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Thermodynamics Maths with Fermi, Feynman, Finzi ideas

After the presentation of the paper "The Mathematics of Thermodynamics", based on ideas of B. Finzi [one of the professors at Milan Politecnico] to be found in a paper published in the "Periodico di Matematiche, serie IV, vol. XIV, 1935", related to a Caratheodory publication in Mat. Ann., 67, 355, 1909, Berl. Ber. 39, 1935, the author now expands his ideas by including the Carnot way of thinking. He will use the ideas of the great scholars Fermi, Feynman and Finzi. We give also the "true" meaning of Entropy. We present the thermodynamic potentials.

Introduction

This document tries to develop the Theory of Thermodynamics by using Mathematics about some known facts related to the temperature, the thermal equilibrium, the transformation of energy (mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat), the state variables, the 0 th , the 1 st , the 2 nd and the 3 rd Principles of Thermodynamics.

The word Thermodynamics is derived from two Greek words "thermo" (meaning "hotness") and "dynamis" (meaning "force/power"); Thermodynamics is the "study" of getting work/power from heat.

All the Principles are shown in the figure 1, "The Thermodynamics Tetralogy" (showing the four, above mentioned, Principles). We name them Principles because they are assumptions induced into our mind by known facts we see in Nature. From them we can derive Theorems able to predict, using Mathematics, the results of "real cases" happening in Nature. The same was done by Galileo, Newton, Maxwell, …, Einstein, …, Bohr, Schrödinger, Heisenberg, Born, … about Mechanics, Electrodynamics, Relativity, Quantum Mechanics, … Some documents call "Laws" our Principles. See Feynman statements:

The results of thermodynamics are all contained implicitly in certain apparently simple statements called the laws of thermodynamics. At the time when Carnot lived, the first law of thermodynamics, the conservation of energy, was not known. Carnot's arguments were so carefully drawn, however, that they are valid even though the first law was not known in his time! Sometime afterwards, Clapeyron made a simpler derivation that could be understood more easily than Carnot's very subtle reasoning. But it turned out that Clapeyron assumed, not the conservation of energy in general, but that heat was conserved according to the caloric theory, which was later shown to be false. So it has often been said that Carnot's logic was wrong. But his logic was quite correct. Only Clapeyron's simplified version, that everybody read, was incorrect. The so-called second law of thermodynamics was thus discovered by Carnot before the first law! It would be interesting to give Carnot's argument that did not use the first law, but we shall not do so because we want to learn physics, not history. We shall use the first law from the start, in spite of the fact that a great deal can be done without it. Excerpt 1. Feynman statements We will start our journey starting from Carnot ideas to let the reader appreciate his ingenuity. This is not the way most of the books present the Theory of Thermodynamics.

We remember here some known facts. Fist known facts. Everyone, either in summer or in winter, feels differently: in summer we feel hot, while in winter we feel cold. We attribute these feelings to a physical quantity named temperature. We are able to distinguish between hot objects and cold objects; we say that hot objects have a temperature t H higher than the temperature t C of the cold objects: t H > t C . To deal scientifically with any physical quantity we must be able to measure it. Regarding the temperature, we experience the fact that if we mix a hot quantity of matter with a cold quantity of water, after some time, we feel the (mixed) matter + water at the same temperature t, and we say that they are in thermal equilibrium. (see figure 0, where you see two systems, at different temperatures, connected by a rod; after due time, they, spontaneously, have the same temperature): this is an example of a spontaneous "diffusion (stochastic) process" [see later]. Later, we are able to make then the statement that thermal equilibrium is an equivalence class:

IF the object A is in thermal equilibrium with an object C AND another object B is in thermal equilibrium with the same object C, THEN the objects A and B are in thermal equilibrium with each other. This is named the Zero th Priciple of thermodynamics. This "law of equivalence" allows us to devise an object C [or more objects C] able to "measure" the temperature: it is named "thermometer" (see figure 0). A common thermometer in everyday use consists of a mass of liquid-usually mercury or alcoholthat expands into a glass capillary tube when heated. All thermometers use physical properties of objects that vary with the temperature. Common thermometers are made of a mercury column in a glass tube: if temperature rises, the glass and the mercury expand; the mercury expands more that the glass and therefore the mercury goes up in the glass tube (we say that the mercury has the larger coefficient of linear expansion than the glass). To make the "mercury column in the glass tube" able to measure the temperature we define a scale of temperature by stating that two points on the scale have the value 0 and the value 100: by dividing the interval 0----100 into 100 parts we then define the Celsius scale and measure the temperature in °C [Celsius degrees]. Today other types of "thermometers" are based on different physical laws, all related to heat measurements (e. g. Ohm's law). Another known fact is that IF an object has a temperature t H higher than the temperature t C of another object, t H > t C , THEN there is "something" flowing from the hotter object to the colder object: the "something" flowing is ENERGY, with a special name heat. Heating is the way to transfer energy, with the special name heat. At Carnot times they used the name "caloric"… We generalise all these facts by saying that in our physical (three-dimensional) space there exist a scalar thermal field, (P), at any point P. The energy flow depends on the gradient of the temperature, grad(P). Another experiment: if we take in our hand the right end of a little spoon and we put the other end on a flame, almost immediately we feel our hand "burning"… The two ends (of the spoon) are in thermal equilibrium before taking the spoon and putting its left end on a flame. After putting the left end on a flame, there is a gradient of temperature:

"high" temperature (flame) T H "low" temperature (our hand) T L Due to the thermal conductivity of the spoon material heat flows from the left to the right (fig. 0). This is an example also of a "diffusion (stochastic) process" (see later).

Second known facts.

From Mechanics theory we know that solid bodies exhibit changes in shape and volume under the action of applied forces, that is, the forces deform the body.

Let P a point of the body before the forces application [before deformation] and P the "same" point of the body after the forces application [after deformation]: the vector s=P-P is named displacement and is considered as a (vectorial) function of the point P, s=s(P), named displacement field. Generally s is a "very small" vector: we consider mathematically a differential and we put s i the 3 components of the vector s=s(P), where x k are the 3 coordinates of the point P.

If we set s i/k =( ), we recognise the partial derivative of the coordinate x i of the point P with reference to the "axis" x k . The 9 functions s i/k form a "tensor", the tensor derivative of the displacement. Through it we define the tensor, function of the point P, which is named strain (deformation) tensor field.

Let's consider a portion of a body, whose volume is  and whose surface (border) is ; let F be the force (vector) per unit of volume and f be the force (vector) per unit of surface. Inside  we consider a volume  whose border is ; let n be the vector in a point P of the surface  pointing towards the interior of the volume ; in the point P there is a force p(n) per unit of surface, which is named stress. It is shown that the vector p(n) can be represented by 9 components (of 3 other vectors related to the axes x i ) p ij giving a tensor, named stress tensor field, p ij = pij (P). The tensor p ij (P) is symmetric: p ij =p ji . For an elastic body there is a relation [Hooke law] between the stress and strain tensor, through a 4-tensor c ijrs :

where, using the usage of symbols in tensor analysis, the sums about the lower and upper indexes [rs here] are not shown.

For any physical body (made of matter), there are quantities such as position, specific mass, stress, strain, able to define the state of the body; they are named state variables.

There are also some functions, depending on the state variables, which are the state functions (or functions of state). One of such functions is the internal energy: the important characteristic of all the state functions is that their differential is an "exact differential" which integrated provides the state function depending only on the state variables.

For elastic bodies the internal energy (per unit of volume) is the elastic energy whose differential is whose integral is

For isotropic bodies the 4-tensor c ijrs is very simple and so is the internal energy.

For a fluid (liquid or gas), the stress tensor is given by a simple function, the pression p=p(P), p(n)=pn, whichever is the normal vector n., which means p ik =p ik [ ik is the Kronecker symbol,  ik =0 for i≠k and  ik =1 for i=k]. We know, today, many kinds of energy: mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat. Some of them were not known at the origin of Thermodynamics; moreover, heat was not considered a form of energy.

There are kinds of energy that can be transformed into other kinds of energy… We can say that energy "flows" from one part of a system to other parts of it. Let's consider the system in figure 1.

The water flows into the container B falling by gravity form the container A, where the water has potential energy; it makes the wheel rotate and have rotational Kinetic energy, which, if we want, can do work, as in a water-mill. Analogously, the moving air (translational kinetic energy) does work on the blades of the windmills, causing the blades to rotate (rotational kinetic energy) and the rotor of an electrical generator (an electromagnetic device) to rotate. Energy is transferred out of the system of the windmill by means of electricity.  Insulator (or adiabatic surface), is the one that does not allow the flux of the kind of energy by (named) heat; all the others types of energy can cross the surface.  Diathermic surface, is the one that allows the flux of the kind of energy by (named) heat; therefore all types of energy can cross the diathermic surface. Let's consider another system like in the figure 3; it is the schematic diagram of Joule's famous experiment (carried out after the Carnot times!). The system of interest is made by 1) the Earth, 2) the two blocks, and 3) the water in a 4) thermally insulated container; therefore only energy by work can enter the container.

 Work is done within the system on the water by a rotating paddle wheel, which is driven by heavy blocks falling at a constant acceleration. If the energy transformed in the bearings and the energy passing through the walls by heat are neglected, the decrease in potential energy of the system as the blocks fall equals the work done by the paddle wheel on the water; Let the two blocks fall through a distance h; if where m is the mass of one block, the decrease in potential energy of the system is 2mgh: this energy causes the temperature of the water to increase. By varying the conditions of the experiment, we find that the decrease in mechanical energy is proportional to the product of the mass of the water and the increase in water temperature.  Now we consider another container thermally insulated, except the bottom that is diathermic so that only energy by heat can enter the container (having inside the same mass of water, as before). We heat the water: let the increase in water temperature be the same value as before (previous mechanical experiments). What can we infer from these experiments? Work and heat enter the container and make the water have an increased energy that must be the same, because the final temperature is the same.

The conclusion?

The internal energy depends only on the measured temperature, or the temperature provide the "same kind of level" of the internal energy.

Therefore the variation of internal energy U(t final ) -U(t initial ) does not depend on the way we transfer energy (by work or by heat) into the container. Thus we confirm that, if we enclose a volume (system) by an insulator, the energy can flow into the volume [work done on the system] enclosed by the surface and it is stored in the volume [energy of the internal forces] and does not flow out the volume [as work done by the system or as heat leaving]. We know (now! But it was not known at the Carnot days!) that the internal energy, at temperature t, is provided by the kinetic energy of the atoms and molecules of the body considered. (see later) Since we will deal, firstly, with the Carnot ideas, that are related to the 2 nd Principle of Thermodynamics, we show now "everything substantial" in the "Thermodynamics Tetralogy (Tetrahedron)" [figure 4] where all the four Principles of Thermodynamics are presented as the  whole set of basics [figure 4] needed to develop what is known as the "Equilibrium (i.e. Classical not time dependent) Thermodynamics".

We must define some other concepts: Process (or Transformation): is any change in the state of a system, from A (initial state) to B (final state). Spontaneous (or natural) process: is a process which proceeds of its own accord, without any outside assistance: it does not require any special triggering. Nonspontaneous (or unnatural) process: is the reverse process which does not proceed on its own: it does require special triggering. Cyclic process: When a system undergoes a series of changes and in the end returns to its original state, it is said to have completed as cycle. The whole process comprising the various changes is termed a cyclic process. 

Reversible Process (or

The ideal gas

Now we consider a so-called ideal gas, confined to a cylindrical container whose volume can be varied by means of a movable piston. Such a gas is considered in the following sections to make the analysis of the various principles.

We assume the cylinder does not leak, the mass (or the number of moles) of the gas remains constant. For such a system, experiments provide the following information: I. When the gas is kept at a constant temperature, its pressure is inversely proportional to the volume. (This behaviour is described historically as Boyle's law.)

Thermodynamics Tetralogy
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When the pressure of the gas is kept constant, the volume is directly proportional to the temperature. (This behaviour is described historically as Charles's law.) III.

When the volume of the gas is kept constant, the pressure is directly proportional to the temperature. (This behaviour is described historically as Gay-Lussac's law.) These observations are summarized by the equation of state for an ideal gas: f(p,V,T)=0 is a 3 variable implicit equation. Each variable can be extracted from the formula, so getting 3 explicit equations. Generally it is written as pV=nRT (ideal gas law) where p is the pressure, V is the volume, n is the number of moles, T the absolute temperature and R is called the universal gas constant. R has the value R=8.314 J/(mol K); using this value of R and the state equation, the volume occupied by 1 mole of any gas at atmospheric pressure and at 0°C (273 K) is 22.4 l. The assumptions, for the equation holding, are that the temperature of the gas must not be too low (the gas must not condense into a liquid) or too high and that the pressure must be low. The concept of an ideal gas implies that the gas molecules do not interact except upon collision and that the molecular volume is negligible compared with the volume of the container. In reality, an ideal gas does not exist. The concept of an ideal gas is nonetheless very useful because real gases at low pressures are well-modelled as ideal gases. The ideal gas law states that if the volume and temperature of a fixed amount of gas do not change, the pressure also remains constant. The ideal gas law is often expressed in terms of the total number of molecules N. Because the number of moles n equals the ratio of the total number of molecules and Avogadro's number N A , we can write above Equation as pV=Nk B T, where k B is Boltzmann's constant, which has the value, k B =1.38x10 -23 J/K It is common to call quantities such as p, V, and T the thermodynamic variables of an ideal gas. If the equation of state is known, one of the variables can always be expressed as some function of the other two. We draw the lines in a plane p, V to show two types of curves, the isotherms pV=constant and the adiabatics pV  =constant, with >1. (see later their definitions). They are important for the 2 nd Principle.

Figure 4b.

For any couple of points A(p 1 ,V 1 ) and B(p 2 ,V 2 ) there are an infinite number of lines connecting the two points: the isotherm lines connect the two points A(p 1 ,V 1 ) and B(p 2 ,V 2 ) when the temperature T is kept constant, T=T 1 =T 2 , while the adiabatic lines connect other two points C(p 3 ,V 3 ) and D(p 4 ,V 4 ) when no energy is transferred by heat and therefore the temperature T changes, i.e. decreases by expansion and increases by compression of the gas. Notice that IF A=C it is impossible that B=D! See Caratheodory … (and figure 4b). Therefore, energy transfer by heat, like work done, depends on the particular process occurring in the system. In other words, because heat and work both depend on the path followed on a pV diagram between the initial and final states, neither quantity is determined solely by the endpoints of a thermodynamic process. By defining the function , we can find the vector, named gradient of and written grad , which is orthogonal to the lines =constant. If k is the unit vector orthogonal to the plane p, V [and to the unit vectors i and j] there exists another vector, named rotation (or curl), and written rot , defined by By defining another function , we can find another vector, named gradient of and written grad , which is orthogonal to the lines =constant. Since and The scalar product [dot product] is Therefore, the isotherms and the adiabatic lines must intersect. (see figure 4b) Again from Feynman:

The reason we wrote the last factor as hmv 2 /2 is that this is the kinetic energy of the center-of-mass motion of the molecule. We find, therefore, that PV=N(2/3)hmv But Carnot assumed that it is impossible to extract the energy of heat at a single temperature. In other words, if the whole world were at the same temperature, one could not convert any of its heat energy into work: while the process of making work go into heat can take place at a given temperature, one cannot reverse it to get the work back again. Specifically, Carnot assumed that heat cannot be taken in at a certain temperature and converted into work with no other change in the system or the surroundings. Now, the hypothesis of Carnot, the second law of thermodynamics, is sometimes stated as follows: heat cannot, of itself, flow from a cold to a hot object. But, as we have just seen, these two statements are equivalent: first, that one cannot devise a process whose only result is to convert heat to work at a single temperature, and second, that one cannot make heat flow by itself from a cold to a hot place. We shall mostly use the first form. So, if both engines are reversible they must both do the same amount of work, and we thus come to Carnot's brilliant conclusion: that if an engine is reversible, it makes no difference how it is designed, because the amount of work one will obtain if the engine absorbs a given amount of heat at temperature T1 and delivers heat at some other temperature T2 does not depend on the design of the engine. It is a property of the world, not a property of a particular engine. This is the relation we were seeking. Although proved for a perfect gas engine, we know it must be true for any reversible engine at all. Excerpt 3. Feynman statements

We will not consider the 1 st Principle in this section, as Carnot did.

The Newcomen Steam Engine was one of the most interesting pieces of technology developed during the 1700's. About 65 years after this engine invention, J. Watt made an improvement which improved the efficiency of the machine. Several technical improvement have been taken since then, in order to improve the efficiency of heat engines. Anyway before S. L. Carnot, in 1824, nobody gave any important "theoretical" contribution to the performance of heat engines. Carnot did not consider the "mechanical" details of the engines and gave due attention to the "significant ("theoretical") aspects" of heat engines; they were:

A. Caloric (Heat?) is supplied in, at High temperature T H [Q H is the "level" of Caloric (Heat?) delivered to the engine] B. The engine transforms caloric into (mechanical) work C. Caloric (Heat?) is delivered out, at Low temperature T C (<T H ) [Q C is the "level" of Caloric (Heat?) delivered out of the engine] No other idea was considered important for Carnot. The flow of heat from a hotter body to a colder body is spontaneous process. The heat that flows out spontaneously can be used to do work with the help of a suitable device. A device which can do work by using heat that flows out spontaneously from a hightemperature source to a low-temperature sink, is called a heat engine. A heat engine takes heat energy from a high-temperature reservoir and converts some of it into work, returning the unconverted heat to a low-temperature sink. A basic heat engine is illustrated in Fig. 5. It is clear that the best engine will be a frictionless engine; so we assume it is so. We also consider the analogue of frictionless motion, "frictionless" heat transfer, that is one whose direction we can reverse with only a tiny change. Such an engine reversible engine, in which every process is reversible in the sense that, by minor changes, infinitesimal changes, we can make the engine go in the opposite direction.

A steam engine is a typical heat engine. It takes heat from the boiler (high-temperature source), converts some heat to work and returns the unused heat to the surroundings (lowtemperature sink). A heat engine running on a periodic cyclic process can yield work continuously.

In 1824 Sadi Carnot proposed a theoretical (ideal) heat engine to show that the efficiency was based upon the temperatures between which it operated. Carnot's imaginary engine could perform a series of operations between temperatures T H and T C , so that at the end of these operations the system was restored to the original state. This (reversible) cycle of processes which occurred under reversible conditions is referred to as the Carnot cycle.

The medium employed in operating Carnot's engine was one mole of an ideal gas which could be imagined to be contained in a cylinder fitted with a frictionless piston. He thought that, for efficiency of the heat•engine (proof of his wonderful prescience), for best effect:

1) The temperature of the working fluid must be raised to the highest degree possible, in order to have the highest "fall-off"; 2) The cooling must be carried to the lowest point on the temperature scale practicable; 3) The flow of the fluid from the upper to the lower limit of temperature must be produced by expansion;" i.e., "it is necessary that the cooling of the gas shall occur spontaneously by its rarefaction;" which is simply his method of stating the now universally understood principle that, for highest efficiency, the expansion must be adiabatic, from a maximum to a minimum temperature. The Carnot cycle then comprises four operations or processes.

(1) Isothermal reversible expansion (2) Adiabatic reversible expansion (3) Isothermal reversible compression (4) Adiabatic reversible compression The above four processes are shown in the indicator diagram of Carnot cycle (Fig. 6). Notice that Carnot assumed that it is impossible to "extract work" from heat at a single temperature. In other words, the process of making work go into heat can take place at a given temperature, one cannot reverse it to get the work back again.

Adiabatic transformation pv k =const

Note that Carnot erroneously assumed that the same caloric (heat) passes through the engine and extracts (produces) work by lowering its temperature, similar to how the same water flow passes through the water-wheel and produces work by lowering its elevation potential. This error, considering the knowledge at the time, in no way diminishes Carnot's ingenious reasoning and conclusions about limiting, reversible processes and its accurate limitations of heat to work conversion. Notice, as well, that although, at that time, everybody thought that, according to the caloric theory, the quantities of "heat" Q H and Q C would have to be the same, Carnot did not say that the two "levels" (quantities) Q H was equal to Q C because he did not believe it; that, in spite of the analogy between the motive power 1) of a heat engine and 2) of a water wheel; as in the water wheel (see fig. 1) two levels of height of a waterfall are needed to get the wheel move, due to the water flow, the "caloric flow" causes the heat engine to generate work [the quantity of water discharged by the wheel at the bottom level is the same as originally entered at the top level; Carnot did say (See the Carnot's own wording, later) that the "quantiy of caloric (flow)" entering the engine was the same quantity as the "quantiy of caloric (flow)" outgoing from the engine]. He invented an ideal reversible engine, named Carnot Engine, working according the Carnot Cycle, made of two isotherm and two adiabatic lines, as in figure 6.

Assumptions of Carnot Cycle

The Carnot cycle comprises two reversible isothermal and two reversible adiabatic processes. Both of these are ideal process which cannot be achieved in practical situations. A Carnot engine can be considered to be similar to piston and cylinder type of engine. While proposing the processes, Carnot made certain assumptions as given below:

1. There is no friction at all between the piston and cylinder and other moving parts of the engine, thus there is no caloric (heat?) generated and lost due to friction. 2. There is also no exchange of caloric (heat?) between various parts of the engine. 3. The engine "body" is completely insulated; hence there is no transfer of caloric (heat?) with the external atmosphere (unless the atmosphere is the "cold reservoir"). 4. There is only transfer of caloric (heat?) with the two reservoirs. Let's analyse the Carnot ideal engine: during

(1) the isothermal reversible expansion (AB), the engine receives caloric (heat? "level" Q H ) from the high-temperature reservoir T H , (2) the adiabatic reversible expansion (BC), the engine reduces its temperature from T H to T C and no caloric (heat? the "level" remains Q H ) flows out from the engine (3) the isothermal reversible compression (CD), the engine stays at temperature T C while caloric ((heat? the "level" Q C ) flows from the engine, (4) the adiabatic reversible compression (DA), there is no caloric (heat? the "level" remains Q C ) flow out and the engine increases its temperature from T C to T H . and the cycle is completed.

Efficiency of the Carnot Cycle

Carnot did say that "The ratio of the work obtained in a cyclic process (W) to the caloric (heat?) taken from the high-temperature reservoir (Q) is referred to as the efficiency of a heat engine". From the above cycle the efficiency of the Carnot cycle can be found out as:

Efficiency of the cycle=Work output/Heat supplied Since he thought that the work depended on the "caloric flow" flowing in the engine and on the difference of the temperatures t H (actually t H +273.15) and t C (actually t C +273.15) [height of the caloric fall] the efficiency should be the following ratio [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] where T H and T C are the absolute temperatures (in degrees Kelvin) of the high and low temperature reservoirs respectively. The maximum engine efficiency dependence on the reservoirs' temperatures only, is functionally expressed by Equation [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF].

See the Carnot's own wording:

When a gas passes without change of temperature from one definite volume and pressure to another volume and another pressure equally definite, the quantity of caloric absorbed or relinquished is always the same, whatever may be the nature of the gas chosen as the subject of the experiment. This is a simple and logical, ingenious reasoning! The maximum, limiting efficiency of heat engine does not depend on the medium used in the engine or its design, but only depends on (and increases with) the temperature difference between the heat source and heat sink, similar to the water wheel output dependence on the waterfall height difference. Notice that the caloric "theory" was respectable at Carnot's days, while it is obsolete nowadays. Notice that Carnot could not say how much quantity of caloric (heat?) was Q C , because he did not know the first Principle. However he did say:

"On peut donc poser an thèse générale que la puissance motrice est en quantitè invariable dans la Nature; quelle n'est jamais, à proprement parler, ni produite, ni détruite. A la vérité, elle change de forme, c'est a dire quelle produit tantot un genre de mouvement, tantot un•autre; mais elle n'est jamais anèantie." Substitute the word "energy" to "puissance motrice (motive power)" and you see the Energy Conservation Principle. One can hardly believe it possible that it should have been written in the first quarter of the nineteenth century. No heat engine, no matter how well constructed, can convert all the heat from the hightemperature reservoir T H into work. Such an engine would be 100% efficient. Sadi Carnot was the first scientist to realise this and deduce an expression showing the limitations of heat engines. We can say that this could be considered the Carnot statement of the 2 nd Principle of Thermodynamics: NO heat engine can be 100% efficient. Classical (equilibrium) thermodynamics deals only with reversible changes (processes) have to be performed "infinitely slowly" (in the infinitesimal vicinity of equilibrium). Since any real process occurs with a finite velocity it is necessarily irreversible. We could have gone backwards instead of forwards: we could have started at point A, at temperature T H , expanded along the curve (AD), expanded further at the temperature T C , absorbing heat Q C , and so on, going around the cycle backward. If we go around the cycle in one direction, we must do work on the engine; if we go in the other direction, the engine does work on us. Now we find the law which determines the work W as a function of Q H , T H and T C . W is proportional to Q H : two identical reversible engines in parallel, both working together, with temperatures T H and T C , are a (double) reversible engine, absorbing 2Q H and doing work 2W. Let's study a reversible engine with the one particular substance whose laws we know, a perfect gas (see figure 6). We can calculate Q H and Q C for the isothermal changes and the ratio of volume and temperatures for the adiabatic processes. Carnot Theorem; it is in fact the summary of all the findings and discussions stated above.

It states that "of all the heat engines operating between a given constant temperature source and a given constant temperature sink, none has a higher efficiency than a reversible engine". Following ideas of Carnot one could prove that, for his ideal Reversible engine, the ratio of "(quantity of) caloric" to its temperature (absolute) is a fundamental function of engines (2) NOTICE that, in order formulae (1) and (2) hold, T C and T H MUST be absolute temperatures.

(2) is related only to the reversible Carnot Cycle! A reversible Engine is one that provides the same quantities of heat and work with reversed signs [any + become -, and vice versa] (see figure 6 with reversed arrows):

IF from Q H and Q C the engine provides the work W, THEN the same engine, operating in the reversed cycle, from the work -W provides the quantity of heat -Q H (at temperature T H ) while absorbing -Q C (at temperature T C ). Absolute temperature needs a scale of measure. We can get the scale deriving from (1) the ratio Q H /Q C =T H /T C ; let a Carnot Engine be working between the boiling water temperature and melting ice temperature: IF Q H =1000 calorie (we use this because we follow the "caloric" ideas! 1 calorie=4.186 J) then Q C =732 (approximately) and hence the ratio is T H /T C =1000/732; now, by setting T H -T C =100, we get T H =373 (approximately) and T C =273 (approximately). The true value is T C =273.15 K (Kelvin degrees). The Carnot ratio equality, Q/T=constant (named in Carnot's honour, Equation (2)), is much more important than what it appears at first. Actually, the "Carnot Ratio Equality" is probably one of the most important equations in Thermodynamics and among the most important equations in natural sciences. Carnot's ingenious reasoning opened the way to the generalization of Thermodynamic reversibility and energy process-equivalency, definition of absolute thermodynamic temperature, and a new thermodynamic material property "Entropy", as well as the Gibbs Free Energy, one of the most important Thermodynamic functions for the characterization of electro-chemical systems and their equilibriums, thus resulting in the formulation of the universal and far-reaching 2 nd Principle Thermodynamics. We recap Carnot's ideas:

The production of work (in steam-engines) is not due to an actual consumption of caloric, but to its (caloric) transportation from a warm body to a cold body, that is, to its re-establishment of caloric equilibrium.

According to this, the production of heat alone is not sufficient to give birth to work: it is necessary that there should also be cold; without it, the heat would be useless.

The 1 st Principle of Thermodynamics

We said that the 1 st principle was stated after the 2 nd , but that Carnot was, in some sense, aware of the Energy Conservation Principle, when he wrote: "On peut donc poser an thèse générale que la puissance motrice est en quantitè invariable dans la Nature; quelle n'est jamais, à proprement parler, ni produite, ni détruite. A la vérité, elle change de forme, c'est a dire quelle produit tantot un genre de mouvement, tantot un•autre; mais elle n'est jamais anèantie." Near 1830, the idea that heat could be a kind of energy was taking place; the physician R. Mayer took into consideration a test carried out be Gay Lussac who, in 1807, firstly had made an expansion of a gas against void (with no work done) and secondly in a cylinder, against a piston. In the 1 st experiment the temperature remained almost constant, while, in the 2 nd , it diminished. Mayer interpreted these facts with the concept of transformation into work of the "falling heat content" (temperature fall) during the expansion against the piston. He computed a "mechanical equivalent" of heat as 3.6 joule/calorie; he published this result in 1842. Some years later Joule carried out his experiment (figure 3) and found the "mechanical equivalent" of heat 4.186 J/cal. Today, all the researchers (but very few) agree that the 1 st Principle of Thermodynamics states the Conservation of Energy. In Thermodynamics it is written as 2] All the variables in (3) are measured in J (Joule). The formula [START_REF] Finzi | Cosa è la temperatura (what is the temperature[END_REF] states that the increase of the Internal Energy dU is the sum of the Work done on the system d*W and the Heat supplied to the system d*Q. In (3) are considered only W and Q and no other types of energy (kinetic, gravitational, nuclear, chemical, ….) Being U a "state function" [dU is an exact differential], for a cyclic process we have [START_REF] Linhart | The Relation Between Entropy and Probability. The Integration of the Entropy Equation, Note at EUREKA CALIFORNIA[END_REF] This 1 st principle stating that a change in internal energy in a system can occur as a result of energy transfer by heat, by work, or by both, is essentially presented in one form and it is very important, but it makes no distinction between processes that occur spontaneously and those that do not. The figure 7 shows what can happen in practice: asymmetry between Work and Heat… The situation depicted in the figure 7 shows that there is a hierarchy between the various forms of energy: heat has a lower hierarchy than work; heat is a degraded form of energy, because < 50% of heat can be transformed into work. This strong limitation gave origin to the 2 nd Principle of Thermodynamics. We can derive form (4) that For ANY cyclic process, reversible or irreversible we have [START_REF] Linhart | Correlation of Entropy and Probability[END_REF] It is now clear that a Carnot Engine, operating between two temperatures (absolute …) T H >T C , with quantities of heat (energy!, kinetic energy! See later) Q H (supplied to the engine) and Q C (removed from the engine), can make work -W=Q H -Q C (see figure 6; it is the area, with negative sign, enclosed by the Carnot Cycle). Let us begin by stating the first law, the conservation of energy: if one has a system and puts heat into it, and does work on it, then its energy is increased by the heat put in and the work done. We can write this as follows: The heat Q put into the system, plus the work W done on the system, is the increase in the energy U of the system; the latter energy is sometimes called the internal energy:

dU = d*W + d*Q (3) [in differential
Change in U = Q +W. (44.1) The change in U can be represented as adding a little heat Q and adding a little work W: U = Q + W, (44.2) Excerpt 4. Feynman statements

The 2 nd Principle of Thermodynamics

There are various forms of the 2 nd Principle which are the postulates to develop the theory; all the (kinds of) postulates state the impossibility of some types of processes.

Notice that the first 4 postulates are related to "engines" (operating cyclically) while the last 2 refer to reversible adiabatic transformations. We recall some postulates (the Farkas one is the last here): The Farkas method is not only earlier than the Caratheodory approach to integrating multiplier, but it is superior. We will discuss it later.


The various postulates are considered equivalent. The fact that there are so many "postulates" is an index that, somewhere, there is something missing (what is it?) and not clear.

Here we want to use first the Caratheodory form (later we will analyse the Farkas postulate).

The Caratheodory postulate enables us to derive mathematically some important conclusions:

 There must exist a state function S, named entropy  And there exists the absolute temperature T To deal with the matter we follow some ideas of B. Finzi, who was one of my professors at Milan Politecnico; he wrote a paper "Che cosa è la temperatura?", published in the "Periodico di Matematiche, serie IV, vol. XIV, 1935"; there he stated that his ideas were similar to those of Caratheodory published in Mat. Ann., 67, 355, 1909, Berl. Ber. 39, 1935. In spite of that, the present deployment of the theory is my own, because I use my own mathematical knowledge. We will deal first with cases with 2 independent state variables. We will not deal with cases with 3 independent state variables and we say that the findings are valid for n>3 independent state variables. See the paper of F. Galetto "The Mathematics of Thermodynamics" and the Appendix.

The case of 2 independent state variables (2nd Principle of Thermodynamics)

Here we present a graphical form of the Caratheodory postulate, when we have 2 independent state variables. This idea was found in the paper of M. W. ZEMANSKY (The City College of the City University of New York) entitled Kelvin and Caratheodory-A Reconciliation (published in 1966), where he credited Louis A. Turner of the original ideas. See the following figure 8, where we choose the volume V and the temperature  as variables defining the state of the system; the system is a very simple one, an idrostatic one.

The figure 8 enables us to see that the Caratheodory postulate of the 2nd Principle of Thermodynamics is equivalent to the Kelvin-Plank postulate.

========================= NOW, we reject the Caratheodory postulate and consider a cycle made of two reversible adiabatic transformations and one transformation at constant temperature (figure 8).

From the equilibrium state i we assume that the system can arrive to two different equilibrium states f 1 and f 2 , with adiabatic reversible processes; during the isothermal transformation f 1  f 2 , the system receives a quantity of heat Q>0 from a reservoir at temperature  0 .

The net result of this cycle is that we transform completely the heat into work, W=Q, with input energy by heat from a single reservoir, which is contrary to the Kelvin-Planck postulate.

========================= Therefore the points (equilibrium states) f 1 and f 2 must be the same state: Q=0 and then W=0.

The points accessible from an equilibrium state MUST be on the same line, whose equation is whose solution is so that we derive Notice that we could write the differential form [NOT exact] d*Q as the product of a factor and the EXACT differential . Notice also that the previous decomposition is not unique; IF we put and we have Since is an exact differential we get that d*Q/ is exact and 1/ is an integrating factor of the NON_exact differential form d*Q. Let's now consider the exact differential, depending on the variables p and V and consider a cycle as in the figure 9. Let i the unit vector related to the axis V and j the unit vector related to the axis p.

Let

[exact differential] be integrated and be be the indefinite integral. There exists a vector, named gradient of and written grad , defined by which is orthogonal to the lines =constant. If k is the unit vector orthogonal to the plane p, V [and to the unit vectors i and j] there exists another vector, named rotation (or curl), and written rot , defined by 

This result is very important because it holds for any number n of independent thermodynamic variables, n>2, defining an equilibrium thermodynamic state of any system. (see the Appendix)

When two independent thermodynamic variables are considered, it is necessary and sufficient that in order that grad exists.

When two independent thermodynamic variables are considered, there is ALWAYS a vector such that which entails the existence of the integrating factor 1 .

IF n=3, and x, y, z are the 3 independent thermodynamic variables considered, again it is necessary and sufficient that =0, in order that grad exists, which entails the existence of the integrating factor 1/ (x, y, z). See the paper F. Galetto "The Mathematics of Thermodynamics" and the Appendix. IF n>3, and x 1 , x 2 ,…, x i ,…., x n , are the n independent thermodynamic variables considered, it is necessary and sufficient that exist a tensor , in order that the tensor grad exists, which entails the existence of the integrating factor 1/

. The tensor grad is the potential related to the system. See the paper F. Galetto "The Mathematics of Thermodynamics" and the Appendix.

Again on the case of 2 independent state variables (2nd Principle of Thermodynamics)

We pursue our trip using again some ideas of my professor B. Finzi.

Let's consider two systems and (figure 10); at initial time 0, they are in the states and ; soon after they are put in contact through a diathermic wall; after "due time" they arrive at equilibrium states = ; we know that at "due time" the two systems have the same temperature. It is possible then to define, for any system, the quantity =f(p, V), able to define the thermal equilibrium. We can consider as well a function F(f(p, V)), monotone, which is able to define the thermal equilibrium as does =f(p, V). If we consider a perfect gas, the Boyle-Mariotte law gives us F()=p 0 V 0 /R. By putting

) we have the state equation PV=R , for one mole of gas.

It is very easy to find (see figure 9) that the ratio of the energy (by heat) entering Q h and leaving Q c (during the isothermal transformations) equals the ratio of the temperatures of the isotherm curves ) and ) [START_REF] Galetto | Addendum to Mathematics of Thermodynamics[END_REF] This formula is fundamental for our purpose of finding the integrating factor and a new state function, the entropy.

Notice what we wrote before, in the section about Carnot: Following ideas of Carnot one could prove that, for his ideal Reversible engine, the ratio of "(quantity of) caloric" to its temperature (absolute) is a fundamental function of engines (7b)

In order formulae ( 7) and (7b) hold, T C and T H MUST be absolute temperatures.

(2) is related only to the reversible Carnot Cycle! The similarity of (7b) and ( 7) is evident; we have only to show that is the absolute temperature T.

We saw previously that we can write either , with a suitable function, or , with another suitable function. Now we use two new state variables, the temperature  and the function ; we can write and from the previous "boxed" formula we derive and therefore By putting we find that the elementary quantity of heat can be written as This new formula suggest assuming as TEMPERATURE the function itself. Therefore we put the TEMPERATURE and we name it absolute temperature. The variable S, which defines the adiabatic curves, is a state function, named ENTROPY. Because entropy is a state variable, the change in entropy during a process depends only on the endpoints and therefore is independent of the actual path followed. Notice the wording of Clausius: from the word En-ERG-y he set the word En-TROP-y. TROP is related to the Greek word "trope" meaning transformation. Since dS=0 refers to adiabatic processes, we usually define the entropy as Consider any infinitesimal process in which a system changes from one equilibrium state to another. If d*Q r is the amount of energy transferred by heat when the system follows a reversible path between the states, the change in entropy dS is equal to this amount of energy divided by the absolute temperature of the system. We have assumed the temperature is constant because the process is infinitesimal. NOTICE that the entropy change for an irreversible process can be determined by calculating the entropy change for a reversible process that connects the same initial and final states.

We would say that the above argument about the absolute temperature is very like the one written in E. Fermi's "book" Thermodynamics related to his lessons at Columbia University (N.Y.) in 1936.

Application to an ideal gas.

We know that, 1 st Principle, and therefore and then so that

It follows that the scalar product (or dot product) is zero:

Integrating dS we have then

The entropy S is related to the potential NOTICE that in the formula there is a spatial part due to V and a thermal part due to T. We have, as well,

The entropy S is related to the potential

We know that in a reversible process, the system undergoing the process can be returned to its initial conditions along the same path on a PV diagram (see fig. 9), and every point along this path is an equilibrium state; see figure 9 (the blue curves are isothermal and the two red are adiabatic). A process that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. Let's examine the adiabatic free expansion of a gas [1 mole]: this process cannot be reversible. Consider a gas in a thermally insulated (double) container where a valve separates the gas from a vacuum container, where the gas and the vacuum have the same volume, V 0 .

When the valve is opened, the gas expands freely (spontaneously) into the vacuum container. As a result of opening the valve, the system has changed because it occupies a greater volume after the expansion: volume 2V 0 . Because the gas does not exert a force through a displacement, it does no work on the surroundings while it expands (i.e. W=0). In addition, no energy is transferred to or from the gas by heat because the (double) container is insulated from its surroundings (i.e. Q=0). Therefore, in this adiabatic process, the system has changed but the surroundings have not: U=0; then the internal energy stays constant (kinetic energy) and the temperature of the gas does not change.

For this process to be reversible, we must return the gas to its original volume keeping constant the temperature (isothermally) without changing the surroundings… BUT to do so we MUST compress the gas by doing work!!!

In this irreversible process the entropy MUST increase.

To represent the transformation consider the figure 9 (repeated/modified), where V B =V 0 and V E =V C =2V 0 with the temperature at  h =T h (absolute temperature). The figure 10 shows a Carnot cycle ABCD.

The process is irreversible because during the sudden expansion BE, significant variations in pressure occur throughout the gas. Therefore, there is no well-defined value of the pressure [while the temperature is constant due to the internal enegy U] for the entire system at any time between the initial and final states. In fact, the process cannot even be represented as a path on a pV diagram. The pV diagram for an adiabatic free expansion would show the initial and final conditions as points, but these points would not be connected by a path, contrary to our figure 9b, where it is supposed a quasi-static process. Therefore, because the intermediate conditions between the initial state B and final state E are not equilibrium states, the process is irreversible. Therefore, the entropy variation should be S=S E -S B >0; but how much is it? Since the transformation EB is irreversible, to compute the increment of the entropy, we must find an equivalent reversible path of transformations going from B to E: we choose the path BCE, made of an adiabatic reversible expansion BC and the isochore CE; we have S C -S B =0 (adiabatic expansion) and U=U E -U C =c V (T h -T c ); the temperature, during the adiabatic expansion, drops from T h to T c and the volume after the expansion is 2V 0 , so that the ratio of the volumes is 2. For the isovolumetric process, from the temperature T c to T h ; the elementary heat is (1 st Principle) , from which we derive and then [using the ratio of the temperatures for the adiabatic and the corresponding volumes] we get S is positive. This result indicates that the entropy of the gas increases as a result of the irreversible, adiabatic expansion. It is easy to see that the energy (see diffusion stochastic process, later) has spread after the expansion. Instead of being concentrated in a relatively small space, the molecules and the energy associated with them are scattered over a larger region. IF we had used the previous formula of the entropy we could verify that actually S C =S B , as it must be, because B and C are points of the same adiabatic and Q r =0. We have as it must be, because the temperature-dependent portion of the entropy, T c <T h , compensates the spatial portion! Let' s now consider and analyse the Farkas postulate:

In reversible processes no body, or system of bodies, can go adiabatically into a state to which it can go by means of pure heat exchange, i.e. by changing only the temperature by supplying or abstracting heat. We could find this postulate in a paper (suggested to us by J. Starikov) entitled "Thermodynamics of Gyula Farkas -A new (old) approach to entropy" [by Katalin Martinas and Ildikó Brodszky]. From the Abstract we read:

Caratheodory's postulate system is regarded as a milestone in the history of foundation of thermodynamics and as one of the most elegant constructions. Entropy is introduced via the adiabatic inaccessibility postulate. The main statement is the existence of an integrating factor for the heat element of the first law independently of the number of variables. The early history is nearly forgotten. Ideas leading to Caratheodory's principle have developed slowly from the very moment that Clausius proved his famous integral formula. Gyula Farkas, a Hungarian physicist has already in 1895 formulated a version of the adiabatic inaccessibility postulate. Excerpt 5. From Thermodynamics of Gyula Farkas…

They [K. Martinas and I. Brodszky] say that In 1886 he (Farkas) published a paper in which he opened the way of mathematically rigorous introduction of entropy. … is a consequence of Clausius postulate of Second Law. and, moreover,

The Farkas method is not only earlier than the Caratheodory approach to integrating multiplier, but it is superior. In an adiabatic expansion the internal energy decreases and the system generate work, while the temperature decreases. In an adiabatic compression the work made on the system increases the internal energy and the system temperature(see figure 12) . The two authors in their introduction [K. Martinas and I. Brodszky] provide the Farkas theorem:

In reversible processes the heat elements absorbed by the bodies always have integrating divisors, and one of them is for each body an identical function of the empirical temperature dS = Q/T, that is there exist an absolute entropy and absolute temperature scale (up to a constant multiplier). Notice that dS is a differential (exact) and it is not said if Q is a differential as well (not exact). Notice also that the two authors recall various statements in German Language, which obviously is not so easy, for people who do not know it. We can confirm the previous ideas with the figure 13, related to the Otto cycle, which represent approximately the processes involved in an internal combustion engine. In figure 13 the transformation BC increases the internal energy, by transfer by heat that increases the temperature, while the transformation DA decreases the internal energy, by decompression that decreases the temperature; no adiabatic can go "directly" neither from C to B, nor from D to A.

How the two authors deal with entropy

The two authors in their paragraph 3 [K. Martinas and I. Brodszky] say A statement about the existence of entropy in the case of two variables though limited in its scope is not without usefulness. It is interesting to note at this point that the construction developed by PLANCK and HAUSEN (1934) actually uses in its proof as a tool a system of bodies characterized with two variables. For completing the proof they naturally had to use another principle (the nonexistence of perpetual motion engines of the second kind). After that, in their paragraph 4, we find the "Discussion of the n-Dimensional Case"; they write W. VOIGT, professor of Göttingen, in his book (Vol. I) examined the expression of elementary heat in the case of n variables. He realized that the existence of an (not specified) integrating divisor for the heat is mathematically equivalent with the existence of n -1 dimensional adiabatic surfaces (which are the geometrical place of all those states that are adiabatically accessible from a given state).

The isothermic surfaces are introduced as well. The Clausius principle, applied in a gedanken experiment identifies the originally unspecified integrating factor with the absolute temperature. However, in Voigt's approach, the existence of the adiabatic surfaces is only an assumption. Finally in , in their paragraph 5, we find the "Contribution of Gyula Farkas":

Upon reading Voigt's book, Gyula Farkas published a paper in which he outlined his own construction. He showed that the Clausius postulate (and the equivalent Kelvin postulate) requires that the adiabatic processes on are surfaces. The existence of adiabatic surface implies the existence of an integrating factor. To develop it, he first introduced a new impossibility principle (Farkas Lemma), namely that it is impossible that in a reversible adiabatic process only the temperature changes. Compare this with the postulate given above… Do they say the same concept?

We use now some symbol different from the paper entitled "Thermodynamics of Gyula Farkas -A new (old) approach to entropy" [by K. Martinas and I. Brodszky], in order to be coherent with the document "The Mathematics of Thermodynamics". For a given system, the differential d*Q is written as a function of n independent state variables; one of them is the empirical temperature : , a, b, c, …. Then the "elementary" heat is (h c is the heat capacity, when a, b, c, …. are held constant) d*Q=h c d+Ada+Bdb+Cdc+….. For this system G. Farkas provided his special form of the inaccessibility principle:

Farkas lemma: In reversible processes no body or system of bodies can go adiabatically into a state to which it can go by means of pure heat exchange, i.e. by changing only the temperature by supplying or abstracting heat.

Let states  1 ( 1 , a, b, c, ….) and  2 ( 2 , a, b, c, ….) two points of a transformation; then the  1 ( 1 , a, b, c, ….)   2 ( 2 , a, b, c, ….) must not be a reversible adiabatic process.

The two authors [K. Martinas and I. Brodszky] say

Farkas formulated the following corollary of his lemma: Corollary 1 In a quasi-static adiabatic process the temperature is always entirely defined by the momentary values of the other state variables and it is independent of the path.

They add That corollary implies the existence of the integrating factor. In quasi-static adiabatic processes one of the independently chosen n state variables (namely the temperature) is completely defined by the other n-1 variables. So for adiabatic processes the n dimensional space reduces to an n-1 dimensional one. That is the adiabatic process takes place on a surface.

In adiabatic changes the functional relationship of the variables is an equation of a surface: s(, a, b, . . .) = const. That is equivalent with the statement that in adiabatic changes the Pfaffian equations:

h c d+Ada+Bdb+Cdc+….=0
is integrable and the integrated form is as follows, for a simple system s(, a, b, . . .) = 0 NOTICE the error! The two rows s(, a, b, . . .) = const.

s(, a, b, . . .) = 0 are contradictory!!! (the second is a typing mistake?) The paper "peer reviewers" or referees did not notice the mistake …. NOTICE also the following….

In adiabatic changes both ds and d*Q disappears. Since d*Q is not a total differential, it must be of the form:

that is there exists an integrating factor, which is defined for a simple system in the form:

= h c /(ds/d). NOTICE that (according to F. Galetto) this is not a proof of the existence of an integrating factor, when there are n thermodynamic variables!!!!!!!!!!! Anyway, if one accepts the previous statements he can use the better Theory given in the F. Galetto document "The Mathematics of Thermodynamics". There (see….) it is proved that the elementary quantity of heat can be written as where is the absolute temperature, and the state function ENTROPY, has the differential and the entropy is the state function The two authors [K. Martinas and I. Brodszky end their paper with the words Farkas' construction seems to lead in the shortest way from Clausius' postulate or from Kelvin's postulate to the exact proof of the existence of an integrating divisor and its identification with the absolute temperature and to the definition of an entropy function. After he proved his lemma from the Clausius principle everything else is shown to be mere mathematical consequence. It is interesting to note that this construction does not exclude the negative absolute temperature. Farkas' paper remained unnoticed because of its extraordinary terseness. and then they give the paragraph 8. Example of an Ideal Gas, where they compute the entropy of an ideal gas. They say:

Here the entropy function of an ideal gas system is derived by the method of Farkas. For an ideal gas system we change the notations of Farkas for the common notations in the present textbooks. The empirical temperature ϑ will be T (ideal gas temperature), and a is V (volume), b is n (mole number).

In an adiabatic Excerpt 6. From Thermodynamics of Gyula Farkas…

The result is very like the one we found before when we wrote that, for n=1 mol,

The entropy S is related to the potential

Entropy insight

Sadi Carnot (1824) laid ingenious foundations for the 2 nd Principle Thermodynamics and discovery of Entropy before the 1 st Principle Thermodynamics (energy conservation) was even known (Joule, 1843), and long before thermodynamic concepts were established in the second half of the nineteenth century. In historical context, it is hard to comprehend now, how Carnot then, at age 28, ingeniously and fully explained the critical concepts of reversible thermo-mechanical processes and the limits of converting heat to work at inception of the heat engines' era, when nature of heat was not fully understood. No wonder that Sadi Carnot's "Réflexions sur la puissance motrice du feu" original treatise published in 1824, was not noticed at his time, when his ingenious reasoning of ideal heat engine reversible cycles, is not fully recognized, and may be truly comprehended by a few, even nowadays.

Carnot paved the way for his followers to define and prove that entropy is a state function, a material property conserved in ideal, reversible cycles (Clausius Equality-definition of entropy property), that entropy could not be destroyed since it will imply more efficient than ideal cycles, but is always generated (locally and globally, thus overall increased) due to dissipation of any and all work potentials to heat, causing generation of entropy in irreversible cycles (Clausius Inequality-definition of entropy generation); thereby, quantifying all reversible and irreversible processes and providing generalization of the 2 nd Principle Thermodynamics. Notice that the thermodynamicists usually use the terms "entropy generation" and "entropy production": nothing is really produced or generated; entropy varies in relation to energy and mass fluxes and to irreversibility, but it is not produced or generated.

The change in entropy, dS, of a system during a process between two infinitesimally separated equilibrium states is dS=dQ r /T where dQ r is equal to the amount of energy transfer by heat (for the system) for a reversible process that connects the initial, i, and final, f, states; it is divided by the absolute temperature of the system (we have assumed the temperature is constant because the process is infinitesimal). The change in entropy, S, of a system during an arbitrary finite process between an initial, i, and a final, f, state is . The value of S for the system is the same for all paths connecting the initial and final states. The change in entropy for a system undergoing any reversible cyclic process is zero: What is the entropy change for an irreversible process?

The entropy change for an irreversible process can be determined by calculating the entropy change for a reversible process that connects the same initial and final states.

Since for any cyclic process we have we can write from which we see that a closed system has entropy which may increase or otherwise remain constant (second principle of thermodynamics): the ratio is the entropy related to "irreversible" internal fluctuations of the heat exchanged between the system and its environment (at the "ambient" temperature T a ): in this case T is a non-equilibrium temperature (always related to the internal energy of the system, fluctuating energy at microscopic level).

We now provide a very interesting interpretation of the physical meaning of Entropy.

We do not enter into the Statistical Mechanics, but we shall use some of its findings. Statistical (Mechanics of)Thermodynamics deals with microscopic structures and dynamic interactions of micro-particles with an objective to describe thermo-physical properties of a classical system as a statistical average of all possible and relevant microstates, described by positions and momenta of micro-particles. In principle, we can reason and derive Classical Thermodynamics from relevant statistics of microstates' dynamics, down to quantum behaviour of molecules and atoms. We consider first the probability density of the "random variable" Kinetic Energy, KE, (translational) of an atom of a gas, at absolute temperature T. According the Classical Statistical Mechanics, at thermal equilibrium, at temperature T, we have the probability density, pdf

from which we can derive Now we introduce some ideas on Stochastic Processes [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]. They allow us to get some insight on the individual microscale of systems, where the "Thermodynamics becomes

Dynamics."

In physical applications of Stochastic Processes one important example is the Brownian movement: this process describes the motion [position x(t), y(t), z(t), in a tri-dimensional space] of a particle (micro-particle) in a given medium (gas, fluid, …); for a single particle "i" this motion is very complicated, in a microscopic scale: we indicate as x i () the vector of the position of the particle at the instant . We can compute a "macroscopic" quantity x mai (t), the moving average for an interval t ----t+t, , for varying times t. To see "intuitively" the above ideas let's consider a two-dimensional space, t (time) as abscissa and x as ordinate: a line is the function x(t). Now consider a coin tossing process: every t interval we toss the coin and we take, instantly, an up-step (of quantity s) if head shows and a down-step (of quantity -s) if tail shows; the step function x(t j ), for j=0, 1, n, is named Random Walk. At time t n , we have k heads and n-k tails, so the vertical position is a Random Variable x(t n )=ks-(n-k)s=ms [with m=2k-n]: we can compute the probability P[x(t n )]. It is clear that x(t n ) is the sum of the single up and down, independent, steps. The cumulative distribution of x(t n ) is, in the limit, P[x(t n )ms] becomes the Normal distribution [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]. Another limiting form of the Random Walk, for t0 and n, is the Random Variable w(t), named Wiener Process, whose probability density is (normal pdf)

We now consider the process , for varying times t; we indicate the position of the particle at time t, simply by x(t); using the classical ideas on dynamics, we can write the following equation [Langevin equation], where m is the mass of the particle, f is the coefficient of friction (proportional to the viscosity of the medium), cx(t) is an external force [depending on the position x(t)] and F(t) the collision force between the particles [Newton's law] Notice that the derivatives of the position x(t) are indicated with points over the symbol x(t). To proceed we consider that F(t) has a flat spectrum [white noise, normal distribution]

where k B is the Boltzmann constant and T is the absolute temperature. Assuming that c=0, we get, with v(t) the velocity of the particle, The solution of the above stochastic differential equation is a non-stationary process v(t). When t (actually for t>>m/f), the process becomes stationary and its steady state "value" has the probability density In this manner, we have been able to give a Stochastic Process interpretation to the formula [START_REF] Galetto | Entropy of Linhart_a nonsense_PREAMBLE[END_REF], which holds for t, that is in the steady state, as is the classical "equilibrium" thermodynamics (mv 2 /2 is the kinetic energy of the average energy for "each" microparticle). Considering the position , at time t, end of interval 0 ----t, we have the pdf , and, at time t, end of interval t 0 ---t, we have the pdf

The rigth hand side of the relationship is a function of the 4 variables x, x 0 , t, t 0 ; by repeated differentiations we find the diffusion equations where f t and f xx are the partial derivatives of the pdf f and the parameter is the diffusion constant. [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]Markov Processes] The above equations are typical of the heat diffusion. We can generalise the previous partial differential equations to the probability density function y which satisfies This equation rules the stochastic process X(t) of the Logistics Inventory (due to the random nature of the demand):  is the demand rate [i.e. the demanded quantity per unit time] and  the "variance rate" [i.e. the variability of the demanded quantity per unit time] of the demand. In the case that the stochastic process X(t) represent the temperature X, depending on the time t, X(t) is the "distribution" of the temperature with time. The pdf y of the RV X(t), given X(t 0 ), is [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]Markov Processes] The pdf of the RV  x , "time to reach the point x", where =x 2 / and =x/ is and It follows E(Time)= and Var(Time)= 3 /. Putting the maximum of the displacement, in the interval 0 -----t, has probability density The pdf of a RV T(time)IG(,), named Inverse Gaussian [or Wald] (with parameters , ), defined for 0  x  , has probability density function Notice the similarity of this formula with Random Variable w(t), named Wiener Process, whose probability density is (normal pdf)

The probability P[T>t], Reliability, is [14, 15, Markov Processes]          t dx x x x t R 2 2 2 / 1 3 2 / ) ( exp 2 / ) , ; (        .
The parameters ,  are related to the MTTF=E(T)= and to the variance Var(T)= 3 /. The failure rate is

               t dx x x x t t t t h 2 2 2 / 1 3 2 2 2 / 1 3 2 / ) ( exp 2 / / 2 / ) ( exp 2 / ) , ; (             h (t,,) is [1.] h(t,,)=0 for t=0, [ 2 
.] increasing from 0 to a "certain point" and then decreasing, It is very interesting to notice that the RV T, time to failure, is the time that an item was exposed to a "stress" above which the item fails; the increasing steps of "stress" in two different intervals (not intersecting) as RVs independent normally distributed; therefore the total stress is normally distributed, as well.

An interesting application is in the distributive Logistics. It is seen that the methods of analysis of [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] are useful also for that field, where ALL PRACTIONERS use "formulae NOT-proved" they found in books!!! ==================================================== The thermal random (stochastic process), fluctuation-motion of micro-particles gives rise to thermal macro-properties, like temperature, heat capacity, and entropy, among others. Temperature is a measure of average kinetic energy of relevant micro-particles; the thermal motion of all micro-particles gives rise to thermal heat capacity. When thermal motion ceases, virtually all thermal properties vanish at absolute zero temperature (3 rd Principle of Thermodynamics; see later). These, thermal parameters characterize the collective physical state of atoms and molecules, be they solids, liquids or gases. The temperature, heat stored or thermal energy, and entropy are macroscopic properties reflecting the random (thermal) collective behaviour of the constituents within a system. While temperature represents the average kinetic energy of all the system's particles (i.e., the kinetic energy of a representative particle), the stored heat, or thermal energy represents the total amount of kinetic-and potential thermal-energy possessed by all the particles in the system. Similarly, entropy quantifies chaotic displacements of thermal disorder within a system -the displacement of randomly disordered energy, i.e., thermal energy without a defined, but chaotic structure. In addition, the nature and strength of
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mutual attractions between atoms and molecules in solids and liquids give rise to other macroscopic properties such as hardness, elasticity and tensile strength in solids, viscosity in liquids, and similar. Note that on an individual microscale the "Thermodynamics becomes Dynamics." In ideal, reversible processes the entropy is conserved, but there is no way to destroy entropy, even when heat is converted to work since entropy is not associated with work. Destruction of entropy would be equivalent to spontaneous heat transfer from lower to higher temperature, or to have heat engine with higher efficiency than ideal, reversible Carnot cycle, against the directional, thermal forcing and against the equilibrium existence in nature.

We can then interpret Entropy as the result of the ("thermal") potential d*Q=TdS [see the a. m. potentials and ], related to thermal, randomly moving, micro-particles in space; entropy is a thermal displacement, an integral measure of (random) thermal energy redistribution (due to heat transfer and/or irreversible heat generation due to energy degradation) within a system mass and space, per absolute temperature level: dS system =dQ system /T with J/K unit. Note that adjective "thermal" is critically important, since similar but non-thermal phenomena are not related to thermodynamic entropy. =========================================================== Since both U and S are extensive variables, for a system  (figure 10, repeated), made of two systems  1 and  2 , the energy and entropy are U=U 1 +U 2 and S=S 1 +S 2 Formula (8) provides the distribution of the energy (levels of) U 1 and U 2 within a system. For two sytems the probability density of the energy (levels of) U=U 1 +U 2 is the product of the marginal probability density (8) of the energy (levels of) U 1 and U 2 .

Let  be a quantity related to the probability density of the energy (levels of) U=U 1 +U 2 . With these ideas we can identify the form of the entropy S as function of : we set S=f() for the system , S 1 =f( 1 ) for the subsystem  1 and S 2 =f( 2 ) for the subsystem  2 . Since = 1  2 , we have the functional relationship f( 1 ) + f( 2 ) = f() (8b) (8b) is a functional relationship form which we can identify the function f. To find it we consider a system  with  2 "very small", actually infinitesimal so that f( 1 ) + f(d 2 ) = f( 1 +d 2 ) (8c) From (8c) using the Taylor's formula we get, for any  1 f( 1 +d 2 )= f( 1 ) + f( 1 )d 2 According the Quantum Statistical Mechanics we have that if the energies of the set of atomic states are called, say, E 0 , E 1 , E 2 , . . . , E i , . . . , then in thermal equilibrium the probability of finding an atom in the particular state of having energy E i is proportional to .

As a matter of fact, any thermodynamic system is made of molecules (and there "constituent" atoms, adrons, electrons, subparticles, quarks, …) following their own physical laws. Internal energy U and entropy S of the system are macrospic state variables which depend on the "internal (quantum)" states of the molecules: U and S are a sort of averages of the the "internal (quantum)" states of the molecules; at any thermodynamic macrostate (identified by the variables p, v, T, U, …) there correspond a very huge number of "internal" microstates. The a.m. proof In classical mechanics, any choice of generalized coordinates q i for the position (i.e. coordinates on configuration space) defines conjugate generalized momenta p i which together define co-ordinates on phase space: this is the space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. Let's then consider the phase space of position coordinates and momenta coordinates of the particles considered; we divide the space in cells of volume q 1 q 2 …q n p 1 …p n =h n according to the quantum theory (q and p are the coordinates for positions and momenta, and each particule has n degrees of freedom). If N is the number of particules, then N 1 , N 2 , … are the number of particules in the cells 1, 2, …; the quantity

(8g)
is the multinomial coefficient of the multinomial distribution; the ratios N 1 /N, N 2 /N, … provide the "statistical configuration" of a possible microstate related to a given "thermodynamical macrostate".

We know that (8g) can be written as (8h), when N (actually very large) and all N i  (actually very large)

The maximum of (8h), for N and N i , is found as the maximum of (8i), for N and N i , (8i) Let's assume that N i can be dealt as they were "continuous variables; we get, making the derivative and putting =0, (8l)

The quantities N i are not independent and must satisfy and (8m) Using two Lagrange multipliers, we get (8n) and then (8o) Using (8l), finally we arrive to (8p)

We can generalise by cosidering the Hamiltonian function H(p, q) of the system which specifies its total energy (i.e., the sum of its kinetic energy, its potential energy, …) and consider the infinitesimal cells of volume dq 1 dq 2 …dq n dp 1 …dp n to divide the phase space [not in cells of volume q 1 q 2 …q n p 1 …p n =h n , as we did before]. So we can write (ps=phase space, N number of particles and E energy) (8q) from which we can get the , of any random function Y(p,q) of the generalised coordiantes (p,q) as (8r)

Let's now consider the Hamiltonian function, V(q) being the potential energy, where we single out the k-th component of the kinetic energy  k Using (8r) we can get, for each degree of freedom, , where E i is the "unknown energy"of the N i particules such that where E is the total energy of the (thermodynamic) system. From that, we get the probability of being in various states: the relative chance, the probability, of being in state E 1 relative to the chance of being in state E 0 , is the ratio [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF] We see then that, from [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF], we have the consequence that as we increase the temperature of a gas, starting from a very low value of T, with the atoms/molecules almost all in their lowest state, they gradually begin to have an appreciable probability to be in the second state, and then in the next state, and so on. When the probability is appreciable for many states, the behaviour of the gas approaches that given by classical physics, because the quantized states become nearly indistinguishable from a continuum of energies, and the system can have almost any energy. Thus, as the temperature rises, we should again get the results of classical physics. It is possible to show in the same way that the rotational states of atoms are also quantized, but the states are so much closer together that in ordinary circumstances k B T is bigger than the spacing. Then many levels are excited, and the rotational kinetic energy in the system participates in the classical way.

The following formula provides the microscopic "distribution" of the N "particles" in equilibrium at the temperture T, between the energy levels E i , given E the total energy of the (thermodynamic) system. assuming that the "summation of the states" can be a series form 0 to .

Differentiating Z[1/(k B T)] we get .

Since the totyal energy of all the particles is we have an important relationship between the energy E [which actually is the internal energy U] and the temperature T.

Integrating we get

We can find the entropy of the system (made of N particles)

Now we consider the first potential energy F (also named Heltmoltz free energy) (11) and we see that the entropy is "dispersion of energy between the atoms/molecules of the system + surrounding": F is a state function (as U and S are).

Let's find an interesting limit:

As a mater of fact, if a system gets energy by heat from a source at temperature T, it has (for the transformation AB) which is the maximum quantity of energy by heat that the system can receive from the surrounding. It follows that which is the maximum quantity of work [that's why F is also named "work function"] that the system can provide, i.e., decrease in the "work function F" in any process at constant temperature gives the maximum work that can be obtained from the system during any change. Notice that, in the limit considerations given above, the series expansion Since the totyal energy, in the limit considerations given above, of all the particles is we have an important relationship between the energy E [which actually is the internal energy U] and the temperature T. We can find the entropy of the system (made of N particles) similar to what we found for the ideal gas. Since we know as well that the quantity of heat Q flow is kinetic energy, we can relate dS=d*Q/T to the following [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF] where the ratio within (…) is an adimensional variable dx [kinetic energy/(2 kinetic energy)].

Hence by integration we have (13) where X a numerical variable and F(X) a suitable increasing function of X, with F(0)/k B =S 0 . Therefore we see that the fundamental Boltzmann's constant k B is the atom of Entropy (we could name it, as well, quantum of Entropy).

Remembering the Boltzmann formula (Boltzmann Theorem, found near 1900) S = k B ln() [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] we have F(X)=ln(). Changes in order are expressed quantitatively in terms of entropy change, . How are entropy and order in the system related? Since a disordered state is more probable for systems than of order, the entropy and thermodynamic probabilities are closely related. This result is consistent with the following facts: 1.

Entropy S is conserved in all the reversible adiabatic transformations 2.

S increases for all the reversible isothermal expansions; in this case the system makes work 3.

S decreases for all the reversible isothermal compressions; in this case the system gets energy by external work 4.

S increases for all the irreversible transformations 5.

S = k B ln( f / i ), where  i and  f represent the initial and final numbers of microstates, respectively, for the initial and final configurations of the system. If  f > i , the final state is more probable than the initial state (there are more possible microstates) and the entropy increases.

Combining 

 

As we can see by considering the mean kinetic energy (T absolute temperature) related to any degree of freedom of any molecule, setting , so that we get that the entropy variation is proportional to the Boltzmann's constant and to the ratio of two energies the heat variation d*Q and the mean kinetic energy related to any degree of freedom of any molecule.

We know that after a cycle is completed and

(see figure 9b) where the energy (by heat) entering Q h and leaving Q c (during the isothermal transformations at the temperature of the isotherm curves T h and T c ): the two relationships prove the Asymmetry as shown in fig. 7 

at temperature T 1 is "equivalent" to Q 2 at T 2 if Q 1 /T 1 = Q 2 /T 2 ,
in the sense that as one is absorbed the other is delivered. This suggests that if we call Q/T something, we can say: in a reversible process as much Q/T is absorbed as is liberated; there is no gain or loss of Q/T. This Q/T is called entropy, and we say "there is no net change in entropy in a reversible cycle." …entropy is not itself a heat, it is heat divided by a temperature, hence it is measured in joules per degree. Now it is interesting that besides the pressure, which is a function of the temperature and the volume, and the internal energy, which is a function of temperature and volume, we have found another quantity which is a function of the condition, i.e., the entropy of the substance. Let us try to explain how we compute it, and what we mean when we call it a "function of the condition." Consider the system in two different conditions, much as we had in the experiment where we did the adiabatic and isothermal expansions. …We can move around on a pV diagram all over the place, and go from one condition to another. In other words, we could say the gas is in a certain condition a, and then it goes over to some other condition, b, and we will require that this transition, made from a to b, be reversible. Now suppose that all along the path from a to b we have little reservoirs at different temperatures, so that the heat dQ removed from the substance at each little step is delivered to each reservoir at the temperature corresponding to that point on the path. Then let us connect all these reservoirs, by reversible heat engines, to a single reservoir at the unit temperature. When we are finished carrying the substance from a to b, we shall bring all the reservoirs back to their original condition. Any heat dQ that has been absorbed from the substance at temperature T has now been converted by a reversible machine, and a certain amount of entropy dS has been delivered at the unit temperature as follows: dS = dQ/T. (44.15) Let us compute the total amount of entropy which has been delivered. The entropy difference, or the entropy needed to go from a to b by this particular reversible transformation, is the total entropy, the total of the entropy taken out of the little reservoirs, and delivered at the unit temperature …: The question is, does the entropy difference depend upon the path taken? There is more than one way to go from a to b. Remember that in the Carnot cycle we could go from a to c in Fig. 44-6 by first expanding isothermally and then adiabatically; or we could first expand adiabatically and then isothermally. So the question is whether the entropy change which occurs when we go from a to b in Fig. 44-10 is the same on one route as it is on another. It must be the same, because if we went all the way around the cycle, going forward on one path and backward on another, we would have a reversible engine, and there would be no loss of heat to the reservoir at unit temperature. In a totally reversible cycle, no heat must be taken from the reservoir at the unit temperature, so the entropy needed to go from a to b is the same over one path as it is over another. It is independent of path, and depends only on the endpoints. We can, therefore, say that there is a certain function, which we call the entropy of the substance, that depends only on the condition, i.e., only on the volume and temperature. We can find a function S(V, T) which has the property that if we compute the change in entropy, as the substance is moved along any reversible path, in terms of the heat rejected … where dQ is the heat removed from the substance at temperature T. This total entropy change is the difference between the entropy calculated at the initial and final points: S = S(V b , T b ) -S(V a , T a ) … This expression does not completely define the entropy, but rather only the difference of entropy between two different conditions. Only if we can evaluate the entropy for one special condition can we really define S absolutely. For a long time it was believed that absolute entropy meant nothing-that only differences could be defined-but finally Nernst proposed what he called the heat theorem, which is also called the third law of thermodynamics. It is very simple. We will say what it is, but we will not explain why it is true. Nernst's postulate states simply that the entropy of any object at absolute zero is zero. We know of one case of T and V, namely T = 0, where S is zero; and so we can get the entropy at any other point. To give an illustration of these ideas, let us calculate the entropy of a perfect gas. In an isothermal (and therefore reversible) expansion, S(V a , T) -S(V b , T) = Nk ln V a /V b , so S(V, T) = Nk ln V plus some function of T only. How does S depend on T? We know that for a reversible adiabatic expansion, no heat is exchanged. Thus the entropy does not change even though V changes, provided that T changes also, such that TV -1 =constant. Can you see that this implies that where a is some constant independent of both V and T? [a is called the chemical constant. It depends on the gas in question, and may be determined experimentally from the Nernst theorem by measuring the heat liberated in cooling and condensing the gas until it is brought to a solid (or for helium, a liquid) at 0°, by integrating dQ/T. It can also be determined theoretically by means of Planck's constant and quantum mechanics, but we shall not study it in this course.] Now we shall remark on some of the properties of the entropy of things.

We first remember that if we go along a reversible cycle from a to b, then the entropy of the substance will change by S b -S a . And we remember that as we go along the path, the entropy-the heat delivered at unit temperature-increases according to the rule dS = dQ/T, where dQ is the heat we remove from the substance when its temperature is T. We already know that if we have a reversible cycle, the total entropy of everything is not changed, because the heat Q 1 absorbed at T 1 and the heat Q 2 delivered at T 2 correspond to equal and opposite changes in entropy, so that the net change in the entropy is zero. So for a reversible cycle there is no change in the entropy of anything, including the reservoirs. This rule may look like the conservation of energy again, but it is not; it applies only to reversible cycles. If we include irreversible cycles there is no law of conservation of entropy.

Excerpt 7. Feynman statements

Notice that

 Entropy S is an extensive properly and a state function  It's value depends upon mass of substance present in the system  S=S final -S initial  For a cyclic reversible process S=0  For any natural process S>0, i.e., Entropy is increasing  for the adiabatic reversible transformations, d*Q=0, p Cv V Cp =constant, so S=0 and d*W=-dU [dU decreases, T of the system decreases with the mean kinetic energy of molecules for dV>0, while dU increases, T of the system increases with the mean kinetic energy of molecules for dV<0]  for the isothermal expansions (both reversible and irreversible) pV=constant with dV>0, so S>0 and work is done by the system  for the isothermal reversible compressions pV=constant with dV<0, so S<0 and work is done on the system  for the isothermal irreversible compressions pV=constant with dV<0, work is done on the system and S can be either <0 or >0  S = k B ln( f / i ), where  i and  f represent the initial and final numbers of microstates, respectively, for the initial and final configurations of the system. We are able to compute the variation of Entropy; we do not know the value of S, unless we can find S(T=0) [at zero temperature]. This is done in the next section.

The 3 rd Principle

This principle states the value of Entropy at T=0 K. It is the most recent one and was firstly conjectured by Nernst. M. Plank stated it this way (first form): When temperature falls to absolute zero (T=0) the entropy of any pure, perfectly crystalline homogeneous substance tends to a universal constant, which can be taken to be 0. And what about non_pure, non_perfectly crystalline homogeneous materials? Then we can say that, at any temperature greater than zero, the entropy of every substance will be greater than zero. Einstein stated it in a very similar way (second form)

As the temperature falls to absolute zero, the entropy of any substance remains finite. Another way (third form) is [Nernst formulation, "unattainability principle"] It is impossible to reduce the temperature of a material body to the absolute zero value of temperature, in a finite number of steps and within a finite time.

We can find a function S(V, T) which has the property that if we compute the change in entropy, as the substance is moved along any reversible path, in terms of the heat rejected … where dQ is the heat removed from the substance at temperature T. This total entropy change is the difference between the entropy calculated at the initial and final points: S = S(V b , T b ) -S(V a , T a ) … This expression does not completely define the entropy, but rather only the difference of entropy between two different conditions. Only if we can evaluate the entropy for one special condition can we really define S absolutely.

For a long time it was believed that absolute entropy meant nothing-that only differences could be defined-but finally Nernst proposed what he called the heat theorem, which is also called the third law of thermodynamics. It is very simple. We will say what it is, but we will not explain why it is true. Nernst's postulate states simply that the entropy of any object at absolute zero is zero. We know of one case of T and V, namely T = 0, where S is zero; and so we can get the entropy at any other point.

Excerpt 8. Feynman statements

We know that specific heat c varies with temperature. If, however, temperature intervals are not too great, the temperature variation can be ignored and c can be treated as a constant. Specific heat is essentially a measure of how thermally insensitive substance is to the addition of energy. The greater a material's specific heat, the more energy must be added to a given mass of the material to cause a particular temperature change.

T/ D However near T=0 we know that the specific heat c V decreases with the temperature. We argue then a (very probable) physical fact that the molar specific heat C(T)0 as T0, so that the following integral exists (16) (S 0 is the integration constant). From Quantum Mechanics it is possible to deduce that S 0 could be >0 at T=0 [as stated by the second form]. Figure 14 shows that the molar specific heat is 3R for all the solids at ambient temperature (Dulong-Petit law).

Using Quantum Theory, Debye could find that where  D is a temperature characteristic of the material under study (it is named "Debye temperature") and D is the function

(17)
We have the limits so that, near T=0, we have and , near T=0, and, as well, from (16

)
where S is the entropy.

According to the ideas of Starikov (in his paper George Augustus Linhart -as a "widely unknown" thermodynamicist), Linhart found a better formula for C(T), through the following differential equation, based on the Ying/Yang philosophy [!!!] (18) Fausto Galetto, using his RIT [Reliability Integral Theory] (see Academia.edu…) proved that this formula is nonsense! If we remember that T is related to the energy associated to any degrees of freedom we have that, at T=0, the translational kinetic energy is zero (the speed of any molecule is zero) and then it's clear that the entropy can be assumed to be 0. All the molecules are in their "fundamental state" (according to Quantum Theory).

Remembering that S = k ln() we find From these two last relationships we find mathematically the very important physical fact: at T=0 the entropy is 0 (Nernst Theorem). This is in line with S = k B ln( f / i ), where  i and  f represent the initial and final numbers of microstates, respectively, for the initial and final configurations of the system. At T=0,  f (T=0)=1and  i (T=0)=1. We know that specific heat varies with temperature T. If, however, temperature intervals are not too great, the temperature variation can be ignored and c can be treated as a constant. However, near T=0 we know that the specific heat c V deacreases with the temperature. We find, as well, a known physical fact that the specific heat c V at T=0 is 0, so that the Nernst Theorem applies: S=0 at T=0 Some hints for understanding …. The 2 nd Principle of Thermodynamics is TOO YOUNG in order to find an exeption to it: matematically it is VERY PROBABLE so that the increase of entropy is VERY PROBABLE for isolated systems (like the Universe). Then the 2 nd Principle of Thermodynamics is to be considered as a principle of (statistical) evolution which explains the irreversibility. We know for certain that, IF there was the so called "Big Bang", from the "first" energy amount at very high temperature, after some "time" (seconds?) the Nature Forces (e.g. electromagnetic, gravity, nuclear, ….) arose who generated the matter [=energy; particles (quarks, bosons, fermions, nuclear evolution to…), atomes (chemical evolution to…), molecules, stars, planets, galaxies, …) and … after billions of years (byologic evolution to…) the LIFE, … antopologic evolution. At that "time period" there was not a general increase of "disorder"; on the contrary "ordered system" arose! A cell is one of the most ordered systems; cells replicate each other and the differentiate according a well specified "program" contained in their DNA…. So the very first "time period" of the universe, our universe developped in opposition to the 2 nd Principle of Thermodynamics, unless we accept that the entropy present in the actual universe (today) "comes from quantistic fluctuations of the Big Bang".

Since the first potential energy is (see 11 above)

we said that the entropy is "dispersion of energy between the atoms/molecules of the system + surrounding":

The same we find from the second potential energy (Gibbs free energy) with , where H is the Entalpy. So we confirm what we said before, entropy is a measure of this unavailable energy (entropy=unavailable energy per unit temperature):

In Statistical Thermodynamics, "entropy" is also expressed as uncertainty of all molecular positions due to their thermal random motion (thermal randomness, thermal fluctuations, or thermal disorder). At absolute zero temperature the thermal motion ceases and the position of the molecules are fixed/certain in pure crystalline substance, defining the absolute zero entropy. For not purely crystalline substance (as "randomly frozen" solid solution structures), the positions of the molecules are not uniquely determined and entropy is not exactly zero at absolute temperature (but some residual value); however, no uncertainty due to thermal motion. The thermal-motion randomness or thermal disorder, as related to the entropy, was generalized by Gibbs as "a (logarithmic) measure" of sum of all microstates' uncertainties, p i Gibbs' formulation is general since it allows for non-uniform probability, p i , of the microstates.

Linhart ideas on Entropy versus "classical Entropy"

Now we consider the concepts of Linhart as given in the papers "The Relation Between Entropy and Probability. The Integration of the Entropy Equation" (G. A. Linhart) [START_REF] Linhart | The Relation Between Entropy and Probability. The Integration of the Entropy Equation, Note at EUREKA CALIFORNIA[END_REF], "Correlation of Entropy and Probability" (G. A. Linhart) [START_REF] Linhart | Correlation of Entropy and Probability[END_REF] and "Linhart ideas on Entropy versus "classical Entropy". Proof of Linhart nonsense. Academia.edu & HAL" [START_REF] Galetto | Linhart ideas on Entropy versus "classical Entropy[END_REF]. It is the prove that also "great thermodynamicists" can make bad errors! Linhart, defined the "thermodynamic entropy". "His" Entropy S is related to the specific heat C, via the following differential equation [see also (18)] (19)

Figure 0 .

 0 Figure 0. Thermal equilibrium(on the right), from different starting temperatures (on the left)

Figure 1 .

 1 Figure 1. Transformation of the water Potential energy into Kinetic energy of the wheel

Figure 2 .

 2 Figure 2. Transformation of the water Potential energy (container A) into Kinetic energy of the wheel and back to water Potential energy (container A): Perpetuum Mobile of the 1 st kind (if there is no friction!) One could think that he could use the Kinetic energy of the wheel and "invent" a device like in figure 2, making the water flow form the container B to container A, and going on like that: doing that, we get the transformation of the water Potential energy (container A) into

  Transformation): is any process such that reversing the change [after the change from A (initial state) to B (final state), going, on the contrary, from B to A the system does return to the same state A]. Irreversible Process (or Transformation): is any process not reversible [after the change from A (initial state) to B (final state), going from B to A the system does not return to the same state A].

Figure 3 .

 3 Figure 3. The Joule experiment (not known at origin of Thermodynamics)

Figure 4 .

 4 Figure 4. The Thermodynamics Tetralogy (showing the four Principles)

Figure 5 .

 5 Figure 5. Schematic of a Heat Engine, cyclic engine operating from the temperature T H to the temperature T L =T C

Figure 6 .

 6 Figure 6. Carnot Cycle on the left [an isotherm line is such that the temperature is constant, an adiabatic line is such that there is not heat transfer]

Figure 7 .

 7 Figure 7. Asymmetry between Work and Heat

Figure 8 .

 8 Figure 8. Pictorial negation of Caratheodory Postulate for two variables

Figure 9 .

 9 Figure 9. p, V diagram (the blue curves are isothermal and the two red are adiabatic)

Figure 9

 9 Figure 9 repeated, p, V diagram (the blue curves are isothermal and the two red are adiabatic)

Figure 9b (

 9b Figure 9b (repeated/modified) p, V diagram [the blue curves are isothermal and the two red are adiabatic]

  Figure 11 (the two red curves CD and AB are adiabatic)

Figure 12 (

 12 Figure 12 (adiabatic compression and expansion; change of internal energy and temperature by work)

  Figure 13 Otto cycle (on the left) and another cycle of an engine (on the rigth)

( 9 )

 9 Since the atom has 3 degrees of freedom we get that k B T, for any degree of freedom, is double of the mean kinetic energy. The temperature T is proportional to the Mean Kinetic Energy per degrees of freedom. See later the proof. k B is the Boltzmann's constant; k B =R/N A =1.3806504(24)*x10 -23 J/K, N A =Avogadro Number =6.02214179(30)*10 23 particles/mol, Gas constant R=8.314472(15)* /(mol K); the numbers (ab)* parentheses for the values represent the uncertainties of the last two digits. Digression on Stochastic Processes.

[ 3 .

 3 figure[where  and  are indicated with m=1 and l=1]. It is very interesting to notice that the RV T, time to failure, is the time that an item was exposed to a "stress" above which the item fails; the increasing steps of "stress" in two different intervals (not intersecting) as RVs independent normally distributed; therefore the total stress is normally distributed, as well.An interesting application is in the distributive Logistics. It is seen that the methods of analysis of[START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] are useful also for that field, where ALL PRACTIONERS use "formulae NOT-proved" they found in books!!!

  By integration we get f()= constant1*ln()+0 (8f) because the entropy is defined up to a constant value. Boltzmann proved that constant1=k B .

Figure 10 (

 10 Figure 10 (repeated) Internal Energy U=U 1 +U 2 and Entropy S=S 1 +S 2

  the ideal gas, we have that and then so thatThe Absolute Temperature is proportional to the Mean Kinetic Energy per degree of freedom. End of proof…Then we found the really interesting fact that the numbers N i are proportional to [=1/(k B T)]

Figure 14 (

 14 Figure 14 (molar specific heat of any substance versus T/ D ) [ D is named "Debye temperature"]

  

  

  

  

  

Perpetuum Mobile of the 1 st kind!

  Kinetic energy of the wheel and back to water Potential energy (container A); IF if there is no friction at all, in any part of the devices, one would generate a Perpetuum Mobile of the 1 st kind (a device that could perpetually, for ever, work! But it cannot allow anybody to have any work out of the system!). Actually, no real device has not any friction and, therefore, there is NO One could think that he could generate a Perpetuum Mobile of the 2 nd kind (a device that could perpetually, for ever, provide work, taking energy form a "source" with infinite energy, like the wind). Actually we will see that there is NO

Perpetuum Mobile of the 2 nd kind (as well)! Fourth known facts.

  Let's consider a system; we enclose it by a surface. We know that energy can flow into the volume [work done on the system] enclosed by the surface, or can remain in the volume [work of the internal forces] and can flow out the volume [work done by the system].

	We experience that, if A (initial) and B (final) are two states of the system, we have
	U(B) -U(A) = flow_in -flow_out
	We know two types of surfaces:

0 th Principle: Temperature 1 st Principle: Energy Conservation 2 nd Principle: Entropy 3 rd Principle:

  

Feynman statements 3. Carnot ideas and Heat Engines

  

	Furthermore, at the same temperature and pressure and volume, the number of atoms is
	determined; it too is a universal constant!
	So equal volumes of different gases, at the same pressure and temperature, have the
	same number of molecules, because of Newton's laws. That is an amazing conclusion!
	Excerpt 2. We start with some Feynman statements (notice that Feynman consider also ideas not
	known at Carnot days):
	Now, what about the second law of thermodynamics? We know that if we do work
	against friction, say, the work lost to us is equal to the heat produced. If we do work in a
	room at temperature T, and we do the work slowly enough, the room temperature does
	not change much, and we have converted work into heat at a given temperature. What
	about the reverse possibility? Is it possible to convert the heat back into work at a given
	temperature? The second law of thermodynamics asserts that it is not. It would be very
	convenient to be able to convert heat into work merely by reversing a process like
	friction. If we consider only the conservation of energy, we might think that heat energy,
	such as that in the vibrational motions of molecules, might provide a goodly supply of
	useful energy.
	2 /2.
	(39.9)
	With this equation we can calculate how much the pressure is, if we know the speeds.
	…..
	So if T is absolute temperature [The centigrade scale is just this Kelvin scale with a zero
	chosen at 273.16°K, so T=273.16 + centigrade temperature. 39-16], our definition says
	that the mean molecular kinetic energy is (3/2)kT. (The 3/2 is put in as a matter of
	convenience, so as to get rid of it somewhere else.)
	We point out that the kinetic energy associated with the component of motion in any
	particular direction is only (1/2)kT. The three independent directions that are involved
	make it (3/2)kT.
	…..
	Now, of course, we can put our definition of temperature into Eq. (39.9) and so find the
	law for the pressure of gases as a function of the temperature: it is that the pressure
	times the volume is equal to the total number of atoms times the universal constant k,
	times the temperature: PV=NkT. (39.22)

  form it is (for an infinitesimal transformation)] where  dU is the exact differential of the state function U, named Internal Energy, so that the variation U=U is a differential form, NOT exact [notice the symbol "d*" which states that d*Q is only a differential form], of the quantity of Heat (Q) supplied to the system, so that the Heat (Q) depends BOTH on the end-points A (initial point) and B (final point) of a transformation AND on the transformation AB itself [see figure

B -U A depends only on the end-points A (initial point) and B (final point) of a transformation and NOT on the transformation AB itself  d*W is a differential form, NOT exact [notice the symbol "d*" which states that d*W is only a differential form], of the Work (W) done on the system, so that the Work (W) depends BOTH on the end-points A (initial point) and B (final point) of a transformation AND on the transformation AB itself  d*Q

  the 1 st and the 2 nd principles we get, in differential form [for an infinitesimal transformation] dU = d*W + TdS from which we see that the internal available energy, in general, is partially converted into "useful" work, d*W; the other part of the energy is energy unavailable, because it cannot be converted into useful work [this last statement is misleading for isothermal expansion transformations, because at constant temperature dU=0 and then d*W=-TdS: but in this case actually TdS is the heat that the system gets from the source at constant temperature T (dS=d*Q/T)]. A final result is that entropy can be seen as the unavailable energy per unit temperature:

nd Principle of Thermodynamics).

  . (2

	Elaborating on these we get	
		(15)
	If T c is the ambient temperature T a , then	is the (mechanical) work
	lost due to irreversibility: a quantity of molecules kinetic energy cannot be
	converted into (mechanical) work.	
	We can conclude by saying that	
	 that Energy is constant [1 st Principle], but only a portion of it can be
	transformed into "usable work", which is continuously deceasing in natural
	(spontaneous) transformations [2 nd Principle].	
	Now we see Feynman's ideas. Notice that are related to heat engines!
	44-6 Entropy	
	Equation (44.7) or (44.12) can be interpreted in a special way.	
	Working always with reversible engines, a heat Q 1	

where C  is the specific heat at infinite values of S, and C is a function of S. From the Linhart article we find that, verbatim, "C denotes the average atomic heat at any temperature T" and "C equals 3R=5.966 cal", with k a constant. [C =2*(3/2)R=2*12.5J/(mol*K)=25 J/(mol*K)=(25/4186)*1000 cal/(g*K); transformation…; K=kelvins] F. Galetto does not know how Linhart deduced it. [see formula (22): interpolation?] We know only that according to the ideas of Starikov (in his paper George Augustus Linhart -as a "widely unknown" thermodynamicist), Linhart found, for S (entropy), a better formula than the one of Boltzmann S=k B ln(): Linhart formula had a physical interpretation and significance! Linhart states

The rate of increase of the specific heat with the entropy of a given element or compound depends upon the probability of the randomness of the individual particles. At the absolute zero, or at the point of zero kinetic energy we are quite certain that each particle will remain in a fixed position. The probability, therefore, will be unity. At relatively high temperatures the probability of that state prevailing is very nearly zero. Now, the mathematical expression of the above statements may be assumed to be proportional [underlinement is due to Galetto] to the term, which at the absolute zero is unity and at relatively high temperatures approaches zero. Assuming that when C is zero S is also zero, Equation 1[our (19)] on integration gives,

The value of K may be readily obtained by substituting in Equation 1[our (19)] CdT/T for its equal dS and integrating. Thus,

Whence,

In the straight line equation (4) [our (22)] k is the slope, and log(a) is the intercept of the ordinate. This equation may of course be written in the simpler form,

Equation 4 [our (22)] or 5 [our (23)] reproduces the experimental data, within the probable error, for the specific heats of all substances thus far obtained by thermoelectric methods.

The following table giving the results for copper demonstrates this.

Excerpt 9. From The Relation Between Entropy and Probability.…

In a recent article, two equations are given, one connecting entropy and probability, and the other, specific heats and temperature. These equations are (20) (23) In the article just cited the validity of Equation 2 is amply substantiated by a comparison of the calculated entropies for 18 substances with the values obtained for the same substances by a graphical method. Omissis…

The purpose of the present article is to show that this equation which is based upon the laws of entropy arid probability holds for the specific heats of all substances thus far obtained by thermo-electric methods.

Excerpt 10. From Correlation of Entropy and Probability.

Due to his cryticism of Linhart ideas F. Galetto got a letter with the following comments:

… the actual problem with all this story is by far not the mathematics -it is PHYSICS, the genuine physics, for neither Ludwig Boltzmann together with his numerous followers, nor Erwin Schrödinger and his numerous followers could clearly tell us, what is the ACTUAL PHYSICAL SENSE of the W in S=kln(W) under the logarithm sign... This could finally have been clarified by Dr. Georg(e) Augustus Linhart…...Anyway, the actual problem with all the story is not the technical quality of the mathematical proof of 'integrable factor' -it is rather WHAT ACTUALLY WE ARE TRYING TO DESCRIBE, IF WE EMPLOY SUCH MATHEMATICS. Omissis… Dear … many sincere thanks for your very nice strive for clarifying the 'nonsense' of George A. Linhart! You are but not the pioneer in the field chosen, I am sorry... The true pioneers are: 1. Prof. Dr. Richard Chace Tolman (1881 -1948) 2. Prof. Dr. Linus Carl Pauling . The both colleagues are truly renowned, they have already done the work you are willing to redo …Omissis… OK, interesting -this will mean that Boltzmann-Planck formula is nonsense. Truly interesting! ...My actual suggestion would be -just save your time. It is possible to deny everything mathematically (by finding some errors in the proof or by coming up with different initial or sideway conditions. This is but has nothing to do with theoretical physics, for meanwhile NOBODY has doubts as for the Boltzmann's formula PHYSICAL correctness and its seminal PHYSICS contributions. This same holds for the inferences by Gibbs, which Linhart was just developing along the Gibbs lines of thoughts. All of them are not DEITIES -all of them are active, talented research workers. …Omissis… Excerpt 11. From A letter to Fausto Galetto Excerpt 11 is a great proof of the ignorance flooding…. Formula (21) is typical of diffusion processes. The author had the opportunity to discuss this in his paper [11] "QUALITY IN HIGHER EDUCATION COURSES", where he showed the errors of the Bass model, using the Reliability Integral Theory (RIT) [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]. Here, using RIT he proves the nonsense of Linhart findings. We begin with the equation of a Random Variable X, related to a Growth-Diffusion Processes, whose (cumulative) probability distribution is F(x), where x is a real quantity.

Let F(T)=

, where T is real value of the absolute temperature; we derive the probability density, from (21), (21b) From (21b) we get the "rate of increment of "

and the "cumulative rate of increment of "

We know that (26) so that (27) The solution R(T) is (28) where a is an integration constant.

An important concept is the conditional Growth-Diffusion probability R(x|y)=R(x)/R(y), that is the probability that Growth-Diffusion does not complete in the interval y -----x, given that it did not complete in the interval 0 ----y. From (28) we derive (29) Notice that (29) is the same function as (23): this is the problem for the "Linhart Entropy S L " We have (30) which is the same as (20) [START_REF] Linhart | The Relation Between Entropy and Probability. The Integration of the Entropy Equation, Note at EUREKA CALIFORNIA[END_REF][START_REF] Linhart | Correlation of Entropy and Probability[END_REF]. In the figure 15 you see an example of R(x) and h(x)K, in order to assess the behaviour of the curves. The variable x is, in this case, the Absolute Temperature T. The Growth-Diffusion rate is initially increasing and then decreasing versus the Absolute Temperature T. In any case the cumulative Growth-Diffusion rate is monotonically increasing with the Absolute Temperature T. Let's consider an adiabatic free expansion of a gas, from a volume V 0 to the volume 2V 0 , so that the ratio of the volumes is 2. We did that in figure 9b. The process is irreversible because during the sudden expansion, significant variations in pressure occur throughout the gas. Therefore, there is no well-defined value of the pressure for the entire system at any time between the initial and final states. In fact, the process cannot even be represented as a path on a PV diagram. The PV diagram for an adiabatic free expansion would show the initial and final conditions as points, but these points would not be connected by a path, contrary to our figure, where it is supposed a quasi-static process. Therefore, because the intermediate conditions between the initial and final states are not equilibrium states, the process is irreversible. Let's see the figure 0b, showing a Carnot cycle ABCD. Since Q=0, it seems that increment of entropy must be SC-SB=0; because the process is irreversible and the temperature, during the adiabatic expansion drops from T h to T c and the volume after the expansion is 2V 0 , to compute the increment of the entropy, we must find an equivalent reversible path of transformations going from B to C: we choose the path BEC, made of an isothermal reversible expansion BE, with energy entering the gas by heat from a reservoir to hold the temperature constant, the initial temperature T h of the gas. We can, then, have some doubts about a "scholar" writing All this is related to the stochastic processes [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF], described above, ruling the thermodynamics.

The Entalpy

Let's consider the cycle in the figure 17. Let's begin in the system state A.

[1.] In the system state A, the internal energy is U A , depending from the temperature T i , i.e., U A (T i ). [2.] We keep the volume constant [at V i ] and provide energy by heat till the system reach the state B, where the internal energy is U B , depending on the temperature 3T i , i.e., U B (3T i ). [3.] We keep the temperature constant [at 3T i ] and provide energy by heat till the system reach the state C, where the internal energy is U C , depending on the temperature 3T i , i.e., U C (3T i ). The system makes work by expansion from V i to 2V i . [4.] We keep the volume constant [at 2V i ] and extract energy by heat till the system reach the state D, where the internal energy is U D , depending on the temperature T i , i.e., U D (T i ). [5.] We keep the temperature constant [at T i ] and provide energy by work till the system reach the state A, where the internal energy is U A , depending on the temperature T i , i.e., U A (T i ). The system gets work by compression from 2V i to V i . The work done by the system in the step [3.] is not generated by the internal energy, for we have . If the surrounding of the system where at p external constant the work done by the system were p external (2V i -V i ); this term can be interpreted as the work that to "make room" for the system if the pressure of the environment remained constant. Then we can consider the quantity p(2V i ) as a kind of work to be attached to the state C: for the transformation BC we have always pV=constant, and therefore we add that constant to the internal energy. We indicate by H=U+pV this quantity which depends only on the temperature and is a function of the state of the system, in any point of the cycle.

We give a "new" name to this state function H: enthalpy. H=U+pV= . Assumes pV is positive when done by the system. Since U is a state function (depending on the absolute temperature T) and pV, as well, is a state function (depending on the absolute temperature T), we derive that H is a state function (depending only on the absolute temperature T). Then the differential dH=dU+d(pV)= is an exact differential and for any transformation X  Y, either reversible or irreversible, we have

We have dH=dU+d(pV)=dU+pdV+Vdp=d*W+d*Q+pdV+Vdp=[-pdV+pdV]+d*Q+Vdp. We derive dU = d*Q, at constant volume V, dH = d*Q, at constant pressure p. For a heat engine, the change in its enthalpy after a full cycle is equal to zero, since the final and initial state are equal.

The thermodynamics potentials

Thermodynamic potentials are state functions that, together with the corresponding equations of state, describe the equilibrium behaviour of a system as a function variables such as Temperature T, pression p, Volume V. We do not consider the variable "number of moles". We already saw three of them 1. The internal energy U 2. The enthalpy H 3. The Helmholtz free energy F We consider here the 4 th .

4. The Gibbs free energy G These four functions ("thermodynamic potentials") are useful in the chemical thermodynamics of reactions and non-cyclic processes. Their definitions can be easily remembered by the figure, where:  TS is "energy" taken by heat from the environment (notice that we use here as positive the quantity d*Q provided to the system, as we did before)  pV= is "expansion" work made by the system (notice that we use here as negative the quantity d*W provided to the system, contrary to what we did before)  this is opposite to the 1 st System Work (pV, remember the convention of sign, here: positive if work is done by the system) and Entropy S [with heat flow -TS, remember the convention of sign, here: positive if heat is supplied to the system] are the major elements in the definitions. Hence, the potentials F and G describe the possibility of work of the system: TdS is the energy that can be transformed into heat and unavailable for work. Combining all the above ideas we can state the following Symbolic Equation of Thermodynamics Equilibrium (SETE) [using the convention of signs of the 1 st Principle of Thermodynamics stating the Conservation of Energy, written as dU = d*W + d*Q (3), where the increase of the Internal Energy dU is the sum of the Work done on the system d*W and the Heat supplied to the system d*Q.

where  is the symbol of variation (in the sense of Variation Theory), Y are the generalised Forces, y are the generalised Displacements and U is the internal energy. The Calculus of Variations deals with Extrema Problems involving functional with several degrees of freedom. From this we derive: 1 st Principle for all the virtual transformations "according to the constraints", S=constant and y=constant. 2 nd Principle for all the virtual transformations "according to the constraints", S=constant and Y=constant, where H is the enthalpy: 3 rd Principle for all the virtual transformations "according to the constraints", U=constant and y=constant. 4 th Principle for all the virtual transformations "according to the constraints", T=constant and y=constant, where A is the first potential energy: 5 th Principle for all the virtual transformations "according to the constraints", T=constant and y=constant, where F is the second potential energy:

Entropy is a measure of disorder or randomness of a system. The entropy of the system increases. Thus the conditions for spontaneity and equilibrium may be summed up in the in the following Gibbs free energy (the second potential energy) determines the direction of a spontaneous process; it is a thermodynamic potential that is minimized when a system reaches equilibrium at constant temperature and pressure.

Considering the relation , we get that Holds for any process Holds for any process Holds only for Reversible processes Holds only for Reversible processes

Conclusion

Using the fact that the absolute temperature T is related to the energy of any degree of freedom of a molecule we have been able to show that the 4 Principles of Thermodynamics have a common physical explanation, in terms of T. We showed an intimate and important physical interpretation of Entropy. We presented some fundamental ideas about Stochastic Processes related to diffusion of energy levels and temperature.

APPENDIX The case of THREE independent state variables (2 nd Principle of Thermodynamics)

Here we present a graphical form of the Caratheodory postulate, when we have 3 independent state variables. The argument for n>3 variables follows the same lines; we do not deal with that. This idea can be found in the paper of M. W. ZEMANSKY (The City College of the City University of New York) entitled Kelvin and Caratheodory-A Reconciliation (published in 1966), where he credited Louis A. Turner of the original ideas.

Here we indicate with x, y, z, the 3 thermodynamics coordinates, representing generalised displacements as volume V, length and magnetisation… and other variables, named generalised forces as the empirical temperature , or the pressure p, or the voltage, or the magnetic intensity, or … Before going on, the reader should look at figure 2, where we used a plane with two orthogonal axes  and V. Now we use a three-dimensional space with 3 orthogonal axes U, X and X. The figure is taken from ZEMANSKY. U is the internal energy and X and X are two other variables.

As done with 2 variables, the figure enables us to see that the Caratheodory postulate of the 2 nd Principle of Thermodynamics is equivalent to the Kelvin-Plank postulate. We reject the Caratheodory postulate and consider a cycle made of two reversible adiabatic transformations and one transformation at constant X and X, the transformation f 1 f 2 .

From the equilibrium state i we assume that the system can arrive to two different equilibrium states f 1 and f 2 , with adiabatic reversible processes; during the transformation f 1 f 2 , the system receives a quantity of heat Q>0.

The net result of this cycle is that we transform completely the heat into work, W=Q, which is contrary to the Kelvin-Planck postulate. Therefore the points (equilibrium states) f 1 and f 2 must be the same state: Q=0 and then W=0. Hence, the locus of all points accessible from i by reversible adiabatic processes is a space of dimensionality 3-1, that is the points lie on a surface.

Figure 6

The points accessible from an equilibrium state MUST be on the surface, whose equation is For any value of the constant we have a different adiabatic surface; no adiabatic surface intersects any other adiabatic surface. Surfaces corresponding to different initial states i would be represented by different values of the constant. The total differential is so that from d*Q=0 and d(U, X, X)=0 we can put where (U, X, X) is a suitable function. If we had chosen the empirical temperature , X and X as independent thermodynamic variables, we should have another function for the adiabatic surfaces. For any value of the constant we have a different adiabatic surface; no adiabatic surface intersects any other adiabatic surface. The total differential is so that from d*Q=0 and d(, X, X)=0 we can put where (, X, X) is a suitable function. Now let's consider the 1 st Principle of Thermodynamics, in the differential form [for an infinitesimal transformation] with 5 variables U, Y, Y, x, x, d*Q=dU + Ydx + Ydx where  dU is the exact differential of the state function U  Ydx is a differential form NOT exact  Ydx is a differential form NOT exact Considering a gaseous system (made of two subsystems, as in figure 4) for an adiabatic transformation we have the differential equation dU + Ydx + Ydx=0 whose solution, IF we can find analytically one, is Contrary to the case of 2 variables, NOT always we are able to find the above analytical surface.

So we are compelled to study the integrability of differential forms as [we consider a generic differential form, independently from thermodynamics … .] X(x, y, z) dx + Y(x, y, z) dy + Z(x, y, z) dz with X, Y, Z continuous functions of x, y, z. Such a form is named exact IF there exists a function (x, y, z) so that d=X dx + Y dy + Z dz In Calculus it is proved that if partial derivatives X y , X z , Y x , Y z , Z x , Z y of the functions X, Y, Z are also continuous, then it is necessary and sufficient for X dx + Y dy + Z dz being exact is

In such a case there exists a vector, named gradient of (x,y,z) and written grad(x,y,z) which is orthogonal to the surfaces (x,y,z)=constant., whose condition of existence is, symbolically, named rotation (or curl).

Since, in 3 variables d*Q= X(x, y, z) dx + Y(x, y, z) dy + Z(x, y, z) dz is not exact we must find a function (x,y,z) so that 1/(x,y,z) is an integrating factor of the NON_exact differential form d*Q, getting the exact differential d*Q/(x,y,z). Letting (x,y,z) the potential we have with the condition of existence, symbolically,

The scalar product (or dot product) is zero:

With this condition the is integrable by one relation of the form (which provides a surface)

It follows

The existence of the 2 nd Principle second assures that the differential form of d*Q referring to a physical system of 3 independent coordinates possesses an integrating factor 1/(x,y,z), providing the exact differential d*Q/(x,y,z).

As done before, let's consider two systems  1 and  2 ; see figure 4 here repeated; at initial time 0, they are in the states  1 (x 1 , y 1 , z 1 ; time 0) and  2 (x 2 , y 2 , z 2 ; time 0); soon after they are put in contact through a diathermic wall; after "due time" they arrive at equilibrium states  1 (x 1 , y 1 , z 1 ; "due time")= 2 (x 2 , y 2 , z 2 ; "due time"); we know that at "due time" the two systems have the same temperature.

Therefore we can always consider the temperature  as an independent variable. Then  1 (x 1 , y 1 ,  1 ) and  2 (x 2 , y 2 ,  2 ) are equilibrium states of two systems  1 and  2 . Then we have for any of the two systems, i=1,2. Let  the compound system: = 1  2 . We have .

We chose  1 and  2 as independent variables in place of y 1 and y 2 ; when  is in thermal equilibrium, we have Now we compute the differential

Figure 4 (repeated)

Comparing the two last formulae, we get and, moreover, which entails that the hypersurface does not depend on x 1 , x 2 , and ; so is actually a surface . Therefore also the partial derivatives do not depend on x 1 , x 2 ; we get where the ratios are -independent. The way to obtain this result is to put and . Therefore we derive the result This is the same as for the case of two independent variables. By putting we find that the elementary quantity of heat can be written as This formula suggests assuming as TEMPERATURE the function itself. Therefore we put the TEMPERATURE: the absolute temperature. The variable S, which defines the adiabatic curves, is a state function, the ENTROPY, whose differential is Because entropy is a state variable, the change in entropy during a process depends only on the endpoints and therefore is independent of the actual path followed. Considering any infinitesimal process in which a system changes from one equilibrium state to another, if dQ r is the amount of energy transferred by heat when the system follows a reversible path between the states, the change in entropy dS is equal to this amount of energy divided by the absolute temperature of the system (the temperature is constant because the process is infinitesimal).

The case of n>3 independent state variables (2 nd Principle of Thermodynamics)

If we have a differential form of n>3 variables the necessary and sufficient conditions for integrability are The theory follows as for the case n=3. In this case (n>3) we must use tensors (instead of vectors). The gradient of a tensor T is a tensor gradT, obtained by deriving the tensor T. The rotor of a tensor T is a tensor R got by combination of the Ricci tensor  and the tensor T. (see tensor calculus) In any case we arrive finally to the relationship where is a hypersurface of dimensions n-1, and From these we find (again) that the elementary quantity of heat can be written as where is the absolute temperature, and the state function ENTROPY, has the differential