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Hug F, Vogel C, Tucker K, Dorel S, Deschamps T, Le Carpen-
tier É, Lacourpaille L. Individuals have unique muscle activation
signatures as revealed during gait and pedaling. J Appl Physiol 127:
1165–1174, 2019. First published August 8, 2019; doi:10.1152/jap-
plphysiol.01101.2018.—Although it is known that the muscle activa-
tion patterns used to produce even simple movements can vary
between individuals, these differences have not been considered to
prove the existence of individual muscle activation strategies (or
signatures). We used a machine learning approach (support vector
machine) to test the hypothesis that each individual has unique muscle
activation signatures. Eighty participants performed a series of ped-
aling and gait tasks, and 53 of these participants performed a second
experimental session on a subsequent day. Myoelectrical activity was
measured from eight muscles: vastus lateralis and medialis, rectus
femoris, gastrocnemius lateralis and medialis, soleus, tibialis anterior,
and biceps femoris-long head. The classification task involved sepa-
rating data into training and testing sets. For the within-day classifi-
cation, each pedaling/gait cycle was tested using the classifier, which
had been trained on the remaining cycles. For the between-day
classification, each cycle from day 2 was tested using the classifier,
which had been trained on the cycles from day 1. When considering
all eight muscles, the activation profiles were assigned to the corre-
sponding individuals with a classification rate of up to 99.28%
(2,353/2,370 cycles) and 91.22% (1,341/1,470 cycles) for the within-
day and between-day classification, respectively. When considering
the within-day classification, a combination of two muscles was
sufficient to obtain a classification rate �80% for both pedaling and
gait. When considering between-day classification, a combination of
four to five muscles was sufficient to obtain a classification rate �80%
for pedaling and gait. These results demonstrate that strategies not
only vary between individuals, as is often assumed, but are unique to
each individual.

NEW & NOTEWORTHY We used a machine learning approach to
test the uniqueness and robustness of muscle activation patterns. We
considered that, if an algorithm can accurately identify participants,
one can conclude that these participants exhibit discernible differ-
ences and thus have unique muscle activation signatures. Our results
show that activation patterns not only vary between individuals, but
are unique to each individual. Individual differences should, therefore,
be considered relevant information for addressing fundamental ques-
tions about the control of movement.

electromyography; gait; muscle coordination; pedaling; support vec-
tor machines

INTRODUCTION

Each individual is unique, with distinctive patterns or char-
acteristics by which he/she can be identified, leading to the
notion of a personal signature. Using relatively simple biomet-
ric identifiers, algorithms have been developed that identify
individuals based on their face, iris, or fingerprints. However,
differences between individuals go well beyond differences in
physical characteristics: individuals also differ in their ways of
interacting with their environment. Our ability to identify a
friend by his or her walk (9), for example, suggests the existence
of identifiable movement signatures. Recently, a number of
studies have supported the existence of individual movement
signatures identified from kinematic or kinetic features (17, 27,
31). For instance, using support vector machines for pattern
recognition, Horst et al. (17) showed that the ground reaction
force pattern measured in 128 healthy individuals during gait
could be assigned to the corresponding individuals with a
classification rate �99%. In other words, participants could be
accurately identified based on their ground reaction force
pattern. Considering muscle coordination as the distribution of
force among muscles to produce a given motor task (20), the
existence of these movement signatures could be explained by
the following: 1) individual anatomical/mechanical differences
that result in different movement kinematics/kinetics, despite
similar muscle coordination strategies (32); 2) the existence of
muscle coordination strategies unique to each individual (20);
or 3) both. In other words, it is unclear whether movement
signatures result from the existence of individual muscle co-
ordination signatures.

The most comprehensively studied contributor to muscle
coordination is muscle activation, which is classically esti-
mated using surface electromyography (EMG). Human studies
that focus on individual data report differences in muscle
activation patterns between individuals during multijoint tasks,
such as gait (1, 2, 28), pedaling (22), and giant swing on the
high bar (14). Large individual differences in the distribution
of activation among synergist muscles have also been observed
during well-controlled tasks, such as isometric plantar flexion
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(26) and isometric knee extension (19). It is, therefore, well
known that the distribution of muscle activation required to
produce even simple movements can vary between individuals.
However, the existence of such an interindividual variability
does not prove the existence of individual muscle activation
signatures. Indeed, if we consider a signature as distinctive
patterns or characteristics by which someone can be identified,
there are two important factors that need to be confirmed to
support the existence of individual signatures. First, individual
differences in muscle activation should persist over time. To
the best of our knowledge, the vast majority of studies report-
ing interindividual variability of activation strategies did not
test the robustness of these strategies across days. Second,
these strategies should be unique in the sense that they should
not be exactly the same for any two individuals performing the
same task. As classical approaches to assess interindividual
variability are often limited to descriptive statistics on time-
discrete EMG variables; they cannot test the uniqueness of the
time-varying EMG patterns. To test the uniqueness and robust-
ness of muscle activation strategies, pattern recognition tools
can be used; if an algorithm can accurately identify partici-
pants, one can conclude that these participants exhibit discern-
ible differences and thus have unique signatures.

Bearing these considerations in mind, this study aimed to
test the hypothesis that each individual has unique muscle
activation signatures through a machine learning approach
(support vector machine). Specifically, we hypothesized that
activation patterns estimated using surface EMG over lower
limb muscles during pedaling and gait can be assigned to the
corresponding individual with a low classification error. If this
hypothesis is supported, it would demonstrate that strategies
not only vary between individuals, as is often assumed, but are
also unique to each individual. This would open new research
perspectives in which individual differences are considered
relevant information for addressing fundamental questions
about the control of movement in health, aging, and disease.

METHODS

Participants

Eighty healthy volunteers (62 men and 18 women; Table 1)
participated in this study. Participants had no history of lower leg pain
limiting function within the previous 2 mo. The ethics committee,
CPP Ile de France XI, approved this study (no. 2018-A00110–55/
18020), and all procedures adhered to the Declaration of Helsinki.
Participants provided informed, written consent.

Experimental Design

The experimental session consisted of a series of locomotor tasks:
two all-out isokinetic pedaling sprints used to standardize the intensity
of the submaximal pedaling tasks, pedaling at four submaximal
intensities, and walking on a treadmill at 1.11 m/s. The order of both
of the tasks (pedaling and walking) and the intensities of the pedaling
tasks were randomized. Of these 80 participants, 53 (12 women and
41 men) performed a second experimental session ~13 days later
(range: 1–41 days; standard deviation: 10 days). This second session
included all of the submaximal tasks.

Myoelectrical Activity

Myoelectrical activity data were collected via surface EMG from
eight muscles of the right leg: vastus lateralis (VL), rectus femoris
(RF), vastus medialis (VM), gastrocnemius lateralis (GL), gastrocne-
mius medialis (GM), soleus (SOL), tibialis anterior (TA), and biceps
femoris-long head (BF). For each muscle, a wireless surface electr-
ode (Trigno Flex, Delsys, Boston) was attached to the skin at the site
recommended by SENIAM (15). We intentionally did not mark the
electrode location, such that day-to-day variability of the electrode
placement could have occurred. It was important not to exclude this
source of between-day variability because electrode placement might
explain, at least in part, interindividual variability in estimated acti-
vation strategies. Before electrode application, the skin was shaved
and cleaned with an abrasive pad and alcohol. Electrodes were well
secured to the skin with double-sided tape and a tubular elastic
bandage (tg fix, Lohmann & Rauscher International, Germany). EMG
signals were band-pass filtered (10–850 Hz) and digitized at a sampling
rate of 2,000 Hz using an EMG acquisition system (Trigno, Delsys,
Boston).

Experimental Protocol

Pedaling. The pedaling task was performed on an electronically
braked cycloergometer (Excalibur Sport; Lode, Groningen, the Neth-
erlands) equipped with standard cranks (170 mm) and clipless pedals.
The saddle height was standardized such that the lower limb was
straight when the heel was positioned in the middle of the pedal axle
with the crank at the bottom of the cycle and aligned with the seat
tube. To standardize the saddle setback, the knee cap was aligned with
the ball of the foot, while the pedal was positioned at 90° from the top
dead center (highest position of the pedal). The handlebar height was
matched to that of the saddle. Participants were instructed to maintain
a seated position throughout the tasks and to keep their hands on the
dropped portion of the handlebars. This overall standardization pro-
cedure was adopted to limit the influence of pedaling positions on the
observed variability of activation strategies between participants and
across the two testing sessions.

After familiarization with the cycloergometer and a standardized
warm-up, participants were asked to perform two 5-s all-out isokinetic
pedaling sprints at 80 rpm, separated by 2 min of rest. The torque
exerted on the cranks was measured by strain gauges in the crank arms
of the cycloergometer (Excalibur Sport; Lode, Groningen, the Neth-
erlands). The average of the two cycles with the highest power output
was considered as the maximal power output (Pmax). Because we
cannot discount the possibility that the individual differences, and thus
the excellent classification rate, stems from different relative exercise
intensities across participants, both absolute and relative pedaling
intensities were tested. Specifically, participants were asked to pedal
at four different intensities (80 W, 150 W, 10% of Pmax, and 15% of
Pmax; randomized order) each at 80 rpm for 90 s, with 30 s of rest in
between. A transistor-transistor logic pulse indicated the top dead
center of the right pedal and was recorded on the EMG acquisition
system such that the crank position and the EMG data were synchro-
nized.

Table 1. Demographic and anthropometric data for the
tested population

Men Women

n 62 18
Age, yr 24.1 � 5.6 (18–46) 22.1 � 4.7 (18–38)
Height, cm 179.3 � 6.1 (158–193) 167.8 � 6.0 (150–177)
Body mass, kg 74.8 � 8.2 (51–90) 59.1 � 4.5 (51–68)
Body mass index,

kg/m2 23.2 � 1.9 (18.7–28.1) 21.0 � 1.7 (18.8–25.2)
Maximal power

output, W 937 � 144 (600–1,291) 637 � 82 (464–778)
Left footed, n 9 (14.5%) 0 (0%)

Values are means � SD (with range in parentheses); n, no. of subjects. Maximal
power output was assessed during isokinetic (80 rpm) pedaling sprints.
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Gait. The gait experiments were conducted on a treadmill (Power
795i, Pro-form, France) to minimize perturbations induced by the
external environment and to ensure that all participants adopted the
same walking speed. Participants walked barefoot and were familiar-
ized with the treadmill before starting the experimental task, which
consisted of walking at 1.11 m/s for 90–120 s. A force-sensitive
resistor (Delsys) was taped under the heel of the right foot to detect
the onset of foot contact (i.e., the onset of the stance phase). These
signals were recorded by the acquisition system used for EMG such
that the foot pressure and the EMG data were synchronized.

Data Analysis and Statistics

All EMG data were processed using MATLAB (The Mathworks,
Nathicks). Raw EMG signals were first band-pass filtered (20–700
Hz) with a second-order Butterworth filter. Then EMG signals were
inspected for noise or artifacts. At this stage, some data were dis-
carded due to movement artifacts, leaving data for analysis from
78–79 participants for day 1 and 49–50 participants for the follow-up
(days 1 and 2). The number of participants is indicated for each task
in Tables 2 and 3.

Fig. 1. Recognition rate as a function of the low-pass
cut-off frequency used to compute the electromyogra-
phy envelope. Results are presented for the leave-one-
out method applied to data from day 1 when consid-
ering all of the eight muscles (n � 78–79 participants).
Data for the four pedaling conditions are averaged.
Arrows show the cut-off of the low-pass filter selected
for each of the two conditions.

Fig. 2. Data analysis. The classification task
typically involved separating data into train-
ing and testing sets. A: for the leave-one-out
method applied to data from day 1, each
pedaling/gait cycle was tested using the clas-
sifier, which had been trained on the remain-
ing 29 cycles. B: for the leave-session-out
method applied to data from days 1 and 2,
each pedaling/gait cycle from day 2 was
tested using the classifier, which had been
trained on the 30 cycles from day 1. Each
instance was predicted once, and the average
accuracy provided the percentage of cor-
rectly classified data over the total number of
cycles (i.e., 30 cycles � number of partici-
pants). m1–m8, muscles 1–8.
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To quantify interindividual differences in activation strategies, we
considered the EMG time-varying profiles measured during pedaling
and gait. The classification of EMG patterns was performed using
support vector machines, which consist of a supervised machine
learning algorithm for pattern recognition (5). The L2-regularized
L2-loss support vector classification (primal) of the Liblinear Toolbox
2.11 (13) was used with a linear kernel function. Option C was

selected such that the best C was first determined by cross-validation.
C is a parameter that controls the trade-off between smooth decision
boundary and classifying the training data correctly. For both the
pedaling and the gait task, the first 20 cycles were excluded from
analysis. Then the first 30 consecutive cycles that were free of any
artifacts were selected. The EMG signals were rectified and low-pass
filtered at 12 and 9 Hz for pedaling and gait, respectively. This

Table 2. Participant classification using support vector machines for data from day 1

Pedaling Gait

No. of
Muscles 15% Pmax (n � 79) 150 W (n � 79) 10% Pmax (n � 78) 80 W (n � 79) 1.11 m/s (n � 79)

1 60.34
GM

61.35
GM

57.78
SOL

58.35
SOL

58.69
BF

2 82.49
RF, GM

82.95
RF, GM

79.62
VM, SOL

78.0%
RF, SOL

81.43
TA, BF

3 91.94
RF, GL, SOL

93.67
RF, SOL, BF

92.69
RF, GL, SOL

90.25
RF, GL, SOL

91.52
GM, TA, BF

4 95.74
RF, GL, TA, BF

96.84
RF, GM, SOL, BF

95.85
RF, GL, SOL, BF

94.22
RF, GL, SOL, TA

95.06
GM, SOL, TA, BF

5 97.59
RF, GL, GM,

SOL, TA

98.02
RF, VM, GM,

SOL, BF

97.69
RF, GL, SOL, TA, BF

96.54
RF, GL, GM,

SOL, BF

97.09
VL, GL, SOL, TA, BF

6 98.52
RF, GL, GM,
SOL, TA, BF

98.65
RF, VM, GL, GM,

SOL, BF

98.63
RF, VM, GL, SOL,

TA, BF

97.55
RF, VM, GL, GM,

SOL, TA

98.02
RF, VM, GL, SOL,

TA, BF

7 99.20
VL, RF, GL, GM,

SOL, TA, BF

98.99
RF, VM, GL, GM,

SOL, TA, BF

98.89
RF, VM, GL, GM,

SOL, TA, BF

98.10
VL, RF, GL, GM,

SOL, TA, BF

98.82
RF, VM, GL, GM,

SOL, TA, BF

8 99.16
All

99.28
All

99.02
All

98.22
All

98.86
All

Values are the highest classification rate in percentage, along with the combination of muscles that led to this rate (n�78 or 79 subjects). Pmax, maximal power
output; BF, biceps femoris; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; RF, rectus femoris; SOL, soleus; TA, tibialis anterior; VL, vastus lateralis;
VM, vastus medialis.

Table 3. Participant classification using support vector machines for data from day 1 and 2

Pedaling Gait

No. of
Muscles 15% Pmax (n � 49) 150 W (n � 49) 10% Pmax (n � 49) 80 W (n � 49) 1.11 m/s (n � 50)

1 39.18
GM

39.80
RF

35.44
GL

32.24
RF

35.60
TA

2 64.42
RF, GL

60.68
RF, GL

56.19
RF, GL

56.94
RF, GM

55.20
GL, SOL

3 76.05
RF, GL, GM

72.65
RF, GM, GL

69.93
RF, GL, GM

70.48
RF, GL, GM

67.40
SOL, TA, BF

4 82.17
RF, GL, GM, TA

80.82
RF, GL, GM, BF

75.85
RF, GL, GM, SOL

76.46
RF, GL, GM, TA

77.67
GM, SOL, TA, BF

5 85.58
RF, GL, GM, SOL, TA

85.85
RF, GL, GM, SOL, BF

79.18
RF, GL, GM, TA, BF

82.45
RF, GL, GM, TA, BF

83.67
GL, GM, SOL, TA, BF

6 85.84
VL, RF, GL, GM,

SOL, TA

88.71
RF, GL, GM, SOL,

TA, BF

83.33
RF, GL, GM, SOL,

TA, BF

85.78
RF, VM, GL, GM,

TA, BF

84.87
VM, GL, GM, SOL,

TA, BF

7 89.79
VL, RF, VM, GL, GM,

SOL, TA

89.80
VL, RF, GL, GM,

SOL, TA, BF

85.85
RF, VM, GL, GM,

SOL, TA, BF

86.87
VL, RF, VM, GL,

GM, TA, BF

86.20
VL, VM, GL, GM,

SOL, TA, BF

8 90.81
All

91.22
All

86.94
All

88.30
All

86.73
All

Values are the highest classification rate in percentage, along with the combination of muscles that led to this rate; n � 49 or 50 subjects. Pmax, maximal power
output; BF, biceps femoris; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; RF, rectus femoris; SOL, soleus; TA, tibialis anterior; VL, vastus lateralis;
VM, vastus medialis.
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low-pass filter was chosen because it provided the highest recognition
rate out of those tested (from 3 to 21 Hz; Fig. 1) and falls well within
the 4- to 15-Hz range classically used for smoothing of EMG patterns
measured during locomotor tasks under similar velocity/frequency
conditions (21). For every muscle, data for each cycle were interpo-
lated to 200 time points and normalized to its maximal EMG ampli-
tude (within that cycle), leading to a signal amplitude between 0 and
1. This normalization procedure ensured that all muscles and cycles
contributed equally to the classification.

The classification of EMG patterns was performed by considering
all possible combinations of n muscles from n � 1–8. This resulted in
8, 28, 56, 70, 56, 28, 8, and 1 possible combinations when considering
1, 2, 3, 4, 5, 6, 7, and 8 muscles, respectively.

Data from the first session were used to assess individual differences
in activation strategies. The data set consisted of a c � m matrix [c � 30
cycles � number of participants (78 or 79); m � 200 time points � num-
ber of muscles (1–8)]. The classification task typically involved separat-
ing data into training and testing sets. To this end, we used the leave-
one-out method. Each pedaling/gait cycle was tested using the classifier,
which had been trained on the remaining 29 cycles (Fig. 2). Each instance
was predicted once, and the average accuracy provided the percentage of
correctly classified cycles over 2,340 or 2,370 cycles [i.e., 30 cy-
cles � number of participants (78 or 79, respectively)].

Data from participants who performed two sessions on separate
days were used to assess the robustness of the activation strategies

over time. The data set consisted of two c � m matrices, i.e., one for
each day [c � 30 cycles � number of participants (49 or 50);
m � 200 time points � number of muscles (1–8)]. To this end, we
used the leave-session-out method. Each pedaling/gait cycle from day
2 was tested using the classifier, which had been trained on the 30
cycles from day 1 (Fig. 2). Each instance was predicted once, and the
average accuracy provided the percentage of correctly classified
cycles over 1,470 or 1,500 cycles [i.e., 30 cycles � number of
participants (49 or 50, respectively)].

The percentage of correctly classified data (the classification rate)
was interpreted in regard to the random classification rate that was
expected by chance (1/number of participants). In addition, according
to previous data on gait kinetics and kinematics (16, 17), we consid-
ered a recognition rate�80% as strong evidence of discernible indi-
vidual patterns.

RESULTS

During both pedaling and gait, interindividual variability of
the EMG patterns was substantial, particularly for some biar-
ticular muscles (e.g., RF, GL, BF) and the SOL muscle (Fig.
3). Figure 4 depicts the EMG patterns during pedaling at 150
W and during gait for four participants, highlighting some
individual-specific patterns that can be visually identified. For
example, when considering the pedaling task, a double burst of

Fig. 3. Interindividual variability of electromyography
(EMG) patterns during pedaling at 150 W (A) and gait
at 1.11 m/s (B). For each participant, the mean profile
over the 30 cycles is shown in gray. These profiles were
normalized to their maximal value. The mean profile
over the 79 participants is shown in green. Note that
activation of the quadriceps muscles was low during
gait, which explains the relatively low signal-to-noise
ratio for some participants. BF, biceps femoris; GL,
gastrocnemius lateralis; GM, gastrocnemius medialis;
RF, rectus femoris; SOL, soleus; TA, tibialis anterior;
VL, vastus lateralis; VM, vastus medialis.
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GL activation is clearly visible for participants 5, 15, and 21,
whereas the other participant exhibited only one burst. Also,
each of the four participants exhibited a different TA activation
pattern. Even though individual variability was less clear for
quadriceps muscles, RF muscle exhibited much clearer activa-
tion during the upstroke phase of the pedaling cycle for partici-
pants 21 and 51 than for the others. Interestingly, all of these
specific patterns were observed on both days. Of note, such
individual differences have already been reported (18, 22); the
novelty of the present study lies in quantifying the uniqueness
of these strategies using a machine learning approach.

The support vector machines analysis was first performed
on participants from day 1. When considering eight muscles,
classification rate reached 99.28% (2,353/2,370 cycles) for
pedaling at 150 W and 98.86% (2,343/2,370 cycles) for gait
(Fig. 5; Table 2). Even though recognition rate was lower when
fewer muscles were considered in the analysis, it remained
well beyond the theoretical random classification rate (1/79
participants � 1.27%). Specifically, when considering n mus-
cles and their various combinations for the pedaling tasks, the
highest classification rate was 61.35% for one muscle, 82.95%
for two muscles, 93.67% for three muscles, 96.84% for four

muscles, 98.02% for five muscles, 98.65% for six muscles, and
99.20% for seven muscles (Fig. 5A). Muscle combinations that
led to these recognition rates are presented in Table 2. RF,
SOL, GM, and GL were the muscles the most represented
within these combinations, which suggests that their activation
profile exhibited the largest variation between participants.
Interestingly, the majority of the pedaling cycles (i.e., �15/30)
were correctly classified in all of the participants when con-
sidering two or more muscles during pedaling at 150 W. This
demonstrates that two muscles (here, RF and GM) were suf-
ficient to correctly identify all of the participants from their
EMG patterns.

When considering n muscles and their various combinations
for gait, the highest classification rate was 58.69% for one
muscle, 81.43% for two muscles, 91.52% for three muscles,
95.06% for four muscles, 97.09% for five muscles, 98.02% for
six muscles, and 98.82% for seven muscles (Fig. 5B; Table 2).
BF and TA muscles were the muscles most represented within
these combinations. Interestingly, most cycles (�15/30) were
correctly classified in each participant when considering three
muscles and more.

Fig. 4. Examples of individual-specific electromyography (EMG) patterns measured during either pedaling (A and B) or gait (C and D). Each time-varying profile
in gray corresponds to one of the 30 consecutive cycles used as the training (day 1; A and C) or testing data set (day 2; B and D). These profiles were normalized
to their maximal value. The mean profile over the 30 cycles is shown in red or blue but was not considered in the actual data sets. Data for four participants
(P #5, P #15, P #21, P #51) are depicted to highlight differences between individuals. BF, biceps femoris; GL, gastrocnemius lateralis; GM, gastrocnemius
medialis; RF, rectus femoris; SOL, soleus; TA, tibialis anterior; VL, vastus lateralis; VM, vastus medialis.
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To test the robustness of the EMG patterns over time, a
subset of participants performed a second session. When con-
sidering eight muscles, the classification rate reached 91.22%
(1,341/1,470 cycles) for pedaling at 150 W and 86.73% (1,301/
1,500 cycles) for gait (Table 3). Again, the recognition rate was
lower when fewer muscles were considered in the analysis, but
it remained well beyond the theoretical random classification
rate (1/49 participants � 2.04%). Specifically, when consider-
ing n muscles and their various combinations for the pedaling
tasks, the highest classification rate was 39.80% for one mus-
cle, 64.42% for two muscles, 76.05% for three muscles, 82.17%
for four muscles, 85.84% for five muscles, 88.71% for six
muscles, and 89.80% for seven muscles (Fig. 5C). RF, GM,
and GL were the muscles the most represented within these
combinations, which suggests that their activation profile ex-
hibited the largest variation between participants. The majority
of the pedaling cycles (i.e., �15/30) were correctly classified
in �44/49 participants when considering four or more muscles
during pedaling at 15%.

When considering n muscles and their various combinations
for gait, the highest classification rate was 35.60% for one
muscle, 55.20% for two muscles, 67.40% for three muscles,
77.67% for four muscles, 83.67% for five muscles, 84.87% for
six muscles, and 86.20% for seven muscles (Fig. 5D; Table 3).
SOL and TA muscles were the muscles the were most repre-
sented in these combinations. Interestingly, the majority of
cycles (�15/30) were correctly classified in �45/49 partici-
pants when considering four or more muscles.

DISCUSSION

This study used a machine learning approach to classify
EMG profiles measured in up to eight lower limb muscles
during pedaling and gait, separately. When considering the
eight lower limb muscles, the EMG profiles were assigned to
the corresponding individuals with a classification rate of up to
99.28 and 91.22% (pedaling 150 W) for the within-day and
between-day classification, respectively. Even though the rec-
ognition rate was lower when fewer muscles were considered

in the analysis, it remained �80% for two and four muscles for
within-day and between-day classification, respectively. This
finding supports the assumption that each individual has unique
muscle activation signatures, i.e., activation strategies not only
vary between individuals, but also are unique to each individ-
ual.

Our Approach to Demonstrate the Existence of Individual
Activation Signatures

It is well known that individuals exhibit different motor
styles, known as the individuality principle (33). This is evi-
denced here as different EMG time-varying profiles. Such a
large variability of activation patterns has been reported in
experiments in animals (23, 24) and humans (2, 22). However,
finding different activation patterns does not conclusively
prove the existence of an individual muscle activation signa-
ture, as the concept of individual signatures implies that the
activation patterns are unique features by which individuals
can be identified. In addition, the vast majority of previous
research did not test the robustness of the EMG time-varying
profiles over time, making it impossible to conclude that the
interindividual variability of these profiles reflects individual
strategies rather than random variation.

We took advantage of support vector machines to test the
uniqueness of muscle activation strategies. We considered that,
if an algorithm can accurately classify participants, one could
conclude that these participants exhibit discernible differences
and thus have unique signatures. Using a similar approach on
kinematics and/or kinetics data, recent studies reported an
almost error-free assignment of gait patterns to the correspond-
ing individual (16, 17, 27, 29). Although this suggests the
existence of individual gait pattern signatures, the existence of
individual muscle activation signatures cannot be inferred from
these data. This is because the force produced by a muscle
depends on the complex interplay between its activation and
several biomechanical factors (physiological cross-sectional
area, specific tension, force-length, and force-velocity relation-
ship). As such, different mechanical outputs can be theoreti-

Fig. 5. Classification rate obtained from the
leave-one-out [pedaling (A) and gait (B)] and the
leave-session-out method [pedaling (C) and gait
(D)]. The classification of electromyography pat-
terns was performed by considering all possible
combinations of n muscles from n � 1–8, which
corresponded to 8, 28, 56, 70, 56, 28, 8, and 1
combinations for n � 1, 2, 3, 4, 5, 6, 7, and 8
muscles, respectively. The result for each of these
combinations is shown as a small light dot,
whereas the color refers to the condition. The
highest classification rate for each condition is
depicted as a bigger dark dot. Depending on the
pedaling condition, n � 78–79 participants for
the leave-one-out method and n � 49–50 partic-
ipants for the leave-session-out method. For the
gait condition, n � 79 and 50 participants for the
leave-one-out method and the leave-session-out
method, respectively.
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cally produced by the same activation strategies and vice versa.
To the best of our knowledge, our study is the first to use a
supervised learning approach to classify participants based on
their muscle activation patterns. We considered two locomotor
tasks with different degrees of mechanical constraints: pedal-
ing, for which the foot trajectory, movement velocity, and
power output can be matched between participants; and gait,
which is a less constrained form of locomotion.

Participant Classification from Day 1

The classification of data from day 1 was almost error free
when considering the eight lower limb muscles all together
during both pedaling (range: 98.22–99.28%; Table 2) and gait
(98.86%; Table 2). Despite not being measured in the present
study, gait was very likely associated with more interindividual
variability in movement kinematics than pedaling. Within this
context, the similar classification rates observed between gait
and pedaling suggest that individual activation strategies were
not solely due to differences in movement kinematics between
individuals.

Although the classification rate was lower when considering
fewer muscles (Table 2), it remained well beyond the theoret-
ical random classification rate. When considering all possible
combinations of n muscles, from n � 1–7, the classification
rate was �80% for combinations of two muscles and �90%
for combinations of three muscles (Table 2). Of note, this rate
is based on the classification of the pedaling/gait cycles. If we
consider that the participants are accurately identified when
the majority of their pedaling or gait cycles (i.e., �15/30) are
correctly assigned to them, 100% of the participants were
correctly identified from a combination of two muscles for
pedaling and from a combination of three muscles for gait.

Within the muscle combinations that gave the best recogni-
tion rates, the most represented muscles were RF, GM, GL, and
SOL for pedaling and TA and BF for gait. This suggests that
the activation profile of these muscles exhibited unique fea-
tures, which is further confirmed by inspection of Fig. 4.
Interestingly, interindividual variability of GM and GL EMG
patterns during pedaling was mostly localized during the up-
stroke phase, which is not the main component of the pedaling
cycle in terms of power production (30). Monoarticular mus-
cles, such as VL and VM, were the least represented within the
combinations that gave the best recognition rates during ped-
aling. This might be explained by the functions of these
muscles during pedaling, in which quadriceps (mostly the
vastii) are the primary power producers and thus are essential
for the task and exhibit less variation between participants.
Overall, these results are in line with those obtained from
behaving California sea hares [Aplysia californica (7, 8)],
which demonstrated that the degree to which a motor compo-
nent varied between animals depends on the role of that motor
component in the behavior. Specifically, the motor neuronal
activity that is essential for biting or swallowing was similar
among animals, whereas motor neuronal activity that is less
essential for that behavior varied more across individuals (8).

Of note, the recognition rate achieved by the support vector
machines analysis might have been affected by two limitations.
First, the classification task was performed on the basis of only
eight muscles, whereas pedaling or gait are produced by the
coordinated activation of many more muscles. Second, the

normalization procedure of the EMG signals did not consider
possible between-muscle differences in magnitude of activa-
tion. By considering both more muscles and information about
the magnitude of activation in respect to maximal activation, it
is very likely that the support vector machines analysis would
be able to achieve an even higher classification rate, possibly
100%.

Participant Follow-up Classification (Days 1 and 2)

The excellent classification rate from data obtained within a
single session (day 1) provides strong evidence that the EMG
time-varying profiles are unique to each individual. However,
to determine whether these profiles represent individual strat-
egies rather than random variability, it was necessary to dem-
onstrate their robustness over time. When data from day 2 were
tested using the classifier, which had been trained on data from
day 1, the participant follow-up classification rate remained
high (range: 86.94–91.22% for the different pedaling condi-
tions and 86.73% for gait; Table 3). This classification rate was
slightly higher than that previously reported from ground
reaction force data during gait [83.48%; Horst et al. (17)].
Again, when considering all possible combinations of n mus-
cles from n � 1–7, the classification rate logically decreased
but was �80% for combinations of four muscles during ped-
aling and for combinations of five muscles during gait (Table
3). Overall, the good participant follow-up classification rate
demonstrates that individual characteristics of EMG time-
varying profiles persist over time, allowing us to consider that
each individual exhibits his/her own muscle activation signa-
ture.

Even though the participant follow-up classification rate was
good, it was lower than the within-day participant classification
rate. This result can be explained by two sources of variability.
First, it is possible that the EMG electrode placement differed
slightly between the sessions, leading to different EMG time-
varying profiles. It was for the purpose of allowing this source
of variability that we chose not to mark the electrode location.
Indeed, by allowing the electrode location to slightly vary
between the sessions, the impact of different electrode place-
ment among participants on the participant-classification rate
was allowed to influence the data. Because classification rate
decreased only marginally for the participant follow-up clas-
sification compared with the participant classification, we are
confident that the excellent classification rate obtained for data
from day 1 is not due to different electrode placement among
participants. However, a more controlled experiment with
consideration of spatial variability of muscle activation is
needed to quantify the impact of the electrode placement in the
recognition rate. Second, it is possible that the lower partici-
pant follow-up classification rate is explained by natural intra-
individual variability of the activation strategies between days;
however, this variability, if any, remained marginal.

Origin and Consequence of Individual Muscle Activation
Signatures

By showing discernible differences in muscle activation
patterns, our results suggest that the control of locomotor tasks
is unique to an individual. Although the origin of these indi-
vidual differences remains unclear, they can be discussed in
regard to current motor control theories. The optimal feedback
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control theory (34) proposes that motor patterns are selected
such that movement costs (e.g., smoothness, activation, jerk,
energy) are constantly minimized. Within this framework, one
would hypothesize that each individual optimizes a different
cost and/or that optimizing the same cost(s) requires different
activation strategies across individuals, due to individual char-
acteristics (e.g., morphology, anatomy, neural constraints). In
this way, we observed a positive correlation between the
distribution of muscle activation measured during an isometric
task and the distribution of muscle force-generating capacity
between VL and VM (19) and between GM and GL (6).
Although this correlation does not imply causation, it suggests
that people might exhibit different distribution of activation
among synergists, based on their specific distribution of force-
generating capacity. This strategy might aim to optimize the
energetic or activation cost. Overall, it is possible that each
individual optimizes their movement with the muscle activa-
tion strategies that are best, given that individual’s mechanical
and/or neural constraints (e.g., relative force-generating capac-
ity of the synergist muscles, shape of articular surfaces, or
specific bone configuration). An alternative motor control the-
ory, the “good-enough” theory, proposes that a hierarchy of
sensorimotor networks gradually adapts through trial-and-error
learning to produce effective movements that are good enough
to achieve the task goal (25). It is, therefore, possible that
individuals develop different “good-enough” muscle activation
strategies through motor exploration, experience, and training,
leading to habitual rather than optimal strategies (10). In this
way, there is evidence from animal models that the central
pattern generators are capable of learning and adaptation,
explaining, at least in part, the interanimal variability (23).
Even though we recruited a homogeneous population of active
participants in terms of age and body mass index, it is possible
that their past and present experience with specific motor skills
(i.e., motor history) might have played a role in shaping
individual strategies. To address this question, retrospective
studies on large cohorts or longitudinal studies performed at
different lifespans are needed. Finally, we cannot rule out that
part of these strategies is innate. In this way, interindividual
variability of muscle synergies has been identified in neonates
during the stepping reflex (Fig. 2B in Ref. 12). Overall, these
results provide the impetus to determine whether factors, such
as development, aging, and disease, might alter a person’s
individuality in muscle activation.

Even though reporting discernible differences in activation
patterns between individuals does not provide direct evidence
that these differences are biomechanically or functionally sig-
nificant, it is known that even small differences in activation
level can have a large effect on movement (3, 11). It is,
therefore, possible that each individual muscle activation sig-
nature has specific mechanical effects on the musculoskeletal
system (20). As such, some strategies may place some indi-
viduals at greater risk of developing musculoskeletal disorders
than others. For example, we observed a quite large variation
of GM, GL, and SOL activation patterns between participants
(Figs. 3 and 4). Because each of these three muscles are
attached to a different fascicle bundle of the Achilles tendon,
different activation strategies might induce unique patterns of
load distribution within the Achilles tendon, with some strat-
egies being more likely to lead to tendon problems (4). To test
this assumption, it is necessary to consider muscle and tendon

biomechanical characteristics, which may either exacerbate or
counteract differences in activation.

Conclusion

Although it is known that muscle activation can vary be-
tween individuals, these differences have been very rarely
considered as relevant information to expand our knowledge of
motor control. By showing the uniqueness and robustness of
EMG time-varying profiles, our results strongly suggest that
activation strategies not only vary between individuals, but are
unique to each individual. Similar to other biometrics, such as
fingerprints, speech, and the structure of the iris, muscle
activation strategies seem to be a unique feature that may be
used to identify an individual. This study highlights the need to
consider these individual differences as relevant information to
address fundamental questions about the control of movement
in health, aging, and disease.

Data availability

All raw EMG data are available as supplemental material at
https://doi.org/10.6084/m9.figshare.8273774.
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