) ϕ ∈ F(re)(R+) is Matkowski admissible:
for each (tn;n ≥ 0) in R0

+ with (tn+1 ≤ ϕ(tn),∀n) we have limn tn = 0
(str-M-a) ϕ ∈ F(re)(R+) is strongly Matkowski admissible:
for each (tn;n ≥ 0) in R0

+ with (tn+1 ≤ ϕ(tn),∀n) we have
∑

n tn <∞.

(These conventions are taken from the developments in Matkowski [9] and Turinici
[23], respectively). In particular, when ϕ ∈ F(re)(R+) is increasing, then

(M-1) ϕ is Matkowski admissible iff limn ϕ
n(t) = 0, for each t > 0;

(M-2) ϕ is strongly Matkowski admissible iff
∑

n ϕ
n(t) <∞, ∀t > 0;

here, as usual, ϕn means the n-th iterate of ϕ, for each n ≥ 0.
Clearly, each strongly Matkowski admissible function is Matkowski admissible

too; but the reciprocal is not in general true.
For practical reasons, it would be useful to determine sufficient conditions under

which this last property holds. Call the function h ∈ F(R0
+), int-normal provided

(i-n-1) h(.) is decreasing on R0
+

(i-n-2) H(t) :=
∫ t

0
h(ξ)dξ <∞, for each t > 0.

Note that, by the former condition (i-n-1),∫ t

0
h(ξ)dξ := lims→0+

∫ t

s
h(ξ)dξ exists in R+ ∪ {∞}, for each t > 0;

so, the latter condition (i-n-2) is meaningful. Moreover, by these definitions,

(H-1) H(.) is strictly increasing on R0
+ (t1 < t2 =⇒ H(t1) < H(t2))

(H-2) H(.) is continuous on R0
+ and H(0+) := limt→0+H(t) = 0.

Given ϕ ∈ F(re)(R+), let us associate it the function g ∈ F(R0
+), as

(g(t) = t/(t− ϕ(t)); t > 0); in short: g = I/(I − ϕ).

Further, call g ∈ F(R0
+), int-subnormal provided
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g(t) ≤ h(t), t ∈ R0
+, where h ∈ F(R0

+) is int-normal.

The following int-subnormal type strongly Matkowski criterion is available.

Theorem 2.1. Let the function ϕ ∈ F(re)(R+) be such that

the associated function g = I/(I − ϕ) is int-subnormal.

Then, ϕ is strongly Matkowski admissible.

Proof. By the imposed condition,

g(t) ≤ h(t), t ∈ R0
+, for some int-normal function h ∈ F(R0

+).

Let the sequence (tn;n ≥ 0) in R0
+ be such that

tn+1 ≤ ϕ(tn), for all n ≥ 0; hence, (tn;n ≥ 0) is strictly descending.

Further, let i ≥ 0 be arbitrary fixed. By the above choice,

ti − ϕ(ti) ≤ ti − ti+1; whence, 1 ≤ (ti − ti+1)/(ti − ϕ(ti)).

Combining with the decreasing property of h(.) yields (by the definition of H(.))

ti ≤ (ti − ti+1)g(ti) ≤ (ti − ti+1)h(ti) ≤ H(ti)−H(ti+1).

Passing to limit in the relation between extremal members gives

limi ti = 0; whence, ϕ is Matkowski admissible.

On the other hand, from the same relation,∑
i≤n ti ≤ H(t0)−H(tn+1), for each n;

wherefrom, by a limit process,∑
n tn ≤ H(t0)−H(0+) <∞;

which tells us that the series
∑

n tn converges. �

Returning to our initial setting, denote for each i, j with i < j

A(zi, ..., zj) = max{d(zi, zi+1), ..., d(zj−1, zj)}, (zi, ..., zj) ∈ Xj−i+1.

Given ϕ ∈ F(R+), let us say that T is (d, ϕ)-contractive, provided

(d-phi) d(T (y0, ..., yk−1), T (y1, ..., yk)) ≤ ϕ(A(y0, ..., yk−1, yk)),
for all (y0, ..., yk−1, yk) ∈ Xk+1.

Further, let us remember that S is called d-strictly-nonexpansive, provided

(s-nexp) d(Sx, Sy) < d(x, y), whenever x 6= y.

Our main result in this exposition is

Theorem 2.2. Suppose that T is (d, ϕ)-contractive, for some increasing strongly
Matkowski admissible ϕ ∈ F(re)(R+). In addition, let X be d-complete. Then, the
following conclusions hold:

(22-a) If (in addition) S is d-strictly-nonexpansive, then

T is fixd-asingleton; i.e.: Fixd(T ) = Fix(S) is an asingleton

(22-b) T is strong Prešić (modulo d): for each U0 := (u0, ...uk−1) ∈ Xk, the
iterative sequence (un := TnU0;n ≥ 0) fulfills limn un = z, for some diagonal fixed
point z ∈ Fixd(T ) = Fix(S).

Proof. The first half of this statement is immediate, as results from
Step 0. Let z1, z2 ∈ X be a couple of points in Fixd(T ) = Fix(S) (i.e.: z1 = Sz1,

z2 = Sz2); and – contrary to the written conclusion – suppose that z1 6= z2. By
the d-strict-nonexpansive property of S,

d(z1, z2) = d(Sz1, Sz2) < d(z1, z2); contradiction.
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Hence, necessarily, z1 = z2; and the claim follows.
It remains now to establish that T is strong Prešić (modulo d). There are several

stages to be passed.
Step 1. Put, for simplicity (ρn = d(un, un+1), n ≥ 0). Note that, by a previous

convention, we have for each i, j with i < j,

A(ui, ..., uj) = max{ρi, ..., ρj−1}.
For technical reasons, it would be useful to denote, for each n ≥ k,

Bn = A(un−k, ..., un−1, un); i.e.: Bn = max{ρn−k, ..., ρn−1}.

Proposition 2.1. Suppose that

Bn = 0, for some n ≥ k.

Then
(21-1) The subsequence (yi := un−k+i; i ≥ 0) is constant; i.e.,

un−k = un−k+1 = ... = a, for some a ∈ X.

(21-2) In addition, we have

a = T (ak) = Sa;

hence, a ∈ X is a diagonal fixed point of T .

Proof. (Proposition 2.1)
Let n ≥ k be such that Bn = 0. Then, by definition,

un−k = ... = un−1 = un = a, for some a ∈ X.

Combining with the iterative procedure, we also get

a = un = T (un−k, ..., un−1) = T (ak);

so that, a ∈ X is a diagonal fixed point of T . Finally, we have

un+1 = T (un−k+1, ..., un−1, un) = T (ak) = a,
un+2 = T (un−k+2, ..., un, un+1) = T (ak) = a, ...;

and, from this, (un−k+i = a; i ≥ 0). �

As a consequence of these remarks, it follows that, whenever

Bn = 0, for some n ≥ k,

we are done; so, without loss, one may assume that

(str-pos) Bn > 0, for all n ≥ k.

The following auxiliary fact concentrates the ”deep” part of our argument.

Proposition 2.2. Under these conditions, we have
(22-1) ρn ≤ ϕ(Bn) < Bn, for each n ≥ k
(22-2) Bn+1 ≤ Bn, ∀n ≥ k; whence, (Bk+i; i ≥ 0) is descending
(22-3) ρn+k < Bn+k ≤ ϕ(Bn) < Bn, ∀n ≥ k.

Proof. (Proposition 2.2)
i): Let n ≥ k be arbitrary fixed. By definition,

A(un−k, ..., un−1, un) = Bn = max{ρn−k, ..., ρn−1}.
On the other hand, from our iterative construction,

ρn = d(un, un+1) = d(T (un−k, ..., un−1), T (un−k+1, ..., un−1, un));

and this, by the contractive property, gives

ρn ≤ ϕ(A(un−k, ..., un−1, un)) = ϕ(Bn);



6 MIHAI TURINICI

proving the desired fact.
ii): From the representation above one has, for each n ≥ k,

Bn+1 = max{ρn−k+1, ..., ρn−1, ρn} ≤ max{Bn, ρn};
and this, along with ρn < Bn, yields the written relation.

iii): By the obtained facts one gets (via ϕ=increasing), for each n ≥ k
ρn+j ≤ ϕ(Bn+j) ≤ ϕ(Bn), ∀j ∈ {0, ..., k − 1}.

This yields (by definition)

Bn+k = max{ρn, ..., ρn+k−1} ≤ ϕ(Bn);

and proves our claim. �

Having these established, we may now pass to the final part of our argument.
Step 2. From the evaluations above, one has

B(i+1)k ≤ ϕi(Bk), for all i ≥ 0.

As a consequence, we get (again for all ranks i ≥ 0)

ρik + ...+ ρ(i+1)k−1 ≤ kB(i+1)k ≤ kϕi(Bk);

wherefrom (by adding these inequalities)∑
n ρn ≤ k

∑
iB(i+1)k ≤ k

∑
i ϕ

i(Bk) <∞;

i.e.: the iterative sequence (un;n ≥ 0) is d-Cauchy. As X is d-complete,

un
d−→ z as n→∞, for some z ∈ X.

Step 3. We now claim that the obtained limit z is a diagonal fixed point for T ;
i.e.: z = T (zk)(= Sz). To verify this, it will suffice proving that

un
d−→ Sz(= T (zk)), as n→∞.

In fact, by the triangle inequality and contractive condition, we have for each n ≥ k
d(un, Sz) = d(T (un−k, ..., un−1), T (zk)) ≤
d(T (un−k, ..., un−2, un−1), T (un−k+1, ..., un−1, z)) +
d(T (un−k+1, ..., un−2, un−1, z), T (un−k+2, ..., un−1, z

2)) + ...+
d(T (un−1, z

k−1), T (zk)) ≤
ϕ(max{ρn−k, ..., ρn−2, d(un−1, z)}) +
ϕ(max{ρn−k+1, ..., ρn−2, d(un−1, z)}) + ...+ ϕ(d(un−1, z));

and this (via ϕ=increasing) yields

d(un, Sz) ≤ kϕ(max{ρn−k, ..., ρn−2, d(un−1, z)}), ∀n ≥ k.

Passing to limit as n→∞, we get

limn d(un, Sz) = 0; so that (by uniqueness), z = Sz(= T (zk));

and this gives us the desired fact. The proof is thereby complete. �

In particular, when ϕ is linear; i.e.,

ϕ(t) = βt, t ∈ R+ (for some β ∈ [0, 1[),

the obtained result is just the one in Cirić and Prešić [4]. On the other hand, when
ϕ is continuous, the corresponding version of our main result includes a related
1981 statement in Rus [17], refined in Turinici [24, Paper 1-4]. Some coincidence
point extensions of these facts are possible, under the lines in George and Khan [6],
Murthy [10], Păcurar [12, 13], Pathak et al [11] and Yeşilkaya [25]. On the other
hand, multivalued versions of these facts may be obtained under the lines in Shahzad
and Shukla [19], Rajagopalan [15], and Latif et al [8]. For direct applications of
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these facts to convergence questions involving real sequences, we refer to Chen [3],
Khan et al [7], and the references therein.

3. Tasković approach

In the following, we show that the 2007 Cirić-Prešić result [4] (subsumed to
Theorem 1.3) is “almost” deductible from a 1976 statement in Tasković [21].

Given k ≥ 1, let f : Rk
+ → R+ be a function; and Γ := (γ0, ..., γk−1) be an

element in Rk
+. We say that f is semi admissible, provided

(s-adm-1) f is increasing:
ui ≤ vi, i ∈ {1, ..., k} imply f(u1, ..., uk) ≤ f(v1, ..., vk)
(s-adm-2) f is semi homogeneous:
f(λx1, ..., λxk) ≤ λf(x1, ..., xk), ∀(x1, ..., xk) ∈ Rk

+, ∀λ ≥ 0.

In addition, let us introduce the concept

(tas) (f,Γ) is Tasković: the associated map g : R+ → R+

defined as (g(t) = f(γ0t, ..., γk−1t
k); t ∈ R+) is continuous at t = 1.

Finally, let us introduce the conditions

(tele-sub) (f,Γ) is telescopic subunitary
(α := f(γ0, 0, ..., 0) + ...+ f(0, ..., 0, γk−1) < 1)
(sub) (f,Γ) is subunitary (β := f(γ0, ..., γk−1) < 1).

Having these precise, let us say that T : Xk → X is Tasković (d; f,Γ)-contractive
(where f ∈ F(Rk

+, R+), Γ := (γ0, ..., γk−1) ∈ Rk
+), provided

(T-contr) d(T (x0, ..., xk−1), T (x1, ..., xk) ≤
f(γ0d(x0, x1), ..., γk−1d(xk−1, xk)), for each (x0, ..., xk) ∈ Xk+1.

The following 1976 fixed point statement in Tasković [21] is our starting point.

Theorem 3.1. Assume that T is Tasković (d; f,Γ)-contractive, where f is a semi
admissible function in F(Rk

+, R+) and Γ = (γ0, ..., γk−1) is a vector in Rk
+. In

addition, let X be d-complete. Then, the following conclusions hold:
(31-a) If (f,Γ) is telescopic subunitary, then T is fixd-asingleton, in the sense:

Fixd(T ) = Fix(S) is an asingleton

(31-b) If (f,Γ) is Tasković and subunitary, then T is strong Prešić (modulo d):
for each U0 := (u0, ...uk−1) ∈ Xk, the iterative sequence (un = TnU0;n ≥ 0) fulfills

un
d−→ z, for some diagonal fixed point z ∈ Fixd(T ) = Fix(S).

Before passing to the verification of this result, some technical remarks are in
order. Given f ∈ F(Rk

+, R+), call it homogeneous, provided

f(λx1, ..., λxk) = λf(x1, ..., xk), ∀(x1, ..., xk) ∈ Rk
+, ∀λ ≥ 0.

Clearly, any such function is semi homogeneous. But, the reciprocal inclusion is
also true; as it results from

Proposition 3.1. For each function f ∈ F(Rk
+, R+), we have

semi homogeneous =⇒ homogeneous; whence,
semi homogeneous ⇐⇒ homogeneous.

Proof. Suppose that f : Rk
+ → R+ is semi homogeneous; i.e.:

f(λx1, ..., λxk) ≤ λf(x1, ..., xk), ∀(x1, ..., xk) ∈ Rk
+, ∀λ ≥ 0.

Putting λ = 0 in this relation gives
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0 ≤ f(0, ..., 0) ≤ 0; whence, f(0, ..., 0) = 0;

i.e.: the homogeneous property is fulfilled in case of λ = 0. It remains then to verify
the underlying property in case of λ > 0. Denote for simplicity µ := 1/λ; and let
(x1, ..., xk) ∈ Rk

+ be arbitrary fixed. By the semi homogeneous property, we have

f(x1, ..., xk) = f(µλx1, ..., µλxk) ≤ µf(λx1, ..., λxk);
or, equivalently (by our notation): λf(x1, ..., xk) ≤ f(λx1, ..., λxk).

This, along with the semi homogeneous inequality, gives

f(λx1, ..., λxk) = λf(x1, ..., xk), ∀(x1, ..., xk) ∈ Rk
+, ∀λ > 0;

and proves our claim. �

As a consequence of this, the semi-homogeneous property imposed to f is, ul-
timately, a homogeneous property of the same. On the other hand, the Tasković
property (involving the associated function g(.)) may be removed, as we will see.
Summing up, the following simplified variant of Theorem 3.1 is to be considered.
Given k ≥ 1, let f : Rk

+ → R+ be a function; we call it admissible, provided

(adm-1) f is increasing:
ui ≤ vi, i ∈ {0, ..., k − 1} imply f(u0, ..., uk−1) ≤ f(v0, ..., vk−1)
(adm-2) f is homogeneous:
f(λx0, ..., λxk−1) = λf(x0, ..., xk−1), ∀(x0, ..., xk−1) ∈ Rk

+, ∀λ ≥ 0.

Theorem 3.2. Assume that T is Tasković (d; f,Γ)-contractive, where f is an ad-
missible function in F(Rk

+, R+) and Γ = (γ0, ..., γk−1) is a vector in Rk
+. In addi-

tion, let X be d-complete. Then, the following conclusions hold:
(32-a) If (f,Γ) is telescopic subunitary, then T is fixd-asingleton, in the sense:

Fixd(T ) = Fix(S) is an asingleton

(32-b) If (f,Γ) is subunitary, then T is strong Prešić (modulo d): for each U0 :=

(u0, ...uk−1) ∈ Xk, the iterative sequence (un = TnU0;n ≥ 0) fulfills un
d−→ z, for

some diagonal fixed point z ∈ Fixd(T ) = Fix(S).

Concerning the relationships between these results and the Cirić-Prešić one, the
following answer is available.

Proposition 3.2. Under the above conventions,
(32-1) Theorem 1.3 (first half) =⇒ Theorem 3.1 (first half) =⇒ Theorem 3.2

(first half)
(32-2) The inclusions Theorem 3.1 (first half) =⇒ Theorem 1.3 (first half) and

Theorem 3.2 (first half) =⇒ Theorem 1.3 (first half) are not in general true
(32-3) Theorem 3.1 (second half) =⇒ Theorem 1.3 (second half) =⇒ Theorem

3.2 (second half) =⇒ Theorem 3.1 (second half); hence, all these statements are
equivalent to each other.

Proof. There are three parts to be passed.
Part 1. Assume that f is semi admissible (or, equivalently: admissible) and

(f,Γ) is telescopic subunitary:

α := f(γ0, 0, ..., 0) + ...+ f(0, ..., 0, γk−1) < 1.

We claim that (the diagonal map) S is (d;α)-contractive. In fact, let x, y ∈ X
be arbitrary fixed with x 6= y. From the Tasković contractive condition (and
f=homogeneous), one derives
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(S-con) d(Sx, Sy) = d(T (xk), T (yk)) ≤
d(T (xk), T (xk−1, y)) + ...+ d(T (x, yk−1), T (yk)) ≤
f(γ0d(x, y), 0, ..., 0) + ...+ f(0, ..., 0, γk−1d(x, y)) = αd(x, y);

and this, via α < 1, establishes the first inclusion. Further, the second inclusion is
trivial, in view of (admissible ⇐⇒ semi admissible).

Part 2. Suppose by absurd that Theorem 3.1 (first half) =⇒ Theorem 1.3 (first
half). This, by the above, means a deduction of (S-con) from (S-snex); which is
clearly impossible. The case of Theorem 3.2 (first half) =⇒ Theorem 1.3 (first half)
is handled in the same way.

Part 3. Suppose that T is Cirić-Prešić (d;β)-contractive. Taking (f,Γ) as

f(t0, ..., tk−1) = max{t0, ..., tk−1}, (t0, ..., tk−1) ∈ Rk
+;

Γ = (γ0, ..., γk−1): γi = β, 0 ≤ i ≤ k − 1

one derives that f is semi admissible (or, equivalently: admissible) and (f,Γ) is
Tasković, subunitary; and this tells us that the first inclusion holds.

Further, suppose that f is admissible and (f,Γ) is subunitary. From the imposed
properties, we have (under our notations)

f(γ0t0, ..., γk−1tk−1) ≤ βmax{t0, ..., tk−1}, (t0, ..., tk−1) ∈ Rk
+.

The mapping T is therefore Cirić-Prešić (d;β)-contractive; and this tells us that
the second inclusion holds.

Finally, the third inclusion is evident, by definition. The proof is complete. �

Summing up, Theorem 1.3 is the most general result in the area; but, its second
half is equivalent with the second part of Theorem 3.1 and Theorem 3.2. In other
words, passing to these functional extensions of Theorem 1.3 does not bring any
degree of generality upon it. Further aspects may be found in Tasković [22].

4. Abbas-Ilić-Nazir statement

Let us now return to our initial setting. So, take a metric space (X, d); as well as
a natural number k ≥ 1. Further, let T : Xk → X be a mapping; and S : X → X
be its associated diagonal operator. Remember that, our main diagonal fixed point
result is essentially based upon strongly Matkowski admissible functions. Precisely,
denote for each i, j with i < j

A(zi, ..., zj) = max{d(zi, zi+1), ..., d(zj−1, zj)}, (zi, ..., zj) ∈ Xj−i+1.

Given ϕ ∈ F(R+), we say that T is (d, ϕ)-contractive, provided

d(T (y0, ..., yk−1), T (y1, ..., yk)) ≤ ϕ(A(y0, ..., yk−1, yk)),
for all (y0, ..., yk−1, yk) ∈ Xk+1.

The basic conditions imposed upon ϕ are

(in-re) ϕ is increasing and regressive (ϕ(0) = 0 and ϕ(t) < t, ∀t > 0)
(str-M) ϕ is strongly Matkowski admissible (

∑
n ϕ

n(t) <∞, ∀t > 0).

A natural question to be posed is that of conclusion in our main result remaining
valid if the strong admissible property above is replaced by its weaker counterpart:

(M) ϕ is Matkowski admissible (limn ϕ
n(t) = 0, ∀t > 0).

Technically speaking, such extensions (to the Matkowski admissible case) are not
in general possible; because, the contractive condition imposed upon T connects
two consecutive members of our iterative process. This must be true as well for the
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fixed point statement in Abbas et al [1] to be stated below. Let us say that the
function ϕ ∈ F(R+) is normal, provided

(nor-1) ϕ(0) = 0, t ≥ ϕ(t) > 0, ∀t ∈ R0
+

(nor-2) ϕ is lower semicontinuous (in short: lsc) on R+.

Given such an object, define the function ψ ∈ F(R+) as

ψ(t) = t− ϕ(t), t ∈ R+ (in short: ψ = I − ϕ);

clearly, ψ is regressive and upper semicontinuous (usc) on R+.

Theorem 4.1. Suppose that there exists a normal function ϕ ∈ F(R+), such that
(under the above convention)

d(T (x1, ..., xk), T (x2, ..., xk+1)) ≤ ψ(max{d(xi, xi+1); 1 ≤ i ≤ k}),
for all (x1, ..., xk+1) ∈ Xk+1.

In addition, let X be d-complete. Then, the following conclusions hold:
(41-a) For each (x1, ..., xk) ∈ Xk, the iterative sequence (xn) introduced as

xn+k = T (xn, ..., xn+k−1), n ≥ 1

converges to some u ∈ X with u = T (u, ..., u)
(41-b) Moreover, if

d(T (x, ..., x), T (y, ..., y)) ≤ ψ(d(x, y)), for each x, y ∈ X with x 6= y,

then u ∈ X is uniquely determined with such a property.

Proof. According to authors, the argument consists in the following.
Part 1. Using the contractive condition, we conclude that

(1;decr) the sequence (d(xn+k−1, xn+k);n ≥ 0) is monotone decreasing
and limn d(xn+k−1, xn+k) = 0.

Part 2. Further, (xn) is a Cauchy sequence. For, given any n,m ∈ N with
n ≤ m, we have (using the contractive condition)

(2;A) d(xk+n, xk+m) =
d(T (x1, ..., xk+n−1), T (x2, ..., xk+m−1)) ≤
d(T (x1, ..., xk+n−1), T (x2, ..., xk+n)) +
d(T (x2, ..., xk+n), T (x3, ..., xk+n+1)) + ...+
d(T (x2, ..., xk+n), T (x3, ..., xk+m−1)) ≤
ψ(max{d(xi+n, xi+n+1); 1 ≤ i ≤ k − 1}) +
ψ(max{d(xi+n, xi+n+1); 1 ≤ i ≤ k}) + ...+
ψ(max{d(xi+n, xi+n+1); 1 ≤ i ≤ k +m− 1}).

Taking the upper limit as n,m→∞, implies that

(2;B) limn→∞ d(xk+n, xk+m) = 0.

Hence, (xn) is a Cauchy sequence.
Part 3. Since (X, d) is complete, there exists u ∈ X such that

limn,m→∞ d(xn, xm) = limn→∞ d(xn, u).

Using the contractive condition gives u = T (u, ..., u).
Part 4. Assume that there exists v 6= u such that v = T (v, ..., v). As d(u, v) > 0,

we must have ϕ(d(u, v)) > 0. Combining with the imposed extra condition yields

d(u, v) = d(T (u, ..., u), T (v, ..., v)) ≤ ψ(d(u, v)) < d(u, v);

a contradiction. Hence, u = v; and the last conclusion of statement follows. �
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Unfortunately, the proposed reasoning cannot be accepted. The basic motivation
for this concerns the evaluation of iterates xk+n and xk+m appearing in relation
(2;A). Precisely, the authors’ evaluation of the former iterate

xk+n = T (x1, ..., xk+n−1)

is not correct; because it involves k + n − 1 variables in the right hand side; and
this, along with

k + n− 1 > k, whenever n ≥ 2

is in contradiction with the construction of our iterative sequence

xn+k = T (xn, ..., xn+k−1), n ≥ 2;

which involves, at any stage, k variables in the right hand side. Likewise, the
authors’ evaluation of the latter iterate

xk+m = T (x2, ..., xk+m−1)

is again incorrect; because it involves k + m − 2 variables in the right hand side;
and this, along with

k +m− 2 > k, whenever m ≥ 3

is in contradiction with the construction of our iterative sequence

xm+k = T (xm, ..., xm+k−1), m ≥ 3;

which involves, at any stage, k variables in the right hand side.
A direct way of correcting this argument is that of using our main result, with

ψ in place of ϕ. Precisely, the following variant of Theorem 4.1 is available.

Theorem 4.2. Let the normal function ϕ ∈ F(re)(R+) be such that

ψ := I − ϕ is increasing strongly Matkowski admissible and
T is (d, ψ)-contractive.

In addition, let X be d-complete. Then, the following conclusions hold:
(42-a) If (in addition) S is d-strictly-nonexpansive, then

T is fixd-asingleton; i.e.: Fixd(T ) = Fix(S) is an asingleton

(42-b) T is strong Prešić (modulo d): for each U0 := (u0, ...uk−1) ∈ Xk, the

iterative sequence (un := TnU0;n ≥ 0) fulfills un
d−→ z, for some diagonal fixed

point z ∈ Fixd(T ) = Fix(S).

The verification is immediate; so, we do not give details. Further aspects may
be found in Rao et al [16], and Gholidahaneh et al [5]; see also Shukla et al [20].
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