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Sarnak’s Conjecture – what’s new

S. Ferenczi J. Kułaga-Przymus M. Lemańczyk

Abstract

An overview of last seven years results concerning Sarnak’s conjecture
on Möbius disjointness is presented, focusing on ergodic theory aspects of
the conjecture.
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Introduction

Möbius disjointness Assume that T is a continuous map1 of a compact
metric space X . Following Peter Sarnak [148, 149], we will say that T , or, more
precisely, the topological dynamical system pX,T q is Möbius disjoint (or Möbius
orthogonal)2 if:

(1) lim
NÑ8

1

N

ÿ

nďN

fpT nxqµpnq “ 0 for each f P CpXq and x P X.

In 2010, Sarnak [148, 149] formulated the following conjecture:3

(2)
Each zero entropy continuous map T of a compact metric space X

is Möbius disjoint.

Note that if f is constant then convergence (1) takes place in an arbitrary
topological system pX,T q; indeed, 1

N

ř
nďN µpnq Ñ 0 is equivalent to the Prime

Number Theorem (PNT), e.g. [85, 159]. We can also interpret this statement
as the equivalence of the PNT and the Möbius disjointness of the one-point
dynamical system. The Prime Number Theorem in arithmetic progressions
(Dirichlet’s theorem) can also be viewed similarly: it is equivalent to the Möbius
disjointness of the system pX,T q, where Tx “ x`1 on X “ Z{kZ for each k ě 1.
Note also that the classical Davenport’s [43] estimate: for each A ą 0, we have

(3) max
tPT

ˇ̌
ˇ̌
ˇ

ÿ

nďN

e2πintµpnq
ˇ̌
ˇ̌
ˇ ď CA

N

logA N
for some CA ą 0 and all N ě 2,

1Most often, however not always, T will be a homeomorphism.
2µ stands for the arithmetic Möbius function, see next sections for explanations of notions

that appear in Introduction.
3To be compared with Möbius Randomness Law by Iwaniec and Kowalski [95], page 338,

that any “reasonable” sequence of complex numbers is orthogonal to µ.
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yields the Möbius disjointness of irrational rotations.4

The present article is concentrated on an overview of research done during
the last seven years5 on Sarnak’s conjecture (2) from the ergodic theory point of
view. It is also rather aimed at the readers with a good orientation in dynamics,
especially in ergodic theory. It means that we assume that the reader is familiar
with at least basics of ergodic theory, but often more than that is required,
monographs [38, 55, 73, 75, 164] are among best sources to be consulted. In
contrast to that, we included in the article a selection of some basics of ana-
lytic number theory. Those which appear here, in principle, are not contained
in [144] and, as we hope, allow one for a better understanding of dynamical
aspects of some number-theoretic results. We should however warn the reader
that some number-theoretic results will be presented in their simplified (typ-
ically, non-quantitative) forms, sufficient for some ergodic interpretations but
not putting across the whole complexity and depth of the results. In particular,
this remark applies to recent break-through results of Matomäki and Radzi-
wiłł [124] and some related concerning a behavior of multiplicative functions on
short intervals.6

Ergodic theory viewpoint on Sarnak’s conjecture Sarnak’s conjecture (2)
is formulated as a problem in topological dynamics. However, for each topolog-
ical system pX,T q the set MpX,T q of (Borel, probability) T -invariant measures
is non-empty and we can study dynamical properties of pX,T q by looking at
all measure-theoretic dynamical systems pX,B, µ, T q for µ P MpX,T q. Via the
Variational Principle, Sarnak’s conjecture can be now formulated as Möbius
disjointness of the topological systems pX,T q whose measure-theoretic systems
pX,B, µ, T q for all µ P MpX,T q have zero Kolmogorov-Sinai entropy. But one
of main motivations for (2) in [148] was that this condition is weaker than a
certain (open since 1965) pure number-theoretic result, known as the Chowla
conjecture (see Section 3.1). Since the Chowla conjecture has its pure ergodic
theory interpretation (Section 3.1), the approach through invariant measures
allows one to see the implication

Chowla conjecture ñ Sarnak’s conjecture7

as a consequence of some disjointness (in the sense of Furstenberg) results in
ergodic theory. While the Chowla conjecture remains open, some recent break-
through results in number theory find their natural interpretation as particular
instances of the validity of Sarnak’s conjecture. Samples of such results are (see
Sections 3.4.1 and 3.5):

4In order to establish Möbius disjointness, we need to show convergence (1) (for all x P X)
only for a set of functions linearly dense in CpXq, so, for the rotations on the (additive) circle
T “ r0, 1q, we only need to consider characters. Note also that if the topological system pX, T q
is uniquely ergodic then we need to check (1) (for all x P X) only for a subset of CpXq which
is linearly dense in L1.

In what follows, for inequalities (as (3)), we will also use notation ! or Op¨q, or !A or OAp¨q
if we need to emphasize a role of A ą 0.

5For a presentation of a part of it, see [145].
6For a detailed account of these results, we refer the reader to [152].
7As proved by Tao [155], the logarithmic averages version of the Chowla conjecture is

equivalent to the logarithmic version of Sarnak’s conjecture. We will see later in Section 3
that once the logarithmic Chowla conjecture holds for the Liouville function λ, we have that
all configurations of ˘1s appear in λ (infinitely often).
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1. The result of Matomäki, Radziwiłł and Tao [125]:

ÿ

hďH

ˇ̌
ˇ̌
ˇ

ÿ

mďM

µpmqµpm ` hq
ˇ̌
ˇ̌
ˇ “ opHMq

(when H,M Ñ 8, H ! M) implies that each system pX,T q for which all
invariant measures yield measure-theoretic systems with discrete spectrum
is Möbius disjoint.8

2. The result of Tao [154]:

ÿ

nďN

µpnqµpn ` hq
n

“ oplogNq

(when N Ñ 8) for each h ‰ 0 implies that each system pX,T q for which all
invariant measures yield measure-theoretic systems with singular spectrum
are logarithmically Möbius disjoint.

This is done by:

• interpreting the number theoretic results as ergodic properties of the dy-
namical systems given by the invariant measures of the subshift Xµ for
which µ is quasi-generic,

• using classical disjointness results in ergodic theory.

It is surprising and important that the ergodic theoretical methods of the last
decades that led to new non-conventional ergodic theorems and showed a par-
ticular role of nil-systems, also appear in the context of Sarnak’s conjecture,
and again the role of nil-systems seems to be decisive. Together with some new
disjointness results in ergodic theory, it pushes forward significantly our under-
standing of Möbius disjointness, at least on the level of logarithmic version of
Sarnak’s conjecture. The most spectacular achievement here is the recent re-
sult of Frantzikinakis and Host [68] (see Section 3.5) who proved that each zero
entropy topological system pX,T q with only countably many ergodic measures
is logarithmically Möbius disjoint.

The proofs reflect the “local” nature of all the aforementioned results. In
other words, regardless the total entropy of the system, to obtain (1) for a
FIXED x P X (and all f P CpXq), we only need to look at ergodic proper-
ties of the dynamical systems given by measures “produced” by x itself (the
limit points of the empiric measures given by x). So, if all such measures yield
zero entropy systems, the Chowla conjecture implies (1) (for the fixed x and
all f P CpXq). When all such measures yield systems with discrete spectrum
/ singular spectrum / countably many ergodic components then the relevant
Möbius disjointness holds (at x). Points with one of the listed properties may
appear in pX,T q having positive entropy. In fact, a positive entropy system
can be Möbius disjoint [52]. To distinguish between zero and positive entropy
systems it is natural to expect that in the zero entropy case the behavior of
sums in (1) is homogenous in x (for a fixed f P CpXq). Indeed, the uniform

8The same argument applied to the Liouville function λ implies that the subshift Xλ

generated by λ is uncountable, see Section 3.
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convergence (in x P X , under the Chowla conjecture) of sums (1) has been
proved in [4] (see Section 4); in fact (2) is equivalent to Sarnak’s conjecture in
its uniform form and also in a uniform short interval form. Moreover, for the
Liouville function, no positive entropy system satisfies (1) in its uniform short
interval form. The problem of uniform convergence turns out to be closely re-
lated to the general problem whether Möbius disjointness is stable under our
ergodic theory approach. More precisely, suppose that the topological dynam-
ical systems pX,T q and pX 1, T 1q are such that the dynamical systems obtained
from invariant measures are the same for each of them (up to measure-theoretic
isomorphism). Does the Möbius disjointness of pX,T q imply the Möbius dis-
jointness of pX 1, T 1q? Although the answer in general seems unknown, in case
of uniquely ergodic models of the same measure-theoretic system a satisfactory
(positive) answer can be given [4].

Content of the article We include the following topics:

• Sarnak’s conjecture a.e., Sarnak’s conjecture versus Prime Number Theo-
rem in dynamics – see Introduction and Section 1.

• Brief introduction to multiplicative functions, Prime Number Theorem,
Kátai-Bourgain-Sarnak-Ziegler criterion – see Section 2.

• Results of Matomäki, Radziwiłł and Matomäki, Radziwiłł, Tao on mul-
tiplicative functions and some of their ergodic interpretations – see Sec-
tion 3.

• Chowla conjecture, logarithmic Chowla and logarithmic Sarnak conjec-
tures (Tao’s results and Frantzikinakis and Host’s results) – see Section 3.

• Frantzikinakis’ theorem on some consequences of ergodicity of measures
for which µ is quasi-generic – see Section 3.

• Ergodic criterion for Sarnak’s conjecture – the AOP and MOMO proper-
ties (uniform convergence in (1)), Sarnak’s conjecture in topological mod-
els – see Section 4.

• Glimpses of results on Sarnak’s conjecture: systems of algebraic origin
(horocycle flows, nilflows); systems of measure-theoretic origin (finite rank
systems, distal systems), interval exchange transformations, systems of
number-theoretic origin (automatic sequences and related) – see Section 5.

• Related research: B-free systems, applications to ergodic Ramsey theory
– see Section 6.

Sarnak’s conjecture a.e. Before we really get into the subject of Sarnak’s
conjecture, let us emphasize that this is the requirement “for each f P CpXq and
x P X” in (1) that makes Sarnak’s conjecture deep and difficult to establish.
As it has been already noticed in [148], the a.e. version of (2) is always true
regardless of the entropy assumption:

Proposition 0.1 ([148]). Let T be an automorphism of a standard Borel prob-
ability space pX,B, µq and let f P L1pX,B, µq. Then, for a.e. x P X, we have

1

N

ÿ

nďN

fpT nxqµpnq ÝÝÝÝÑ
NÑ8

0.

5



For a complete proof, see [3]. The main ingredient is the Spectral Theorem

which replaces
››› 1
N

ř
nďN fpT nxqµpnq

›››
2

by
››› 1
N

ř
nďN znµpnq

›››
L2pσf q

9, together

with Davenport’s estimate (3) (for A “ 2) which yields

››› 1

N

ÿ

nďN

fpT nxqµpnq
›››
2

! 1

log2 N
, N ě 2.

The latter shows that, for ρ ą 1, the function
ř

kě1

ˇ̌
ˇ 1
ρk

ř
nďρk fpT n¨qµpnq

ˇ̌
ˇ is

in L2pX,µq which, letting ρ Ñ 1 allows one to conclude for f P L8pX,µq. The
general case f P L1pX,µq follows from the pointwise ergodic theorem.

As shown in [56], a use of Davenport’s type estimate proved in [80] for the
nil-case, yields a polynomial version of Proposition 0.1. See also [39] for the
pointwise ergodic theorem for other arithmetic weights.

1 From a PNT in dynamics to Sarnak’s conjec-

ture

The content of this section can be viewed as a kind of motivation for Sarnak’s
conjecture (and is written on the base of Tao’s post [156] and Sarnak’s lecture
given at CIRM [147]).

We denote by N :“ t1, 2, . . .u the set of positive integers. Given N P N, we
let πpNq :“ tp ď N : p P Pu. The classical Prime Number Theorem states that

(4) lim
NÑ8

πpNq
N{ logN “ 1.

We will always refer to this theorem as the (classical) PNT.
Assume that T is a continuous map of a compact metric space X . Assume

moreover that pX,T q is uniquely ergodic, that is, the set MpX,T q of T -invariant
probability Borel measures is reduced to one measure, say µ. By unique ergod-
icity, the ergodic averages go to zero (even uniformly) for zero mean continuous
functions:

1

N

ÿ

nďN

fpT nxq ÝÝÝÝÑ
NÑ8

0

for each f P CpXq,
ş
X
f dµ “ 0, and x P X . Hence, the statement that a PNT

holds in pX,T q “should” mean

(5) lim
NÑ8

1

πpNq
ÿ

PQpďN

fpT pxq “ 0

for all zero mean f P CpXq and x P X (in what follows, instead of
ř

PQp, we write

simply
ř

p if no confusion arises).10 Let us see how to arrive at (5) differently.

9σf stands for the spectral measure of f .
10We recall that Bourgain in [26, 27, 28], proved that for each α ě p1 `

?
3q{2, each

automorphism T of a probability standard Borel space pX,B, µq and each f P LαpX,B, µq the
sums in (5) converge for a.e. x P X. The result has been extended by Wierdl in [169] for all
α ą 1.
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Recall that the von Mangoldt function Λ is defined by Λpnq “ log p if n “ pk

for a prime number p (and k ě 1) and Λpnq “ 0 otherwise. Contrary to most
of arithmetic functions considered in this article, Λ is not multiplicative. It is
not bounded either and its support has zero density. The (classical) PNT is
equivalent to

1

N

ÿ

nďN

Λpnq ÝÝÝÝÑ
NÑ8

1.

A given sequence panq Ă C can be said to satisfy a PNT whenever we can give
an asymptotic estimate on ÿ

nďN

anΛpnq

when N tends to infinity; thus the classical PNT is a PNT for the sequence
an “ 1. In particular, a sequence panq also satisfies a PNT if

(6)
ÿ

nďN

anΛpnq “
ÿ

nďN

an ` opNq,

and, if additionally panq has zero mean, i.e. if 1
N

ř
nďN an ÝÝÝÝÑ

NÑ8
0, then panq

satisfies a PNT if

(7)
1

N

ÿ

nďN

anΛpnq ÝÝÝÝÑ
NÑ8

0.

An interesting special case is an “ p´1qn, which has zero mean. Here, we do
have estimates of the sums of Λpnq over the odd numbers smaller than N , but
they are of the order of N , thus (7) is not satisfied. Beyond this point, we will
not study such particular cases and we shall always write that the sequence panq
satisfies a PNT whenever (6) holds.

Zero mean sequences are easily “produced” in uniquely ergodic systems. We
will say that a uniquely ergodic topological dynamical system pX,T q satisfies a
PNT if

(8)
1

N

ÿ

nďN

fpT nxqΛpnq ÝÝÝÝÑ
NÑ8

0

for all zero mean f P CpXq and x P X . We have

1

N

ÿ

nďN

fpT nxqΛpnq “ 1

N

ÿ

pďN

fpT pxq log p ` 1

N

ÿ

pkďN,kě2

fpT pk

xq log p.

Now, in the second sum if pk ď N then p P r1,
?
N s; the largest value of log p

is bounded by 1
2
logN , therefore, the second sum is of order Op

?
N ¨ logN{Nq,

hence of order N´ 1

2
`ε for each ε ą 0. Thus, a PNT in pX,T q means that

(9)
1

N

ÿ

pďN

fpT pxq log p ÝÝÝÝÑ
NÑ8

0

7



for all zero mean f P CpXq and x P X . Note that by the classical PNT to
prove (9), we need to show it for a linearly dense set of functions.11

Let us now write

1

N

ÿ

pďN

fpT pxq log p “ 1

N

ÿ

pďN{ logN

fpT pxq log p ` 1

N

ÿ

N{ logNďpďN

fpT pxq log p.

We have 1
N

ř
pďN{ logN fpT pxq log p “ Op1{ logNq (by 1

M

ř
pďM log p Ñ 1 when

M Ñ 8). Moreover, write f “ f` ´ f´ and then we have

logN ´ log logN

N

ÿ

N{ logNďpďN

f`pT pxq

ď 1

N

ÿ

N{ logNďpďN

f`pT pxq log p ď logN

N

ÿ

N{ logNďpďN

f`pT pxq

as logN ´ log logN ď log p ď logN for the p in the considered interval. Now,
πpNq{pN{plogN ´ log logNqq ÝÝÝÝÑ

NÑ8
1 and πpNq{pN{ logNq ÝÝÝÝÑ

NÑ8
1, whence

ˇ̌
ˇ̌
ˇ
1

N

ÿ

pďN

f`pT pxq log p ´ 1

πpNq
ÿ

pďN

f`pT pxq
ˇ̌
ˇ̌
ˇ ÝÝÝÝÑ

NÑ8
0.

Repeating the same reasoning with f` replaced by f´ and by (9), we obtain
that the statement a PNT holds in pX,T q is equivalent to (5) for all zero mean
f P CpXq and x P X .

Remark 1.1. By replacing Λ in (8) by µ, we come back to Sarnak’s conjecture.
The identity Λ “ µ ˚ log (see (10) below), i.e. Λpnq “ ř

d�n µpdq logpn{dq “
´ ř

d�n µpdq log d suggests some other connections between the simultaneous
validity of a PNT and Möbius disjointness in pX,T q but no rigorous theorem
toward a formal equivalence of the two conditions has been proved. Actually,
such an equivalence taken literally does not hold. Indeed, the fact that the
support of Λ is of zero upper Banach density makes a PNT vulnerable under zero
density replacements of the observable pfpT nxqq. On the other hand, Möbius
orthogonality is stable under such replacements. We illustrate this using the
following simple example.

Consider the classical case an “ 1 for all n P N. This is the same as to
consider a PNT in a uniquely ergodic model12 of the one-point system. One can
now ask if we have a PNT in all uniquely ergodic models of the one-point system

11Indeed, we have

ˇ̌
ˇ̌
ˇ̌
1

N

ÿ

pďN

fpT pxq log p ´ 1

N

ÿ

pďN

gpT pxq log p

ˇ̌
ˇ̌
ˇ̌

ď 1

N

ÿ

pďN

|fpT pxq ´ gpT pxq| log p ď }f ´ g} 1

N

ÿ

pďN

log p “ Op}f ´ g}q,

as condition 1
N

ř
nďN Λpnq ÝÝÝÝÑ

NÑ8
1 is equivalent to 1

N

ř
pďN log p ÝÝÝÝÑ

NÑ8
1.

12We recall that if pZ,D, κ,Rq is a measure-preserving system then by its uniquely ergodic

model we mean a uniquely ergodic system pX, T q with the unique (Borel) T -invariant measure
µ such that pZ,D, κ,Rq is measure-theoretically isomorphic to pX,BpXq, µ, T q.
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(it is an exercise to prove that all such models are Möbius disjoint). Take any
sequence pcpkqpk P t´1, 1uN and define bn as an when n ‰ pk and bpk “ cpk . We
can see that

1

N

ÿ

nďN

bnΛpnq “ 1

N

ÿ

pkďN

cpk log p.

Now, the subshift Xb Ă t´1, 1uN generated by b (cf. (27)) has only one invariant
measure δ11..., so it is a uniquely ergodic model of the one-point system and if
we take fpzq “ 1 ´ zp1q (z P Xb) as our continuous function, we can see that
f has zero mean but neither (8) nor (5) are satisfied if the sequence c is badly
behaving. It follows that we can expect a PNT to hold only in some classes of
“natural” dynamical systems, samples of which we will see in Section 5.

Returning to our discussion on a PNT, in any such situation, given a bounded
sequence pfpnqq Ă C, we can write

ÿ

nďN

fpnqΛpnq “ ´
ÿ

nďN

fpnq
ÿ

d�n
µpdq logpdq “ ´

ÿ

dďN

µpdq log d
ÿ

eďN{d
fpedq.

Then a further decomposition of the second sum into a structured part and
a remainder leads to two sums and allows one for an application of Möbius
Randomness Law to the second sum in order to predict the correct main term
value of

ř
nďN fpnqΛpnq, see [147].

2 Multiplicative functions

2.1 Definition and examples

An arithmetic function u : N Ñ C is called multiplicative if up1q “ 1 and
upmnq “ upmqupnq whenever pm,nq “ 1. If upmnq “ upmqupnq without
the coprimeness restriction on m,n, then u is called completely multiplicative.
Clearly, each multiplicative function is entirely determined by its values at pα,
where p P P is a prime number and α P N (for completely multiplicative func-
tions α “ 1). A prominent example of a multiplicative function is the Möbius
function µ determined by µppq “ ´1 and µppαq “ 0 for α ě 2. Note that
µ2 (which is obviously also multiplicative) is the characteristic function of the
set of square-free numbers. The Liouville function λ : N Ñ C is completely
multiplicative and is given by λppq “ ´1. Clearly, µ “ λ ¨ µ2 and we will see
soon some more relations between µ and λ. Many other classical arithmetic
functions are multiplicative, for example: the Euler function φ; the function
n ÞÑ p´1qn`1 is a periodic multiplicative function which is not completely mul-
tiplicative; dpnq :“number of divisors of n, n ÞÑ 2ωpnq, where ωpnq stands for
the number of different prime divisors of n; σpnq “ ř

d�n d. Recall that given
q ě 1, a function χ : N Ñ C is called a Dirichlet character of modulus q if:

(i) χ is q-periodic and completely multiplicative,

(ii) χpnq ‰ 0 if and only if pn, qq “ 1.

It is not hard to see that Dirichlet characters are determined by the ordinary
characters of the multiplicative group (of order φpqq) pZ{qZq˚

of invertible (un-
der multiplication) elements in Z{qZ. The Dirichlet character χ1pnq :“ 1 iff

9



pn, qq “ 1 is called the principal character of modulus q. Moreover, each pe-
riodic, completely multiplicative function is a Dirichlet character (of a certain
modulus). Another class of important (completely) multiplicative functions is
given by Archimedean characters n ÞÑ nit “ eit logn which are indexed by t P R.

2.2 Dirichlet convolution, Euler’s product

Recall that given two arithmetic functions u,v : N Ñ C, by their Dirichlet
convolution u ˚ v we mean the arithmetic function

(10) u ˚ vpnq :“
ÿ

d�n
updqvpn{dq, n P N.

If by A we denote the set of arithmetic functions then pA,`, ˚q is a ring which
is an integral domain and the unit e P A is given by 1t1u.

13 There is a natural
ring isomorphism between A and the ring D of (formal)14 Dirichlet series

A Q u ÞÑ Upsq :“
8ÿ

n“1

upnq
ns

P D, s P C,

under which

UpsqV psq “
8ÿ

n“1

u ˚ vpnq
ns

.

When u “ 1N then the Dirichlet series defines the Riemann ζ function:15

ζpsq “
8ÿ

n“1

1

ns
for Re s ą 1.

It is classical that if u and v are multiplicative then so is their Dirichlet
convolution. The importance of multiplicativity can be seen in the representa-
tion of the Dirichlet series of a multiplicative function u as an Euler’s product.
Indeed, a general term of

ś
pPPp1 ` uppqp´s ` upp2qp´2s ` . . .q has the form

uppα1

i1
q¨...¨uppαr

ir
q

ppα1

i1
¨...¨pαr

ir
qs “ uppα1

i1
¨...¨pαr

ir
q

ppα1

i1
¨...¨pαr

ir
qs , i.e. equals upnq

ns for some n. It easily follows that

ÿ

ně1

upnq
ns

“
ź

pPP
p1 ` uppqp´s ` upp2qp´2s ` . . .q.

If additionally u is completely multiplicative (and |u| ď 1), then uppkq “ uppqk
and

8ÿ

n“1

upnq
ns

“
ź

pPP
p1 ´ uppqp´sq´1.

13The Möbius Inversion Formula is given by µ ˚ 1N “ e.
14We will not discuss here the problem of convergence of Dirichlet series, see [144].
15An analytic continuation of ζ yields a meromorphic function on C (with one pole at s “ 1)

satisfying the functional equation

(11) ζpsq “ 2sπs´1 sin
´πs

2

¯
Γp1 ´ sqζp1 ´ sq.

Because of the sine, ζp´2kq “ 0 for all integers k ě 1 – these are so called trivial zeros of ζ

(ζp2kq ‰ 0 since Γ has simple poles at 0,´1,´2, . . .). In Re s ą 1 there are no zeros of ζ (ζ is
represented by a convergent infinite product), so except of ´2k, k ě 1, there are no zeros for
s P C, Re s ă 0 (as Rep1 ´ sq ą 1). The Riemann Hypothesis asserts that all nontrivial zeros
of ζ are on the line x “ 1

2
. See [144].
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Note that if u “ µ, we obtain

ÿ

ně1

µpnq
ns

“
ź

pPP
p1 ´ p´sq

since µppq “ ´1 and µpprq “ 0 whenever r ě 2. Since for the Riemann ζ

function, we have ζpsq “ ś
pPPp1´p´sq´1 for Re s ą 1, we obtain the following.

Corollary 2.1. We have 1
ζpsq “ ř

ně1
µpnq
ns whenever Re s ą 1.

We could have derived the above assertion in a different way. Indeed, µ˚1N “
e. If Gpsq :“ ř8

n“1
µpnq
ns stands for the Dirichlet series of the Möbius function,

then

Gpsq ¨ ζpsq “
8ÿ

n“1

pµ ˚ 1Nqpnq
ns

“
8ÿ

n“1

epnq
ns

“ 1.

2.3 Distance between multiplicative functions

Denote by

(12) M :“ tu : N Ñ C : u is multiplicative and |u| ď 1u.

Let u,v P M. Define the “distance” function D on M by setting

(13) Dpu,vq :“
˜

ÿ

pPP

1

p

´
1 ´ Re

´
uppqvppq

¯¯¸1{2

.

For each u,v,w P M, we have:

• Dpu,uq ě 0; Dpu,uq “ 0 iff
ř

pPP
1
p

p1 ´ |uppq|2q “ 0 iff |uppq| “ 1 for all

p P P, so Dpnit, nitq “ 0 for each t P R, Dpλ,λq “ Dpµ,µq “ 0. Of course,
if uppq “ 0 for each p P P then Dpu,uq “ `8. Moreover, φpnq{n P M

and Dpφpnq{n,φpnq{nq “ ř
pPP

1
p

p1 ´ p1´pq2
p2 q is positive and finite.

• Dpu,vq “ Dpv,uq.

• Dpu,vq ď Dpu,wq ` Dpw,vq, see [78].

When Dpu,vq ă `8 then one says that u pretends to be v. For example,
µ2 and φpnq{n pretend to be 1 (as

ř
pPP

1
p

p1 ´ p´1
p

q “ ř
pPP

1
p2 ă `8).

Lemma 2.2 ([78]). For each u,v,w,w1 P M, we have

(i) Dpuw,vw1q ď Dpu,vq ` Dpw,w1q.

Moreover, by (i) and a simple induction,

(ii) mDpu,vq ě Dpum,vmq for all m P N.

If we fix t ‰ 0 and k ě k0 then the number of p P P satisfying

exp

ˆ
2π

t
pk ` 1

3
q
˙

ď p ď exp

ˆ
2π

t
pk ` 2

3
q
˙

11



is (by the PNT) at least C
expp2πk{tq

k{t (for a constant C ą 0), whence

ˇ̌
ˇ̌
"
p P P : k ` 1

3
ď t log p

2π
ď k ` 2

3

*ˇ̌
ˇ̌ ě C

expp2πk{tq
k{t .

It follows that

(14)
ÿ

expp 2π
t

pk` 1

3
qqďpďexpp 2π

t
pk` 2

3
qq

1

p
p1 ´ cospt log pqq ě C 1 1

k

for a constant C 1 ą 0. Now, using (13), (14) and summing over k, we obtain
the following:16

(15) Dp1, nitq “ 8 for each t ‰ 0.

It is not difficult to see that for t ‰ 0, Dpχ, nitq “ `8 for each Dirichlet
character χ, while for t “ 0, we have Dpχ, 1q ă `8 if and only if χ is principal.

2.4 Mean of a multiplicative function. The Prime Number
Theorem (PNT)

The distance D is useful when we want to compute means of multiplicative
functions. Given an arithmetic function u : N Ñ C its mean Mpuq is defined as
Mpuq :“ limNÑ8

1
N

ř
nďN upnq (if the limit exists).

Theorem 2.3 (Halász; e.g. Thm. 6.3 [57]). Let u P M. Then Mpuq exists and
is non-zero if and only if

(i) there is at least one positive integer k so that up2kq ‰ ´1, and

(ii) the series
ř

pPP
1
p

p1 ´ uppqq converges.

When these conditions are satisfied, we have

Mpuq “
ź

pPP

ˆ
1 ´ 1

p

˙ ˜
1 `

8ÿ

m“1

p´muppmq
¸
.

The mean value Mpuq exists and is zero if and only if either

(iii) there is a real number τ , so that for each positive integer k, up2kq “ ´2kiτ ,
moreover Dpu, niτ q ă `8; or

(iv) Dpu, nitq “ 8 for each t P R.

Corollary 2.4 (Wirsing’s theorem). If u P M is real-valued then Mpuq exists.

Proof. Since Reppitq “ Repp´itq, and uppq P R, we have

Dp1, n2itq “ Dpn´it, nitq ď 2Dpu, nitq

by the triangle inequality. By (15), it follows that Dpu, nitq “ `8 for each
0 ‰ t P R. Hence, if Dpu,1q “ `8, then Dpu, nitq “ `8 for each t P R and
then Mpuq “ 0 by Halász’s theorem (iv).

If not then Dpu, 1q ă `8. Then the series
ř

pPP
1
p

p1 ´ uppqq converges (so

(ii) is satisfied) and we check whether or not up2kq “ ´1 for all k P N, that is,
either (i) holds or (iii) holds.

16This proof of (15) has been shown to us by G. Tenenbaum.

12



Remark 2.5. It follows from (15) that in Halász’s theorem (iii) and (iv) are
two disjoint conditions.

Remark 2.6. Not all functions from M have mean. Indeed, an Archimedean
character nit has mean iff t “ 0. This can be shown by a direct computa-
tion: apply Euler’s summation formula to fpxq “ xit with t ‰ 0, to obtain
1
N

ř
nďN nit “ Nit

it`1
` O

´
logN
N

¯
.

Theorem 2.7 (e.g. [78, 85, 159]). The PNT is equivalent to Mpµq “ 0.

Remark 2.8. The statement above is an elementary equivalence, see the dis-
cussion in Section 4 [49]. For a PNT for a more general f (i.e. not for f “ 1)
the relation between such a disjointness and sums over the primes requires more
quantitative estimates than simply opNq.
Remark 2.9. By Halász’s theorem, condition Mpµq “ 0 is equivalent to
Dpµ, nitq “ 8 for each t P R (µ does not pretend to be nit), and this can
be established similarly to the proof of (15).

The PNT tells us about cancelations of `1 and ´1 for µ. When one requires
a behavior similar to random sequences, say “square-root type cancelation”, the
result is much stronger:

Theorem 2.10 (Littlewood, see [36]). The Riemann Hypothesis holds if and

only if for every ε ą 0, we have
ř

nďN µpnq “ OεpN 1

2
`εq.

This result is not hard to establish and we show the sufficiency: By Corol-
lary 2.1, we have

1

ζpsq “
8ÿ

n“1

µpnq
ns

“ ´
8ÿ

n“1

µpnq
ż 8

n

dx´s “ s

8ÿ

n“1

µpnq
ż 8

n

dx

xs`1
.

Setting Mpxq “ ř
nďxµpnq, we obtain

(16)
1

ζpsq “ s

ż 8

1

M pxq
xs`1

dx, Re s ą 1

and, by the assumption on Mp¨q,
ż 8

1

ˇ̌
ˇ̌Mpxq
xs`1

ˇ̌
ˇ̌ dx “

ż 8

1

ˇ̌
Mpxq

ˇ̌

xRe s`1
dx !

ż 8

1

x
1

2
`ε´pRe s`1q dx “

ż 8

1

x´Re s´ 1

2
`ε dx.

It follows that the integral on the RHS of (16) is absolutely convergent for
Re s ą 1

2
` ε. Hence, (16) yields an analytic extension of 1

ζp¨q to ts P C : Re s ą
1
2

` εu. In this domain there are no zeros of ζ and by the functional equation
(see (11)) on ζ, we obtain the Riemann Hypothesis.

2.5 Aperiodic multiplicative functions

Denote by

Mconv :“ tu P M : lim
NÑ8

1

N

ÿ

nďN

upan ` rq exists for all a, r P Nu.

The following is classical.

13



Lemma 2.11. Let u P M. Then u P Mconv if and only if the mean value
Mpχ ¨ uq exists for each Dirichlet character χ.

An arithmetic function u : N Ñ C is called aperiodic if, for all a, r P N, we
have limNÑ8

1
N

ř
nďN upan` rq “ 0. Similarly to Lemma 2.11, we obtain that

u P M is aperiodic if and only if Mpχ ¨ uq “ 0 for each Dirichlet character
χ. Delange theorem (see, e.g., [78]) gives necessary and sufficient conditions for
u to be aperiodic. In particular, each u P M satisfying Dpu, χ ¨ nitq “ 0 for
all Dirichlet characters χ and all t P R, is aperiodic. Classical multiplicative
functions as µ or λ are aperiodic.

Frantzikinakis and Host in [67] prove a deep structure theorem for mul-
tiplicative functions from M. One of the consequences of it is the following
characterization of aperiodic functions: u P M is aperiodic if and only if it is
uniform, that is, all Gowers uniformity seminorms17 vanish [67]. In [23] (see
Theorem 1.3 therein), this result is extended to show that u P Mconv is either
uniform or rational.18 Also, a variation of this result has been proved in [23]
(see Theorem A therein):

(17)

for each positive density level set E “ tn P N : upnq “ cu of u P M

there is a (unique if density is smaller than 1) rational (i.e. coming
from a rational function from M) level set R of v P M such that
dpRq1E ´ dpEq1R is Gowers uniform.

For example, for E “ tn P N : µpnq “ 1u the unique set R is just the set of
square-free numbers.

2.6 Davenport type estimates on short intervals

Given u P M, for our purposes we will need additionally the following:19 for
each pbnq Ă N with bn`1 ´ bn Ñ 8 and any c P C, |c| “ 1, we have

(18)
1

bK`1

ÿ

kďK

ˇ̌
ˇ̌
ˇ̌

ÿ

bkďnăbk`1

cnupnq

ˇ̌
ˇ̌
ˇ̌ ÝÝÝÝÑ

KÑ8
0.

17For N P N we write rNs for the set t1, 2, . . . , Nu. Given h,N P N and f : N Ñ C, we
let Shfpnq “ fpn ` hq and fN “ 1rNs ¨ f . For s P N, the Gowers uniformity seminorm [77]
}.}Us

rNs
is defined in the following way:

}f}U1

rNs
:“

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

n“1

fN pnq
ˇ̌
ˇ̌
ˇ

and for s ě 1

}f}2s`1

U
s`1

rNs

:“ 1

N

Nÿ

h“1

›››fNShfN

›››
2s

Us
rNs

.

A bounded function f : N Ñ C is called uniform if }f}Us
rNs

converges to zero as N Ñ 8 for

each s ě 1.
18An arithmetic function u is rational if for each ε ą 0 there is a periodic function v such that

lim supNÑ8
1
N

ř
nďN |upnq ´ vpnq| ă ε. Note that since µ is aperiodic, whence orthogonal

to all periodic sequences it will also be orthogonal to each rational u [23]. An example of
rational sequence is given by µ2. For more examples, see the sets of B-free numbers in the
Erdös case in Section 6.

19To be compared with the estimates (3), where we drop the sup requirement.
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It is not hard to see that if u P M satisfies (18) for each pbnq and c as above,
then it must be aperiodic.

In fact, it follows from a break-through result in [124] and [125] that the
class of u P M for which (18) holds contains all u for which

(19) inf
|t|ďM,χ mod q,qďQ

Dpu, n ÞÑ χpnqnit;Mq2 Ñ 8,

when 10 ď H ď M , H Ñ 8 and Q “ minplog1{125 M, log5 Hq; here χ runs over
all Dirichlet characters of modulus q ď Q and

Dpu,v;Mq :“
˜

ÿ

pďM,pPP

1 ´ Repuppqvppqq
p

¸1{2

for each u,v P M. Moreover, classical multiplicative functions like µ and λ

satisfy (19), see [125].
Finally, note that (18) true for all pbnq as above is equivalent to the following

statement:

(20)
1

M

ÿ

Mďmă2M

ˇ̌
ˇ̌
ˇ

ÿ

mďhăm`H

chuphq
ˇ̌
ˇ̌
ˇ ÝÝÝÝÝÝÝÝÝÝÝÝÑ

M,HÑ8,H“opMq
0

(we can also replace the first sum by
ř

1ďmăM ), see [7] for details. This state-
ment is much closer to the original formulations of (simplified versions of) the-
orems from [124, 125].

One more consequence of the main result in [124] is the following:

Theorem 2.12 (Thm. 1.1 in [125] and a corollary for k “ 2 therein). For
H Ñ 8 arbitrarily slowly with M Ñ 8 (H ď M), we have

ÿ

hďH

ˇ̌
ˇ̌
ˇ

ÿ

mďM

µpmqµpm ` hq
ˇ̌
ˇ̌
ˇ “ opHMq.

2.7 The KBSZ criterion

Sarnak’s conjecture is aimed at showing that deterministic sequences (i.e. those
given as observable sequences in the zero entropy systems) are orthogonal to µ.
In particular, as µ is a multiplicative function, the result20 below establishes
disjointness with µ.

Theorem 2.13 ([31, 104]). Assume that panq is a bounded sequence of complex
numbers. Assume that for all prime numbers p ‰ q

(21)
1

N

ÿ

nďN

apnaqn ÝÝÝÝÑ
NÑ8

0.

20The main ideas for this result appeared in [40] and [132]. It was first established in a
slightly different form in [104] and then in [31], see also [84] for a proof. The criterion has
its origin in the bilinear method of Vinogradov [163] which is a technique to study sums of
a over primes in terms of sums over progressions

ř
nďN adn and sums

ř
nďN ad1nad2n. If

an “ fpTnxq then these sums are Birkhoff sums for powers of T and their joinings.
In what follows we will refer to Theorem 2.13 as to the KBSZ criterion.
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Then, for each multiplicative function u P M, we have

(22)
1

N

ÿ

nďN

anupnq ÝÝÝÝÑ
NÑ8

0.

For example, see [104], the criterion applies to the sequences of the form
peiP pnqq, where P P Rrxs has at least one irrational coefficient (different from
the constant term).

In the context of dynamical systems, we use this criterion for an “ fpT nxq,
n ě 1. Clearly, this leads us to study the behavior of different (prime) powers of
a fixed map T . We should warn the reader that when applying Theorem 2.13,
we do not expect to have (21) satisfied for all continuous functions, in fact,
even in uniquely ergodic systems, in general, it cannot hold for all zero mean
functions21 but we need a subset of CpXq which is linearly dense, cf. footnote 4.

We will also need the following variation of Theorem 2.13, see [7]:

Proposition 2.14. Assume that panq is a bounded sequence of complex num-
bers. Assume, moreover, that

(23) lim sup
p,qÑ8

different primes

˜
lim sup
NÑ8

ˇ̌
ˇ̌
ˇ
1

N

ÿ

nďN

apnaqn

ˇ̌
ˇ̌
ˇ

¸
“ 0.

Then, for each multiplicative function u : N Ñ C, u P M, we have

(24) lim
NÑ8

1

N

ÿ

nďN

an ¨ upnq “ 0.

Remark 2.15. In contrast to the KBSZ criterion given by Theorem 2.13, con-
dition (23) has its ergodic theoretical counterpart – the property called AOP
(see Section 4) which is a measure-theoretic invariant.

3 Chowla conjecture

In this section we get into the subject of the Chowla conjecture which is the
main motivation for Sarnak’s conjecture.

3.1 Formulation and ergodic interpretation

The Chowla conjecture deals with higher order correlations of the Möbius func-
tion,22 that is, the conjecture asserts that

(25)
1

N

ÿ

nďN

µj0pnqµj1pn ` k1q . . .µjr pn ` krq ÝÝÝÝÑ
NÑ8

0

21We can easily see that when Tx “ x ` α is an irrational rotation on T “ r0, 1q, then, by
the Weyl criterion on uniform distribution, (21) is satisfied for all characters (for all x P T),
but there are continuous zero mean functions for which (21) fails [110].

22As a matter of fact, in [36], it is formulated for the Liouville function. We follow [148]. For
a discussion on an equivalence of the Chowla conjecture with µ and λ, we invite the reader
to [141]. As shown in [125], there are non-pretentious (completely) multiplicative functions for
which Chowla conjecture fails. For more information, see the discussion on Elliot’s conjecture
in [125].
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whenever 1 ď k1 ă . . . ă kr, js P t1, 2u not all equal to 2, r ě 0.23

We will now explain an ergodic meaning of the Chowla conjecture. Recall
that given a dynamical system pX,T q and µ P MpX,T q, a point x P X is called
generic for µ if

1

N

ÿ

nďN

fpT nxq ÝÝÝÝÑ
NÑ8

ż

X

f dµ

for each f P CpXq. Equivalently, 1
N

ř
nďN δTnx ÝÝÝÝÑ

NÑ8
µ (we recall that

MpX,T q is endowed with the weak˚ topology which makes it a compact metriz-
able space). By compactness, each point is quasi-generic for a certain measure
ν P MpX,T q, i.e.

1

Nk

ÿ

nďNk

δTnx ÝÝÝÑ
kÑ8

ν

for a certain subsequence Nk Ñ 8. Let

(26) Q-genpxq :“ tν P MpX,T q : x is quasi-generic for νu.24

Assume now that we have a finite alphabet A. We consider pAZ, Sq, so called
full shift, or more precisely, two-sided full shift, where AZ is endowed with the
product topology and Sppxnqq “ pynq with yn “ xn`1 for each n P Z. Each
X Ă AZ that is closed and S-invariant yields a subshift, i.e. the dynamical
system pX,Sq. One way to obtain a subshift is to choose x P AZ and consider
the closure Xx of the orbit of x via S. If x is given as a one-sided sequence,
x P AN, we still might consider

(27) Xx :“ ty P AZ : each block appearing in y appears in xu
to obtain a two-sided subshift. In case when each block appearing in x reappears
infinitely often, Xx “ tSnx : n P Zu, for some x for which xpjq “ xpjq for each
j ě 1 but, in general, there is no such a good x. Moreover, we will let ourselves
speak about a one-sided sequence x to be generic or quasi-generic for a measure
ν P MpXx, Sq.

Now take A “ t´1, 0, 1u. For each subshift X Ă t´1, 0, 1uZ let θ P CpXq be
defined as

(28) θpyq “ yp0q, y P X.

Note that directly from the Stone-Weierstrass theorem we obtain the following.

Lemma 3.1. The linear subspace generated by the constants and the family

tθj0 ˝ Sk0 ¨ θj1 ˝ Sk1 ¨ . . . ¨ θjr ˝ Skr : ki P Z, ji P t1, 2u, i “ 0, 1, . . . , r, r ě 0u
of continuous functions is an algebra of functions separating points, hence it is
dense in CpXq.

23The Chowla conjecture is rather “close” in spirit to the Twin Number Conjecture in the
sense that the latter is expressed by p˚q ř

nďx ΛpnqΛpn ` 2q “ p2Π2q ¨ x ` opxq, where

Π2 “ ś
pp1 ´ 1

pp´1q2
q “ 0, 66016 . . . which can be compared with

ř
nďx µpnqµpn ` 2q “ opxq

which is “close” to the Chowla conjecture, see e.g. [157]. A recent development shows that it
is realistic to claim that the Chowla conjecture with an error term of the form opplogNq´Aq
for some A large enough (A depending on the number of shifts of µ that are considered)
implies p˚q. (Of course, everywhere Λ is a good approximation of 1P).

See also [140] for a (conditional) equivalence of p˚q with
ř

nďN Λpnqµpn ` 2q “ opNq.
24We recall that either x is generic or Q-genpxq is a connected uncountable set, see Propo-

sition 3.8 in [47].
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The subshift pXµ, Sq is called the Möbius system and Xµ2 Ă t0, 1uZ Ă
t´1, 0, 1uZ is the square-free system.25 Note that s : pzpnqq ÞÑ pzpnq2q will settle
a factor map between the Möbius system and the square-free system. The point
µ2 is a generic point for so called Mirsky measure νµ2 [33, 131] (see Section 6.2).
In other words, there are frequencies of blocks on µ2: for each block B P t0, 1uℓ,
the following limit exists:

lim
NÑ8

1

N

ˇ̌
t1 ď n ď N ´ ℓ : µ2pn, n ` ℓ ´ 1q “ Bu

ˇ̌
“: νµ2pBq.

We can now consider the relatively independent extension26 pνµ2 of νµ2 which
is the measure on s´1pXµ2q Ă t´1, 0, 1uZ given by the following condition: for
each block C P t´1, 0, 1uℓ, we have

pνµ2pCq :“ 1

2k
νµ2pC2q,

where C2 is obtained from B by squaring on each coordinate and k is the number
of 1 in C2. A straightforward computation shows that

(29)

ż

t´1,0,1uZ

θj0 ˝ Sk0 ¨ θj1 ˝ Sk1 ¨ . . . ¨ θjr ˝ Skr dpνµ2 “ 0

whenever tj0, . . . , jru ‰ t2u. On the other hand, in view of Lemma 3.1, the
values of integrals

ż

t´1,0,1uZ

θ2 ˝ Sk0 ¨ θ2 ˝ Sk1 ¨ . . . ¨ θ2 ˝ Skr dpνµ2

for all ki P Z and r ě 0 entirely determine the Mirsky measure νµ2 .

Corollary 3.2. The Chowla conjecture holds if and only if µ is a generic point
for pνµ2 .

Proof. We consider any extension of µ to a two-sided sequence (for example we
set µpnq “ 0 for each n ď 0). Suppose that

(30)
1

Nk

ÿ

nďNk

δSnµ ÝÝÝÑ
kÑ8

κ.

In order to get κ “ pνµ2 , in view of Lemma 3.1, we need to show that
ż

t´1,0,1uZ

θj0 ˝ Sk0 ¨ θj1 ˝ Sk1 ¨ . . . ¨ θjr ˝ Skr dκ “ 0

for any choice of integers k0 ă k1 ă . . . ă kr, tj0, j1, . . . , jru ‰ t2u and r ě 0.
Since the measure ν is S-invariant, it is the same as to show that

ż

t´1,0,1uZ

θj0 ˝ ¨θj1 ˝ Sk1´k0 ¨ . . . ¨ θjr ˝ Skr´k0 dκ “ 0.

25The point µ2 is recurrent, so there is a “completion” of µ2 to a two-sided sequence
generating the same subshift.

26Consider Bernoulli measure Bp1{2, 1{2q on t´1, 1uZ and Mirsky measure νµ2 on t0, 1uZ.
Measure pνµ2 is the image of the product measure Bp1{2, 1{2q b νµ2 via the map

px, yq ÞÑ ppxpnq ¨ ypnqqqnPZ P t´1, 0, 1uZ.
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Now, we have 1 ď k1 ´ k0 ă . . . ă kr ´ k0 and the result follows from (25)
and (30).

The Chowla conjecture for r “ 0 is just the PNT, however, it remains open
even for r “ 1. As in [148], we could consider a weaker version of the Chowla
conjecture. Namely, we say that µ satisfies the topological Chowla conjecture if
Xµ “ s´1pXµ2q.
Remark 3.3. Note that (25) holds if

|t0 ď t ď r : jt “ 1u| “ 1.

Indeed, it is not hard to see that if t0 is the only index for which jt0 “ 1 then
the sequence apnq :“ ś

t‰t0
µ2pn ` ktq is rational. Hence, µ is orthogonal to

ap¨q, cf. footnote 18.

3.2 The Chowla conjecture implies Sarnak’s conjecture

Assume that pX,T q is a topological system. Following [99, 166] a point x P X is
called completely deterministic if for each measure ν P Q-genpxq (see (26)), the
measure theoretic dynamical system pX,BpXq, ν, T q has zero Kolmogorov-Sinai
entropy: hνpT q “ 0. Of course, if the topological entropy of T is zero, then by
the Variational Principle, each x P X is completely deterministic. On the other
hand, pXµ2 , Sq has positive topological entropy [6, 136, 148] and µ2 P Xµ2 is
completely deterministic, see [3, 33].

Let f P CpXq and x P X be completely deterministic. We have

1

N

ÿ

nďN

fpT nxqµpnq “
ż

XˆXµ

pf b θqd
˜

1

N

ÿ

nďN

δpTˆSqnpx,µq

¸
.

We can assume that

1

Nk

ÿ

nďNk

δpTˆSqnpx,µq ÝÝÝÑ
kÑ8

ρ in the space MpX ˆ Xµ, T ˆ Sq.

Under the Chowla conjecture, the projection of ρ on Xµ is equal to pνµ2 (since,
by Corollary 3.2, µ is a generic point for pνµ2), while the projection of ρ on X is
some T -invariant measure κ and hκpT q “ 0 (since x is completely deterministic).
Note that ρ is a joining27 of the (measure-theoretic) dynamical systems pX,κ, T q
and pXµ, pνµ2 , Sq. Moreover, the latter automorphism has the so called relative
Kolmogorov property with respect to the factor pXµ2 , νµ2 , Sq. We then consider
the restriction of the joining ρ|XˆX

µ2
and ρ|Xµ

to obtain two systems that

have a common factor (namely Xµ2) relatively to which the first one has zero
entropy and the second being relatively Kolmogorov. Since the function θ is
orthogonal to L2pXµ2 , νµ2q, the relative disjointness theorem on zero entropy
and Kolmogorov property yields the following (see also Remark 3.6):

27Recall that if Ri is an automorphism of a probability standard Borel space pZi,Di, νiq,
i “ 1, 2, then each R1 ˆR2-invariant measure λ on pZ1 ˆZ2,D1 bD2q having the projections
ν1 and ν2, respectively is called a joining of R1 and R2: we write λ P JpR1, R2q. If R1, R2 are
ergodic then the set JepR1, R2q of ergodic joinings between R1 and R2 is non-empty. A funda-
mental notion here is the disjointness (in sense of Furstenberg) [70]: R1 and R2 are disjoint if
JpR1, R2q “ tν1 b ν2u: we write R1 K R2. For example, zero entropy automorphisms are dis-
joint with automorphisms having completely positive entropy (Kolmogorov automorphisms)
and also a relativized version of this assertion holds.
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Theorem 3.4 ([3]). The Chowla conjecture implies

1

N

ÿ

nďN

fpT nxqµpnq Ñ 0

for each dynamical system pX,T q, f P CpXq and x P X completely determinis-
tic. In particular, the Chowla conjecture implies Sarnak’s conjecture.28

Remark 3.5. It is also proved in [3] that this seemingly stronger statement of
the validity of Sarnak’s conjecture at completely deterministic points is in fact
equivalent to the Möbius disjointness of all zero entropy systems.

Remark 3.6. A word for word repetition of the above proof29 yields the same
result when we replace µ by another generic point of pνµ2 in which we control
the relative Kolmogorov property over the maximal factor with zero entropy,
so called Pinsker factor. In particular, we can replace µ by λ (for which the
Pinsker factor will be just the one-point dynamical system).

As a matter of fact, it is expected that each aperiodic real-valued multiplica-
tive function satisfies the Chowla type result (and hence satisfies the Sarnak
type result), see the conjectures by Frantzikinakis and Host formulated after
Theorem 3.30.

Remark 3.7. The original proof of Sarnak of the implication “Chowla con-
jecture ñ Sarnak’s conjecture” used some combinatorial arguments and proba-
bilistic methods, see [157].

Sarnak’s conjecture (2) is formulated for the Möbius function. But of course
one can consider other multiplicative functions.30 Below, we show that if we
use the Liouville function then nothing changes.

Corollary 3.8. Sarnak’s conjecture with respect to µ is equivalent to Sarnak’s
conjecture with respect to λ.

Proof. Let us recall the basic relation between these two functions: λpnq “ř
d2�n µpn{d2q.
Assume that pX,T q is a dynamical system with hpT q “ 0. As the zero

entropy class is closed under taking powers, we assume Möbius disjointness for
all powers of T . Then

1

N

ÿ

nďN

fpT nxqλpnq “ 1

N

ÿ

nďN

fpT nxq

¨
˝ ÿ

d2�n
µpn{d2q

˛
‚

“ 1

N

ÿ

nďN

ÿ

d2�n
µpn{d2qfppT d2qn{d2

xq

“
ÿ

dď
?
N

1

d2
¨ 1

N{d2
ÿ

nďN{d2

µpnqfppT d2qnxq.

28We will see later that some special cases of validity of convergence in (25) also have their
ergodic interpretations and they imply Möbius disjointness for restricted classes of dynamical
systems of zero entropy; in particular, see Corollary 3.20 and Corollary 3.25.

29The above proof was already suggested by Sarnak in [148].
30If Möbius disjointness in a dynamical system is shown through the KBSZ criterion then

we obtain orthogonality with respect to all multiplicative functions.
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Take ε ą 0 and select M ě 1 so that
ř

děM
1
d2 ă ε. Consider T, T 2, T 3, . . . , TM .

We have ˇ̌
ˇ̌
ˇ
1

N

ÿ

nďN

fpT knxqµpnq
ˇ̌
ˇ̌
ˇ ă ε

for all k “ 1, . . . ,M whenever N ě N0. It follows that
ˇ̌
ˇ̌
ˇ̌

1

N{d2
ÿ

nďN{d2

µpnqfpT d2nxq

ˇ̌
ˇ̌
ˇ̌ ă ε

for all d “ 1, . . . ,M if N ą MN0. Otherwise we estimate such a sum by }f}8.
To obtain the other direction, we first recall that µ2 is a completely determin-

istic point. Then use Theorem 3.4 for λ (see Remark 3.6), write λpnqµ2pnq “
µpnq for each n ě 1 and we obtain

1

N

ÿ

nďN

fpT nxqµ2pnqλpnq “ 1

N

ÿ

nďN

pf b θqppT ˆ Sqnpx,µ2qqλpnq Ñ 0

as the point px,µ2q is completely deterministic.

3.3 The logarithmic versions of Chowla and Sarnak’s con-
jectures

An intriguing problem arises whether the Chowla and Sarnak’s conjecture are
equivalent. An intuition from ergodic theory would say that this is rather not
the case as the class of systems that are disjoint (in the Furstenberg sense) from
all zero entropy measure-theoretic systems is the class of Kolmogorov automor-
phisms and not only Bernoulli automorphisms (and a relative version of this
result persists).31

From that point of view a recent remarkable result of Terence Tao [155] about
the equivalence of logarithmic versions of the Chowla and Sarnak’s conjectures
is quite surprising. We will formulate some versions32 of three (out of five)
conjectures from [155].

Conjecture A: We have

1

logN

ÿ

nďN

µj0pnqµj1pn ` k1q . . .µjr pn ` krq
n

ÝÝÝÝÑ
NÑ8

0

whenever 1 ď k1 ă . . . ă kr, js P t1, 2u not all equal to 2, r ě 0.

31If we consider general sequences z P t´1, 0, 1uN then we can speak about the Sarnak and
Chowla properties on a more abstract level: for example the Chowla property of z means (25)
with µ replaced by z. See Example 5.1 and Remark 5.3 in [3] for sequences orthogonal to all
deterministic sequences but not satisfying the Chowla property. However, arithmetic functions
in these examples are not multiplicative.

However, an analogy between disjointness results in ergodic theory and disjointness of se-
quences is sometimes accurate. For example, a measure-theoretic dynamical system has zero
entropy if and only if it is disjoint with all Bernoulli automorphisms. As pointed out in [3]
(Prop. 5.21), a sequence t P t´1, 1uN is completely deterministic if and only if it is disjoint
with any sequence z P t´1, 0, 1uN satisfying the Chowla property.

32See Remark 1.9. Also, in [155] the Liouville function λ is considered, see page 2 in [155]
how to replace λ by µ.
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Remark 3.9. It should be noted that passing to such logarithmic averages
moves one away from questions about primes, twin primes and subtleties such

as the parity problem. For example, the statement
ř

nďN
µpnq
n

“ oplogNq is

easy to establish (in fact,
ˇ̌
ˇ
ř

nďN
µpnq
n

ˇ̌
ˇ ď 1), while the PNT is equivalent to

much stronger statement
ř8

n“1
µpnq
n

“ 0 (as conditionally convergent series).
On the other hand, the logarithmically averaged Chowla conjecture implies

that all “admissible” configurations do appear on µ, see Corollary 3.13 below
(the topological Chowla conjecture for λ implies that all blocks of ˘1 appear in
λ).

Conjecture B: We have

1

logN

ÿ

nďN

fpT nxqµpnq
n

ÝÝÝÝÑ
NÑ8

0

whenever pX,T q is a topological system of zero topological entropy, f P CpXq
and x P X .

To formulate the third conjecture, we need to recall the definition of a nilro-
tation. Let G be a connected, simply connected Lie group and Γ Ă G a lattice
(a discrete, cocompact subgroup). For any g0 P G we define Tg0pgHq :“ g0gH .
Then the topological system pG{Γ, Tg0q is called a nilrotation.

Conjecture C: Let f P CpG{Γq be Lipschitz continuous and x0 P G. Then (for
H ď N)

ÿ

nďN

supgPG
ˇ̌ř

hďH fpT h`n
g px0Γqqµpn ` hq

ˇ̌

n
“ opH logNq.

Theorem 3.10 ([155]). Conjectures A, B and C are equivalent.

Remark 3.11. Tao also shows that if instead of logarithmic averages we come
back to Cesàro averages, then

Conjecture A ñ Conjecture B ñ Conjecture C

and it is the implication Conjecture C ñ Conjecture A that requires logarithmic
averages.

Remark 3.12. Let us consider the Cesàro version of Conjecture C with H “
opNq and we drop the assumption on the sup (which is inside), i.e.: for each
g P G, we have

1

N

ÿ

nďN

ˇ̌
ˇ̌
ˇ

ÿ

hďH

fpT h`n
g px0Γqqµpn ` hq

ˇ̌
ˇ̌
ˇ ÝÝÝÝÝÝÝÝÝÝÝÑ

H,NÑ8,H“opNq
0.

This is a particular case of what we will see in Section 4, where we introduce the
strong MOMO notion (hence, the validity of Sarnak’s conjecture on (typical)
short interval).
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Corollary 3.13 (a letter of W. Veech in June 2016). Sarnak’s conjecture implies
topological Chowla conjecture. Equivalently, Sarnak’s conjecture implies that
each block B P t´1, 0, 1uℓ for which B2 appears in µ2 appears in µ (and the
entropy of pXµ, Sq equals 6

π2 log 3).

Proof. Indeed, Sarnak’s conjecture implies its logarithmic version which, by

Theorem 3.10, implies logarithmic Chowla conjecture, that is, 1
logN

ř
nďN

δSnµ

n
Ñ

pνµ2 . However, the logarithmic averages of the Dirac measures are convex com-
binations of the consecutive Cesàro averages33 1

n

ř
jďn δSjµ, so if we take a

block B P s´1pXµ2q, we have pνµ2pBq ą 0 and therefore there exists n such that
1
n

ř
jďn δSjµpBq ą 0, which means that B appears in µ.

Remark 3.14. (added in October 2017) As a matter of fact, as shown in [76],
Sarnak’s conjecture implies the existence of a subsequence pNkq along which
1
Nk

ř
nďNk

δSnµ Ñ pνµ2 . This follows from a general observation that, given a

topological system pX,T q, whenever an ergodic measure ν is a limit of a subse-
quence pMkq of logarithmic averages of Dirac measures: ν “ limkÑ8

1
logMk

ř
mďMk

δTmx

m
,

then there exists a subsequence pNkq for which ν “ limkÑ8
1
Nk

ř
nďNk

δTnx. We
apply this to the measure pνµ2 which is ergodic.

In [154], Tao proves the logarithmic version of Chowla conjecture for the
correlations of order 2 (which we formulate for the Liouville function):

Theorem 3.15 ([154]). For each 0 ‰ h P Z, we have

1

logN

ÿ

nďN

λpnqλpn ` hq
n

ÝÝÝÝÑ
NÑ8

0.

See also [124], where it is proved that for each integer h ě 1 there exists
δphq ą 0 such that lim supNÑ8

1
N

ˇ̌ř
nďN λpnqλpn ` hq

ˇ̌
ď 1 ´ δphq and [126],

where it is proved that for the Liouville function the eight patterns of length 3 of
signs occur with positive lower density, and the density result with lower density
replaced by upper density persists for k ` 5 patterns (out of total 2k) for each
k P N.

For a proof of a function field Chowla’s conjecture, see [32].

33 Assume that panq is a bounded sequence and set An “ a1 ` . . . ` an. Then, we have by
summation by parts

(31)
1

logN

ÿ

nďN

an

n
“ 1

logN

ÿ

nďN

pAn`1 ´ Anq 1
n

“ 1

logN

ÿ

nďN

An

ˆ
1

n
´ 1

n ` 1

˙
` op1q “ 1

logN

ÿ

nďN

An

n

1

n ` 1
` op1q.

It follows that:

• If the Cesàro averages of panq converge, so do the logarithmic averages of panq.
• The converse does not hold (see e.g. [24] in B-free case, Section 6.1).

• If the Cesàro averages converge along a subsubsequence pNkq then not necessarily the
logarithmic averages do the same. Indeed, by (31), 1

logNk

ř
nďNk

an

n
is (up to a small

error) a convex combination of the Cesàro averages for all n ď Nk .
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Remark 3.16. See also [158], where, given k0, . . . kℓ P Z and u0, . . . ,uℓ P M,
one studies sequences of the form

n ÞÑ u0pn ` ak0q ¨ . . . ¨ uℓpn ` akℓq, a P Z.

By considering their logarithmic averages, one obtains a sequence pfpaqq. The
main result of [158] is a structure theorem (depending on whether or not the
product u0 ¨ . . .uℓ weakly pretends to be a Dirichlet character) for the sequences
pfpaqq. As a corollary, the logarithmically averaged Chowla conjecture is proved
for any odd number of shifts.

3.4 Frantzikinakis’ theorem

Tao’s approach from [155] is continued in [66]. Before we formulate Frantziki-
nakis’ results, let us interpret some arithmetic properties, especially the role of
a “good behavior” on (typical) short interval of a multiplicative function in the
ergodic theory language.

3.4.1 Ergodicity of measures for which µ is quasi-generic

In this subsection we summarize ergodic consequences of some recent, previously
mentioned number-theoretic results, cf. [65]. By that we mean that we consider
all measures κ P Q-genpµq and we study ergodic properties of the dynamical
systems pXµ, κ, Sq.

Let κ P Q-genpµq, i.e. 1
Mk

ř
mďMk

δSmµ ÝÝÝÑ
kÑ8

κ P MpXµ, Sq for some

increasing sequence pMkq. As usual, θpxq “ xp0q (θ P CpXµq). We have

(32)

ż

Xµ

θ dκ “ 0,

as the integral equals limkÑ8
1

Mk

ř
nďMk

θpSnµq “ 0 (by the PNT). Denoting

by Inv the σ-algebra of S-invariant (modulo the measure κ) subsets of Xµ, we
recall that

1

H

ÿ

hďH

θ ˝ Sh ÝÝÝÝÑ
HÑ8

Epθ|Invq in L2pXµ, κq

(by the von Neumann ergodic theorem). We want to show that

θ K L2pXµ, Inv, κq

(i.e. κ must be “slightly” ergodic). In other words, we want to show that

ż

Xµ

ˇ̌
ˇ̌
ˇ
1

H

ÿ

hďH

θ ˝ Sh

ˇ̌
ˇ̌
ˇ

2

dκ ÝÝÝÝÑ
HÑ8

0.

But such integrals can be computed:

1

Mk

ÿ

mďMk

ˇ̌
ˇ̌
ˇ
1

H

ÿ

hďH

θ ˝ ShpSmµq
ˇ̌
ˇ̌
ˇ

2

ÝÝÝÑ
kÑ8

ż

Xµ

ˇ̌
ˇ̌
ˇ
1

H

ÿ

hďH

θ ˝ Sh

ˇ̌
ˇ̌
ˇ

2

dκ.

24



Putting things together, given ε ą 0, for H ě 1 large enough, we want to see

lim sup
kÑ8

1

Mk

ÿ

mďMk

ˇ̌
ˇ̌
ˇ
1

H

ÿ

hďH

µpm ` hq
ˇ̌
ˇ̌
ˇ

2

ď ε.

The latter is true because of [124]: for a „typical” m the sum
ˇ̌
1
H

ř
mďhăm`H µphq

ˇ̌

is small.

Remark 3.17. As the calculation above shows, the fact that

1

M

ÿ

mďM

ˇ̌
ˇ̌
ˇ
1

H

ÿ

hďH

µpm ` hq
ˇ̌
ˇ̌
ˇ

2

Ñ 0

when H Ñ 8 and H “ opMq is equivalent to θ K L2pXµ, Inv, κq for each
κ P Q-genpµq. In particular, the Chowla conjecture implies the above short
interval behavior.

However, remembering that κ|X
µ2

“ νµ2 , one can ask now whether θ is
measurable with respect to the factor given by the Mirsky measure. As this
factor has rational discrete spectrum [33], to show that this is not the case, we
need to prove that θ K L2pΣratq, where Σrat stands for the factor given by the
whole rational spectrum of pXµ, κ, Sq. To do it, we need to show that for each
r ě 1, we have

1

N

ÿ

nďN

θ ˝ Srn ÝÝÝÝÑ
NÑ8

0 in L2pXµ, κq.

This convergence can be shown by using the strong MOMO property (which we
will consider in Section 4) for the rotation j ÞÑ j ` 1 on Z{rZ. We skip this
argument here and show still a stronger consequence.

Assume that κ P Q-genpµq and that we want to show that the spectral
measure of θ P L2pXµ, κq is continuous. Hence, we need to show that

1

H

ÿ

hďH

|pσθphq| ÝÝÝÝÑ
HÑ8

0

when H Ñ 8. Equivalently, we need to show that

1

H

ÿ

hďH

ˇ̌
ˇ̌
ˇ

ż

Xµ

θ ˝ Sh ¨ θ dκ
ˇ̌
ˇ̌
ˇ ÝÝÝÝÑ

HÑ8
0.

If we fix H ě 1 then

ż

Xµ

θ ˝ Sh ¨ θ dκ “ lim
kÑ8

1

Mk

ÿ

mďMk

θ ˝ ShpSmµq ¨ θpSmµq

“ 1

Mk

ÿ

mďMk

µpm ` hqµpmq.

It follows that we need to show that

1

H

ÿ

hďH

ˇ̌
ˇ̌
ˇ
1

Mk

ÿ

mďMk

µpm ` hqµpmq
ˇ̌
ˇ̌
ˇ Ñ 0
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when H,Mk Ñ 8; to be precise, given ε ą 0 we want to show that for H ą Hε,

we have lim supkÑ8
1
H

ř
hďH

ˇ̌
ˇ 1
Mk

ř
mďMk

µpm ` hqµpmq
ˇ̌
ˇ ă ε. Hence, directly

from Theorem 2.12, we obtain the following.

Corollary 3.18. The spectral measure of θ is continuous for each κ P Q-genpµq.
While it is obvious that the subshift Xµ is uncountable (indeed, it is the

subshift Xµ2 which is already uncountable, see Section 6), it is not clear whether
Xλ is uncountable. However, if a subshift pY, Sq is countable, all its ergodic
measures are given by periodic orbits, hence there are only countably many of
them and it easily follows that each κ P MpY, Sq yield a system with discrete
spectrum. Hence, immediately from Corollary 3.18, we obtain that:

Corollary 3.19. The subshift Xλ is uncountable.34

From Corollary 3.18 we derive immediately the Möbius disjointness of all
dynamical systems with “trivial” invariant measures (see also [91]). This kind
of problems will be the main subject of our discussion in Section 4.

Corollary 3.20. Let pX,T q be any topological dynamical system such that,
for each measure ν P MpX,T q, pX, ν, T q has discrete spectrum (not necessarily
ergodic, of course). Then pX,T q is Möbius disjoint. In particular, the result
holds if M epX,T q is countable with each member of M epX,T q yielding a discrete
spectrum dynamical system.

Proof. Fix x P X and consider

1

Mk

ÿ

mďMk

δpTmx,Smµq ÝÝÝÑ
kÑ8

ρ.

We have ρ|Xµ
“: κ P Q-genpµq and ρ|X “: ν. Now, we fix f P CpXq and we

need to show that
ş
f b θ dρ “ 0. But

(33)

ż

XˆXµ

f b θ dρ “
ż

XˆXµ

pf b 1q ¨ p1 b θq dρ “ 0.

Indeed, the spectral measure of f b 1 with respect to ρ is the same as the
spectral measure of f with respect to ν and the spectral measure of 1 b θ with
respect to ρ is the same as the spectral measure of θ with respect to κ. Therefore,
these spectral measures are mutually singular by assumption and Corollary 3.18.
Hence, the functions f b 1 and 1 b θ are orthogonal, i.e. (33) holds.35

If we have all ergodic measures giving discrete spectrum but we have too
many ergodic measures then the argument above does not go through. Consider

(˚) px, yq ÞÑ px, x ` yq on T2. 36

Question 1 (Frantzikinakis (2016)). Can we obtain κ P Q-genpλq, so that
pXλ, κ, Sq is isomorphic to (˚)?

Of course, the answer to Question 1 is expected to be negative.

34The result has been observed in [68], cf. also [90].
35We use here the standard result in the theory of unitary operators that mutual singularity

of spectral measures implies orthogonality. Recall also the classical result in ergodic theory
that spectral disjointness implies disjointness.

36Consider X1 “ X2 “ T2 with µ1 “ µ2 “ Leb
T2 , the diagonal joining ∆ on X1 ˆ X2 and

fpx, yq “ θpx, yq with θpx, yq “ e2πiy. The spectral measure of θ is Lebesgue, and all ergodic
components of the measure µ1 have discrete spectra.
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3.4.2 Frantzikinakis’ results

We now follow [66] and formulate results for the Liouville function, although,
up to some obvious modifications, they also hold for µ.

Theorem 3.21 ([66]). Assume that Nk Ñ 8 and let 1
logNk

ř
nďNk

δSnλ

n
ÝÝÝÑ
kÑ8

κ. If κ is ergodic then the Chowla conjecture (and Sarnak’s conjecture) holds
along pNkq for the logarithmic averages.

Taking into account footnote 33, we cannot deduce a similar statement for
ordinary averages along pNkq but in view of [76], see Remark 3.14, the Chowla
conjecture holds along another subsequence. The situation becomes clear when
pNkq is the sequence of all natural numbers and we assume genericity.

Corollary 3.22 ([66]). If λ is generic for an ergodic measure then the Chowla
conjecture holds.

Let us say a few words on the proof. Recall that given a bounded sequence
papnqq Ă C admitting correlations,37 one defines its local uniformity seminorms
(see Host and Kra [87]) in the following manner:

}a}2U1pNq “ EhPNEnPNapn ` hqapnq,(34)

}a}2s`1

Us`1pNq “ EhPN }Sha ¨ a}2sUspNq, s ě 2,(35)

where, for each bounded sequence pbpnqq, pShbqpnq :“ bph ` nq and EnPNbpnq “
limNÑ8

1
N

ř
nďN bpnq. (Similar definitions are considered along a subsequence

pNkq.)
The following result has been proved by Tao:

Theorem 3.23 ([155]). Assume that λ is generic. The Chowla conjecture holds
if and only if }λ}UspNq “ 0 for each s ě 1.38

Remark 3.24. We have assumed in the statement of Theorem 3.23 that λ is
generic but we would like also to note that, without this latter (strong) assump-
tion, Tao obtained the equivalence in Theorem 3.23 for the logarithmic averages,
see Conjecture 1.6 and Theorem 1.9 in [155] (however, one has to modify the
definition of seminorms [155]).

Hence, under the assumption of Corollary 3.22, we need to prove that all local
uniform seminorms of λ vanish. The inverse theorem for seminorms reduces this
problem to the statement: for every basic nilsequence papnqq39 on an s ´ 1-step
nilmanifold G{Γ and every s ´ 2-step manifold H{Λ, we have

lim
NÑ8

EmPN sup
bPΨH{Λ

ˇ̌
EnPrm,m`Nsλpnqapnqbpnq

ˇ̌
“ 0,

where ΨH{Λ is a special class of basic nil-sequences (coming from Lipschtz func-
tions). The latter is then proved using a deep induction argument.

37I.e., we assume the existence of the limits of sequences`
1
N

ř
nďN a1pnqa1pn ` k1q . . . a1pn ` krq

˘
Ně1

for every r P N and k1, . . . , kr P N (not

necessarily distinct) with a1 “ a or a. It is not hard to see that a admits correlations if and
only if it is generic, cf. Section 3.1.

38We have }λ}U1pNq “ 0 by [124], moreover }λ}U2pNq “ 0 is equivalent to

limNÑ8 EmPN supαPr0,1q

ˇ̌
EnPrm,m`Nsλpnqe2πinα

ˇ̌
“ 0 (cf. Conjecture C) and remains open.

For a subsequence version of Theorem 3.23 for logarithmic averages, see [155].
39By that we mean apnq “ fpgnΓq for some continuous f P CpG{Γq and g P G.
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3.5 Dynamical properties of Furstenberg systems associ-
ated to the Liouville and Möbius functions

We now continue considerations about logarithmic version of Sarnak’s conjec-
ture, cf. Conjecture B, Theorem 3.21. Consider all measures κ for which λ is
logarithmically quasi-generic, i.e. 1

logNk

ř
nďNk

δSnλ

n
Ñ κ for some Nk Ñ 8.

We denote the set of all such measures by log-Q-genpλq. Following [68], for
each κ P log-Q-genpλq the corresponding measure-theoretic dynamical system
pXλ, κ, Sq will be called a Furstenberg system of λ. Before we get closer to
the results of [68], let us see first some consequence of Theorem 3.15 for the
logarithmic Sarnak’s conjecture:

(36)
For each Furstenberg system pXλ, κ, Sq, the spectral measure
σθ of θ is Lebesgue.

Indeed, assuming 1
logNk

ř
nďNk

δSnλ

n
ÝÝÝÑ
kÑ8

κ, Theorem 3.15 tells us that for

each h P Zzt0u, we have

pσθphq “
ż

Xλ

θ ˝ Sh ¨ θ dκ “ lim
kÑ8

1

logNk

ÿ

nďNk

λpn ` hqλpnq
n

“ 0.

Using (36) and repeating the proof of Corollary 3.20, we obtain the following.

Corollary 3.25. Let pX,T q be a topological system such that each of its
Furstenberg’s systems has singular spectrum. Then pX,T q is logarithmically
Liouville disjoint.

The starting point of the paper [68] is a surprising Tao’s identity (implicit
in [154]) for general sequences which in its ergodic theory language (cf. Subsec-
tion 3.4.1) takes the following form:

Theorem 3.26 (Tao’s identity, [68]). Let κ P log-Q-genpλq. Then

ż

Xλ

˜
ℓź

j“1

θ ˝ Skj

¸
dκ “ p´1qℓ lim

NÑ8

logN

N

ÿ

PQpďN

ż

Xλ

˜
ℓź

j“1

θ ˝ Spkj

¸
dκ

for all ℓ P N and k1, . . . , kℓ P Z.

Now, the condition in Theorem 3.26 is purely abstract (indeed, the function θ

generates the Borel σ-algebra), and the strategy to cope with logarithmic Sar-
nak’s conjecture is to describe the class of measure-theoretic dynamical systems
satisfying the assertion of Theorem 3.26 and then to obtain Liouville disjointness
for all systems which are disjoint (in the Furstenberg sense) from all members of
the class. In fact, Frantzikinakis and Host deal with extensions of Furstenberg
systems of λ, so called systems of arithmetic progressions with prime steps.40

40Given a measure-theoretic dynamical system pZ,D, ρ,Rq, its system of arithmetic pro-
gressions with prime steps is of the form pZZ,BpZZq, rρ, Sq, where S is the shift and the (shift
invariant) measure rρ is determined by

ż

ZZ

mź

j“´m

fjpzjq drρpzq “ lim
NÑ8

logN

N

ÿ

pďN

ż

Z

mź

j“´m

fj ˝ Rpj dρ

for all m ě 0, f´m, . . . , fm P L8pZ, ρq (here z “ pzjq). It is proved that such shift systems
have no irrational spectrum. One of key observations is that each Furstenberg system of the
Liouville function is a factor of the associated system of arithmetic progressions with prime
steps.
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They prove the following result.

Theorem 3.27 ([68]). For each system of arithmetic progressions with prime
steps, its “typical” ergodic component is isomorphic to the direct product of an
infinite-step nilsystem and a Bernoulli automorphism.41 In particular, each
Furstenberg system pXλ, κ, Sq of λ is a factor of a system which:
(i) has no irrational spectrum and
(ii) has ergodic components isomorphic to the direct product of an infinite-step
nilsystem and a Bernoulli automorphism.

Remark 3.28. All the above results are also true when we replace λ by µ.

Then, some new disjointness results in ergodic theory are proved (for ex-
ample, all totally ergodic automorphisms are disjoint from an automorphism
satisfying (i) and (ii) in Theorem 3.27) and the following remarkable result is
obtained:

Theorem 3.29 ([68]). Let pX,T q be a topological dynamical system of zero
entropy with countably many ergodic invariant measures. Then Conjecture B
holds for pX,T q.

In particular, logarithmic Sarnak’s conjecture holds for all zero entropy
uniquely ergodic systems. As a matter of fact, some new42 consequences are
derived:

Theorem 3.30 ([68]). Let pX,T q be a topological dynamical system with zero
entropy. Assume that x P X is generic for a measure ν with only countably
many ergodic components all of which yield totally ergodic systems. Then, for
every f P CpXq,

ş
X
f dν “ 0, we have

lim
NÑ8

1

logN

ÿ

nďN

fpT nxq śℓ
j“1 µpn ` kjq
n

“ 0

for all ℓ P N and k1, . . . , kℓ P Z.

New conjectures are proposed in [68]:

1. Every real-valued u P M has a unique Furstenberg system (i.e. u is
generic) which is ergodic and isomorphic to the direct product of a Bernoulli
automorphism and an odometer.

2. If, additionally, u P M takes values ˘1 then its Furstenberg system is
either Bernoulli or it is an odometer.

Finally, it is noticed in [68] that the complexity of the Liouville function has
to be superlinear, that is

(37) lim
NÑ8

1

N

ˇ̌
tB P t´1, 1uN : B appears in λu

ˇ̌
“ 8.

The reason is that, as shown in [68], for transitive systems having linear block
growth we have only finitely many ergodic measures (and clearly systems with
linear block growth have zero topological entropy). Hence, by Theorem 3.29,
such systems are Liouville disjoint. As Xλ is not Liouville disjoint, λ cannot
have linear block growth, i.e. (37) holds.

41The product decomposition depends on the component.
42They are new even for irrational rotations. Cf. the notions of (S)-strong and (S0)-strong

and their equivalence to the Chowla type condition in [3].
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4 The MOMO and AOP properties

4.1 The MOMO property and its consequences

We will now consider Sarnak’s conjecture from the ergodic theory point of view.
We ask whether (already) measure-theoretic properties of a measurable system
pZ,D, κ, Rq imply the validity of (1) for any pX,T q, f P CpXq provided that
x P X is a generic point for a measure µ such that the measure-theoretic system
pX,BpXq, µ, T q is measure-theoretically isomorphic to pZ,D, κ, Rq. More specif-
ically, we can ask whether some measure-theoretic properties of pZ,D, κ, Rq can
imply Möbius disjointness of all its uniquely ergodic models.43 We recall that
the Jewett-Krieger theorem implies the existence of a uniquely ergodic model
of each ergodic system.44 As a matter of fact, there are plenty of such models
and they can have various additional topological properties including topolog-
ical mixing45 [115]. Here is another variation of the approach to view Möbius
disjointness as a measure-theoretic invariant:

Question 2. Does the Möbius disjointness in a certain uniquely ergodic model
of an ergodic system yield the Möbius disjointness in all its uniquely ergodic
models?

To cope with these questions we need a definition. Let u : N Ñ C be an
arithmetic function.46

Definition 4.1 (strong MOMO47 property [4]). We say that pX,T q satisfies
the strong MOMO property (relatively to u) if, for any increasing sequence of
integers 0 “ b0 ă b1 ă b2 ă ¨ ¨ ¨ with bk`1 ´ bk Ñ 8, for any sequence pxkq of
points in X , and any f P CpXq, we have

(38)
1

bK

ÿ

kăK

ˇ̌
ˇ̌
ˇ̌

ÿ

bkďnăbk`1

fpT n´bkxkqupnq

ˇ̌
ˇ̌
ˇ̌ ÝÝÝÝÑ

KÑ8
0.

Remark 4.1. The property (38) looks stronger than the condition on Möbius
disjointness. The idea behind it is to look at the pieces of orbits (of different
points) in one system as a single orbit of a point in a different, larger but
“controllable” (from measure-theoretic point of view) system.

43Note that the answer is positive in all uniquely ergodic models of the one-point system:
each such a model has a unique fixed point that attracts each orbit on a subset of density 1, cf.

the map e2πix ÞÑ e2πix2

, x P r0, 1q. This argument is however insufficient already for uniquely
ergodic models of the exchange of two points: in this case we have a density 1 attracting 2-
periodic orbit ta, bu, but we do not control to which point a or b the orbit returns first. Quite
surprisingly, it seems that already in this case we need [124] to obtain Möbius disjointness of
all uniquely ergodic models.

44If all uniquely ergodic systems were Möbius disjoint, then as noticed by T. Downarowicz,
we would get that the Chowla conjecture fails in view of the result of B. Weiss [168] Thm.
4.4’ on approximation of generic points of ergodic measures by uniquely ergodic sequences.

45Topological mixing for example excludes the possibility of having eigenfunctions continu-
ous.

46Our objective is of course the Möbius function µ, however the whole approach can be
developed for an arithmetic function satisfying some additional properties.

47The acronym comes from Möbius Orthogonality of Moving Orbits.
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Remark 4.2. One can easily show (as in Section 3.4.1) that the strong MOMO
property (relative to µ) implies fbθ K L2pInv, ρq for each ρ P Q-genppx,µq, T ˆ
Sq.48

By taking f “ 1 in Definition 4.1, we obtain that whenever strong MOMO
holds, u has to satisfy:

(39)
1

bK

ÿ

kăK

ˇ̌
ˇ̌
ˇ̌

ÿ

bkďnăbk`1

upnq

ˇ̌
ˇ̌
ˇ̌ ÝÝÝÝÑ

KÑ8
0

for every sequence 0 “ b0 ă b1 ă b2 ă ¨ ¨ ¨ with bk`1 ´ bk Ñ 8. In particular,
1
N

ř
năN upnq ÝÝÝÝÑ

NÑ8
0. This is to be compared with (18), (20) and (19) to

realize that we require a special behavior of u on a typical short interval.

Theorem 4.3 ([4]). Let pZ,D, κ, Rq be an ergodic dynamical system. Let
u : N Ñ C be an arithmetic function. The following conditions are equivalent:

(a) There exist a topological system pY, Sq enjoying the strong MOMO prop-
erty (relative to u) and ν P M epY, Sq such that the measurable systems
pY,BpY q, ν, Sq and pZ,D, κ, Rq are isomorphic.

(b) For any topological dynamical system pX,T q and any x P X, if there exists
a finite number of T -invariant measures µj, 1 ď j ď t, such that

• pX,BpXq, µj, T q is measure-theoretically isomorphic to pZ,D, κ, Rq for
each j,

• any measure for which x is quasi-generic is a convex combination of
the measures µj, i.e. Q-genpxq Ă convpµ1, . . . , µtq,

then 1
N

ř
nďN fpT nxqupnq ÝÝÝÝÑ

NÑ8
0 for each f P CpXq.

(c) All uniquely ergodic models of pZ,D, κ, Rq enjoy the strong MOMO property
(relative to u).

The proof of implication (a)ñ(b) borrows some ideas from [91] and the proof
of implication (b)ñ(c) uses some ideas from [7].

Remark 4.4. It can be easily shown that any minimal (hence uniquely ergodic)
rotation on a compact Abelian group satisfies the strong MOMO property (say,
relatively to µ). It follows from Theorem 4.3 (and the Halmos-von Neumann
theorem) that in each uniquely ergodic model of an ergodic automorphism with
discrete spectrum, we also have the strong MOMO property (in particular, the
Möbius disjointness).

We now list three consequences of Theorem 4.3:

Corollary 4.5 ([3]). (a) If Sarnak’s conjecture holds then the strong MOMO
property (relative to µ) holds for every zero entropy dynamical system.49

48Inv stands here for the σ-algebra of T ˆ S-invariant sets modulo ρ.
49That is, Sarnak’s conjecture and the strong MOMO property (relatively to µ) for all

deterministic systems are equivalent statements.
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(b) If Sarnak’s conjecture holds then it holds uniformly, that is, the convergence
in (1) is uniform in x.50

(c) Fix δp...0.00...q ‰ κ P M eppDLqZ, Sq, where DL “ tz P C : |z| ď Lu. Let

pX,T q be any uniquely ergodic model of ppDLqZ, κ, Sq. Then for any u P
pDLqZ for which Q-genpuq Ă convpκ1, . . . , κmq, where ppDLqZ, κj , Sq for j “
1, . . . ,m is measure-theoretically isomorphic to ppDLqZ, κ, Sq, the system
pX,T q does not satisfy the strong MOMO property (relative to u).51

Remark 4.6. Let us come back to Theorem 3.4 and Remark 3.6, i.e. to the
reformulation of Sarnak’s conjecture using completely deterministic sequences.
We intend to show that a natural generalization of Corollary 4.5 (b) to the
completely deterministic case fails. Indeed, consider the square-free system
pXµ2 , Sq. In Remark 3.3, we have already noticed that whenever kj , j “ 1, . . . , r

are different non-negative integers, then

(˚)
ÿ

nďN

µ2pn ` k1q . . .µ2pn ` kr´1qµpn ` krq “ opNq.

It follows that for each f P CpXµ2q, for each k P Z, we have

(˚˚)
1

N

ÿ

nďN

fpSn`kµ2qµpnq Ñ 0.

On the other hand, the convergence in (˚˚) cannot be uniform in k P Z. Indeed,
if it were then the whole square-free system would be Möbius disjoint. This is
however impossible since pXµ2 , Sq is hereditary, see Remark 6.2. Indeed, we can
find y P Xµ2 such ypnq “ 1 if and only if µpnq “ 1 and ypnq “ 0 otherwise (then
y ď µ2) and if we set θpzq :“ zp0q then limNÑ8

1
N

ř
nďN θpSnyqµpnq “ 3

π2 .
See also [139], where a quantitative version of p˚q has been proved.

Note that Theorem 4.3 does not fully answer Question 2. In certain situa-
tions the following general (lifting) lemma of Downarowicz and Lemańczyk can
be helpful:

Lemma 4.7 ([2, 51]). Assume that an ergodic automorphism R is coalescent.52

Let p rX, rT q and pX,T q be uniquely ergodic models of R. Assume that T is a

topological factor of rT , i.e. there exists π : rX Ñ X which is continuous and onto
and which satisfies π ˝ rT “ T ˝ π. If T is Möbius disjoint then also rT is Möbius
disjoint.

50It is not hard to see that the MOMO property implies the relevant uniform convergence.
As a matter of fact, the strong MOMO property is equivalent to the uniform convergence

(in x, for a fixed f P CpXq) on short intervals: 1
M

ř
1ďmăM

ˇ̌
ˇ 1
H

ř
mďhăm`H fpThxqµpnq

ˇ̌
ˇ Ñ

0 (when H,M Ñ 8 and H “ opMq). It follows that we have equivalence of: Sarnak’s
conjecture (2), Sarnak’s conjecture in its uniform form, Sarnak’s conjecture in its short interval
uniform form and the strong MOMO property. Moreover, each of these conditions is implied
by the Chowla conjecture.

51This result means that there must be an observable sequence in pX, T q which significantly
correlates with u.

52This means that each measure-preserving transformation commuting with R must be in-
vertible. Finite multiplicity of the Koopman operator associated to R guarantees coalescence.
In particular, all ergodic rotations are coalescent.
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4.2 Möbius disjointness and entropy

Sarnak’s conjecture deals with deterministic systems but Möbius disjointness, a
priori, does not exclude the possibility of positive (topological) entropy systems
which are Möbius disjoint.53 The first “natural” trial would be to take the
square-free system pXµ2 , Sq which has positive entropy (see Section 6.2) and
clearly µ2 is orthogonal to µ. However, in spite of the orthogonality of the
two sequences, as we have noticed in Remark 4.6, the square-free system is not
Möbius disjoint.

Recently, Downarowicz and Serafin [52] constructed Möbius disjoint posi-
tive entropy homeomorphisms of arbitrarily large entropy. On the other hand,
see [102], in the subshift of finite type case we do not have Möbius disjoint-
ness. Using Katok’s horseshoe theorem, it follows that C1`δ-diffeomorphisms
of surfaces are not Möbius disjoint but the following question seems to be open:

Question 3. Is there a positive entropy diffeomorphism of a compact manifold
which is Möbius disjoint?

Viewed all this above, another natural question arises:

Question 4. Does there exist an ergodic positive entropy measure-theoretic
system all uniquely ergodic models of which are Möbius disjoint?

Using Theorem 4.3, Sinai’s theorem on Bernoulli factors (see e.g. [75]) and
B. Weiss’ theorem [167] on strictly ergodic models of some diagrams a partial
answer to Question 4 is given by the following result:

Corollary 4.8 ([4]). Assume that u P pDLqZ is generic for a Bernoulli mea-
sure κ. Let v P pDLqZ, u and v correlate. Then for each dynamical system
pX,T q with hpX,T q ą hppDLqZ, κ, Sq, we do not have the strong MOMO prop-
erty relatively to v.

By substituting u “ λ, v “ µ and assuming the Chowla conjecture for λ, we
obtain that no system pX,T q with entropy ą log 2 satisfies the strong MOMO
relatively to µ. When µ is replaced by λ, we still have a stronger result.

Proposition 4.9 ([4]). Assume that the Chowla conjecture holds for λ. Then
no topological system pX,T q with positive entropy satisfies the strong MOMO
property relatively to λ.

Remark 4.10. The proof of Theorem 4.3 tells us that when pZ,D, κ, Rq is
ergodic and has positive entropy then there exists a system pX,T q, which is not
Liouville disjoint, with at most three ergodic measures and all of these measures
yield a measurable system isomorphic to R. Therefore, it seems reasonable to
conjecture that the answer to Question 4 is negative.

We now have a completely clear picture for the Liouville function: it follows
from Theorem 3.4 (for λ) and Proposition 4.9 that if the Chowla conjecture holds
for λ then the strong MOMO property (relatively to λ) holds for pX,T q if and
only if hpX,T q “ 0. Using footnote 50, we immediately obtain Proposition 4.9
in its equivalent form:

53Sarnak in [148] mentions that Bourgain has constructed a positive entropy system which
is Möbius disjoint but this construction has never been published.

33



Corollary 4.11. Assume that the Chowla conjecture holds for λ. Then, the
short interval uniform convergence in (1) (with µ replaced by λ) takes place if
and only if hpX,T q “ 0.

4.3 The AOP property and its consequences

We need an ergodic criterion to establish the strong MOMO property in models
of an automorphism. This turns out to be a natural ergodic counterpart of
the KBSZ criterion (Theorem 2.13). Following [7] an ergodic automorphism
R is said to have asymptotically orthogonal powers (AOP) if for each f, g P
L2
0pZ,D, κq, we have

(40) lim
PQp,qÑ8,p‰q

sup
κPJepRp,Rqq

ˇ̌
ˇ̌
ż

XˆX

f b g dκ

ˇ̌
ˇ̌ “ 0.

Rotation Rx “ x`1 acting on Z{kZ with k ě 2 has no AOP property because of
Dirichlet’s theorem on primes in arithmetic progressions. Hence, AOP implies
total ergodicity (clearly, AOP is closed under taking factors). The AOP property
implies zero entropy [7].

Clearly, if the powers of R are pairwise disjoint54 then R enjoys the AOP
property. In order to see a less trivial example of an AOP automorphism,
consider any totally ergodic discrete spectrum automorphism R on pZ,D, κq.
For f, g take eigenfunctions corresponding to eigenvalues c, d, respectively. Now,
take ρ P JepRp, Rqq and consider

ż

ZˆZ

f b g dρ “
ż

ZˆZ

pf b 1Zq ¨ p1Z b gq dρ.

Notice that f b 1Z and 1Z b g are eigenfunctions of pZ ˆ Z, ρ,Rp ˆ Rqq cor-
responding to cp and dq, respectively. If cp ‰ dq (and this is the case for all
but one pair pp, qq because of total ergodicity) then these eigenfunctions are
orthogonal and we are done. We will see more examples in Section 5.

Remark 4.12. For an AOP automorphism the powers need not be disjoint.
As a matter of fact, we can have an AOP automorphism with all of its non-zero
powers isomorphic.55

Theorem 4.13 ([3, 7]). Let u P M. Suppose that pZ,D, κ, Rq satisfies AOP.
Then the following are equivalent:

• u satisfies (39);

• The strong MOMO property relatively to u is satisfied in each uniquely
ergodic model pX,T q of R.

In particular, if the above holds, for each f P CpXq, we have

1

N

ÿ

nďN

fpT nxqupnq ÝÝÝÝÑ
NÑ8

0 uniformly in X.

54This is a “typical” property of an automorphism of a probability standard Borel space [98].
Möbius disjointness for uniquely ergodic models for this case is already noticed in [31].

55Take an ergodic rotation with the group of eigenvalues te2πiαm{n : m,n P Z, n ‰ 0, α R Qu.
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Corollary 4.14. Assume that pZ,D, κ, Rq enjoys the AOP property. Then, in
each uniquely ergodic model pX,T q of R, we have

(41)
1

M

ÿ

Mďmă2M

ˇ̌
ˇ̌
ˇ
1

H

ÿ

mďhăm`H

fpT nxqµpnq
ˇ̌
ˇ̌
ˇ ÝÝÝÝÝÝÝÝÝÝÝÝÑ

H,MÑ8,H“opMq
0

for all f P CpXq, x P X .

The AOP property can be defined for actions of locally compact (second
countable) groups. Then, for induced actions this property lifts [64], and in
particular (by taking the induced R-action), if we have an automorphism then
the corresponding suspension flow56 has this lifted property. In particular, using
induced Z-actions (for aZ Ă Z), one can derive easily that for uniquely ergodic
systems pX,T q with the measure-theoretic AOP property we not only have
Möbius disjointness but also

(42)
1

N

ÿ

nďN

fpT nxqµpan ` bq ÝÝÝÝÑ
NÑ8

0

for each a, b P N, f P CpXq and the convergence is uniform in x [64].57

5 Glimpses of results on Sarnak’s conjecture

The cases for which the Möbius disjointness has been proved, depend on the
complexity of the deterministic system. They fit into two basic types. The
first comes with sufficiently quantitative estimates for the disjointness sums
which makes possible an analysis of the sums on primes yielding a PNT. This
group includes Kronecker systems (Vinogradov [162]), nilsystems (Green and
Tao [80]) and, perhaps the most striking, the Thue-Morse system (Mauduit and
Rivat [127]) which resolved a conjecture of Gelfond [74]. When the systems are
more complex, such as horocycles flows,58 then at least to date they do not
come with a PNT,59 and for them the KBSZ criterion is used, in other words,
the disjointness (perhaps in its weaker form, see Section 4) is achieved.

We now review most of important cases in which Möbius disjointness has
been proved.

5.1 Systems of algebraic origin

5.1.1 Horocycle flows

Let Γ Ă PSL2pRq be a discrete subgroup with finite covolume.60 Then the
homogeneous space X “ ΓzPSL2pRq is the unit tangent bundle of a surface

56By the suspension flow of R we mean the special flow over R under the constant function
(equal to 1).

57The same argument shows that if Sarnak’s conjecture holds then (42) holds for each zero
entropy pX, T q, a, b P N, f P CpXq uniformly in x P X.

58Horocycle flows are mixing of all orders, see [121].
59In case of horocycle flows (Bourgain, Sarnak and Ziegler [31]) Ratner’s theorems on join-

ings are used and these provide no rate.
60We will tacitly assume that Γ is cocompact, so that the homogenous space ΓzPSL2pRq is

compact and the system is uniquely ergodic by [71]; otherwise, as in the modular case when
Γ “ PSL2pZq we need to compactify our space. The proof of Theorem 5.1 in the modular
case is slightly different than what we describe below.
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M of constant negative curvature. Let us consider the corresponding horocycle
flow61 phtqtPR and the geodesic flow pgsqsPR on X . Since

(43) gshtg
´1
s “ he´2st for all s, t P R,

the flows phtqtPR and phe´2stqtPR are measure-theoretically isomorphic for each
s P R. In order to show that T :“ h1 is Möbius disjoint, the KBSZ criterion is
used, and, given x P PSL2pRq, one studies limit points of 1

N

ř
nďN δpTpnΓx,T qnΓxq,

N ě 1. Now, the celebrated Ratner’s rigidity theorem [143] tells us two impor-
tant things: the point pΓx,Γxq is generic for a measure ρ (which must be a
joining by unique ergodicity: ρ P JpT p, T qq) and moreover this joining is er-
godic.62 Again using Ratner’s theory (cf. [142]) such joinings are determined by
the commensurator CompΓq of the lattice Γ:

CompΓq :“ tz P PSL2pRq : z´1Γz X Γ has finite index in both Γ and z´1Γzu.
Set xp,q :“ xg 1

2
logp p

q
qx

´1p8q. The intersection of the stabilizer of xp,q with

CompΓq yields the correlator of xp,q: it is a subgroup CpΓ, xp,qq Ă R˚
` and if

ρ is not the product measure then p
q

P CpΓ, xp,qq. The careful analysis of the

arithmetic and non-arithmetic cases done in [31] shows that given x P PSL2pRq,
p
q

P CpΓ, xp,qq only for finitely many different primes p, q. Hence, the joining ρ

has to be product measure for all but finitely many pairs pp, qq P P2 with p ‰ q

which, by Theorem 2.13, yields the following:

Theorem 5.1 ([31]). All time-automorphisms of horocycle flows are Möbius
disjoint.

Remark 5.2. As noticed in [6], this is (43) which yields the absence63 of AOP
and makes the following questions of interest.

Question 5. Do we have the MOMO property for horocycle flows? Are all
uniquely ergodic models of horocycle flows Möbius disjoint? Do we have uniform
convergence in (1)?

Since the method to prove Möbius disjointness is through the KBSZ criterion
(hence offers no rate of convergence), the following question is still open:

Question 6 (Sarnak). Do we have a PNT for horocycle flows?

For a partial answer, see [150], where it is proved that if Γx is a generic

point for Haar measure µX of X then any limit point of
´

1
πpNq

ř
pďN δTpΓx

¯
is

a measure which is absolutely continuous with respect to µX .

Question 7 (Ratner). Are smooth time changes for horocycle flows Möbius
disjoint?

As smooth time changes of horocycle flows enjoy so called Ratner’s property,
the above question can be asked in the larger context of flows possessing Ratner’s
property.

61We have htpΓxq “ Γ ¨
ˆ
x ¨

„
1 t

0 1

˙
and gspΓxq “ Γ ¨

ˆ
x ¨

„
e´s 0

0 es

˙
; we identify

gs and ht with the relevant matrices.
62The measure ρ depends on p, q and x and it is so called algebraic measure, i.e. a Haar

measure.
63To be compared with Remark 4.12; the difference however is that when the ratio of p and

q is close to 1, we can choose graph joinings in a compact set.
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Added in September 2017: In the recent paper [100], a new criterion (of
Ratner’s type) for disjointness of different time-automorphisms of flows has been
proved. The criterion applies for some classes of flows with Ratner’s property,
namely, in case of so called Arnold flows and for non-trivial smooth time changes
of horocycle flows (in particular, the answer to Question 7 is positive).

5.1.2 Nilrotations, affine automorphisms

Green and Tao in [80] proved Möbius disjointnes in the following strong form:

Theorem 5.3 ([80]). Let G be a simply-connected nilpotent Lie group with
a discrete and cocompact subgroup Γ. Let p : Z Ñ G be any is polynomial
sequence64 and f : G{Γ Ñ R a Lipschitz function. Then

ˇ̌
ˇ̌
ˇ
1

N

ÿ

nďN

fpppnqΓqµpnq
ˇ̌
ˇ̌
ˇ “ Of,G,Γ,A

ˆ
N

logA N

˙

for all A ą 0.

In particular, by considering TgpxΓq “ gxΓ, we see that all nilrotations are
Möbius disjoint with uniform Davenport’s estimate (3).

Also, a PNT holds for nilrotations: Let 2 “ p1 ă p2 ă . . . denote the
sequence of primes.

Theorem 5.4 ([80], Theorem 7.1). Assume that a nil-rotation Tg is ergodic.65

Then, for every x P G, we have

lim
NÑ8

1

N

ÿ

nďN

fpT pn
g xΓq “

ż

G{Γ
f dλG{Γ

for all continuous functions f : G{Γ Ñ r´1, 1s.
In [64], it is proved that all nil-rotations enjoy the AOP property (hence all

uniquely ergodic models of nil-rotations are Möbius disjoint). In fact, the result
is proved for all nil-affine automorphisms whose Möbius disjointness has been
established earlier in [120]. Earlier, AOP has been proved for all quasi-discrete
spectrum automorphism in [7], that is (following [82]) for all unipotent affine
automorphisms Tx “ Ax`b of compact Abelian groups (A is a continuous group
automorphism and b is an element of the group). The Möbius disjointness of
the latter automorphisms has been established still earlier in [120].

The proof of the following corollary in [7] shows that Furstenberg’s proof [69]
(see e.g. [55]) of Weyl’s uniform distribution theorem can be adapted to the short
interval version.

Corollary 5.5 ([7]). Assume that u : N Ñ C, u P M. Then, for each non
constant polynomial P P Rrxs with irrational leading coefficient, we have

1

M

ÿ

Mďmă2M

1

H

ˇ̌
ˇ̌
ˇ

ÿ

mďnăm`H

e2πiP pnqupnq
ˇ̌
ˇ̌
ˇ ÝÝÝÝÝÝÝÝÝÝÝÝÑ

H,MÑ8,H“opMq
0.66

64I.e. ppnq “ a
p1pnq
1 . . . a

pkpnq
k

, where pj : N Ñ N is a polynomial, j “ 1, . . . , k. See, Section 6
in [81] for the equivalence with the classical definition of polynomials sequences in nilpotent
Lie groups.

65We assume that G is connected.
66For degree 1 polynomials, the result is already in [125].
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Recall that a sequence panq Ă C is called a nilsequence if it is a uniform limit
of basic nilsequences, i.e. of sequences of the form pfpT n

g xΓqq, where f P CpG{Γq
(here, we do not assume that G{Γ is connected, neither that Tg is ergodic).

Corollary 5.6 ([64]). We have

1

M

ÿ

Mďmă2M

1

H

ˇ̌
ˇ̌
ˇ

ÿ

mďnăm`H

anupnq
ˇ̌
ˇ̌
ˇ ÝÝÝÝÝÝÝÝÝÝÝÝÑ

H,MÑ8,H“opMq
0.

It has been proved by Leibman [117] that all polynomial multicorrelation
sequences67 are limits in the Weyl pseudo-metric of nil-sequences, all such poly-
nomial sequences are orthogonal to µ on typical short interval, cf. Section 6.

The main problem connected with nilsequences is to prove the uniform ver-
sion of convergence on short intervals as it is made precise in Conjecture C of
Tao (see Section 3.3 and also Frantzikinakis’ proofs [66]).

5.1.3 Other algebraic systems

For a more general zero entropy algebraic systems and their Möbius disjointness
we refer the reader to [135], where in particular the Ad-unipotent translation
case is treated.

5.2 Systems of measure-theoretic origin. Substitutions
and interval exchange transformations

5.2.1 Systems whose powers are disjoint

We are interested in ergodic automorphisms pZ,D, κ, Rq for which (sufficiently
large) prime powers Rp are pairwise disjoint. Clearly, such automorphisms enjoy
the AOP property. A typical automorphism has this property [98] but there are
also large classes of rank one (we detail on this class below) automorphisms with
this property [5, 30, 146]. Also minimal self-joining automorphisms [97] enjoy
this property. Chaika and Eskin in [35] show that for a.e. 3-interval exchange
transformation (we detail on interval exchange transformations below) there
are sufficiently many prime powers that are disjoint. It follows that all uniquely
ergodic models of these automorphisms are Möbius disjoint.

5.2.2 Adic systems and Bourgain’s criterion

Let pZ,D, κ, Rq be a measure-theoretic system.

Definition 5.1. In pZ,D, κ, Rq, a Rokhlin tower is a collection of disjoint mea-
surable sets called levels F , RF , . . . , Rh´1F . If Z is equipped with a partition
P such that each level RrF is contained in one atom Pwprq, the name of the
tower is the word wp0q . . . wph ´ 1q.

67More precisely, given an automorphism T of a probability standard Borel space pX,B, µq,
we consider

an “
ż

X

g1 ˝ T p1pnq ¨ . . . ¨ gk ˝ T pkpnq dµ,

where gi P L8pX, µq, pi P Zrxs, i “ 1, . . . , k (k ě 1).
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Definition 5.2. A system pZ,D, κ, Rq is of rank one if there exists a sequence
of Rokhlin towers pFn, . . . , R

hn´1Fnq, n ě 1, such that the whole σ-algebra is

generated by the partitions tFn, RFn, . . . , R
hn´1Fn, Xz Ťhn´1

j“0 RjFnu.

For topological systems, there is no canonical notion of rank, but the use-
ful notion is that of adic presentation [161], which we translate here from the
original vocabulary into the one of Rokhlin towers.

Definition 5.3. An adic presentation of a topological system pX,T q is given,
for each n ě 0, by a finite collection Zn of Rokhlin towers such that:

• the levels of the towers in Zn partition X ,

• each level of a tower in Zn is a union of levels of towers in Zn`1,

• the levels of the towers in
Ť

ně0 Zn form a basis of the topology of X .

In that case, the towers of Zn`1 are built from the towers of Zn by cutting
and stacking, following recursion rules: a given tower in Zn`1 can be built by
taking columns of successive towers in Zn and stacking them successively one
above another. These rules are best seen by looking at the partition P into levels
of the towers in Z0; possibly replacing Z0 by some Zk, we can always assume P

has at least two atoms. The names of the towers in Zn form sets of words Wn,
and the cutting and stacking of towers gives a canonical decomposition of every
W P Wn:

W “ W k1

1 ¨ ¨ ¨W kr
r

for r words Wi P Wn´1, 1 ď i ď r, integers k1, . . . , kr; all these parameters
depend on the word W . These decompositions are called the rules of cutting
and stacking of the system.

The following result is an improvement on Theorem 3.1 of [63], which itself
can be found in [30], though it is not completely explicit in that paper (it is
stated in full only in a particular case, as Theorem 3, and its proof is under-
stated). The following effective bound stems from a closer reading of [30]:

Theorem 5.7. Let pX,T q be a topological dynamical system admitting an adic
presentation, as in Definition 5.3 and the comment just after.
Suppose that for any n and W in Wn, we have:

• in the rules of cutting and stacking r ď C, with C ě 2,

• if we decompose W into words Wℓ P Wn´s by iteration of the rules of
cutting and stacking then for all ℓ and s large enough, we have

|W | ą C200s|Wℓ|.

Then pX,T q is Möbius disjoint.
If such a system is uniquely ergodic and weakly mixing for its invariant

probability, it satisfies also the following PNT: for any word W “ w1 . . . wN

which is a factor of a word in any Wn, we have

Nÿ

i“1

Λpiqwi “
Nÿ

i“1

wi ` opNq.
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Proof. We look at Theorem 2 of [30]. It requires a stronger assumption, denoted
by relations (2.2) and (2.3) in p. 119 of [30], which is indeed the assumption of
the present theorem with the estimate C200s replaced by βpsq for some function

satisfying log βpsq
s

Ñ 8 when s Ñ 8 (note that the assumption in [30] that the
words Wn are on the alphabet t0, 1u is not used in the proof, which works for
any finite alphabet). Then this theorem gives, for any word w1 ¨ ¨ ¨wN in some
Wm and N large enough, an estimate for

ż ˇ̌
ˇ̌
ˇ

ÿ

nďN

wne
2πinθ

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

ÿ

nďN

µpnqe2πinθ
ˇ̌
ˇ̌
ˇ dθ,

and this, through the relation (1.62) on p. 118, implies that
ř

nďN wnµpnq “
opNq.

Lacking space to rewrite the extensive computations in [30], we explain how
to weaken the hypothesis. First, as suggested in the remark at the beginning of
Section 2, p. 119, of that paper, we replace βpsq by Cs

0 for some constant C0, as
yet unknown (the C0s written in the same p. 119 is a misprint). The relations
(2.2) and (2.3) are used twice in the course of the proof: first, to get the relation
(2.15), namely ˆ

C
log |W |

n

˙s

ă |W |ǫ

for a word WinWn, and then to get the estimate (2.42), which states that
ˆ
C
logK

s

˙s

ă Kǫ,

where s is the number of stages such that a word of length N in Wn is divided
into words of Wn´s, of lengths in the order of N

K
. Under our hypothesis, in the

first case, |W | is in Cn
0 , and in the second case K is in Cs

0 . Thus both (2.15)
and (2.42) are implied by the relation

log logC0 ` logC

logC0

ă ǫ.

The value of ǫ is dictated by relation (2.49), which requires QǫKǫpQ` Kq´ 1

4 ď
pQ ` Kq´ 1

5 for some large numbers Q and K, thus we can take ǫ “ 1
20

. Then
log logC0

logC0
will be bounded if C0 is large enough independently of C, while to

bound logC
logC0

we need to take C0 “ Ca; as C ě 2, we see that a “ 200 is
convenient for the sum of the two terms.

Now, if we replace wn by upnq “ fpT npx0qq, because of Definition 5.3 above,
we can first assume that f is constant on all levels of the towers of some stage
m, and then conclude by approximation. Such an f is also constant on all levels
of all towers at stages q ą m; fixing x0 and N , except for some initial values
up1q to upN0q where N0 is much smaller than N , we can replace upnq by w1

n,
where w1

n is the value of f on the n-th level of some tower with name W in some
Wq for q ě m. Then the w1

1 ¨ ¨ ¨w1
N are built by the same induction rules as the

w1 ¨ ¨ ¨wN , and the estimates using the w1
n are computed as those using the wn

in the proof of Theorem 2 of [30], thus we get the same result.
The PNT is in (3.4), (3.7), (3.14) of [30] ((3.14) is proved for the particular

case of 3-interval exchanges but holds in the same way for the more general
case).
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Of course, the value of C0 could be improved, but we need it to be at least
some power of C.

5.2.3 Substitutions

We start with some basic notions.

Definition 5.4. A substitution σ is an application from an alphabet A into the
set A‹ of finite words on A; it extends to a morphism of A‹ for the concatenation.
A fixed point of σ is an infinite sequence u with σu “ u. The associated symbolic
dynamical system pXσ, Sq is pXu, Sq for a fixed point u.

Substitution σ has constant length q if |σa| “ q for all a in A.
The Perron-Frobenius eigenvalue is the largest eigenvalue of the matrix giv-

ing the number of occurrences of j in σa. A substitution σ is primitive if a
power of this matrix has strictly positive entries.

For the class of constant length substitutions, there have been a lot of partial
results on Möbius orthogonality:

• First for the most famous example, the Thue-Morse substitution 0 Ñ 01,
1 Ñ 10, with Indlekofer and Kátai [94], Dartyge and Tenenbaum [41],
Mauduit and Rivat [127], El Abdalaoui, Kasjan and Lemańczyk [2].68

• The case of the Rudin - Shapiro substitution 0 Ñ 01, 1 Ñ 02, 2 Ñ
31, 3 Ñ 32 was solved by Mauduit and Rivat [128]. Then Drmota [53],
Deshouillers, Drmota and Müllner [48],

• Ferenczi, Kułaga-Przymus, Lemańczyk and Mauduit [60] extended these
results to various subclasses of systems of arithmetic origin.69

See also [122, 123] for a PNT for some digital functions.
But all this was superseded by the general result of Müllner [134], whose

proof uses the arithmetic techniques of [128] together with a new structure
theorem on the underlying automata:

Theorem 5.8 ([134]). For any substitution of constant length, the associated
symbolic system is Möbius disjoint. Moreover, a PNT holds if the substitution
is primitive.

The substitutions which are not of constant length are much less known:

• The most famous example is the Fibonacci substitution, 0 Ñ 01, 1 Ñ 0:
in that case, the associated symbolic system is a coding of an irrational
rotation, hence it is Möbius disjoint as a uniquely ergodic model of a
discrete spectrum automorphism, see Section 5.3.1.

• Drmota, Müllner and Spiegelhofer [54] have just shown Möbius disjoint-
ness for a new example, a substitution which generates p´1qsφpnq , where
sφpnq is the Zeckendorf sum-of-digits function.70

68In [41, 94, 127] it is proved that the sequence p´1qupnq, n ě 1 is orthogonal to µ.
69While in [53, 60] Möbius disjointness is proved for the dynamical systems given by bijective

substitutions, [48] treats the opposite case, so called synchronized. As noted in [21], this leads
to dynamical systems given by rational sequences and such are Möbius disjoint. Note also that
for the synchronized case, once the system is uniquely ergodic, it is automatically a uniquely
ergodic model of an automorphism with discrete spectrum, cf. Corollary 3.20 and Remark 4.4.

70This example has partly continuous spectrum.
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• Also, we can exhibit a small subclass of examples which are Möbius dis-
joint, by a straightforward translation of Bourgain’s criterion above:

Theorem 5.9. Suppose that σ is a primitive substitution satisfying

• for all i P A, σi “ pj1piqqa1piq . . . pjqi piqqaqi
piq, , a1piq P A, . . . , aqipiq P A,

qi ď C (this can be expressed as: the multiplicative length of σ is smaller
than C),

• the Perron-Frobenius eigenvalue of σ is larger than C200;

then the associated symbolic dynamical system is Möbius disjoint. If pXσ, Sq is
weakly mixing, the fixed points satisfy a PNT.

Proof. If all fixed points are periodic, the result is trivial. If σ has a non-periodic
fixed point, it is well known (and proved by the methods of [138] together with
the recognizability result of [133]) that the system has an adic presentation,
where the names of the towers in Zn are the words σna, a P A. Thus the results
come from Theorem 5.7 above and the properties of the matrix of σ.

Example 5.1. Here are some substitutions for which the above theorem applies,
with a PNT: 0 Ñ 0k`112, 1 Ñ 12, 2 Ñ 0k12, k ` 2 ą 3200.

Question 8. Are dynamical systems associated to substitutions Möbius dis-
joint?71

5.2.4 Interval exchanges

Definition 5.5. A k-interval exchange with probability vector pα1, α2, . . . , αkq,
and permutation π is defined by

Tx “ x `
ÿ

π´1pjqăπ´1piq
αj ´

ÿ

jăi

αj .

when x P ∆i “
”ř

jăi αj ,
ř

jďi αj

¯
.

Exchanges of 2 intervals are just rotations, thus Möbius disjointness holds
for them by the Prime Number Theorem (on arithmetic progressions) when
the rotation is rational and from a result of Davenport [43] – using a result of
Vinogradov [163] – when the rotation is irrational, cf. (3) in Introduction.

Then [30] exhibits exchanges of 3 intervals which are Möbius disjoint, with
a PNT if weak mixing holds: these use the criterion developed in Theorem 5.7
above, together with the adic presentation built in [62]. Generalizing these
methods, it is shown in [63] that Möbius disjointness holds for examples of
exchanges of k intervals for every k ě 2 and every Rauzy class, with a PNT in
the weak mixing case. A breakthrough came with [35], for a large subclass of
exchange of 3 intervals:

Theorem 5.10 ([35]). For (Lebesgue)-almost all pα1, α2q, Sarnak’s conjecture
holds for exchanges of 3 intervals with permutation πi “ 3 ´ i and probability
vector pα1, α2, 1 ´ α1 ´ α2q.

71One can also ask about Möbius disjointness of related systems as tiling systems.
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To prove this, Chaika and Eskin use first the well-known fact that such an
exchange of 3 intervals, denoted by T , is the induced map of the rotation of angle
α “ 1´α1

1`α2
on the interval r0, xq where x “ 1

1`α2
. This approach, of course, does

not generalize to 4 intervals or more.
In fact, in [35] two different results are proved. In the easier one, they deduce

Möbius disjointness from the disjointness of powers of T ; they give a sufficient
condition for Tm to be disjoint from T n for all m ‰ n, which is satisfied by
almost all these T . Namely, if we take pa1, . . .q to be the continued fraction
of α and pb1, . . .q the α-Ostrowski expansion of x, then it is enough that, for
any ordered k-tuple of pairs ppc1, d1q, . . . pck, dkqq of natural numbers such that
di ď ci´1, there are infinitely many i with ai “ c1,. . . , ai`k´1 “ ck, bi “ d1,. . . ,
bi`k´1 “ dk.

Then most of the paper is used to give an explicit Diophantine condition
on α and x, which implies a slightly weaker property than the disjointness of
powers. Under that condition, there exists a constant C such that for all n,
and 0 ď m ď n, Tm is disjoint from T n except maybe when m belongs to a
sequence mipnq in which any two consecutive terms satisfy mi`1pnq ą Cmipnq,
and this is proved to imply Möbius disjointness. The Diophantine condition
holds for almost all T , and, as it is long, we refer the reader to Theorem 1.4 of
[35]; it expresses the fact that the geodesic ray from a certain flat torus with
two marked points, defined naturally from T and its inducing rotation, spends
significant time in compact subsets of the space of such tori.

5.2.5 Systems of rank one

These systems form a measure-theoretic class defined in Definition 5.2 above.
It is well known, but has been shown explicitly for all cases only in the recent
[9], that each system of rank-one is measure-theoretically isomorphic to one of
the topological systems we define now.

Definition 5.6. A standard model of rank one is the shift on the orbit closure
of the sequence u which, for each n ě 0, begins with the word Bn defined
recursively by concatenation as follows. We take sequences of positive integers
qn, n ě 0, with qn ą 1 for infinitely many n, and an,i, n ě 0, 0 ď i ď qn ´ 1,

such that, if hn are defined by h0 “ 1, hn`1 “ qnhn ` řqn´1
j“0 an,i, then

8ÿ

n“0

hn`1 ´ qnhn

hn`1

ă 8.

We define B0 “ 0,
Bn`1 “ Bn1

an,0Bn . . . Bn1
an,qn´1

for n ě 0.

In [30], Bourgain proved Möbius disjointness for a standard model of rank
one if both the qn, n P N Y t0u and an,i, n P N Y t0u, are bounded by some
constant C (we will refer to this as to a bounded rank one construction).

Note however that, in the same paper, the half-hidden criterion deduced
from Theorem 2 or 3, see Theorem 5.7 above, is much more than an auxiliary to
prove the supposedly main Theorem 1 of [30]; it applies to a much wider class of
systems, and even for some famous rank one systems this criterion works while
Theorem 1 does not apply.
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Bourgain’s result was improved in [5], where so called recurrent rank one
constructions are considered with a stabilizing bounded subsequence of spacers
(that is, of a subsequence of pan,iq).72 One of main tools in [5] is a representation
of each rank one transformation as an integral automorphism over an odometer
with so called Morse-type roof function which goes back to [88]. See also [146]
for a simpler proof of a generalization of Bourgain’s result to a class of partially
bounded rank one constructions.

Spectral approach In order to prove Möbius disjointness for standard models
of rank one transformations, both papers [30] and [5] use a spectral approach.
In [5], unitary operators U (of separable Hilbert spaces) are considered and
weak limits of powers pUpmkq (for different primes p) are studied. Once such
limits yield sufficiently different (for different p) analytic functions (of U), the
powers Up and U q are spectrally disjoint.73 If for a positive real number a we
set sapxq “ ax mod 1 on the additive circle T “ r0, 1q, then the above spectral
disjointness means that

(44) σppq :“ pspq˚pσq are mutually singular for different p P P,

where σ “ σU stands for the maximal spectral type of U .
In [30], a different spectral approach (sufficient for a use of the KBSZ cri-

terion, hence, sufficient for Möbius disjointness) is used. Namely, if r ě 1 is
an integer, then by σr, we will denote the measure which is obtained first by
taking the image of σ under the map x ÞÑ 1

r
x, i.e. the measure σp1{rq, and then

repeating this new measure periodically in intervals r j
r
, j`1

r
q, that is:

σr :“ 1

r

r´1ÿ

j“0

σ1{r ˚ δj{r.

Bourgain [30] uses a representation of the maximal spectral type of a rank
one transformation as a Riesz product and then shows the mutual disjointness
of measures σp and σq for different p, q P P (for more information about the
measures σr, see e.g. [138], p. 196). Although, there seems not to be too much
relation between the measures σprq and σr , the following observation74 explains
some equivalence of these both spectral approaches:

Lemma 5.11. Assume that σ and η are two probability measures on the circle.
Then:

(a) if σprq K ηpsq then σs K ηr;

(b) if pr, sq “ 1 then σprq K ηpsq if and only if σs K ηr.

72Moreover, Möbius disjointness is established for some other famous classes of rank one
transformations such as: Katok’s α-weak mixing class (these are a special case of three interval
exchange maps) or rigid generalized Chacon’s maps.

73Hence, T p and T q are disjoint in Furstenberg’s sense, and, in fact, we even have AOP.
74This has been proved, e.g. in an unpublished preprint of El Abadalaoui, Kułaga-Przymus,

Lemańczyk and de la Rue.
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5.2.6 Rokhlin extensions

Let T be a uniquely ergodic homeomorphism of a compact metric space and
let f : X Ñ R be continuous. Set Tf px, tq :“ pTx, fpxq ` tq to obtain a skew
product homeomorphism on X ˆ R. Note that the latter space is not compact.
But, if we take any continuous flow S “ pStqtPR acting on a compact metric
space Y then the skew product Tf,S acting on X ˆ Y by the formula:

Tf,Spx, yq “ pTx, Sfpxqpyqq, px, yq P X ˆ Y

is a homeomorphism of the compact space X ˆ Y and it is called a Rokhlin
extension of T . To get a good theory, usually one has to put some further
assumptions on f (considered as a cocycle taking values in a locally compact
but not compact group, see e.g. [118, 151]). It is proved in [111] that there are
irrational rotations Tx “ x ` α and continuous f : T Ñ R (even smooth) such
that Tϕ,S has the AOP property for each uniquely ergodic S.75

We would like to emphasize that the Rokhlin skew product construction are
usually relatively weakly mixing [118], so the class we consider here is drastically
different from the distal class which is our next object to give account.

This approach leads in [111] to so called random sequences76 panq Ă R such
that

1

N

ÿ

nďN

gpSan
yqµpnq Ñ 0

for each uniquely ergodic flow S acting on a compact metric space Y , each
g P CpY q and (due to [4]) uniformly in y P Y .

5.3 Distal systems

Assume that R is an ergodic automorphism of a probability standard Borel space
pZ,D, κq. R is called (measurably) distal if it can be represented as transfinite
sequence of consecutive isometric extensions, where in case of a limit ordinal, we
take the corresponding inverse limit (i.e. we start with the one-point dynamical
system, the first isometric extension is a rotation and then we take a further
isometric extension of it etc.). Recall that by a separating sieve we mean a
sequence

Z Ą A1 Ą A2 Ą . . . Ą An Ą . . .

of sets of positive measure such that µpAnq Ñ 0 and there exists Z0 Ă Z,
µpZ0q “ 1, such that for each z, z1 P Z0 if for each n ě 1 there is kn P Z such
that Rknz,Rknz1 P An, then z “ z1. A theorem by Zimmer [171] says that T is
distal if and only if it has a separating sieve.

Distal automorphisms play a special role in ergodic theory: each auto-
morphism has a maximal distal factor and is relatively weakly mixing over it
[73, 170, 171]. Hence, many problems in ergodic theory can be reduced to study
the two opposite cases: the distal and the weak mixing one.77 Recall that distal
automorphisms have entropy zero.

75If S preserves a measure ν then Tϕ,S preserves measure µ b ν, the AOP property is
considered with respect to this measure.

76Such a sequence panq is of the form pϕpnqpxqq with ϕpnqpxq “ ϕpxq ` ϕpTxq ` . . . `
ϕpTn´1xq, n ě 0.

77See the most prominent example of such a reduction, namely, Furstenberg’s ergodic proof
of Szemerédi theorem on the existence of arbitrarily long arithmetic progressions in subsets
of integers of positive upper Banach density [73].
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There is also a notion of distality in topological dynamics. A homeomor-
phism T of a compact metric space X is called distal if the orbit pT nx, T nx1q,
n P Z, is bounded away from the diagonal in X ˆ X for each x ‰ x1. Some
of topologically distal classes already appeared in previous sections. Indeed,
zero entropy (minimal) affine transformations are examples of distal homeomor-
phisms. Another natural class of distal (uniquely ergodic) homeomorphisms is
given by nil-translations and, more generally, affine unipotent diffeomorphisms
of nilmanifolds. A theorem by Lindenstrauus [119] says that a measurably distal
automorphism R has a minimal78 model pX,T q together with µ P M epX,T q of
full support (and pX,µ, T q is isomorphic to pZ, κ,Rq) in which T is topologically
distal.

The following (still open) question seems to be a natural and important step
in proving Sarnak’s conjecture:

Question 9 (Liu and Sarnak [120]). Are all topologically distal systems Möbius
disjoint?

As transformations with discrete spectrum are measurably distal and The-
orem 5.12 holds, we can of course ask whether given a measurably distal auto-
morphism, all of its uniquely ergodic models are Möbius disjoint.79

We now focus on the famous class of Anzai skew products. This is the class
of transformations defined on T2 by the formula:

Tϕ : T
2 Ñ T2, Tϕpx, yq “ px ` α, ϕpxq ` yq.

In other words, Anzai skew products are given by Tx “ x ` α an irrational
rotation on the (additive) circle, and a measurable ϕ : T Ñ T; the skew product
Tϕ preserves the Lebesgue measure. If ϕ is continuous, Tϕ is a homeomorphism
of T2. If we cannot solve the functional equations

(45) kϕpxq “ ξpxq ´ ξpTxq

(k P N) in continuous functions ξ : T Ñ T, then Tϕ is minimal, but if for one
k P N we have a measurable solution then Tϕ is not uniquely ergodic. In [120],
we find examples of Anzai skew products which are minimal not uniquely ergodic
but are Möbius disjoint,80 moreover it is proved that if ϕ is analytic with an
additional condition on the decay (from below) of Fourier coefficients then Tϕ

is Möbius disjoint for each irrational α. In [110], it is proved that if ϕ is of class
C1`δ then for a typical (in topological sense) α, we have Möbius disjointness
of Tϕ.81 A remarkable result is proved by Wang [165]: all analytic Anzai skew
products are Möbius disjoint. The proofs in all these papers are using Fourier
analysis techniques but in [165], it is also a short interval argument from [125]
used in one crucial case.

78In general, there is no uniquely ergodic model pX, T q of R with T topologically distal.
79As a matter of fact, such a question remains open even for 2-point extensions of irrational

rotations.
80As a matter of fact, in [4] it is proved that if a uniquely ergodic homeomorphism T satisfies

the strong MOMO property (see Definition 4.1 on page 30) and (continuous) ϕ : X Ñ G (G is
a compact Abelian group) satisfies ϕ :“ ξ ´ ξ ˝ T has a measurable solution ξ : X Ñ G, then
the homeomorphism Tϕ of X ˆ G is Möbius disjoint. This applies if (45) has a measurable
solution for k “ 1. It is however an open question whether we have Möbius disjointness when
there is no measurable solution for k “ 1 but there is such a solution for some k ě 2.

81It follows from a subsequent paper [111] that the Anzai skew products considered in [110]
enjoy the AOP property.
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Nothing seems to be proved about a PNT in the class of distal systems
(except for rotations).

5.3.1 Discrete spectrum automorphisms

The simplest examples of (measurably) distal automorphisms are those with
discrete spectrum. Recall that a measure-theoretic system pZ,D, κ, Rq is said to
have discrete spectrum if the L2-space is generated by the eigenfunctions of the
Koopman operator Tf :“ f ˝ T . The classical Halmos-von Neumann theorem
tells us that each ergodic automorphism with discrete spectrum has a uniquely
ergodic model being a rotation on a compact Abelian (monothetic) group.

Theorem 5.12. All uniquely ergodic models of automorphisms with discrete
spectrum are Möbius disjoint.

This result was first proved in [7] for totally ergodic discrete spectrum auto-
morphisms (as they have the AOP property) and in full generality by Huang,
Wang and Zhang in [91]. In fact, the latter result is stronger:

Theorem 5.13 ([91]). Let pX,T q be a dynamical system, x P X and Ni Ñ 8.
Assume that 1

Ni

ř
nďNi

δTnx ÝÝÝÑ
iÑ8

µ. Assume that µ is a convex combination

of countably many ergodic measures, each of which yields a system with discrete
spectrum. Then limiÑ8

1
Ni

ř
nďNi

fpT nxqµpnq “ 0 for each f P CpXq.

Note that Theorem 5.12 also follows from Theorem 4.3 because ergodic ro-
tations enjoy the strong MOMO property [4] (see Remark 4.4). As a matter
of fact, as we have already noticed in Corollary 3.20, Theorem 5.12 follows
from [125].

5.4 Sub-polynomial complexity

Let T be a homeomorphism of a compact metric space pX, dq and let µ P
MpX,T q. Assume also that a : N Ñ R is increasing with limnÑ8 apnq “ 8.
In the spirit of [61], we say that the measure complexity of µ is weaker than a if

lim inf
nÑ8

mintm ě 1 : µpŤm
j“1 Bdn

pxj , εqq ą 1 ´ ε for some x1, . . . , xm P Xu
apnq “ 0

for each ε ą 0 (here dnpy, zq “ 1
n

řn
j“1 dpT jy, T jzq).

The main result of the recent article [90] states the following:

Theorem 5.14 ([90]). If pX,T q is a topological system for which all its invari-
ant measures have sub-polynomial complexity, i.e. their complexity is weaker
than nδ for each δ ą 0, then pX,T q is Möbius disjoint.

As shown in [90], Theorem 5.14 applies to: topological systems whose all
invariant measures yield systems with discrete spectrum (cf. Corollary 3.20),
Anzai skew products of C8-class (over each irrational rotation), KpZq-sequences
introduced by Veech [160] and tame systems.82

82For the latter two classes all invariant measures yield discrete spectrum.
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5.5 Systems of number-theoretic origin

Recall that a sequence x P t0, 1uN is called a generalized Morse sequence [105] if

(46) x “ b0 ˆ b1 ˆ . . .

with bi P t0, 1uℓi, ℓi ě 2, bip0q “ 0 for each i ě 0.83 The following question still
remains open.

Question 10 (Mauduit (2014)). Are dynamical systems arising from general-
ized Morse sequences Möbius disjoint?

Consider the simplest subclass of the class of generalized Morse sequences,
for which in (46) we have |bi| “ 2 for all i ě 0 (in other words, either bi “ 01 or
bi “ 00). Such sequences are called Kakutani sequences [114]. A particular case
of Sarnak’s conjecture, namely:

(47)
1

N

Nÿ

n“1

p´1qxpnqµpnq Ñ 0,

for the classical Thue-Morse sequence x “ 01 ˆ 01 ˆ . . . follows from [94, 104]
(see also [41] where, additionally, the speed of convergence to zero is given and
[127], where, additionally, a PNT has been proved). Then (47) has been proved
for some subclass of Kakutani sequences in [79]. As a matter of fact, in [79], the

problem whether 1
N

řN
n“1p´1qsEpnqµpnq Ñ 0 is considered. Here E Ă N is fixed

and sEpnq :“ ř
iPE ni, where n “ ř8

i“0 ni2
i (ni P t0, 1u). To see a relationship

with Kakutani sequences define a Kakutani sequence x “ b0 ˆ b1 ˆ . . . with
bn “ 01 iff n ` 1 P E; it is now not hard to see that sEpnq “ xpnq mod 2.
Finally, using some methods from [127], Bourgain [29] completed the result
from [79] so that (47) holds in the whole class of Kakutani sequences (moreover,
in [29, 79] a relevant PNT has been proved). One can show that the methods
used in the aforementioned papers allow us to have (47) with x replaced by every
y P Opxq (as shown in [60] in Lemma 6.5 therein, this can be sufficient to show
Möbius disjointness for the simple spectrum case; for example, this approach
works for the Thue-Morse system).

The problem of Möbius disjointness is also studied (and solved) in the class of
(generalized) Kakutani sequences taking values in compact (even non-Abelian)
groups, see [160].

5.6 Other research around Sarnak’s conjecture

As all periodic observable sequences are orthogonal to µ, one could think that a
limit of periodic constructions of type of Toeplitz sequences84 also yields systems
that are Möbius disjoint.85 However, in [2] (and then [51]) there are examples
of Toeplitz systems which are not Möbius orthogonal. These examples have
positive entropy [3, 51]. Karagulyan in [101] shows Möbius disjointness of zero

83If B P t0, 1uk and C “ Cp0qCp1q . . . Cpℓ ´ 1q P t0, 1uℓ then we define B ˆ C :“ pB `
Cp0qqpB ` Cp1qq . . . pB ` Cpℓ ´ 1qq.

84A sequence x P AN is called Toeplitz if for each n P N there is qn P N such that xpn`jqnq “
xpnq for each j “ 0, 1, . . .

85So called regular Toeplitz sequences are treated in [2] and [51], these are however uniquely
ergodic models of odometers.
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entropy continuous maps of the interval and (orientation preserving) homeo-
morphisms of the circle. In [56], Eisner proposes to study a polynomial version
of Sarnak’s conjecture (in the minimal case). See also [1, 8, 46, 50, 59, 89].

6 Related research: B-free numbers

6.1 Introduction

Sets of multiples We have already seen that some properties of the Möbius
function µ can be investigated by looking at its square µ2, i.e. the characteristic
function of the set of square-free numbers Q :“ tn P Z : p2 ffl n for all primes pu.
A natural generalization comes when we study sets of integers that are not
divisible by elements of a given set. Let B Ă N and let MB be the corresponding
set of multiples, i.e. MB “ Ť

bPB
bZ and the associated set of B-free numbers

FB :“ ZzMB (for convenience, we will deal now with subsets of Z instead of
subsets of N – the Möbius function µ is not defined for negative arguments,
but its square has a natural extension to negative integers). By η “ ηB we
will denote the characteristic function of FB. It is not hard to show that a
symmetric subset F Ă Z is a B-free set (for some B) if and only if F is closed
under taking divisors.

Historical remarks Sets of multiples were an object of intensive studies al-
ready in the 1930s [25, 37, 42, 58]. The basic motivating example there was the
set of abundant numbers (n P Z is abundant if |n| is smaller than the sum of its
(positive) proper divisors, i.e. |n| ă σp|n|q), see also more recent [93, 96, 108]
on that subject. Also many natural questions on general B-free sets emerged.
Besicovitch [24] showed that the asymptotic density of MB may fail to exist.
It turned out that it was more natural to use the notion of logarithmic density
(denoted by δ) which always exists in this case and equals the lower density.
More precisely, we have the following result of Davenport and Erdös:

Theorem 6.1 ([44, 45]). For any B, the logarithmic density δpMBq of MB

exists. Moreover, δpMBq “ dpMBq “ limnÑ8 dpMtbPB:bďnuq.

In the so-called Erdös case when B consists of pairwise coprime elements
whose sum of reciprocals converges, the density does exist, cf. [83] (in particular,
1FB

is rational). We refer the reader to [83, 84] for a coherent, self-contained
introduction to the theory of sets of multiples from the analytic and probabilistic
number theory viewpoint.

Dynamics comes into play Sarnak in [148], suggested to study µ2 from the
dynamical viewpoint and he announced the following results:

(i) µ2 is generic for an ergodic S-invariant measure νµ2 on t0, 1uZ such that
the measure-theoretical dynamical system pXµ2 , νµ2 , Sq has zero measure-
theoretic entropy;86

(ii) the topological entropy of pXµ2 , Sq is equal to 6{π2;

86This is clearly a refinement of the fact that the asymptotic density of square-free integers
exists (it is given by 6{π2 “ 1{ζp2q). It follows that µ2 is a completely deterministic point.
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(iii) Xµ2 “ Xtp2:pPPu (see the definition of admissibility below);

(iv) pXµ2 , Sq is proximal.

This triggered intensive research in analogous direction for dynamical systems
given by other B-free sets. In [6], Abdalaoui, Lemańczyk and de la Rue de-
veloped the necessary tools in the Erdös case and covered (i)-(iii) from the
above list. Given B “ tbk : k ě 1u, In particular, they defined a function
ϕ : G “ ś

kě1 Z{bkZ Ñ t0, 1uZ given by

ϕpgqpnq “ 1 ðñ gk ` n ı 0 mod bk for all k ě 1.

Note that ηB “ ϕp0q and ϕ is the coding of points under the translation by
p1, 1, . . . q on G with respect to a two-set partition tW,W cu, where

(48) W “ th P G : hb ‰ 0 for all b P Bu.

This study was continued in a general setting in [17] and the first obstacle was
that it was no longer clear which subshift to study – it turned out that the most
important role is played by the following three subshifts, which coincide in the
Erdös case (for the square-free, case see [136] by Peckner and for the Erdös case,
see [6]):

• Xη is the closure of the orbit of ηB under S (B-free subshift),

• rXη is the smallest hereditary subshift containing Xη (a subshift pX,Sq is
hereditary, whenever x P X and y ď x coordinatewise, then y P X),

• XB is the set of B-admissible sequences, i.e. of x P t0, 1uZ such that, for
each b P B, the support suppx :“ tn P Z : xpnq “ 1u of x taken modulo b

is a proper subset of Z{bZ (B-admissible subshift).

Remark 6.2. As XB is hereditary, we have Xη Ă ĂXη Ă XB. In the Erdös
case, we have Xη “ XB [6] (for the square-free system [148]).

Also the group G turned out to be too large for the studies – it is natural to
consider its closed subgroup

(49) H :“ tpn, n, . . . q P G : n P Zu.

In the Erdös case we have H “ G. Certain special cases more general than the
Erdös one were considered in [17]:

• we say that B is taut whenever δpFBq ă δpFBztbuq for each b P B;

• we say that B has light tails, i.e. dpř
bąK bZq Ñ 0 as K Ñ 8.

Following [84], we also say that B is Besicovitch if dpMBq exists (equivalently,
dpFBq exists). A set B Ă Nzt1u is called Behrend if δpMBq “ 1. Throughout,
we will tacitly assume that B is primitive, i.e. does not contain b ‰ b1 with b � b1.
Recall that B is taut if and only if B does not contain dA , where A Ă Nzt1u
is Behrend and d P N.
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Further generalizations Several further generalizations of B-free integers
were discussed in the literature from the dynamical viewpoint. Let us briefly
recall them here:

• Pleasants and Huck [137] considered k-free lattice points Fk “ FkpΛq :“
Λz Ť

pPP p
kΛ, where Λ is a lattice in Rd (the corresponding dynamical sys-

tem given by the orbit closure of 1Fk
P t0, 1uΛ under the multidimensional

shift).

• Cellarosi and Vinogradov [34] considered k-free integers in number fields
Fk “ FkpOKq :“ OKz Ť

pPP pk. Here K is a finite extension of Q, OK Ă
K is the ring of integers, P stands for the family of all prime ideals in OK

and pk stands for p . . . p (p is taken k times).

• Baake and Huck in their survey [13] considered B-free lattice points FB “
FBpΛq :“ Λz Ť

bPB
bΛ. Here Λ is a lattice in Rd and B Ď Nzt1u is an

infinite pairwise coprime set with
ř

bPB
1{bd ă 8.

• Finally, one can consider B-free integers FB in number fields as suggested
in [13]. Here K is a finite extension of Q, OK Ă K is the ring of integers
and B is a family of pairwise coprime ideals in OK such that the sum of
reciprocals of their norms converges.

We will recall some of the main results from the above papers in the relevant
sections below.

6.2 Invariant measures and entropy

Mirsky measure Cellarosi and Sinai proved (i) in [33]: they showed that νµ2

is generic for a shift-invariant measure νµ2 on t0, 1uZ, and that pXµ2 , νµ2 , Sq
is isomorphic to a rotation on the compact Abelian group

ś
pPP Z{p2Z. In

particular, pXµ2 , νµ2 , Sq is of zero Kolmogorov entropy.87 In case of k-free lattice
points and k-free integers in number fields an analogous result can be found
in [137] and [34], respectively and for B-free lattice points it was announced
in [13]. Recently, Huck [92] showed that in case of B-free integers in number
fields, the logarithmic density of FB always exists and equals the lower density,
thus extending Theorem 6.1 in the (1-dimensional) Erdös case.

Since FB may fail to have asymptotic density, the more η may fail to be
a generic point. However (Proposition E in [17]), for any B Ă N, η is always
a quasi-generic point for a natural ergodic S-invariant measure νη on t0, 1uZ
(the relevant Mirsky measure). Moreover, B is Besicovitch if and only if η is
generic for νη. Now, if we additionally assume that B is taut, then pXη, νη, Sq
is isomorphic to an ergodic rotation on a compact metric group (Theorem F
in [17]).88 In particular, pXη, νη, Sq has zero entropy.

Finally, for a generalization to so-called weak model sets, see [15], and for
some results related to the distribution of B-free integers, see [10, 11].

87The frequencies of blocks on µ2 were first studied by Mirsky [130, 131] and that is why
we refer to νµ2 (and the analogous measure in case of general B-free systems) as the Mirsky

measure.
88More precisely, it is isomorphic to pH, P, T q, where H is the closure of

tpn mod bkqkě1 : n P Zu in
ś

kě1 Z{bkZ and Tg “ g ` p1, 1, . . . q, cf. (49).
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Entropy The topological entropy of Xµ2 is positive and equals 6{π2 “ ś
pPPp1´

1{p2q “ dpFBq for B “ tp2 : p P Pu, see [136]. This extends to the Erdös case,

where the topological entropy of Xη “ rXη “ XB equals
ś

bPB
p1 ´ 1{bq “

dpFBq, see [6]. In the general case of B-free systems, we have htopp rXη, Sq “
htoppXB, Sq “ δpFBq (see Theorem K in [17]). The formula for the topological
entropy of k-free lattice points is provided in [137].

In view of the variational principle, the positivity of the topological entropy
evokes two problems: whether the system under consideration is intrinsically
ergodic (i.e. whether there is a unique measure of maximal entropy) and to
describe the set of all invariant measures. We address them next.

Maximal entropy measure In the square-free case, the intrinsic ergodicity is
proved by Peckner in [136]. This extends to the Erdös case, see [112] by Kułaga-

Przymus, Lemańczyk and Weiss. Finally, for any B Ă N, the subshift p rXη, Sq
is intrinsically ergodic, see Theorem J in [17]. In particular, if B has light tails
and contains an infinite pairwise coprime subset then pXB, Sq is intrinsically
ergodic.

All invariant measures Notice that for each B, the map M : Xη ˆt0, 1uZ Ñ
rXη given by the coordinatewise multiplication of sequences is well-defined and
each S ˆ S-invariant measure ρ on Xη ˆ t0, 1uZ yields an S-invariant measure

on rXη. In particular, this applies to those ρ whose projection on the first
coordinate is νη. It turns out that the converse is also true: for any S-invariant

measure ν on rXη there exists an S ˆ S-invariant measure ρ on Xη ˆ t0, 1uZ
whose projection on the first coordinate is νη and such that M˚pρq “ ν. For
the Erdös case see [112] and for general B-free systems, see Theorem I in [17]
(for further generalizations of B-free systems listed before (see page 51) no
analogous description of the set of all invariant measures is known).

It turns out that a special role is played by B that are taut. We have
the following: for any B, there exists a unique taut set B1 Ă N such that
FB1 Ă FB, rXη1 Ă rXη and all S-invariant measures on rXη are in fact supported

on rXη1 (Theorem C in [17]).
More subtle properties of the simplex of invariant measures of the B-shift

have been studied in [113] by Kułaga-Przymus, Lemańczyk and Weiss – it was
shown that in the positive entropy case the simplex of S-invariant measures on
rXη is Poulsen, i.e. the ergodic measures are dense. In particular, if we addi-
tionally know that Xη is hereditary (and has positive entropy), then its simplex
of invariant measures is Poulsen. However, this is no longer true for a gen-
eral (not necessarily B-free) hereditary system. On the other hand, Konieczny,
Kupsa and Kwietniak [109] showed that the set of ergodic invariant measures
of a hereditary shift is always arcwise connected (when endowed with the d-bar
metric).

6.3 Topological results

A lot can be said about the topological properties of pXη, Sq. E.g. for any
B Ă N the subshift Xη has a unique minimal subset that is the orbit closure
of a Toeplitz system (Theorem A in [17]). In particular, Xη is minimal if and
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only if Xη is a Toeplitz system.89 In fact, η itself can be a Toeplitz sequence
(see Example 3.1 in [17]) and it was shown in [103] that η is a Toeplitz sequence
different from . . . 0.00 . . . if and only if B does not contain a subset of the form
dA , where d P N and A Ă Nzt1u is infinite and pairwise coprime. Moreover, if
η is Toeplitz then B is necessarily taut [103].

On the other hand, the proximality of Xη is equivalent to t. . . 0.00 . . . u being
the unique minimal subset of Xη. Moreover, Xη is proximal if and only if B

contains an infinite pairwise coprime subset (Theorem B in [17]).
Some of the properties of the B-free subshift Xη can be characterized via

properties of a set W called the window: W “ th P H : hb ‰ 0 for all b P Bu,
cf. (48). This name has its origins in the theory of weak model sets (for more
details see [12]); FB is an example of such a set. Again a special role is played
by sets B that are taut. In [103], Kasjan, Keller and Lemańczyk show the
following:

• B is taut if and only if W is Haar regular, i.e. the topological support of
Haar measure restricted to W is the whole W ;

• if B is primitive then Xη is a Toeplitz system if and only if W is topolog-
ically regular;

• Xη is proximal if and only if W has empty interior.

In [103] there is also a detailed description of the maximal equicontinuous factor
of Xη (with no extra assumptions on B). See also [107].

Clearly, if Xη is hereditary, i.e. Xη “ rXη then p. . . 0.00 . . . q P Xη and hence
Xη is proximal. If we assume that B is taut then the converse is true: prox-

imality yields heredity (Theorem D in [17]). However, rXη “ XB may fail to
hold, even under quite strong assumptions on B. Indeed, the set of abundant
numbers A is the corresponding set of multiples MB for a certain set B with
the property that

ř
bPB

1{b ă 8. Here, rXη ‰ XB, see Section 11 in [17].
More subtle results on heredity were recently obtained by Keller in [106].

He shows that whenever Xη is proximal then it is contained in a slightly larger
subshift that is hereditary (there is no need to make extra assumptions on B).
He also generalizes the concept of heredity to the non-proximal case.

It is also interesting to ask about the (invertible) centralizer of pS,Xηq. In
the Erdös case it was proved by Mentzen90 in [129] that the group of home-
omorphisms commuting with the shift pS,Xηq consists only of the powers of
S. In case of some Toeplitz B-free systems an analogous result was proved by
Bartnicka in [16].

Question 11. Is the invertible centralizer trivial for each B-free subshift?

6.4 Ergodic Ramsey theory

We will now see some connections of the theory of B-free sets with the theory
uniform distribution and ergodic Ramsey theory.

89This has been recently improved in [103] and by A. Bartnicka: Xη is minimal if and only
if η is Toeplitz.

90Mentzen’s result is extended in [14] to every hereditary B-free subshift.
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Polynomial recurrence and divisibility Recall that Szemerédi showed [153]
that any set S Ă N with positive upper density contains arbitrarily long arith-
metic progressions and Furstenberg [72, 73] introduced an ergodic approach to
this result that proved very fruitful from the point of view of various generaliza-
tions. In particular, it allowed one to prove the following: for any probability
space pX,B, µq, invertible measure preserving transformation T : X Ñ X , A P B

with µpAq ą 0 and any polynomials pi P Qrts satisfying pipZq Ă Z and pip0q “ 0,
1 ď i ď ℓ, there exists arbitrarily large n P N such that

(50) µ
`
A X T´p1pnqA X . . . X T´pℓpnqA

˘
ą 0.

In fact, we have

lim
NÑ8

1

N

Nÿ

n“1

µ
´
A X T´p1pnqA X . . . X T´pℓpnqA

¯
ą 0

[18, 86, 116]. One can now restrict attention to a specific subset R of n P N for
which we ask whether (50) holds or even demand

(51) lim
NÑ8

1

|R X r1, N s|
Nÿ

n“1

1Rpnqµ
´
A X T´p1pnqA X . . . X T´pℓpnqA

¯
ą 0.

If (51) holds for any invertible measure preserving system pX,B, µ, T q, A P B

with µpAq ą 0, ℓ P N and any polynomials pi P Qrts, i “ 1, . . . , ℓ, with pipZq Ă Z

and pip0q “ 0 for all i P t1, . . . , ℓu, we say (cf. [20, Definition 1.5]) that R Ă N

is averaging set of polynomial multiple recurrence. If ℓ “ 1, we speak of an
averaging set of polynomial single recurrence.

We will be interested in polynomial recurrence for B-free sets. Before we get
there, let us direct our attention to so-called rational sets. Recall that R Ă N

is rational if it can be approximated in density by finite unions of arithmetic
progressions, cf. footnote 18. Note that the rationality of FB is equivalent to B

being Besicovitch. An easy necessary condition for R Ă N to be an averaging
set of polynomial recurrence is that the density of R X uN exists and is positive
for any u P N (indeed, otherwise consider the cyclic rotation on Z{uZ to see that
even usual recurrence fails). If the latter holds, we will say that R is divisible.
It turns out that in case of rational sets, divisibility is not only necessary but
also sufficient for polynomial recurrence. More precisely, we have the following:

Theorem 6.3 ([21]). Let R Ă N be rational and of positive density. The
following conditions are equivalent:

(a) R is divisible.

(b) R is an averaging set of polynomial single recurrence.

(c) R is an averaging set of polynomial multiple recurrence.

Recall that it was proved in [19] that every self-shift Q´ r, r P Q, of the set
of square-free numbers Q is divisible and these are the only divisible shifts of
Q. For general B-free sets the situation is more complicated and we have the
following result:
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Theorem 6.4 ([21]). Given B Ă N that is Besicovitch, there exists a set D Ă
FB with dpFBzDq “ 0 such that the set FB ´r is an averaging set of polynomial
multiple recurrence if and only if r P D. Moreover, D “ FB if and only if the
set B is taut.

This can be generalized to B that are not Besicovitch by considering divisi-
bility and recurrence along a certain subsequence pNkqkě1. As a combinatorial
application, one obtains in [21] the following result: Suppose that pNkqkě1 is
such that the density of FB along pNkqkě1 exists and is positive. Then there
exists D Ă FB which equals FB up to a set of zero density along pNkqkě1

such that for all r P D and for all E Ă N with positive upper density, for any
polynomials pi P Qrts, i “ 1, . . . , ℓ, which satisfy pipZq Ă Z and pip0q “ 0, for
all 1 ď i ď ℓ, there exists β ą 0 such that the set

!
n P FB ´ r : d

´
E X pE ´ p1pnqq X . . . X pE ´ pℓpnqq

¯
ą β

)

has positive lower density along pNkqkě1. If, additionally, B is taut then one
can take D “ FB.

Results of similar flavor as above have been also obtained in [23] in the
context of level sets of multiplicative functions. In particular, if E is a level
set of a multiplicative function and has positive density then every self-shift of
E is an averaging set of polynomial multiple recurrence (Corollary C in [23]).
The key tool here is (17) that provides an important link between level sets of
multiplicative functions and rational sets. See also [22].
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