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Abstract—Recent tracking methods in professional team sports
reach very high accuracy by tracking the ball and players.
However, it remains difficult for these methods to perform
accurate real-time tracking in amateur acquisition conditions
where the vertical position or orientation of the camera is not
controlled and cameras use heterogeneous sensors. This article
presents a method for tracking interesting content in an amateur
sport game by analyzing player displacements. Defining optical
flow of the foreground in the image as the player motions,
we propose a piecewise linear supervised learning model for
predicting the camera global motion needed to follow the action.

I. INTRODUCTION

Sports tracking is an important problem in computer vision
because of the increasing demand from sports institutions or
television channels for automatic algorithms. Such algorithms
can be used to analyze player motions, game sequences or to
make cameras able to record the game automatically.

Current state-of-the-art approaches for spatial or temporal
action localization use detection of objects at the frame level
[1], [17], [20]. The detected objects are linked or tracked
across time to process the action localization in the video.
In professional sports, high-definition cameras placed above
the field make ball detection possible because the ball is
less occluded and more recognizable in these conditions. The
information of the ball position can then be used to track the
action. [9], [18], [21], [22] present adaptations of methods
based on object detection at the frame level for tracking the
action. These articles use players and ball detection to track
the ball position. But in amateur sports, where the vertical
position of the camera is variable from a game to another,
and where the cameras use heterogeneous phone lenses, it
is a more difficult task. For the same reasons, and because
of the variability of ball appearance between different sports,
other ball detection algorithms as D’Orazio et al. [2] would
not be accurate in our model. We evaluated state-of-the-art
neural network architectures for object detection on our test
database. These architecture are used in [1], [21] to detect balls
or localize action across frames. The two models tested are a
YOLO (You Only Look Once) architecture [7], [15] and a
faster R-CNN (Region-Based Convolutional Neural Network)
[13], [16] with weights pre-trained on the COCO dataset
[11]. Both models managed to detect balls in less than 5%
of the frames (respectively 2.12% and 4.81%). This justifies

the need for a more robust tracking method dedicated to
degraded acquisition conditions. In this paper, we propose a
novel supervised learning approach for tracking interest zones
in sports. We define interest zone as the area of the field
a cameraman would have filmed. This necessarily includes
tracking the ball, but does not have to always be centered
in the image to make it more stable. State-of-the-art methods
for motion prediction focus on predicting people or objects
motion as Fernando et al. [5] who used motion prediction for
multi-people tracking. Although predicting the motion of each
person in the images can be a robust way to deduce a global
motion, this kind of method is hardly usable in sports videos,
where the player directions have sharp and unpredictable
changes. Methods based on multi-view acquisition cameras as
[10], [14] can’t be applied on our database because we dispose
of only single view videos. To deal with these constraints, our
method is based on predicting global motions of the zone of
interest instead of local object motions. To predict the motion
needed to track the action, we use a piecewise linear model
learned on a database of amateur sport videos. Using this
model, our method takes as input a sport video and returns
a real number corresponding to the predicted camera motion
at each frame. This motion is normalized as a percent of the
total field. For this work, we used a basketball video database1

to train and test our model. As videos are captured by human
beings, we assume these videos use a ground truth tracking of
the action.

The main contribution of this article is the definition of an
action tracking method based on a global motion prediction
while other methods focus on object detection and tracking.
The first main advantage of this new method is that it allows
real-time tracking as it uses only fast operators. As presented
in Dosovitskiy et al. [3], optical flow can be calculated in
real-time. The second main advantage of this method is that
it avoids object detection which can be non robust with
heterogeneous cameras and variable points of view. Finally,
considering action tracking as a global motion estimation
instead of localization allows us to annotate a large video
database automatically, while labeling positions in videos is
a time-consuming task.

1From Rematch platform: www.rematch.tv
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II. OPTICAL FLOW BASED APPROACH

In this part, we describe a method based on the optical flow
for deducing camera displacement. First, the method segments
foreground and background. We assume that the background
displacement corresponds to camera motion and we want to
differentiate it from the foreground motions that we suppose to
be the player motions. Warnakulasuriya et al. [19] use player
motions to predict team goals. This work induces that player
displacements can indicate ball and action position. Following
this intuition, player motions can be analyzed to predict the
position or motion of the zone of interest. The estimation of
a dense optical flow [12] yields a matrix of vectors (ui, vi)
resulting of the displacement of pixels in the image.

A. Background/foreground segmentation

Let us consider an image I as a RN vector. Players are
defined as the moving foreground of the image. We assume
that the background occupies more than half of an image. This
is justified because sports cannot be captured close enough to
make players occupy more than 50% of the screen without
zooming. We define the background global motion at time t
as the 2D median (u∗, v∗) of the dense optical flow computed
between the frames t and t− 1

(u∗, v∗) = argmin
(u,v)∈R2

N∑
i=1

||(u, v)− (ui, vi)||. (1)

with (ui, vi) elements of the optical flow. (u∗, v∗) is found by
using iteratively reweighted least squares [6].

We define the optical flow of the foreground f j ∈ RN×2
as the optical flow matrix composed by elements distant to
a threshold θ from the principal mode (u∗, v∗) defined at
equation (1) and where other elements are fixed to 0. To make
the foreground values independent of the camera motion, non-
zero elements of the foreground are added to (u∗, v∗). f j is
a vector of N components f ji defined as

f ji =

{
(ui + u∗, vi + v∗), if ||(ui, vi)− (u∗, v∗)||2 ≥ θ.
0 else .

(2)
As the threshold θ needs to be adapted for each frame, we

propose to use

θ = λ

N∑
i=1

||(ui, vi)− (u∗, v∗)||2

N
(3)

with λ a constant manually defined to maximise the segmen-
tation quality.

Figure 1 shows examples of background/foreground seg-
mentation applied with this method. In the following, we
consider only the horizontal component of the foreground
optical flow for simplicity of notations because basketball
camera displacements used in our examples are essentially
horizontal. For other sports, the vertical component can easily
be added to our model.

Figure 1: On the left column, images taken from a video.
In the middle, optical flow computed from the left image
and the previous frame. On the right, background/foreground
segmentation.

B. Environment normalization

This part presents optical flow normalization to increase the
robustness of our model and to deal with the huge changes
between the acquisition positions induced by the amateur
conditions (position of the cameraman in the stands, distance
to the field, ...). First, the lateral position of the camera is
assume as known because the camera needs to be placed in
the middle of the field to make our model consistent.

1) Scale: First, due to amateur conditions, the model needs
to be robust to large changes in player size induced by
variations of the distance between the camera position and
the field. To avoid the impact of these variations, we define
nf the number of activated pixels in the foreground and nb
those activated in the background. We define η ∈ R as

η =

(
nb
nf

)α
, (4)

where α ∈ R is a parameter used to adjust the impact
of scale normalization on the prediction (fixed to 1.3 in our
experiments). The scale normalization is defined as above
because the prediction model defined in (5) depends on the
activated pixel number in the foreground. If the camera is
placed far from the field, we will obtain high values for η.

2) Vertical position and camera orientation: As images are
taken from a single position, we cannot normalize camera
placement with a full homography. In these conditions, we
use a direct linear transform [4] to normalize the camera
position. Our model uses linear rescaling to normalize the
impact of vertical position and camera orientation on the
player appearance. As explained in the scale normalization
part, our prediction model depends on the number of activated
pixels in the foreground, and camera orientation can have
a strong impact on player size. Depth is normalized by η.
Linear rescaling is applied to the result of the segmentation
f j . To determine the rescaling for each f j , we apply a 2
points vertical correspondence between the optical flow of the
foreground and the normalized space. Figure 2 shows exam-
ples of environment normalization results on the foreground
position. We see players are vertically replaced and the vertical
wingspan is adjusted.



Figure 2: On the left, foreground/background segmentation
in the starting space. On the right, foreground/background
segmentation after linear rescaling.

C. Motion prediction

Our model aims at deducing global motion needed to track
action from the player motions computed in (2). In this part,
we present how our model is deducing global direction from
segmented optical flow. The idea is to transform a complex
action localization into a simple piecewise linear problem. The
computational cost of linear prediction allows us to track the
action in real-time.

We write dj ∈ R the camera displacement we want to
deduce at time j from f j constructed as in equation (2). We
can solve the problem by defining the linear model

dj = 〈f jη, z〉+ ej (5)

where z ∈ RN is a learned weight vector, ej ∈ R the
prediction error and η the scale normalization parameter we
defined in (4).

During a video, the same player motions can induce dif-
ferent camera motions depending on the occurring situation.
For example, all players running in a direction would require
camera motion if it is located in an extremity of the field and
not in the other one. According to this, our model has to be
able to predict different motions depending on the situation
for the same foreground optical flow.

We denote by s a situation and we extend the model (5) to
the piecewise linear model

dj = 〈f jη, zs〉+ ej (6)

where there is a different weight vector zs learned for each
situation. In applications, the camera position is assumed
known because of the calibration. The situation management
can be deduced using the camera position. For evaluating
the predictions on our data, situation management is done
by analyzing the evolution of the ground truth values. The
starting situation is annotated manually and situation changes
are applied when the sum of ground truth displacements reach
100% as ground truth values are normalized in percent of the
field as presented in the next part. The idea behind situations
separation is to make the model adaptive to a maximum of

different behavior. By defining adapted situations, this model
is extendable to other sports and not only basketball.

D. Model learning

1) Labelization: In this part, we present an automatic anno-
tation method for our database. As explained before, our model
predicts a global tracking motion by linear multiplication
with a weighted learned matrix. To train the model and fit
weight matrices zs defined in (6), foreground optical flows
need to be labeled with associated camera motion. This is
done automatically by considering the global motion needed
to track action as the horizontal component u∗ defined in (1)
normalized as a percentage of the total field. Comparing the
curves obtained with this method and video contents allow us
to prove that the global computed background motion, defined
as u∗, is indeed associated to the camera behavior. Assuming
that the sum of these displacements is representing 100%
of the field, we can normalize each motion as a percentage
of the total field. This allows the model to be robust to
scale changes during the training because these variations
can induce different background displacements for the same
camera motion.

2) Situations and training: In this work, the database is
split into two situations: action starting in the left side of
the field (s = 0) and on the right side (s = 1). We trained
the 2 matrices zr and zl for each situation by using ADAM
optimizer [8]. To fit the model, the loss function is defined as

L(zs) = ||Fszs − ds||2 +
1

ε

K∑
i=1

Φi(zs) (7)

where K is the batch size, Fs is a matrix composed of K
normalized foreground optical flow vectors, ds is a vector
composed by the K camera motion associated labels. Φi are
penalization functions that favor a motion direction corre-
sponding to each situation (motion to the right for s = 0
and to the left for s = 1 typical in basketball).

Φi(z) = max((−1)s+1〈F is , zs〉, 0)2. (8)

The learning rate is set to α = 10−6. The parameter ε is
set to 0.1. It must be noted that the penalization Φ should be
adapted to the sports considered with any prior knowledge for
a given situation.

Finally, a post-processing step is performed on the predicted
motion. This step is composed by a Gaussian smoothing and
a thresholding to force little values to 0 and avoid the results
to drift.

III. EXPERIMENTAL RESULTS

In this section, we study the effectiveness of our optical-
flow based method to track interesting contents in basketball
amateur games.



A. Dataset

The training database is made on 4050 optical flow vectors
from 27 videos of 10 seconds computed of amateur videos.
Videos from this database match the constraint that the camera
is placed in the middle of the field to make our model
consistent.

B. Tracker evaluations

Performances are evaluated on 2250 optical flows computed
from 15 different videos from the same platform. Two different
versions of our method are evaluated in the test section.
A first version of the model with no penalization function
during learning (NO PEN) and the model with the penalization
functions (PEN) to justify the use of these functions. We also
highlight the impact of the post processing step by giving the
results of the PEN model without this post-processing (NO
PP).

1) Evaluation metrics: To evaluate numerical results of the
model, we use the mean absolute error (MAE) on predictions
and integrated predictions (i.e. position with respect to the start
of the video):

MAE =

n∑
i=1

|yi − xi|

n
(9)

where n is the number of predictions, yi the prediction and
xi the ground truth value.

Considering time integration of prediction results highlights
the gap between the predicted camera location at time t and
the position of the ground truth. We consider that when the
MAE on integrated predictions (IP) is over 15%, the algorithm
has lost the location of the action. Analyzing MAE on standard
prediction allows us to see if predictions are locally close
to ground truth. In good tracking results, this value enables
us to understand if the predictions are locally the same as
ground truth or if the tracking is done by error compensation.
This metric shows if bad results are induced by local errors
or global ones.

2) Evaluation results: As there is no out of the box method
designed to predict global camera motion in sport videos,
comparison with state-of-the-art methods is not easy with our
metric. As explained in the introduction, we tested two state-
of-the-art object detection methods to track the ball on the
test database and they detect balls in less than 5% of the
frames. With these results, predicted camera lost match thread
in all videos of test database with camera motions. Evaluation
results are summarized in Table I. First, results show that post-
processing improve prediction performances. The thresholding
in the post-processing explains why the model is able to
predict exactly the ground truth in video 11 where the camera
is not moving. The two models have the same number of
best following results but PEN has fewer videos where the
algorithm is losing the match thread (MAE on IP >15%). This
justifies the use of penalization during learning. According to
the metric explained in the previous part and the perceptual
analysis of the results, our method gives accurate prediction
results on 14 videos of the database. Examples of accurate

MAE MAE on IP
Video NO PEN PEN NO PP NO PEN PEN NO PP

1 0.01 0.01 0.22 1.03 0.10 2.21
2 0.27 0.23 0.42 4.17 5.67 12.33
3 0.72 0.86 1.09 10.26 13.70 22.05
4 0.62 0.58 0.95 14.02 9.85 23.9
5 0.32 0.33 0.46 15.27 11.41 14.77
6 0.22 0.25 0.52 5.69 12.36 11.6
7 0.45 0.55 0.70 4.71 4.72 5.91
8 0.58 0.36 0.61 4.84 4.99 6.47
9 0 0.11 0.58 0 3.58 24.12

10 0.72 0.54 0.82 12.05 6.26 13.10
11 0 0 0.15 0 0 2.70
12 0.66 0.65 0.97 15.74 12 17.55
13 0.98 0.86 1.07 24.58 18.57 23.33
14 0.27 0.11 0.25 2.92 4.18 2.41
15 0.35 0.41 0.57 8.40 7.01 9.97

MEAN 9.29 7.62 12.23
MAX 24.58 18.57 24.12

NUMBER OF MAE >15 3 1 4

Table I: Mean absolute error computed on simple predictions
(MAE) and on integrated ones (MAE on IP) with the two
versions of the model for every video in the database. The
table shows that PEN is the best model on this database and
gives good tracking results on 14 videos (MAE on IP ≤ 15).
In this table, the values are normalized to percentages of the
total field. Videos where MAE on IP ≤ 15% of the total field
are considered as well tracked.

tracking results in Table I are detailed in Figure 3. These
examples show samples where the model gives predictions
close to the ground truth and where the action is precisely lo-
cated. Graphs show that predicted curves are closely following
ground truth. The blue rectangle in the images shows that the
predicted camera is keeping the action on the screen. MAE
computed on standard predictions shows that the model can
compensate prediction errors across time. Looking at the left
part of the table shows that local predictions can be closer to
the ground truth but give integrated predictions less accurate.
This is explained by compensation. Table I shows that a result
has a MAE on integrated predictions >15%. In this case,
we observe a non smooth camera displacement during player
motion. This particular behavior generates the gap between
predictions and ground-truth.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an optical flow based
method for following the action in an amateur sports game.
Our method deduces global motion needed to track action
from segmented optical flow by applying a piecewise linear
operator. The main advantage of this method is that accuracy
does not depend on the camera position or lens quality as it is
the case for methods tracking the ball by detection. Moreover,
the computational cost is smaller than for the ball detection
based methods and it mainly depends on computing optical
flow complexity. Data can be automatically labeled with the
global motion of the background.

Our method shows some limits in its capacity to track very
long match sequences. With our automatic labelling procedure,



we are now able to construct a large database. A possible
future work is to define a neural network architecture trained
on such a database to predict motion. We can fit the network
by using the model defined above to predict directions by
analyzing optical flow vectors. Another way to improve the
results is to combine detection based methods to this one to
outperform the limits of each method.

ACKNOWLEDGEMENTS

This work was co-funded by Rematch Company, the Min-
istère en charge de l’Enseignement Supérieur, de la Recherche
et de l’Innovation and ANRT who financed CIFRE theses.

Figure 3: Examples of good tracking results by the algorithm
in videos n°2,7,14 and 15 in the database.

REFERENCES

[1] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A
Ross, Jia Deng, and Rahul Sukthankar. Rethinking the faster r-cnn
architecture for temporal action localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1130–
1139, 2018.

[2] Tiziana D’Orazio, Cataldo Guaragnella, Marco Leo, and Arcangelo
Distante. A new algorithm for ball recognition using circle hough
transform and neural classifier. Pattern recognition, 37(3):393–408,
2004.

[3] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner
Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers,
and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on
computer vision, pages 2758–2766, 2015.

[4] Elan Dubrofsky. Homography estimation. Diplomová práce. Vancouver:
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