
Self-sovereign Identity Management Framework
using Smart Contracts

Komal Gilani
Institut Telecom, Telecom SudParis

CNRS 5157, France
komalsyeda29@gmail.com

Fariba Ghaffari, Emmanuel Bertin
Orange Innovation

Caen, France
fariba.ghaffari, emmanuel.bertin@orange.com

Noel Crespi
Institut Telecom, Telecom SudParis

CNRS 5157, France
noel.crespi@it-sudparis.eu

ability against single point of failure due to the maintenance
of all users’ authentication through a single application [4].

The significant drivers for the shift to decentralized digi-
tal identity includes providing users with control over their
information and optimizing workflows in business interaction
to decrease operational cost. The concept of Self-sovereign
identity (SSI) provides such a user-centric approach, in which
identity is created, managed, and operated by the user. In this
model, the existence of the user is independent of services [8],
and the users can control the sharing of their data.

Blockchain technology which emerged as a distributed cash
system since the introduction of Bitcoin [6] [9]. It soon became
the key to the inception of smart contracts [10] [11] [12].
This technology brings many unprecedented opportunities
in several platforms such as IoT [13] [12], healthcare, etc.
Blockchain contains information in a chain of blocks, in
which a cryptographic signature is an identifier for each block.
Transparency is achieved through consensus among the nodes
in a network. The database of blocks in the network forms
a distributed ledger with an append-only shared record of
transactions [14]. In this paper we proposed a system that
enables the users to register and manage their identity.

The main contributions of this paper is to proposes a decen-
tralized identity system, entitled OrgID, that supports identity
creation and verification schemes and credential management
utilizing blockchain technology. This system enables identity
verification through proof computation for the authorization
of entities to access services or connect to other entities. The
highlighted advantages of the proposed method are as follows:

1) Users are registered, and the unique identifier is sent
back to the user. Users can store their signed and
encrypted personal information locally, or externally,
and they can share it with other users/authorities for
verification and access management.

2) It facilitates users’ authorization to retrieve other users’
data securely and robustly.

3) The proposed system includes a proof verification that
enables challenge-based proof computing and allows
users to verify their identities to access services.

4) We demonstrate our work through our prototype and
provide performance analysis based on standard met-
rics. Lastly, we discuss future improvements on how

Abstract—In centralized infrastructures, users are not capable
of authenticating themselves, in identity management systems,
beyond their application’s domain. Users are forced to trust
their service providers for identification a nd d ata management.
Such solutions have experienced large-scale data breaches and are
cumbersome for users to remember the credentials for multiple
sites. Furthermore, users have very little control over their data.
The concept of decentralized identity has raised the possibility
of better managing these concerns. It allows users to share only
the relevant part of their personal information with a service
provider to verify their digital identity. We propose OrgID, a de-
centralized identity and user-centric data management platform
including identity registration and authorization procedures.
Our approach supports self-sovereign identity architecture lever-
aged by blockchain. This method consists of a one-time proof-
verification m echanism t hat f acilitates t he s ecure a ccess and
credibility of digital information. Moreover, users can maintain
their identities associated with specific a ttributes a nd r ely o n a
proof mechanism using smart contracts. It deploys a platform
where user registration and authorization no longer involve a
central service provider. We implemented the proposed solution
using smart contracts on a private Ethereum blockchain. We
further analyzed the performance of these processes regarding
the system’s scalability to evaluate how they manage latency and
the number of users. The results state that the system is highly
scalable to manage a large number of users and the system’s
latency is adjustable based on the application needs.

Index Terms—Blockchain, Self-sovereign Identity, Single Sign-
on, Authentication, Identity proofing, c laim verification.

I. INTRODUCTION

Traditional identity management systems lack a user-centric
approach that would increase user-perceived trustworthiness
and reduce the ownership of user data by central authorities
[1] [2] [3]. To access digital services, a user is often asked to
identify himself in different services which implies a multitude
of identifiers f or t he u ser t o m anage [3]. M ultiple identities
prevent users from gaining control over their data.

Today, several methods such as SSO-type [4] [5] solutions
are available to solve this problem. These solutions are based
on the delegation of authentication to Identity Providers (IdPs).
One hazard of using authentication delegation is that it can
pose a threat to personal data protection [3], and the users
have no control over the number and nature of information
communicated to digital services by an identity provider [6]
[7]. Another major drawback of this approach is their vulner-

blockchain can become a vital resource to achieve
distributed and user-centric digital identity systems.

The rest of the paper is organized as follows: a brief
background on relevant technologies regarding decentralized
identity is provided in section II. We present the proposed
system structure, its concept, and its detailed design in section
III. An evaluation of the implemented system is discussed in
section IV, followed by our presentation of the key benefits and
salient properties of the proposed system in section V, where
we conclude our work with some future research directions.

II. RELATED WORKS

Among the most frequently mentioned blockchain-based
identity and credentials management systems are ShoCard
and uPort. They are commercially available SSI platforms
for credential management based on Hyperledger Fabric and
Ethereum blockchains, respectively. In ShoCard, user identity
proofing works via existing trusted credentials stored on
blockchain [15]. An intermediate agency or an intermediate
provider can localize a user’s information. The uPort system
gathers attributes from an ecosystem of identity providers and
does not provide an identity verification mechanism [16].

Zhou et al. [17] proposed an identity management solution
to facilitate user registration, authorization, verification, and
key recovery. Zyskind et al. [6] proposed a decentralized sys-
tem for personal data management in which blockchain only
stores the hash pointers to users’ data and access permissions
for authorization purposes. However, the attribute aggregation
approach and endpoint binding for identifiers and verifiable
credentials are not considered. The proposed system in [7]
manages the identities of medical patients using blockchain
and their encrypted records are stored in the blockchain.
This approach has several weaknesses regarding design and
scalability. Takemiya et al. [18] proposed an identity solution
based on the JSON-LD standard. In this solution, users can
generate a pair of cryptographic keys and store their private
key hash locally. Encrypted keys are stored on a centralized
server, which negates the decentralized concept for identity
management. The proposed system in [19] provides support
for user registration and storing the associated data and makes
use of an Ethereum blockchain for identity and attribute stor-
age. A similar solution is proposed in [20], with a standardized
identifier and credential scheme.

Inspired by an idea proposed in [7], and [21], we propose
a decentralized identity portal where users can register their
digital representation and store it in the blockchain network.
The identifier and key pairs are fed back to the user and must
be stored in a secure place. Users can verify their identity
to other parties through the proposed proof-verification mech-
anism. Compared to the aforementioned solutions, we have
focused on identity verification and credential management as
a decentralized solution.

Table I presents the comparison of the proposed system with
existing solutions. Based on metrics derived from the careful
analogy, we can claim that the proposed system has greater

Fig. 1. High-level architecture of proposed system

advantages on decentralized identities, using verifiable claims
and providing SSO.

III. PROPOSED SYSTEM

We propose identity management combined with a proof-
based verification mechanism for users to interact with service
providers and authorities without relying on trusted delega-
tions. In addition to provide an interface for users to create and
manage their identities, this system proposes proof verification
for users when they want to interact with service providers.
Leveraging blockchain and smart contracts, the system aims
to improve automation in the identity life cycle (i.e., regis-
tration, credential management, and verification). Blockchain
can guarantee systems with no single point of failure, higher
scalability, increased accountability, and reliability. Addition-
ally, users can benefit from a variety of services and interact
with other entities in a trustless environment much more
robustly and securely. The novel mechanism based on the SSO
concept (i.e., through combined one-time password (OTP) and
blockchain) enables users to verify who they are. This method
also protects the integrity of the user’s associated PII.

Our proposed framework (Fig. 1) consists of users, au-
thorities, OrgID service, blockchain network, and external
storage. The private blockchain network is used to execute
smart contracts. OrgID service is used for interactions between
the application and network interfaces. Additionally, external
storage (e.g., IPFS) can be used to store the user’s digital infor-
mation. It is suggested to store personal information locally
or on a distributed server which allows users to search and
retrieve such information. In this system, any user can register
to the system and manage their digital identity representations
by accessing the provided standard interface.

A. A motivating scenario

Let us consider Alice wants to use her verified identity to
connect to multiple services with a single sign-on verification.
Alice can register an identifier OrgID with minimum personal
claims based on a pre-credential, such as her Social Security
Number (SSN). A unique identifier (i.e., OrgID) is created for
Alice and stored in blockchain with digitally signed encrypted
personal information. Alice can share OrgID with the service
A, who must check the existence of the digital personal of
Alice. Upon successful verification, a hash of the computed

TABLE I
COMPARISON OF PROPOSED SOLUTION WITH EXISTING DECENTRALIZED IDENTITY METHODS

refs [15] [16] [17] [7] [18] [19] [20] ProposedFeatures

Decentralized Identifier 7 7 7 7 7 7 3 3
Verifiable Credentials 7 3 7 7 7 7 3 3
Credential Storage+ 3 3 3 3 N/A 1 2 2,3
User-Controlled Access 3 3 3 7 3 3 3 3
Encrypted Information 3 3 3 3 3 7 3 3
Verification Scheme** 7 7 7 7 7 7 7 3

* Identifier: Acctbc (Using blockchain address as Identifier or combination) or DID (W3C Standard DID identifier)
+ (1) On-Chain (Store encrypted information on blockchain), (2) Locally (Store encrypted information on device of user’s
choice) and (3) Externally (Store encrypted information on another server e.g., IPFS)
** Allows the user to verify their identity to other users and authorities using SSO proof through smart contract and oracle

oracle proof is received by Alice, who then publishes it on the
blockchain. With the oracle proof service A can match proofs
and certify successful verification by adding the hash and the
signature for Alice’s identity in the blockchain. When Alice
wants to connect to service B, she can verify the signature
from service A to confirm that her identity has been verified.

With Business-to-Business (B2B) services, accessing
client’s information can be accomplished by relying on identity
verification based on identifiers and verifiable credentials. For
instance, medical company A may subscribe to a research
company, B, on behalf of their employees. In this case,
employees of company B do not have a direct connection
with company A and thus need to verify their relationship
with them.

B. Blockchain interface and smart contracts structure

In the proposed system, the blockchain interface consists
of different smart contracts to provide digital identity verifi-
cation and management. It mainly includes Identity Registra-
tion Contract (SCIRC), Address Management Base Contract
(SCAMBC), Credential Storage Contract (SCCSC), Service
Provider Base Contract (SCSPBC), and Verifier Contract
(SCver). For each registered user, a profile is generated in
blockchain through the Org interface, which is used as a
unique identifier (OrgID) and fed back to the user along with a
key pair. A secret key or secondary identifier is derived from
OgrID and can be used to retrieve information of identity
and associated credentials. This identifier can also be used as
a backup key in case of a temporary loss of the OrgID.

SCAMBC holds the information of all the registered users
and deploys several functions associated with digital identity.
These functions act through contracts to fulfil the authentica-
tion of digital identities and their related information and to
maintain the operational log. Each key operation performed on
an identity-basis, such as access, sharing, and interaction with
other entities for trustees is recorded in an SCWEC . These
logs are temper-proof in the blockchain, which makes it easy
to monitor users’ operations and to track the actions performed
on digital identity. For verification, the proposed SSO mecha-
nism code in the SCSSO is also included. SCCMC holds the
logs of encrypted records, which represent the relationship

between the digital fingerprint of the encrypted information
obtained from an external source and where the corresponding
sensitive information is stored locally. The structure of these
records is defined in SCCSC , where tuples for credentials
with hashed and associated OrgID are generated. SCSPBC

is used to demonstrate the access request based on a proposed
verification in which the user can send their request to the
service provider base and the service provider creates the
“service code” as a challenge. Oracle generates the proof using
SCSSO, and then sends it to the user and stores the log on the
blockchain when the user submits the proof associated with
a given “service code”. The service provider can verify the
proof and grant user access. Our blockchain interface contains
several smart contracts, enabling it to support a variety of
digital identity requirements such as registration and login,
information storage, verification, etc. Descriptions of these
main smart contracts are listed below:

1) SCIRC contract: This smart contract is the first step in
a user’s registration and their creation of an identifier
in the system. The blockchain system contains several
of these contracts for each user. It takes the following
inputs: 1)A prefix string to represent the identifier’s
nature; 2) The user’s account address; 3) A Boolean
value to represent the user’s identity (i.e., active/inactive)
mode; 4) A hash value; and 5) A URI that contains a link
to an external representation. It generates the tuple of de-
centralized identifiers, called OrgID, and stores it as the
user’s representation into a distributed database contract
called SCAMBC (this contract is discussed next. This
decentralized identifier OrgID is designed in compliance
with the W3C decentralized identity standard [22].

2) SCABMC Contract: This smart contract is a global
identity contract that acts as a storage for the afore-
mentioned contract and invokes the Creating, Reading,
Updating, and Deleting (CRUD) operations on identity.
It also encompasses the interaction with SCCMC and
SCIRC contracts. These smart contracts provide an
identity management base for users to perform a variety
of operations on identity, including registration, update
(active/inactive status), read, and transfer of ownership.

3) SCCS Contract: This smart contract is designed to

provide users a means to store and invoke credentials.
Users can store their digital information in the SCCSC

and invoke the CRUD operation on credentials such as
Upsert, Revoke and Update SCABMC . The credential
structure holds various attributes such as status, associ-
ated identifier, owner’s account details, hash value(s),
URI, and type of credential (e.g., education record,
medical record). Furthermore, these records are asso-
ciated with the identifier’s OrgID and derived secret
key (keyid). Noted that these records are stored in the
ledger in the form of digital prints, and any sensitive
information associated with them is to be stored locally.
Users can share these records with the issuer(s) (through
external means), who can provide their attestation(s) by
upgrading the credential verification status in the form
of duplicate records in the network.

4) SCSOS Contract: This smart contract provides the
verification mechanism with which a user can compute a
challenge in the interface. This contract lets the service
providers verify that an identity belongs to the same
user. Using the OTP-based scheme, Oracle generates the
proof and stores it in blockchain with access permission,
and the user receives the proof through an interface
such as SMS OTP. Firstly, the user submits the required
proof in the blockchain, and then the oracle proof is
recorded. This mechanism helps to avoid security threats
such as spoofing and phishing attacks [23]. Upon proof
submission, the service provider can verify the proof and
grant/deny the user access accordingly.

5) SCICC Contract: This contract manages all the op-
erations and access logs (e.g., maintains the list of
permissions and the footprints of a user’s activities).
The authorization-related operation, defined for users,
is stored in the Access Log Contract (SCALC).

6) SCSPBC Contract: This smart contract contains the
information about the various service providers that
users are connected to. It includes a structure that
encapsulates each service provider’s address, URI, and
“access token” parameters. Individual service providers
can use SCSPBC to verify each proof and entertain
different requests submitted by users.

C. System design

Here we present the detail overflow of our proposed identity
management operation, including identifier registration, cre-
dential management and a verification scheme.

1) Identifier registration: The first step is to register the
user (acctU) into the blockchain. This interface enables the
interaction between the user and the blockchain by generat-
ing a public/private key pair (skU , pkU) and corresponding
blockchain address (addrU). Key pairs are used to sign and
encrypt personal information and claims, which are stored ex-
ternally, while digital fingerprints are stored on the blockchain.
These fingerprint logs are linked to addrU and real digital
information. The process is detailed below (Fig. 2):

Fig. 2. The process of identifier registration and information management

• Step 1: A user generates the public-private key pair (i.e.,
skU , pkU) and associated (addrU) using the interface.
The private key is stored locally on a device chosen by
the user.

• Step 2: The user creates their unique identifier by creating
a SCIRC , which takes four parameters: the user’s address
(from step 1), a hash value, a URI, and a status value to
represent the active/inactive status of the identifier. An
OrgID and an internal key are generated from addrU ,
and an identifier is created as follows:

OrgV C : CredV cKey < acctUsubject, acctUIssue,
Hashdata, URI >

OrgID = ID < addrU ,Key, URI,Hashdoc >
The identifier is stored in SCIBC , where all the identities
on the blockchain are stored. The OrgID is fed back to
the user as an identifier in the proposed system.

• Step 3: After the successful registration of their identifier,
the user can access their identifier based on the generated
identifier and execute a variety of operations and to use
it to extend their interaction with other entities, including
other users, as well as to access different services such
as those offered by education institutes, medical facilities,
IoT manufacturers, etc.

2) Issuing credentials: In our proposed system, we pro-
vide a means to store identity-associated information in a
blockchain system. In order to securely exchange credentials,
the system allows each user to store the records of credentials
on the network. However, with size limits and privacy as
the main concerns, the representation of these claims does
not include any likability to the actual information. Instead,
these credentials are stored as hash values and the user can
select a source location URI where accessibility with minimum
disclosure is given. The process involves the following steps:

• Step1: Once the user is registered in the system and
receives the decentralized identifier, she can input her PII
and store the encrypted and signed digital information
using a (skU , pkU) pair.

• Step 2: The encrypted information is stored as a tuple

Fig. 3. Processes of Authorization. demonstration of the scenario where Bob
sends the request to access Alice’s information

that includes the above-mentioned identifier, the hash of
metadata, and URI for the link to public information
available outside of the blockchain. It is recorded on the
blockchain through SCCSC smart contract. The records
are stored in the following form:

• Step 3: The user can share these credentials with author-
ities as a means of identity verification. Users can store
their credentials by themselves, known as self-asserted
claims, and use them to collect verification badges from
authorities that can verify the status of these assertions.

• Step 4: To revoke credentials, subject or issuer calls the
revoke function of revocation− registry through smart
contract SCRR. Only the subject or issuer, following
identity verification, can revoke relevant credentials.

3) Authorization (selective disclosure and verification): A
user-centric authorization mechanism allows users to authorize
and access other users’ information. Users can set the permis-
sions for whitelist entities in SCWEC . As shown in Fig. 3,
the authorization process can include the following steps:

• Step 1: Bob (i.e., the user to be authorized) obtains the
identifier of another user (Alice). This interaction can be
initiated through common services (e.g., connected social
network). Bob requests to access Alice’s information. In
that request, Bob also shares his identifier as proof of his
identity along with dataset in the following request

ReqBob < OrgIdBob, DSetBob >
• Step 2: Upon detecting the new access request (e.g., in

mobile application), Alice can verify the identity of user
by realizing the OrgID−Bob information encapsulated
in the identifier through available discovery service.

• Step 3(a): In case of successful verification of Bob’s
identity, Alice invoke the smart contract SCICC and
SCWEC to add him in the white-list entities. For data
access endpoint, the token is generated using OrgIDAlice

and OrgIDBob and signed with Alice’s PK. The token
along with following information and a set of policies on
requested data is submitted.

< token,DSetBob, Statusbob >
• Step 3(b): Alice can choose to block the permission and

Fig. 4. Processes of SSO verification

invoke the SCICC to deregister Bob from the white-list
(if it exists already) with following information:
< SigSK(OrgIDAlice, OrgIDbob,DSet, StatusBob >;

where StatusBob for specified request is set as blocked.
• Step 4: Successful execution of operations in Step 3 (in

both cases) notifies the response which grants/denies the
access and emits the request/response logs on blockchain
network.

• Step 5: Bob receives the response and retrieve the token
from emitted event to download the data from endpoint.
To perform the token validation, SSO verification is
operated (this part is explained in the next step).

4) SSO-based verification mechanism: Our proposed de-
centralized identity verification method allows users to au-
thorize themselves to Service Providers (SPs) using smart
contract and oracle capabilities. This SSO-based verification
mechanism, depicted in Fig. 4, involves the following steps:

• Step 1: Bob sends the following request to SP by invoking
the SCSPBC and retrieves the endpoints to communicate
with desired SP to access either service or an endpoint
to retrieve Alice’s data as discussed earlier.

ReqU < AddrSP , URI, Token >
Upon receiving the request, SP sends the challenge code
and endpoint to user and emit the request data along with
challenge information on blockchain.

• Step 2: User invokes the SCSOS contract with proof
request and submits the URLProof , AddrU . SCSOS no-
tifies the oracle where proof is computed and sends back
to server (through secure endpoint) and emit the “proof
is generated” log on the network.

• Step 3: User receives the notification and submits the
proof (access permission applied) using SCSOS and
emits the “User proof is generated” log on the network.

• Step 4: After successful submission of user proof, the
oracle proof is submitted using SCSOS and emits the
“Proof Added” log on the network.

• Step 5: After, the successful proof computation, SP can
verify and emit the response on the network such as
“access granted/denied”, accordingly.

IV. PERFORMANCE ANALYSIS

This section describes the implementation and evaluation of
our proposed framework, called OrgID Services. Even though
the comprehensive implementation of the system is still under
development, we have implemented the blockchain interface
where user’s identity and credential records are stored in
the private Ethereum blockchain. We developed the above-
mentioned smart contracts in Solidity and deployed them
in a private Ethereum Blockchain simulated by Ganache-cli
v.6.12.2 and compiled by Solc v.0.8.2.

The performance analysis of the proposed method was
done by evaluating the scalability of the system in terms of
the increasing number of concurrent connection requests and
different parameters of blockchain configuration. To measure
the scalability, we assess the latency [24], [25] which estab-
lishes the average time required to handle one transaction. The
scalability of the system is the changes of latency by altering
a parameter [26]. We used three parameters to measure the la-
tency deviation: BlockT ime(BT), BlockSize(BS), and the
number of concurrent requests sent to the blockchain. BT
defines the difficulty of the consensus puzzle which leads to
the extraction of blocks in predefined time. In our experiments
we selected BT = [5, 10, 15]. Due to the limitation of web3j
library, we could set BS = [15, 30, and45]. Concurrent re-
quests (C) are the number of requests that are sent concurrently
to the system (by virtual clients). We set this parameter as
C = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500].

Figure 5 (a-c) depicts the latency of the identifier registra-
tion, credential issuance, and verification for different values of
BS and BT, respectively. As shown in this figure, for C ≥ 100
the average time deviation is less than 50ms. It means, the
system is not highly sensitive to the number of requests.
Therefore, we can state that the system is scalable and can
maintain stable latency in a large-scale environment. Another
result of the experiments is that by increasing the BS and
decreasing the BT to a threshold of the system requirement,
the latency decreases. In the other words, the system’s latency
is adjustable based on the requirements of the application. It
is important to mention that the higher level of security, the
higher latency. It means, to achieve a more secure system, the
difficulty of the consensus puzzle must be increased.

V. DISCUSSION AND FUTURE WORK

We present a decentralized identity and access management
method using blockchain and smart contracts. The proposed
system provides the user-controlled and SSI lifecycle by
enabling the global identity representations on the blockchain
and exchange of information and data with other entities in the
ecosystem. The main goal of the proposed system is to provide
a flexible identity management solution that is sustainable and
interoperable in the broader sense of adoption. The highlighted
features of the system are described as follows:

• Identity Life Cycle: We have achieved user registration,
information management, authorization, and SSO access
with the help of smart contracts. The system takes into

(a)

(b)

(c)

Fig. 5. System latency with different values for BT, BS, and concurrent
requests for (a) identifier registration, (b) credential issuance, (c) verification.

account the data size limit and defines the structure for
identity and credentials to be recorded without revealing
sensitive information.

• Standardisation and Interoperability: The defined struc-
ture of identity and information management is compliant
with decentralized identity (DIDs) and thus extends the
enhanced privacy by design. DIDs and verifiable claims
(VCs) [8] support the global representation of identities
and ensure the interoperability.

• User-Centric Access Control: The system allows the user
to define access permissions by adding the permitted
entities into a whitelist and grant access to data using
access tokens.

Indeed, we aim to improve the system in future work by
investigating promising means for key recovery and discovery
services. Another direction will utilize a system comprised of
smart contracts, APIs, and a prototype application interface to
deploy this identity system to real-world use-cases.

REFERENCES

[1] T. El Maliki and J.-M. Seigneur, “A survey of user-centric identity man-
agement technologies,” in The International Conference on Emerging
Security Information, Systems, and Technologies (SECUREWARE 2007).
IEEE, 2007, pp. 12–17.

[2] J. Torres, M. Nogueira, and G. Pujolle, “A survey on identity man-
agement for the future network,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 2, pp. 787–802, 2012.

[3] O. Jacobovitz, “Blockchain for identity management,” The Lynne and
William Frankel Center for Computer Science Department of Computer
Science. Ben-Gurion University, Beer Sheva, 2016. [Online]. Available:
https://www.cs.bgu.ac.il/ frankel/TechnicalReports/2016/16-02.pdf

[4] E. Maler and D. Reed, “The venn of identity: Options and issues in
federated identity management,” IEEE security & privacy, vol. 6, no. 2,
pp. 16–23, 2008.

[5] V. Radha and D. H. Reddy, “A survey on single sign-on techniques,”
Procedia Technology, vol. 4, pp. 134–139, 2012, 2nd International
Conference on Computer, Communication, Control and Information
Technology(C3IT-2012) on February 25 - 26, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212017312002988

[6] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

[7] T. Mikula and R. H. Jacobsen, “Identity and access management with
blockchain in electronic healthcare records,” in 2018 21st Euromicro
conference on digital system design (DSD). IEEE, 2018, pp. 699–706.

[8] “Verifiable Claims Working Group Frequently Asked Ques-
tions.” [Online]. Available: http://w3c.github.io/webpayments-
ig/VCTF/charter/faq.html

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[10] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[11] N. Szabo, “Formalizing and securing relationships on public networks,”
First monday, 1997.

[12] L. Ismail and H. Materwala, “A review of blockchain architecture and
consensus protocols: Use cases, challenges, and solutions,” Symmetry,
vol. 11, no. 10, p. 1198, 2019.

[13] O. Alfandi, S. Otoum, and Y. Jararweh, “Blockchain solution for iot-
based critical infrastructures: Byzantine fault tolerance,” in NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1–4.

[14] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[15] “ShoCard.” [Online]. Available: https://www.shocard.com/en.html
[16] D. C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena,

“UPORT: A PLATFORM FOR SELF-SOVEREIGN IDENTITY,” p. 17.
[17] T. Zhou, X. Li, and H. Zhao, “Everssdi: blockchain-based framework

for verification, authorisation and recovery of self-sovereign identity
using smart contracts,” International Journal of Computer Applications
in Technology, vol. 60, no. 3, pp. 281–295, 2019.

[18] M. Takemiya and B. Vanieiev, “Sora identity: Secure, digital identity
on the blockchain,” in 2018 ieee 42nd annual computer software and
applications conference (compsac), vol. 2. IEEE, 2018, pp. 582–587.

[19] J. Alsayed Kassem, S. Sayeed, H. Marco-Gisbert, Z. Pervez, and
K. Dahal, “Dns-idm: A blockchain identity management system to
secure personal data sharing in a network,” Applied Sciences, vol. 9,
no. 15, p. 2953, 2019.

[20] “Seraph ID: Introducing Swisscom Blockchain’s digi-
tal identity solution on NEO,” Jul. 2019. [Online].
Available: https://neonewstoday.com/general/seraph-id-introducing-
swisscom-blockchains-digital-identity-solution-on-neo/

[21] X. Fan, Q. Chai, L. Xu, and D. Guo, “Diam-iot: A decentralized
identity and access management framework for internet of things,” in
Proceedings of the 2nd ACM International Symposium on Blockchain
and Secure Critical Infrastructure, 2020, pp. 186–191.

[22] “Decentralized Identifiers (DIDs) v1.0.” [Online]. Available:
https://www.w3.org/TR/did-core/

[23] G. B. Ayed and S. Ghernaouti-Hélie, “Privacy requirements specification
for digital identity management systems implementation: towards a

digital society of privacy,” in 2011 International Conference for Internet
Technology and Secured Transactions. IEEE, 2011, pp. 602–607.

[24] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on the
scalability of blockchain systems,” IEEE Network, vol. 33, no. 5, pp.
166–173, 2019.

[25] P. W. Eklund and R. Beck, “Factors that impact blockchain scalability,”
in Proceedings of the 11th international conference on management of
digital ecosystems, 2019, pp. 126–133.

[26] M. Schäffer, M. Di Angelo, and G. Salzer, “Performance and scala-
bility of private ethereum blockchains,” in International Conference on
Business Process Management. Springer, 2019, pp. 103–118.

