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Introduction

Möbius disjointness Assume that T is a continuous map1 of a compact metric space X. Following Peter Sarnak [148,149], we will say that T , or, more precisely, the topological dynamical system pX, T q is Möbius disjoint (or Möbius orthogonal) 2 if: [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] lim

N Ñ8
1 N ÿ nďN f pT n xqµpnq " 0 for each f P CpXq and x P X.

In 2010, Sarnak [148,149] formulated the following conjecture: 3(2) Each zero entropy continuous map T of a compact metric space X is Möbius disjoint.

Note that if f is constant then convergence [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] takes place in an arbitrary topological system pX, T q; indeed, 1 N ř nďN µpnq Ñ 0 is equivalent to the Prime Number Theorem (PNT), e.g. [START_REF] Hildebrand | Introduction to analytic number theory[END_REF][START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]. We can also interpret this statement as the equivalence of the PNT and the Möbius disjointness of the one-point dynamical system. The Prime Number Theorem in arithmetic progressions (Dirichlet's theorem) can also be viewed similarly: it is equivalent to the Möbius disjointness of the system pX, T q, where T x " x`1 on X " Z{kZ for each k ě 1. Note also that the classical Davenport's [START_REF]On some infinite series involving arithmetical functions[END_REF] estimate: for each A ą 0, we have [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF] max

tPT ˇˇˇˇÿ nďN e 2πint µpnq ˇˇˇˇď C A N log A N
for some C A ą 0 and all N ě 2, yields the Möbius disjointness of irrational rotations. 4The present article is concentrated on an overview of research done during the last seven years5 on Sarnak's conjecture [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF] from the ergodic theory point of view. It is also rather aimed at the readers with a good orientation in dynamics, especially in ergodic theory. It means that we assume that the reader is familiar with at least basics of ergodic theory, but often more than that is required, monographs [START_REF] Cornfeld | Ergodic theory[END_REF][START_REF] Einsiedler | Ergodic theory with a view towards number theory[END_REF][START_REF]Recurrence in ergodic theory and combinatorial number theory[END_REF][START_REF] Glasner | Ergodic theory via joinings[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF] are among best sources to be consulted. In contrast to that, we included in the article a selection of some basics of analytic number theory. Those which appear here, in principle, are not contained in [START_REF] Rivat | Analytic number theory[END_REF] and, as we hope, allow one for a better understanding of dynamical aspects of some number-theoretic results. We should however warn the reader that some number-theoretic results will be presented in their simplified (typically, non-quantitative) forms, sufficient for some ergodic interpretations but not putting across the whole complexity and depth of the results. In particular, this remark applies to recent break-through results of Matomäki and Radziwiłł [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] and some related concerning a behavior of multiplicative functions on short intervals. 6Ergodic theory viewpoint on Sarnak's conjecture Sarnak's conjecture [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF] is formulated as a problem in topological dynamics. However, for each topological system pX, T q the set M pX, T q of (Borel, probability) T -invariant measures is non-empty and we can study dynamical properties of pX, T q by looking at all measure-theoretic dynamical systems pX, B, µ, T q for µ P M pX, T q. Via the Variational Principle, Sarnak's conjecture can be now formulated as Möbius disjointness of the topological systems pX, T q whose measure-theoretic systems pX, B, µ, T q for all µ P M pX, T q have zero Kolmogorov-Sinai entropy. But one of main motivations for [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF] in [148] was that this condition is weaker than a certain (open since 1965) pure number-theoretic result, known as the Chowla conjecture (see Section 3.1). Since the Chowla conjecture has its pure ergodic theory interpretation (Section 3.1), the approach through invariant measures allows one to see the implication Chowla conjecture ñ Sarnak's conjecture 7as a consequence of some disjointness (in the sense of Furstenberg) results in ergodic theory. While the Chowla conjecture remains open, some recent breakthrough results in number theory find their natural interpretation as particular instances of the validity of Sarnak's conjecture. Samples of such results are (see Sections 3.4.1 and 3.5):

1. The result of Matomäki, Radziwiłł and Tao [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF]:

ÿ hďH ˇˇˇˇÿ mďM µpmqµpm `hq
ˇˇˇˇ" opHM q (when H, M Ñ 8, H ! M ) implies that each system pX, T q for which all invariant measures yield measure-theoretic systems with discrete spectrum is Möbius disjoint. 82. The result of Tao [START_REF] Tao | The logarithmically averaged Chowla and Elliot conjectures for two-point correlations[END_REF]:

ÿ nďN µpnqµpn `hq n " oplog N q
(when N Ñ 8) for each h ‰ 0 implies that each system pX, T q for which all invariant measures yield measure-theoretic systems with singular spectrum are logarithmically Möbius disjoint. This is done by:

• interpreting the number theoretic results as ergodic properties of the dynamical systems given by the invariant measures of the subshift X µ for which µ is quasi-generic,

• using classical disjointness results in ergodic theory.

It is surprising and important that the ergodic theoretical methods of the last decades that led to new non-conventional ergodic theorems and showed a particular role of nil-systems, also appear in the context of Sarnak's conjecture, and again the role of nil-systems seems to be decisive. Together with some new disjointness results in ergodic theory, it pushes forward significantly our understanding of Möbius disjointness, at least on the level of logarithmic version of Sarnak's conjecture. The most spectacular achievement here is the recent result of Frantzikinakis and Host [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] (see Section 3.5) who proved that each zero entropy topological system pX, T q with only countably many ergodic measures is logarithmically Möbius disjoint. The proofs reflect the "local" nature of all the aforementioned results. In other words, regardless the total entropy of the system, to obtain (1) for a FIXED x P X (and all f P CpXq), we only need to look at ergodic properties of the dynamical systems given by measures "produced" by x itself (the limit points of the empiric measures given by x). So, if all such measures yield zero entropy systems, the Chowla conjecture implies (1) (for the fixed x and all f P CpXq). When all such measures yield systems with discrete spectrum / singular spectrum / countably many ergodic components then the relevant Möbius disjointness holds (at x). Points with one of the listed properties may appear in pX, T q having positive entropy. In fact, a positive entropy system can be Möbius disjoint [START_REF] Downarowicz | Almost full entropy subshifts uncorrelated to the Möbius function[END_REF]. To distinguish between zero and positive entropy systems it is natural to expect that in the zero entropy case the behavior of sums in [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] is homogenous in x (for a fixed f P CpXq). Indeed, the uniform convergence (in x P X, under the Chowla conjecture) of sums [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] has been proved in [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF] (see Section 4); in fact ( 2) is equivalent to Sarnak's conjecture in its uniform form and also in a uniform short interval form. Moreover, for the Liouville function, no positive entropy system satisfies [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] in its uniform short interval form. The problem of uniform convergence turns out to be closely related to the general problem whether Möbius disjointness is stable under our ergodic theory approach. More precisely, suppose that the topological dynamical systems pX, T q and pX 1 , T 1 q are such that the dynamical systems obtained from invariant measures are the same for each of them (up to measure-theoretic isomorphism). Does the Möbius disjointness of pX, T q imply the Möbius disjointness of pX 1 , T 1 q? Although the answer in general seems unknown, in case of uniquely ergodic models of the same measure-theoretic system a satisfactory (positive) answer can be given [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF].

Content of the article

We include the following topics:

• Sarnak's conjecture a.e., Sarnak's conjecture versus Prime Number Theorem in dynamics -see Introduction and Section 1.

• Brief introduction to multiplicative functions, Prime Number Theorem, Kátai-Bourgain-Sarnak-Ziegler criterion -see Section 2.

• Results of Matomäki, Radziwiłł and Matomäki, Radziwiłł, Tao on multiplicative functions and some of their ergodic interpretations -see Section 3.

• Chowla conjecture, logarithmic Chowla and logarithmic Sarnak conjectures (Tao's results and Frantzikinakis and Host's results) -see Section 3.

• Frantzikinakis' theorem on some consequences of ergodicity of measures for which µ is quasi-generic -see Section 3.

• Ergodic criterion for Sarnak's conjecture -the AOP and MOMO properties (uniform convergence in (1)), Sarnak's conjecture in topological models -see Section 4.

• Glimpses of results on Sarnak's conjecture: systems of algebraic origin (horocycle flows, nilflows); systems of measure-theoretic origin (finite rank systems, distal systems), interval exchange transformations, systems of number-theoretic origin (automatic sequences and related) -see Section 5.

• Related research: B-free systems, applications to ergodic Ramsey theory -see Section 6.

Sarnak's conjecture a.e. Before we really get into the subject of Sarnak's conjecture, let us emphasize that this is the requirement "for each f P CpXq and x P X" in (1) that makes Sarnak's conjecture deep and difficult to establish.

As it has been already noticed in [148], the a.e. version of (2) is always true regardless of the entropy assumption:

Proposition 0.1 ([148]). Let T be an automorphism of a standard Borel probability space pX, B, µq and let f P L 1 pX, B, µq. Then, for a.e. x P X, we have

1 N ÿ nďN f pT n xqµpnq Ý ÝÝÝ Ñ N Ñ8 0.
For a complete proof, see [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF]. The main ingredient is the Spectral Theorem which replaces

› › › 1 N ř nďN f pT n xqµpnq › › › 2 by › › › 1 N ř nďN z n µpnq › › › L 2 pσ f q
9 , together with Davenport's estimate (3) (for A " 2) which yields

› › › 1 N ÿ nďN f pT n xqµpnq › › › 2 ! 1 log 2 N , N ě 2.
The latter shows that, for ρ ą 1, the function ř kě1 ˇˇ1 ρ k ř nďρ k f pT n ¨qµpnq ˇˇis in L 2 pX, µq which, letting ρ Ñ 1 allows one to conclude for f P L 8 pX, µq. The general case f P L 1 pX, µq follows from the pointwise ergodic theorem.

As shown in [START_REF] Eisner | A polynomial version of Sarnak's conjecture[END_REF], a use of Davenport's type estimate proved in [START_REF] Green | The Möbius function is strongly orthogonal to nilsequences[END_REF] for the nil-case, yields a polynomial version of Proposition 0.1. See also [START_REF] Cuny | Ergodic theorems with arithmetical weights[END_REF] for the pointwise ergodic theorem for other arithmetic weights.

1 From a PNT in dynamics to Sarnak's conjecture

The content of this section can be viewed as a kind of motivation for Sarnak's conjecture (and is written on the base of Tao's post [START_REF]The Bourgain-Sarnak-Ziegler orthogonality criterion[END_REF] and Sarnak's lecture given at CIRM [START_REF] Sarnak | Möbius randomness and dynamics six years later[END_REF]). We denote by N :" t1, 2, . . .u the set of positive integers. Given N P N, we let πpN q :" tp ď N : p P Pu. The classical Prime Number Theorem states that [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF] lim

N Ñ8 πpN q N { log N " 1.
We will always refer to this theorem as the (classical) PNT. Assume that T is a continuous map of a compact metric space X. Assume moreover that pX, T q is uniquely ergodic, that is, the set M pX, T q of T -invariant probability Borel measures is reduced to one measure, say µ. By unique ergodicity, the ergodic averages go to zero (even uniformly) for zero mean continuous functions:

1

N ÿ nďN f pT n xq Ý ÝÝÝ Ñ N Ñ8 0 
for each f P CpXq, ş X f dµ " 0, and x P X. Hence, the statement that a PNT holds in pX, T q "should" mean [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF] lim

N Ñ8 1 πpN q ÿ PQpďN f pT p xq " 0
for all zero mean f P CpXq and x P X (in what follows, instead of ř PQp , we write simply ř p if no confusion arises). 10 Let us see how to arrive at (5) differently.

Recall that the von Mangoldt function Λ is defined by Λpnq " log p if n " p k for a prime number p (and k ě 1) and Λpnq " 0 otherwise. Contrary to most of arithmetic functions considered in this article, Λ is not multiplicative. It is not bounded either and its support has zero density. The (classical) PNT is equivalent to

1 N ÿ nďN Λpnq Ý ÝÝÝ Ñ N Ñ8 1.
A given sequence pa n q Ă C can be said to satisfy a PNT whenever we can give an asymptotic estimate on ÿ nďN a n Λpnq when N tends to infinity; thus the classical PNT is a PNT for the sequence a n " 1. In particular, a sequence pa n q also satisfies a PNT if

(6) ÿ nďN a n Λpnq " ÿ nďN a n `opN q,
and, if additionally pa n q has zero mean, i.e. if 1

N ř nďN a n Ý ÝÝÝ Ñ N Ñ8 0, then pa n q satisfies a PNT if (7) 1 N ÿ nďN a n Λpnq Ý ÝÝÝ Ñ N Ñ8
0.

An interesting special case is a n " p´1q n , which has zero mean. Here, we do have estimates of the sums of Λpnq over the odd numbers smaller than N , but they are of the order of N , thus [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF] is not satisfied. Beyond this point, we will not study such particular cases and we shall always write that the sequence pa n q satisfies a PNT whenever (6) holds. Zero mean sequences are easily "produced" in uniquely ergodic systems. We will say that a uniquely ergodic topological dynamical system pX, T q satisfies a PNT if [START_REF] El Abdalaoui | A cubic non-conventional ergodic average with multiplicative or von Mangoldt weights[END_REF] 1 N

ÿ nďN f pT n xqΛpnq Ý ÝÝÝ Ñ N Ñ8
0 for all zero mean f P CpXq and x P X. We have

1 N ÿ nďN f pT n xqΛpnq " 1 N ÿ pďN f pT p xq log p `1 N ÿ p k ďN,kě2 f pT p k xq log p.
Now, in the second sum if p k ď N then p P r1, ? N s; the largest value of log p is bounded by 1 2 log N , therefore, the second sum is of order Op ? N ¨log N {N q, hence of order N ´1 2 `ε for each ε ą 0. Thus, a PNT in pX, T q means that (9)

1 N ÿ pďN f pT p xq log p Ý ÝÝÝ Ñ N Ñ8
0 for all zero mean f P CpXq and x P X. Note that by the classical PNT to prove [START_REF] Adams | Constructive symbolic presentations of rank one measure-preserving systems[END_REF], we need to show it for a linearly dense set of functions. 11 Let us now write

1 N ÿ pďN f pT p xq log p " 1 N ÿ pďN { log N f pT p xq log p `1 N ÿ N { log N ďpďN f pT p xq log p.
We have

1 N ř pďN { log N f pT p xq log p " Op1{ log N q (by 1 M ř pďM log p Ñ 1 when M Ñ 8). Moreover, write f " f `´f ´and then we have log N ´log log N N ÿ N { log N ďpďN f `pT p xq ď 1 N ÿ N { log N ďpďN f `pT p xq log p ď log N N ÿ N { log N ďpďN f `pT p xq as log N ´log log N ď log p ď log N for the p in the considered interval. Now, πpN q{pN {plog N ´log log N qq Ý ÝÝÝ Ñ N Ñ8 1 and πpN q{pN { log N q Ý ÝÝÝ Ñ N Ñ8 1, whence ˇˇˇˇ1 N ÿ pďN f `pT p xq log p ´1 πpN q ÿ pďN f `pT p xq ˇˇˇˇÝ ÝÝÝ Ñ N Ñ8 0.
Repeating the same reasoning with f `replaced by f ´and by ( 9), we obtain that the statement a PNT holds in pX, T q is equivalent to (5) for all zero mean f P CpXq and x P X.

Remark 1.1. By replacing Λ in (8) by µ, we come back to Sarnak's conjecture. The identity Λ " µ ˚log (see [START_REF] Avdeeva | Variance of B-free integers in short intervals[END_REF] below), i.e. Λpnq " ř d n µpdq logpn{dq " ´řd n µpdq log d suggests some other connections between the simultaneous validity of a PNT and Möbius disjointness in pX, T q but no rigorous theorem toward a formal equivalence of the two conditions has been proved. Actually, such an equivalence taken literally does not hold. Indeed, the fact that the support of Λ is of zero upper Banach density makes a PNT vulnerable under zero density replacements of the observable pf pT n xqq. On the other hand, Möbius orthogonality is stable under such replacements. We illustrate this using the following simple example.

Consider the classical case a n " 1 for all n P N. This is the same as to consider a PNT in a uniquely ergodic model12 of the one-point system. One can now ask if we have a PNT in all uniquely ergodic models of the one-point system 11 Indeed, we have

ˇˇˇˇˇ1 N ÿ pďN f pT p xq log p ´1 N ÿ pďN gpT p xq log p ˇˇˇˇď 1 N ÿ pďN |f pT p xq ´gpT p xq| log p ď }f ´g} 1 N ÿ pďN log p " Op}f ´g}q, as condition 1 N ř nďN Λpnq Ý ÝÝÝ Ñ NÑ8 1 is equivalent to 1 N ř pďN log p Ý ÝÝÝ Ñ NÑ8 1.
(it is an exercise to prove that all such models are Möbius disjoint). Take any sequence pc p k q p k P t´1, 1u N and define b n as a n when n ‰ p k and b p k " c p k . We can see that

1 N ÿ nďN b n Λpnq " 1 N ÿ p k ďN c p k log p.
Now, the subshift X b Ă t´1, 1u N generated by b (cf. ( 27)) has only one invariant measure δ 11... , so it is a uniquely ergodic model of the one-point system and if we take f pzq " Then a further decomposition of the second sum into a structured part and a remainder leads to two sums and allows one for an application of Möbius Randomness Law to the second sum in order to predict the correct main term value of ř nďN f pnqΛpnq, see [START_REF] Sarnak | Möbius randomness and dynamics six years later[END_REF].

2 Multiplicative functions

Definition and examples

An arithmetic function u : N Ñ C is called multiplicative if up1q " 1 and upmnq " upmqupnq whenever pm, nq " 1. If upmnq " upmqupnq without the coprimeness restriction on m, n, then u is called completely multiplicative.

Clearly, each multiplicative function is entirely determined by its values at p α , where p P P is a prime number and α P N (for completely multiplicative functions α " 1). A prominent example of a multiplicative function is the Möbius function µ determined by µppq " ´1 and µpp α q " 0 for α ě 2. Note that µ 2 (which is obviously also multiplicative) is the characteristic function of the set of square-free numbers. The Liouville function λ : N Ñ C is completely multiplicative and is given by λppq " ´1. Clearly, µ " λ ¨µ2 and we will see soon some more relations between µ and λ. Many other classical arithmetic functions are multiplicative, for example: the Euler function φ; the function n Þ Ñ p´1q n`1 is a periodic multiplicative function which is not completely multiplicative; dpnq :"number of divisors of n, n Þ Ñ 2 ωpnq , where ωpnq stands for the number of different prime divisors of n; σpnq " ř d n d. Recall that given q ě 1, a function χ : N Ñ C is called a Dirichlet character of modulus q if: (i) χ is q-periodic and completely multiplicative, (ii) χpnq ‰ 0 if and only if pn, qq " 1.

It is not hard to see that Dirichlet characters are determined by the ordinary characters of the multiplicative group (of order φpqq) pZ{qZq ˚of invertible (under multiplication) elements in Z{qZ. The Dirichlet character χ 1 pnq :" 1 iff pn, qq " 1 is called the principal character of modulus q. Moreover, each periodic, completely multiplicative function is a Dirichlet character (of a certain modulus). Another class of important (completely) multiplicative functions is given by Archimedean characters n Þ Ñ n it " e it log n which are indexed by t P R.

Dirichlet convolution, Euler's product

Recall that given two arithmetic functions u, v : N Ñ C, by their Dirichlet convolution u ˚v we mean the arithmetic function [START_REF] Avdeeva | Variance of B-free integers in short intervals[END_REF] u ˚vpnq :"

ÿ d n updqvpn{dq, n P N.
If by A we denote the set of arithmetic functions then pA, `, ˚q is a ring which is an integral domain and the unit e P A is given by ½ t1u . 13 There is a natural ring isomorphism between A and the ring D of (formal) 14 Dirichlet series

A Q u Þ Ñ U psq :" 8 ÿ n"1 upnq n s P D, s P C, under which U psqV psq " 8 ÿ n"1 u ˚vpnq n s .
When u " ½ N then the Dirichlet series defines the Riemann ζ function: 15 ζpsq "

8 ÿ n"1 1 n s for Re s ą 1.
It is classical that if u and v are multiplicative then so is their Dirichlet convolution. The importance of multiplicativity can be seen in the representation of the Dirichlet series of a multiplicative function u as an Euler's product. Indeed, a general term of ś pPP p1 `uppqp ´s `upp 2 qp ´2s `. . .q has the form

upp α 1 i 1 q¨...¨upp αr ir q pp α 1 i 1 ¨...¨p αr ir q s " upp α 1 i 1
¨...¨p αr ir q pp α 1 i 1 ¨...¨p αr ir q s , i.e. equals upnq n s for some n. It easily follows that ÿ ně1 upnq n s " ź pPP p1 `uppqp ´s `upp 2 qp ´2s `. . .q.

If additionally u is completely multiplicative (and |u| ď 1), then upp k q " uppq k and 8 ÿ n"1 upnq n s " ź pPP p1 ´uppqp ´sq ´1. 13 The Möbius Inversion Formula is given by µ ˚½N " e. 14 We will not discuss here the problem of convergence of Dirichlet series, see [START_REF] Rivat | Analytic number theory[END_REF]. 15 An analytic continuation of ζ yields a meromorphic function on C (with one pole at s " 1) satisfying the functional equation [START_REF] Avdeeva | Ergodic and statistical properties of B-free numbers[END_REF] ζpsq " 2 s π s´1 sin ´πs 2 ¯Γp1 ´sqζp1 ´sq.

Because of the sine, ζp´2kq " 0 for all integers k ě 1 -these are so called trivial zeros of ζ (ζp2kq ‰ 0 since Γ has simple poles at 0, ´1, ´2, . . .). In Re s ą 1 there are no zeros of ζ (ζ is represented by a convergent infinite product), so except of ´2k, k ě 1, there are no zeros for s P C, Re s ă 0 (as Rep1 ´sq ą 1). The Riemann Hypothesis asserts that all nontrivial zeros of ζ are on the line x " 1 2 . See [START_REF] Rivat | Analytic number theory[END_REF].

Note that if u " µ, we obtain ÿ ně1 µpnq n s " ź pPP p1 ´p´s q since µppq " ´1 and µpp r q " 0 whenever r ě 2. Since for the Riemann ζ function, we have ζpsq " ś pPP p1 ´p´s q ´1 for Re s ą 1, we obtain the following.

Corollary 2.1. We have 

Distance between multiplicative functions

Denote by [START_REF] Baake | Aperiodic Order[END_REF] M :" tu : N Ñ C : u is multiplicative and |u| ď 1u.

Let u, v P M. Define the "distance" function D on M by setting (13) Dpu, vq :"

˜ÿ pPP 1 p ´1 ´Re ´uppqvppq ¯¯¸1 {2 .
For each u, v, w P M, we have:

• Dpu, uq ě 0; Dpu, uq " 0 iff ř pPP 1 p p1 ´|uppq| 2 q " 0 iff |uppq| " 1 for all p P P, so Dpn it , n it q " 0 for each t P R, Dpλ, λq " Dpµ, µq " 0. Of course, if uppq " 0 for each p P P then Dpu, uq " `8. Moreover, φpnq{n P M and Dpφpnq{n, φpnq{nq " ř pPP 1 p p1 ´p1´pq 2 p 2 q is positive and finite.

• Dpu, vq " Dpv, uq.

• Dpu, vq ď Dpu, wq `Dpw, vq, see [START_REF] Granville | Multiplicative number theory: The pretentious approach[END_REF].

When Dpu, vq ă `8 then one says that u pretends to be v. For example, µ 2 and φpnq{n pretend to be ½ (as

ř pPP 1 p p1 ´p´1 p q " ř pPP 1 p 2 ă `8).

Lemma 2.2 ([78]

). For each u, v, w, w 1 P M, we have (i) Dpuw, vw 1 q ď Dpu, vq `Dpw, w 1 q.

Moreover, by (i) and a simple induction, (ii) mDpu, vq ě Dpu m , v m q for all m P N. for a constant C 1 ą 0. Now, using ( 13), ( 14) and summing over k, we obtain the following: 16(15) Dp½, n it q " 8 for each t ‰ 0.

It is not difficult to see that for t ‰ 0, Dpχ, n it q " `8 for each Dirichlet character χ, while for t " 0, we have Dpχ, 1q ă `8 if and only if χ is principal.

Mean of a multiplicative function. The Prime Number Theorem (PNT)

The distance D is useful when we want to compute means of multiplicative functions. Given an arithmetic function u : N Ñ C its mean M puq is defined as M puq :" lim N Ñ8

1 N ř nďN upnq (if the limit exists). Theorem 2.3 (Halász; e.g. Thm. 6.3 [START_REF] Elliott | Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften[END_REF]). Let u P M. Then M puq exists and is non-zero if and only if (i) there is at least one positive integer k so that up2 k q ‰ ´1, and (ii) the series ř pPP 1 p p1 ´uppqq converges. When these conditions are satisfied, we have

M puq " ź pPP ˆ1 ´1 p ˙˜1 `8 ÿ m"1 p ´mupp m q ¸.
The mean value M puq exists and is zero if and only if either (iii) there is a real number τ , so that for each positive integer k, up2 k q " ´2kiτ , moreover Dpu, n iτ q ă `8; or (iv) Dpu, n it q " 8 for each t P R.

Corollary 2.4 (Wirsing's theorem). If u P M is real-valued then M puq exists.

Proof. Since Repp it q " Repp ´it q, and uppq P R, we have Dp½, n 2it q " Dpn ´it , n it q ď 2Dpu, n it q by the triangle inequality. By [START_REF] Baake | On weak model sets of extremal density[END_REF], it follows that Dpu, n it q " `8 for each 0 ‰ t P R. Hence, if Dpu, ½q " `8, then Dpu, n it q " `8 for each t P R and then M puq " 0 by Halász's theorem (iv).

If not then Dpu, 1q ă `8. Then the series ř pPP 1 p p1 ´uppqq converges (so (ii) is satisfied) and we check whether or not up2 k q " ´1 for all k P N, that is, either (i) holds or (iii) holds.

Remark 2.5. It follows from [START_REF] Baake | On weak model sets of extremal density[END_REF] that in Halász's theorem (iii) and (iv) are two disjoint conditions. Remark 2.6. Not all functions from M have mean. Indeed, an Archimedean character n it has mean iff t " 0. This can be shown by a direct computation: apply Euler's summation formula to f pxq " x it with t ‰ 0, to obtain

1 N ř nďN n it " N it it`1 `O ´log N N ¯.
Theorem 2.7 (e.g. [START_REF] Granville | Multiplicative number theory: The pretentious approach[END_REF][START_REF] Hildebrand | Introduction to analytic number theory[END_REF][START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]). The PNT is equivalent to M pµq " 0.

Remark 2.8. The statement above is an elementary equivalence, see the discussion in Section 4 [START_REF] Diamond | Elementary methods in the study of the distribution of prime numbers[END_REF]. For a PNT for a more general f (i.e. not for f " 1) the relation between such a disjointness and sums over the primes requires more quantitative estimates than simply opN q.

Remark 2.9. By Halász's theorem, condition M pµq " 0 is equivalent to Dpµ, n it q " 8 for each t P R (µ does not pretend to be n it ), and this can be established similarly to the proof of [START_REF] Baake | On weak model sets of extremal density[END_REF].

The PNT tells us about cancelations of `1 and ´1 for µ. When one requires a behavior similar to random sequences, say "square-root type cancelation", the result is much stronger: Theorem 2.10 (Littlewood, see [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF]). The Riemann Hypothesis holds if and only if for every ε ą 0, we have

ř nďN µpnq " O ε pN 1 2 `εq.
This result is not hard to establish and we show the sufficiency: By Corollary 2.1, we have x ´Re s´1 2 `ε dx.

It follows that the integral on the RHS of ( 16) is absolutely convergent for Re s ą 1 2 `ε. Hence, ( 16) yields an analytic extension of 1 ζp¨q to ts P C : Re s ą 1 2 `εu. In this domain there are no zeros of ζ and by the functional equation (see [START_REF] Avdeeva | Ergodic and statistical properties of B-free numbers[END_REF]) on ζ, we obtain the Riemann Hypothesis.

Aperiodic multiplicative functions

Denote by

M conv :" tu P M : lim N Ñ8
1 N ÿ nďN upan `rq exists for all a, r P Nu.

The following is classical.

Lemma 2.11. Let u P M. Then u P M conv if and only if the mean value M pχ ¨uq exists for each Dirichlet character χ.

An arithmetic function u : N Ñ C is called aperiodic if, for all a, r P N, we have lim N Ñ8 1 N ř nďN upan `rq " 0. Similarly to Lemma 2.11, we obtain that u P M is aperiodic if and only if M pχ ¨uq " 0 for each Dirichlet character χ. Delange theorem (see, e.g., [START_REF] Granville | Multiplicative number theory: The pretentious approach[END_REF]) gives necessary and sufficient conditions for u to be aperiodic. In particular, each u P M satisfying Dpu, χ ¨nit q " 0 for all Dirichlet characters χ and all t P R, is aperiodic. Classical multiplicative functions as µ or λ are aperiodic.

Frantzikinakis and Host in [START_REF] Frantzikinakis | Higher order Fourier analysis of multiplicative functions and applications[END_REF] prove a deep structure theorem for multiplicative functions from M. One of the consequences of it is the following characterization of aperiodic functions: u P M is aperiodic if and only if it is uniform, that is, all Gowers uniformity seminorms 17 vanish [START_REF] Frantzikinakis | Higher order Fourier analysis of multiplicative functions and applications[END_REF]. In [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF] (see Theorem 1.3 therein), this result is extended to show that u P M conv is either uniform or rational. 18 Also, a variation of this result has been proved in [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF] (see Theorem A therein): [START_REF] Bartnicka | B-free sets and dynamics[END_REF] for each positive density level set E " tn P N : upnq " cu of u P M there is a (unique if density is smaller than 1) rational (i.e. coming from a rational function from M) level set R of v P M such that dpRq½ E ´dpEq½ R is Gowers uniform. For example, for E " tn P N : µpnq " 1u the unique set R is just the set of square-free numbers.

Davenport type estimates on short intervals

Given u P M, for our purposes we will need additionally the following: 19 for each pb n q Ă N with b n`1 ´bn Ñ 8 and any c P C, |c| " 1, we have (18)

1 b K`1 ÿ kďK ˇˇˇˇˇÿ b k ďnăb k`1 c n upnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0.
17 For N P N we write rN s for the set t1, 2, . . . , N u. Given h, N P N and f : N Ñ C, we let S h f pnq " f pn `hq and f N " ½ rNs ¨f . For s P N, the Gowers uniformity seminorm [START_REF] Gowers | A new proof of Szemerédi's theorem[END_REF] }.} U s rN s is defined in the following way:

}f } U 1 rN s :" ˇˇˇˇ1 N N ÿ n"1 f N pnq ˇˇˇǎ nd for s ě 1 }f } 2 s`1 U s`1 rN s :" 1 N N ÿ h"1 › › ›fN S h f N › › › 2 s U s rN s . A bounded function f : N Ñ C is called uniform if }f } U s rN s
converges to zero as N Ñ 8 for each s ě 1. 18 An arithmetic function u is rational if for each ε ą 0 there is a periodic function v such that lim sup NÑ8 1 N ř nďN |upnq ´vpnq| ă ε. Note that since µ is aperiodic, whence orthogonal to all periodic sequences it will also be orthogonal to each rational u [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF]. An example of rational sequence is given by µ 2 . For more examples, see the sets of B-free numbers in the Erdös case in Section 6. 19 To be compared with the estimates (3), where we drop the sup requirement.

It is not hard to see that if u P M satisfies [START_REF] Bergelson | Polynomial extensions of van der Waerden's and Szemerédi's theorems[END_REF] for each pb n q and c as above, then it must be aperiodic.

In fact, it follows from a break-through result in [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] and [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF] that the class of u P M for which [START_REF] Bergelson | Polynomial extensions of van der Waerden's and Szemerédi's theorems[END_REF] holds contains all u for which [START_REF] Bergelson | Squarefree numbers, IP sets and ergodic theory[END_REF] inf |t|ďM,χ mod q,qďQ Dpu, n Þ Ñ χpnqn it ; M q 2 Ñ 8, when 10 ď H ď M , H Ñ 8 and Q " minplog 1{125 M, log 5 Hq; here χ runs over all Dirichlet characters of modulus q ď Q and Dpu, v; M q :" ˜ÿ pďM,pPP 1 ´Repuppqvppqq p

¸1{2

for each u, v P M. Moreover, classical multiplicative functions like µ and λ satisfy [START_REF] Bergelson | Squarefree numbers, IP sets and ergodic theory[END_REF], see [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF]. Finally, note that ( 18) true for all pb n q as above is equivalent to the following statement:

(20) 1 M ÿ Mďmă2M ˇˇˇˇÿ mďhăm`H c h uphq ˇˇˇˇÝ ÝÝÝÝÝÝÝÝÝÝÝ Ñ M,HÑ8,H"opMq 0 
(we can also replace the first sum by ř 1ďmăM ), see [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF] for details. This statement is much closer to the original formulations of (simplified versions of) theorems from [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF][START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF].

One more consequence of the main result in [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] is the following:

Theorem 2.12 (Thm. 1.1 in [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF] and a corollary for k " 2 therein). For H Ñ 8 arbitrarily slowly with M Ñ 8 (H ď M ), we have

ÿ hďH ˇˇˇˇÿ mďM µpmqµpm `hq ˇˇˇˇ" opHM q.

The KBSZ criterion

Sarnak's conjecture is aimed at showing that deterministic sequences (i.e. those given as observable sequences in the zero entropy systems) are orthogonal to µ.

In particular, as µ is a multiplicative function, the result 20 below establishes disjointness with µ.

Theorem 2.13 ( [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF][START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF]). Assume that pa n q is a bounded sequence of complex numbers. Assume that for all prime numbers p ‰ q

(21) 1 N ÿ nďN a pn a qn Ý ÝÝÝ Ñ N Ñ8
0. 20 The main ideas for this result appeared in [START_REF] Daboussi | On multiplicative arithmetical functions whose modulus does not exceed one[END_REF] and [START_REF] Montgomery | Exponential sums with multiplicative coefficients[END_REF]. It was first established in a slightly different form in [START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF] and then in [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF], see also [START_REF] Hall | Sets of multiples[END_REF] for a proof. The criterion has its origin in the bilinear method of Vinogradov [START_REF]The method of trigonometrical sums in the theory of numbers[END_REF] which is a technique to study sums of a over primes in terms of sums over progressions ř nďN a dn and sums

ř nďN a d 1 n a d 2 n
. If an " f pT n xq then these sums are Birkhoff sums for powers of T and their joinings.

In what follows we will refer to Theorem 2.13 as to the KBSZ criterion.

Then, for each multiplicative function u P M, we have

(22) 1 N ÿ nďN a n upnq Ý ÝÝÝ Ñ N Ñ8 0.
For example, see [START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF], the criterion applies to the sequences of the form pe iP pnq q, where P P Rrxs has at least one irrational coefficient (different from the constant term).

In the context of dynamical systems, we use this criterion for a n " f pT n xq, n ě 1. Clearly, this leads us to study the behavior of different (prime) powers of a fixed map T . We should warn the reader that when applying Theorem 2.13, we do not expect to have [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF] satisfied for all continuous functions, in fact, even in uniquely ergodic systems, in general, it cannot hold for all zero mean functions 21 but we need a subset of CpXq which is linearly dense, cf. footnote 4.

We will also need the following variation of Theorem 2.13, see [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF]:

Proposition 2.14. Assume that pa n q is a bounded sequence of complex numbers. Assume, moreover, that

(23) lim sup p,qÑ8 different primes ˜lim sup N Ñ8 ˇˇˇˇ1 N ÿ nďN a pn a qn ˇˇˇˇ¸" 0.
Then, for each multiplicative function u : N Ñ C, u P M, we have

(24) lim N Ñ8 1 N ÿ nďN a n ¨upnq " 0.
Remark 2.15. In contrast to the KBSZ criterion given by Theorem 2.13, condition [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF] has its ergodic theoretical counterpart -the property called AOP (see Section 4) which is a measure-theoretic invariant.

Chowla conjecture

In this section we get into the subject of the Chowla conjecture which is the main motivation for Sarnak's conjecture.

Formulation and ergodic interpretation

The Chowla conjecture deals with higher order correlations of the Möbius function, 22 that is, the conjecture asserts that

(25) 1 N ÿ nďN µ j0 pnqµ j1 pn `k1 q . . . µ jr pn `kr q Ý ÝÝÝ Ñ N Ñ8
0 21 We can easily see that when T x " x `α is an irrational rotation on T " r0, 1q, then, by the Weyl criterion on uniform distribution, ( 21) is satisfied for all characters (for all x P T), but there are continuous zero mean functions for which [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF] fails [START_REF] Kułaga-Przymus | The Möbius function and continuous extensions of rotations[END_REF]. 22 As a matter of fact, in [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF], it is formulated for the Liouville function. We follow [148]. For a discussion on an equivalence of the Chowla conjecture with µ and λ, we invite the reader to [START_REF] Ramaré | From Chowla's conjecture: from the Liouville function to the Moebius function[END_REF]. As shown in [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF], there are non-pretentious (completely) multiplicative functions for which Chowla conjecture fails. For more information, see the discussion on Elliot's conjecture in [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF].

whenever 1 ď k 1 ă . . . ă k r , j s P t1, 2u not all equal to 2, r ě 0. 23 We will now explain an ergodic meaning of the Chowla conjecture. Recall that given a dynamical system pX, T q and µ P M pX, T q, a point x P X is called

generic for µ if 1 N ÿ nďN f pT n xq Ý ÝÝÝ Ñ N Ñ8 ż X f dµ for each f P CpXq. Equivalently, 1 N ř nďN δ T n x Ý ÝÝÝ Ñ N Ñ8
µ (we recall that M pX, T q is endowed with the weak ˚topology which makes it a compact metrizable space). By compactness, each point is quasi-generic for a certain measure ν P M pX, T q, i.e.

1 N k ÿ nďN k δ T n x ÝÝÝÑ kÑ8 ν for a certain subsequence N k Ñ 8. Let (26) 
Q-genpxq :" tν P M pX, T q : x is quasi-generic for νu. 24Assume now that we have a finite alphabet A. We consider pA Z , Sq, so called full shift, or more precisely, two-sided full shift, where A Z is endowed with the product topology and Sppx n qq " py n q with y n " x n`1 for each n P Z. Each X Ă A Z that is closed and S-invariant yields a subshift, i.e. the dynamical system pX, Sq. One way to obtain a subshift is to choose x P A Z and consider the closure X x of the orbit of x via S. If x is given as a one-sided sequence, x P A N , we still might consider [START_REF]On the maximal ergodic theorem for certain subsets of the integers[END_REF] X x :" ty P A Z : each block appearing in y appears in xu to obtain a two-sided subshift. In case when each block appearing in x reappears infinitely often, X x " tS n x : n P Zu, for some x for which xpjq " xpjq for each j ě 1 but, in general, there is no such a good x. Moreover, we will let ourselves speak about a one-sided sequence x to be generic or quasi-generic for a measure ν P M pX x , Sq. Now take A " t´1, 0, 1u. For each subshift X Ă t´1, 0, 1u Z let θ P CpXq be defined as [START_REF]On the pointwise ergodic theorem on L p for arithmetic sets[END_REF] θpyq " yp0q, y P X.

Note that directly from the Stone-Weierstrass theorem we obtain the following.

Lemma 3.1. The linear subspace generated by the constants and the family tθ j0 ˝Sk0 ¨θj1 ˝Sk1 ¨. . . ¨θjr ˝Skr :

k i P Z, j i P t1, 2u, i " 0, 1, . . . , r, r ě 0u
of continuous functions is an algebra of functions separating points, hence it is dense in CpXq. 23 The Chowla conjecture is rather "close" in spirit to the Twin Number Conjecture in the sense that the latter is expressed by p˚q ř nďx ΛpnqΛpn `2q " p2Π 2 q ¨x `opxq, where Π 2 " ś p p1 ´1 pp´1q 2 q " 0, 66016 . . . which can be compared with ř nďx µpnqµpn `2q " opxq which is "close" to the Chowla conjecture, see e.g. [157]. A recent development shows that it is realistic to claim that the Chowla conjecture with an error term of the form opplog N q ´Aq for some A large enough (A depending on the number of shifts of µ that are considered) implies p˚q. (Of course, everywhere Λ is a good approximation of ½ P ).

See also [140] for a (conditional) equivalence of p˚q with ř nďN Λpnqµpn `2q " opN q.

The subshift pX µ , Sq is called the Möbius system and X µ 2 Ă t0, 1u Z Ă t´1, 0, 1u Z is the square-free system. 25 Note that s : pzpnqq Þ Ñ pzpnq 2 q will settle a factor map between the Möbius system and the square-free system. The point µ 2 is a generic point for so called Mirsky measure ν µ 2 [START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF][START_REF]Arithmetical pattern problems relating to divisibility by rth powers[END_REF] (see Section 6.2). In other words, there are frequencies of blocks on µ 2 : for each block B P t0, 1u ℓ , the following limit exists:

lim N Ñ8 1 N ˇˇt1 ď n ď N ´ℓ : µ 2 pn, n `ℓ ´1q " Bu ˇˇ": ν µ 2 pBq.
We can now consider the relatively independent extension26 p ν µ 2 of ν µ 2 which is the measure on s ´1pX µ 2 q Ă t´1, 0, 1u Z given by the following condition: for each block C P t´1, 0, 1u ℓ , we have

p ν µ 2 pCq :" 1 2 k ν µ 2 pC 2 q,
where C 2 is obtained from B by squaring on each coordinate and k is the number of 1 in C 2 . A straightforward computation shows that (29) ż t´1,0,1u Z θ j0 ˝Sk0 ¨θj1 ˝Sk1 ¨. . . ¨θjr ˝Skr dp ν µ 2 " 0 whenever tj 0 , . . . , j r u ‰ t2u. On the other hand, in view of Lemma 3.1, the values of integrals ż

t´1,0,1u Z θ 2 ˝Sk0 ¨θ2 ˝Sk1 ¨. . . ¨θ2 ˝Skr dp ν µ 2
for all k i P Z and r ě 0 entirely determine the Mirsky measure ν µ 2 .

Corollary 3.2. The Chowla conjecture holds if and only if µ is a generic point for p ν µ 2 .

Proof. We consider any extension of µ to a two-sided sequence (for example we set µpnq " 0 for each n ď 0). Suppose that

(30) 1 N k ÿ nďN k δ S n µ ÝÝÝÑ kÑ8 κ.
In order to get κ " p ν µ 2 , in view of Lemma 3.1, we need to show that ż t´1,0,1u Z θ j0 ˝Sk0 ¨θj1 ˝Sk1 ¨. . . ¨θjr ˝Skr dκ " 0 for any choice of integers k 0 ă k 1 ă . . . ă k r , tj 0 , j 1 , . . . , j r u ‰ t2u and r ě 0. Since the measure ν is S-invariant, it is the same as to show that ż t´1,0,1u Z θ j0 ˝¨θ j1 ˝Sk1´k0 ¨. . . ¨θjr ˝Skr´k0 dκ " 0. Now, we have 1 ď k 1 ´k0 ă . . . ă k r ´k0 and the result follows from ( 25) and [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF].

The Chowla conjecture for r " 0 is just the PNT, however, it remains open even for r " 1. As in [148], we could consider a weaker version of the Chowla conjecture. Namely, we say that µ satisfies the topological Chowla conjecture if X µ " s ´1pX µ 2 q. Remark 3.3. Note that (25) holds if

|t0 ď t ď r : j t " 1u| " 1.
Indeed, it is not hard to see that if t 0 is the only index for which j t0 " 1 then the sequence apnq :" ś t‰t0 µ 2 pn `kt q is rational. Hence, µ is orthogonal to ap¨q, cf. footnote 18.

The Chowla conjecture implies Sarnak's conjecture

Assume that pX, T q is a topological system. Following [START_REF] Kamae | Subsequences of normal sequences[END_REF][START_REF] Weiss | Normal sequences as collectives[END_REF] a point x P X is called completely deterministic if for each measure ν P Q-genpxq (see ( 26)), the measure theoretic dynamical system pX, BpXq, ν, T q has zero Kolmogorov-Sinai entropy: h ν pT q " 0. Of course, if the topological entropy of T is zero, then by the Variational Principle, each x P X is completely deterministic. On the other hand, pX µ 2 , Sq has positive topological entropy [START_REF]A dynamical point of view on the set of B-free integers[END_REF]136,148] and µ 2 P X µ 2 is completely deterministic, see [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF][START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF].

Let f P CpXq and x P X be completely deterministic. We have

1 N ÿ nďN f pT n xqµpnq " ż XˆXµ pf b θqd ˜1 N ÿ nďN δ pT ˆSq n px,µq ¸.
We can assume that

1 N k ÿ nďN k δ pT ˆSq n px,µq ÝÝÝÑ kÑ8
ρ in the space M pX ˆXµ , T ˆSq.

Under the Chowla conjecture, the projection of ρ on X µ is equal to p ν µ 2 (since, by Corollary 3.2, µ is a generic point for p ν µ 2 ), while the projection of ρ on X is some T -invariant measure κ and h κ pT q " 0 (since x is completely deterministic). Note that ρ is a joining 27 of the (measure-theoretic) dynamical systems pX, κ, T q and pX µ , p ν µ 2 , Sq. Moreover, the latter automorphism has the so called relative Kolmogorov property with respect to the factor pX µ 2 , ν µ 2 , Sq. We then consider the restriction of the joining ρ| XˆX µ 2 and ρ| Xµ to obtain two systems that have a common factor (namely X µ 2 ) relatively to which the first one has zero entropy and the second being relatively Kolmogorov. Since the function θ is orthogonal to L 2 pX µ 2 , ν µ 2 q, the relative disjointness theorem on zero entropy and Kolmogorov property yields the following (see also Remark 3.6):

Theorem 3.4 ([3]). The Chowla conjecture implies 1 N ÿ nďN f pT n xqµpnq Ñ 0
for each dynamical system pX, T q, f P CpXq and x P X completely deterministic. In particular, the Chowla conjecture implies Sarnak's conjecture. 28Remark 3.5. It is also proved in [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF] that this seemingly stronger statement of the validity of Sarnak's conjecture at completely deterministic points is in fact equivalent to the Möbius disjointness of all zero entropy systems.

Remark 3.6. A word for word repetition of the above proof 29 yields the same result when we replace µ by another generic point of p ν µ 2 in which we control the relative Kolmogorov property over the maximal factor with zero entropy, so called Pinsker factor. In particular, we can replace µ by λ (for which the Pinsker factor will be just the one-point dynamical system).

As a matter of fact, it is expected that each aperiodic real-valued multiplicative function satisfies the Chowla type result (and hence satisfies the Sarnak type result), see the conjectures by Frantzikinakis and Host formulated after Theorem 3.30.

Remark 3.7. The original proof of Sarnak of the implication "Chowla conjecture ñ Sarnak's conjecture" used some combinatorial arguments and probabilistic methods, see [157].

Sarnak's conjecture ( 2) is formulated for the Möbius function. But of course one can consider other multiplicative functions. 30 Below, we show that if we use the Liouville function then nothing changes.

Corollary 3.8. Sarnak's conjecture with respect to µ is equivalent to Sarnak's conjecture with respect to λ.

Proof. Let us recall the basic relation between these two functions: λpnq " ř d 2 n µpn{d 2 q. Assume that pX, T q is a dynamical system with hpT q " 0. As the zero entropy class is closed under taking powers, we assume Möbius disjointness for all powers of T . Then

1 N ÿ nďN f pT n xqλpnq " 1 N ÿ nďN f pT n xq ¨ÿ d 2 n µpn{d 2 q ' " 1 N ÿ nďN ÿ d 2 n µpn{d 2 qf ppT d 2 q n{d 2 xq " ÿ dď ? N 1 d 2 ¨1 N {d 2 ÿ nďN {d 2 µpnqf ppT d 2 q n xq.
Take ε ą 0 and select M ě 1 so that

ř děM 1 d 2 ă ε. Consider T, T 2 , T 3 , . . . , T M . We have ˇˇˇˇ1 N ÿ nďN f pT kn xqµpnq ˇˇˇˇă ε for all k " 1, . . . , M whenever N ě N 0 . It follows that ˇˇˇˇˇ1 N {d 2 ÿ nďN {d 2 µpnqf pT d 2 n xq ˇˇˇˇˇă ε for all d " 1, . . . , M if N ą M N 0 .
Otherwise we estimate such a sum by }f } 8 .

To obtain the other direction, we first recall that µ 2 is a completely deterministic point. Then use Theorem 3.4 for λ (see Remark 3.6), write λpnqµ 2 pnq " µpnq for each n ě 1 and we obtain

1 N ÿ nďN f pT n xqµ 2 pnqλpnq " 1 N ÿ nďN pf b θqppT ˆSq n px, µ 2 qqλpnq Ñ 0
as the point px, µ 2 q is completely deterministic.

The logarithmic versions of Chowla and Sarnak's conjectures

An intriguing problem arises whether the Chowla and Sarnak's conjecture are equivalent. An intuition from ergodic theory would say that this is rather not the case as the class of systems that are disjoint (in the Furstenberg sense) from all zero entropy measure-theoretic systems is the class of Kolmogorov automorphisms and not only Bernoulli automorphisms (and a relative version of this result persists). 31 From that point of view a recent remarkable result of Terence Tao [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] about the equivalence of logarithmic versions of the Chowla and Sarnak's conjectures is quite surprising. We will formulate some versions 32 of three (out of five) conjectures from [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF].

Conjecture A: We have

1 log N ÿ nďN µ j0 pnqµ j1 pn `k1 q . . . µ jr pn `kr q n Ý ÝÝÝ Ñ N Ñ8
0 whenever 1 ď k 1 ă . . . ă k r , j s P t1, 2u not all equal to 2, r ě 0.

31 If we consider general sequences z P t´1, 0, 1u N then we can speak about the Sarnak and Chowla properties on a more abstract level: for example the Chowla property of z means (25) with µ replaced by z. See Example 5.1 and Remark 5.3 in [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF] for sequences orthogonal to all deterministic sequences but not satisfying the Chowla property. However, arithmetic functions in these examples are not multiplicative.

However, an analogy between disjointness results in ergodic theory and disjointness of sequences is sometimes accurate. For example, a measure-theoretic dynamical system has zero entropy if and only if it is disjoint with all Bernoulli automorphisms. As pointed out in [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF] (Prop. 5.21), a sequence t P t´1, 1u N is completely deterministic if and only if it is disjoint with any sequence z P t´1, 0, 1u N satisfying the Chowla property. 32 See Remark 1.9. Also, in [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] the Liouville function λ is considered, see page 2 in [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] how to replace λ by µ. Remark 3.9. It should be noted that passing to such logarithmic averages moves one away from questions about primes, twin primes and subtleties such as the parity problem. For example, the statement ř nďN µpnq n

" oplog N q is easy to establish (in fact, ˇˇř nďN µpnq n ˇˇď 1), while the PNT is equivalent to much stronger statement ř 8

n"1 µpnq n " 0 (as conditionally convergent series). On the other hand, the logarithmically averaged Chowla conjecture implies that all "admissible" configurations do appear on µ, see Corollary 3.13 below (the topological Chowla conjecture for λ implies that all blocks of ˘1 appear in λ).

Conjecture B:

We have

1 log N ÿ nďN f pT n xqµpnq n Ý ÝÝÝ Ñ N Ñ8
0 whenever pX, T q is a topological system of zero topological entropy, f P CpXq and x P X.

To formulate the third conjecture, we need to recall the definition of a nilrotation. Let G be a connected, simply connected Lie group and Γ Ă G a lattice (a discrete, cocompact subgroup). For any g 0 P G we define T g0 pgHq :" g 0 gH. Then the topological system pG{Γ, T g0 q is called a nilrotation. Remark 3.12. Let us consider the Cesàro version of Conjecture C with H " opN q and we drop the assumption on the sup (which is inside), i.e.: for each g P G, we have

1 N ÿ nďN ˇˇˇˇÿ hďH f pT h`n g px 0 Γqqµpn `hq ˇˇˇˇÝ ÝÝÝÝÝÝÝÝÝÝÑ H,N Ñ8,H"opN q 0.
This is a particular case of what we will see in Section 4, where we introduce the strong MOMO notion (hence, the validity of Sarnak's conjecture on (typical) short interval).

Corollary 3.13 (a letter of W. Veech in June 2016). Sarnak's conjecture implies topological Chowla conjecture. Equivalently, Sarnak's conjecture implies that each block B P t´1, 0, 1u ℓ for which B 2 appears in µ 2 appears in µ (and the entropy of pX µ , Sq equals 6 π 2 log 3). Proof. Indeed, Sarnak's conjecture implies its logarithmic version which, by Theorem 3.10, implies logarithmic Chowla conjecture, that is,

1 log N ř nďN δ S n µ n Ñ p ν µ 2 .
However, the logarithmic averages of the Dirac measures are convex combinations of the consecutive Cesàro averages 33 1 n ř jďn δ S j µ , so if we take a block B P s ´1pX µ 2 q, we have p ν µ 2 pBq ą 0 and therefore there exists n such that 1 n ř jďn δ S j µ pBq ą 0, which means that B appears in µ.

Remark 3.14. (added in October 2017) As a matter of fact, as shown in [START_REF] Gomilko | Sarnak's conjecture implies the chowla conjecture along a subsequence[END_REF], Sarnak's conjecture implies the existence of a subsequence pN k q along which

1 N k ř nďN k δ S n µ Ñ p ν µ 2 .
This follows from a general observation that, given a topological system pX, T q, whenever an ergodic measure ν is a limit of a subsequence pM k q of logarithmic averages of Dirac measures: ν " lim kÑ8

1 log M k ř mďM k δ T m x
m , then there exists a subsequence pN k q for which ν " lim kÑ8

1 N k ř nďN k δ T n x .
We apply this to the measure p ν µ 2 which is ergodic.

In [START_REF] Tao | The logarithmically averaged Chowla and Elliot conjectures for two-point correlations[END_REF], Tao proves the logarithmic version of Chowla conjecture for the correlations of order 2 (which we formulate for the Liouville function): Theorem 3.15 ([154]). For each 0 ‰ h P Z, we have

1 log N ÿ nďN λpnqλpn `hq n Ý ÝÝÝ Ñ N Ñ8 0.
See also [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF], where it is proved that for each integer h ě 1 there exists δphq ą 0 such that lim sup N Ñ8 1 N ˇˇř nďN λpnqλpn `hq ˇˇď 1 ´δphq and [START_REF]Sign patterns of the Liouville and Möbius functions[END_REF], where it is proved that for the Liouville function the eight patterns of length 3 of signs occur with positive lower density, and the density result with lower density replaced by upper density persists for k `5 patterns (out of total 2 k ) for each k P N.

For a proof of a function field Chowla's conjecture, see [START_REF] Carmon | The autocorrelation of the Möbius function and Chowla's conjecture for the rational function field[END_REF]. 33 Assume that panq is a bounded sequence and set An " a 1 `. . . `an. Then, we have by summation by parts (31)

1 log N ÿ nďN an n " 1 log N ÿ nďN pA n`1 ´Anq 1 n " 1 log N ÿ nďN An ˆ1 n ´1 n `1 ˙`op1q " 1 log N ÿ nďN An n 1 n `1 `op1q.
It follows that:

• If the Cesàro averages of panq converge, so do the logarithmic averages of panq.

• The converse does not hold (see e.g. [START_REF] Besicovitch | On the density of certain sequences of integers[END_REF] in B-free case, Section 6.1).

• If the Cesàro averages converge along a subsubsequence pN k q then not necessarily the logarithmic averages do the same. Indeed, by [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF],

1 log N k ř nďN k
an n is (up to a small error) a convex combination of the Cesàro averages for all n ď N k .

Remark 3.16. See also [START_REF] Tao | The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures[END_REF], where, given k 0 , . . . k ℓ P Z and u 0 , . . . , u ℓ P M, one studies sequences of the form n Þ Ñ u 0 pn `ak 0 q ¨. . . ¨uℓ pn `ak ℓ q, a P Z.

By considering their logarithmic averages, one obtains a sequence pf paqq. The main result of [START_REF] Tao | The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures[END_REF] is a structure theorem (depending on whether or not the product u 0 ¨. . . u ℓ weakly pretends to be a Dirichlet character) for the sequences pf paqq. As a corollary, the logarithmically averaged Chowla conjecture is proved for any odd number of shifts.

Frantzikinakis' theorem

Tao's approach from [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] is continued in [START_REF]Ergodicity of the Liouville system implies the Chowla conjecture[END_REF]. Before we formulate Frantzikinakis' results, let us interpret some arithmetic properties, especially the role of a "good behavior" on (typical) short interval of a multiplicative function in the ergodic theory language.

Ergodicity of measures for which µ is quasi-generic

In this subsection we summarize ergodic consequences of some recent, previously mentioned number-theoretic results, cf. [START_REF] Frantzikinakis | An averaged Chowla and Elliott conjecture along independent polynomials[END_REF]. By that we mean that we consider all measures κ P Q-genpµq and we study ergodic properties of the dynamical systems pX µ , κ, Sq.

Let κ P Q-genpµq, i.e. 1 M k ř mďM k δ S m µ ÝÝÝÑ kÑ8 
κ P M pX µ , Sq for some increasing sequence pM k q. As usual, θpxq " xp0q (θ P CpX µ q). We have But such integrals can be computed:

1 M k ÿ mďM k ˇˇˇˇ1 H ÿ hďH θ ˝Sh pS m µq ˇˇˇˇ2 ÝÝÝÑ kÑ8 ż Xµ ˇˇˇˇ1 H ÿ hďH θ ˝Sh ˇˇˇˇ2 dκ.
Putting things together, given ε ą 0, for H ě 1 large enough, we want to see

lim sup kÑ8 1 M k ÿ mďM k ˇˇˇˇ1 H ÿ hďH µpm `hq ˇˇˇˇ2 ď ε.
The latter is true because of [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF]: for a "typical" m the sum ˇˇ1 H ř mďhăm`H µphq ˇǐs small.

Remark 3.17. As the calculation above shows, the fact that

1 M ÿ mďM ˇˇˇˇ1 H ÿ hďH µpm `hq ˇˇˇˇ2 Ñ 0
when H Ñ 8 and H " opM q is equivalent to θ K L 2 pX µ , Inv, κq for each κ P Q-genpµq. In particular, the Chowla conjecture implies the above short interval behavior.

However, remembering that κ| X µ 2 " ν µ 2 , one can ask now whether θ is measurable with respect to the factor given by the Mirsky measure. As this factor has rational discrete spectrum [START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF], to show that this is not the case, we need to prove that θ K L 2 pΣ rat q, where Σ rat stands for the factor given by the whole rational spectrum of pX µ , κ, Sq. To do it, we need to show that for each r ě 1, we have

1 N ÿ nďN θ ˝Srn Ý ÝÝÝ Ñ N Ñ8 0 in L 2 pX µ , κq.
This convergence can be shown by using the strong MOMO property (which we will consider in Section 4) for the rotation j Þ Ñ j `1 on Z{rZ. We skip this argument here and show still a stronger consequence. Assume that κ P Q-genpµq and that we want to show that the spectral measure of θ P L 2 pX µ , κq is continuous. Hence, we need to show that 

If we fix H ě 1 then ż Xµ θ ˝Sh ¨θ dκ " lim kÑ8 1 M k ÿ mďM k θ ˝Sh pS m µq ¨θpS m µq " 1 M k ÿ mďM k µpm `hqµpmq.
It follows that we need to show that

1 H ÿ hďH ˇˇˇˇ1 M k ÿ mďM k µpm `hqµpmq ˇˇˇˇÑ 0
when H, M k Ñ 8; to be precise, given ε ą 0 we want to show that for H ą H ε , we have lim sup kÑ8

1 H ř hďH ˇˇ1 M k ř mďM k µpm `hqµpmq ˇˇă ε.
Hence, directly from Theorem 2.12, we obtain the following.

Corollary 3.18. The spectral measure of θ is continuous for each κ P Q-genpµq.

While it is obvious that the subshift X µ is uncountable (indeed, it is the subshift X µ 2 which is already uncountable, see Section 6), it is not clear whether X λ is uncountable. However, if a subshift pY, Sq is countable, all its ergodic measures are given by periodic orbits, hence there are only countably many of them and it easily follows that each κ P M pY, Sq yield a system with discrete spectrum. Hence, immediately from Corollary 3.18, we obtain that:

Corollary 3.19. The subshift X λ is uncountable. 34 From Corollary 3.18 we derive immediately the Möbius disjointness of all dynamical systems with "trivial" invariant measures (see also [START_REF] Huang | Möbius disjointness for topological models of ergodic systems with discrete spectrum[END_REF]). This kind of problems will be the main subject of our discussion in Section 4.

Corollary 3.20. Let pX, T q be any topological dynamical system such that, for each measure ν P M pX, T q, pX, ν, T q has discrete spectrum (not necessarily ergodic, of course). Then pX, T q is Möbius disjoint. In particular, the result holds if M e pX, T q is countable with each member of M e pX, T q yielding a discrete spectrum dynamical system.

Proof. Fix x P X and consider

1 M k ÿ mďM k δ pT m x,S m µq ÝÝÝÑ kÑ8 ρ.
We have ρ| Xµ ": κ P Q-genpµq and ρ| X ": ν. Now, we fix f P CpXq and we need to show that ş f b θ dρ " 0. But Indeed, the spectral measure of f b 1 with respect to ρ is the same as the spectral measure of f with respect to ν and the spectral measure of 1 b θ with respect to ρ is the same as the spectral measure of θ with respect to κ. Therefore, these spectral measures are mutually singular by assumption and Corollary 3.18. Hence, the functions f b 1 and 1 b θ are orthogonal, i.e. (33) holds. 35 If we have all ergodic measures giving discrete spectrum but we have too many ergodic measures then the argument above does not go through. Consider

(˚) px, yq Þ Ñ px, x `yq on T 2 . 36
Question 1 (Frantzikinakis ( 2016)). Can we obtain κ P Q-genpλq, so that pX λ , κ, Sq is isomorphic to (˚)?

Of course, the answer to Question 1 is expected to be negative. 34 The result has been observed in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF], cf. also [START_REF] Huang | Measure complexity and Möbius disjointness[END_REF]. 35 We use here the standard result in the theory of unitary operators that mutual singularity of spectral measures implies orthogonality. Recall also the classical result in ergodic theory that spectral disjointness implies disjointness. 36 Consider X 1 " X 2 " T 2 with µ 1 " µ 2 " Leb T 2 , the diagonal joining ∆ on X 1 ˆX2 and f px, yq " θpx, yq with θpx, yq " e 2πiy . The spectral measure of θ is Lebesgue, and all ergodic components of the measure µ 1 have discrete spectra.

Frantzikinakis' results

We now follow [START_REF]Ergodicity of the Liouville system implies the Chowla conjecture[END_REF] and formulate results for the Liouville function, although, up to some obvious modifications, they also hold for µ.

Theorem 3.21 ([66]). Assume that N k Ñ 8 and let

1 log N k ř nďN k δ S n λ n ÝÝÝÑ kÑ8
κ. If κ is ergodic then the Chowla conjecture (and Sarnak's conjecture) holds along pN k q for the logarithmic averages.

Taking into account footnote 33, we cannot deduce a similar statement for ordinary averages along pN k q but in view of [START_REF] Gomilko | Sarnak's conjecture implies the chowla conjecture along a subsequence[END_REF], see Remark 3.14, the Chowla conjecture holds along another subsequence. The situation becomes clear when pN k q is the sequence of all natural numbers and we assume genericity.

Corollary 3.22 ([66]

). If λ is generic for an ergodic measure then the Chowla conjecture holds.

Let us say a few words on the proof. Recall that given a bounded sequence papnqq Ă C admitting correlations, 37 one defines its local uniformity seminorms (see Host and Kra [START_REF]Nonconventional ergodic averages and nilmanifolds[END_REF]) in the following manner:

}a} 2 U 1 pNq " E hPN E nPN apn `hqapnq, ( 34 
)
}a} 2 s`1 U s`1 pNq " E hPN }S h a ¨a} 2 s U s pNq , s ě 2, (35) 
where, for each bounded sequence pbpnqq, pS h bqpnq :" bph `nq and E nPN bpnq " lim N Ñ8 1 N ř nďN bpnq. (Similar definitions are considered along a subsequence pN k q.)

The following result has been proved by Tao:

Theorem 3.23 ([155]). Assume that λ is generic. The Chowla conjecture holds if and only if }λ} U s pNq " 0 for each s ě 1. 38 Remark 3.24. We have assumed in the statement of Theorem 3.23 that λ is generic but we would like also to note that, without this latter (strong) assumption, Tao obtained the equivalence in Theorem 3.23 for the logarithmic averages, see Conjecture 1.6 and Theorem 1.9 in [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] (however, one has to modify the definition of seminorms [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF]).

Hence, under the assumption of Corollary 3.22, we need to prove that all local uniform seminorms of λ vanish. The inverse theorem for seminorms reduces this problem to the statement: for every basic nilsequence papnqq 39 on an s ´1-step nilmanifold G{Γ and every s ´2-step manifold H{Λ, we have

lim N Ñ8 E mPN sup bPΨ H{Λ ˇˇE nPrm,m`N s λpnqapnqbpnq ˇˇ" 0,
where Ψ H{Λ is a special class of basic nil-sequences (coming from Lipschtz functions). The latter is then proved using a deep induction argument. 37 I.e., we assume the existence of the limits of sequences `1 N ř nďN a 1 pnqa 1 pn `k1 q . . . a 1 pn `krq ˘Ně1 for every r P N and k 1 , . . . , kr P N (not necessarily distinct) with a 1 " a or a. It is not hard to see that a admits correlations if and only if it is generic, cf. Section 3.1. 38 We have }λ} U 1 pNq " 0 by [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF], moreover }λ} U 2 pNq " 0 is equivalent to lim NÑ8 E mPN sup αPr0,1q ˇˇE nPrm,m`Ns λpnqe 2πinα ˇˇ" 0 (cf. Conjecture C) and remains open.

For a subsequence version of Theorem 3.23 for logarithmic averages, see [START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF]. 39 By that we mean apnq " f pg n Γq for some continuous f P CpG{Γq and g P G.

Dynamical properties of Furstenberg systems associated to the Liouville and Möbius functions

We now continue considerations about logarithmic version of Sarnak's conjecture, cf. Conjecture B, Theorem 3.21. Consider all measures κ for which λ is logarithmically quasi-generic, i.e.

1 log N k ř nďN k δ S n λ n
Ñ κ for some N k Ñ 8. We denote the set of all such measures by log-Q-genpλq. Following [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF], for each κ P log-Q-genpλq the corresponding measure-theoretic dynamical system pX λ , κ, Sq will be called a Furstenberg system of λ. Before we get closer to the results of [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF], let us see first some consequence of Theorem 3.15 for the logarithmic Sarnak's conjecture: [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF] For each Furstenberg system pX λ , κ, Sq, the spectral measure σ θ of θ is Lebesgue.

Indeed, assuming

1 log N k ř nďN k δ S n λ n ÝÝÝÑ kÑ8
κ, Theorem 3.15 tells us that for each h P Zzt0u, we have

p σ θ phq " ż X λ θ ˝Sh ¨θ dκ " lim kÑ8 1 log N k ÿ nďN k λpn `hqλpnq n " 0.
Using [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF] and repeating the proof of Corollary 3.20, we obtain the following.

Corollary 3.25. Let pX, T q be a topological system such that each of its Furstenberg's systems has singular spectrum. Then pX, T q is logarithmically Liouville disjoint.

The starting point of the paper [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] is a surprising Tao's identity (implicit in [START_REF] Tao | The logarithmically averaged Chowla and Elliot conjectures for two-point correlations[END_REF]) for general sequences which in its ergodic theory language (cf. Subsection 3.4.1) takes the following form: Theorem 3.26 (Tao's identity, [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF]). Let κ P log-Q-genpλq. Then ż

X λ ˜ℓ ź j"1 θ ˝Skj ¸dκ " p´1q ℓ lim N Ñ8 log N N ÿ PQpďN ż X λ ˜ℓ ź j"1
θ ˝Spkj ¸dκ for all ℓ P N and k 1 , . . . , k ℓ P Z.

Now, the condition in Theorem 3.26 is purely abstract (indeed, the function θ generates the Borel σ-algebra), and the strategy to cope with logarithmic Sarnak's conjecture is to describe the class of measure-theoretic dynamical systems satisfying the assertion of Theorem 3.26 and then to obtain Liouville disjointness for all systems which are disjoint (in the Furstenberg sense) from all members of the class. In fact, Frantzikinakis and Host deal with extensions of Furstenberg systems of λ, so called systems of arithmetic progressions with prime steps. 40 40 Given a measure-theoretic dynamical system pZ, D, ρ, Rq, its system of arithmetic progressions with prime steps is of the form pZ Z , BpZ Z q, r ρ, Sq, where S is the shift and the (shift invariant) measure r ρ is determined by ż

Z Z m ź j"´m f j pz j q dr ρpzq " lim NÑ8 log N N ÿ pďN ż Z m ź j"´m f j ˝Rpj dρ
for all m ě 0, f ´m, . . . , fm P L 8 pZ, ρq (here z " pz j q). It is proved that such shift systems have no irrational spectrum. One of key observations is that each Furstenberg system of the Liouville function is a factor of the associated system of arithmetic progressions with prime steps.

They prove the following result.

Theorem 3.27 ([68]). For each system of arithmetic progressions with prime steps, its "typical" ergodic component is isomorphic to the direct product of an infinite-step nilsystem and a Bernoulli automorphism. 41 In particular, each Furstenberg system pX λ , κ, Sq of λ is a factor of a system which: (i) has no irrational spectrum and (ii) has ergodic components isomorphic to the direct product of an infinite-step nilsystem and a Bernoulli automorphism.

Remark 3.28. All the above results are also true when we replace λ by µ.

Then, some new disjointness results in ergodic theory are proved (for example, all totally ergodic automorphisms are disjoint from an automorphism satisfying (i) and (ii) in Theorem 3.27) and the following remarkable result is obtained: Theorem 3.29 ([68]). Let pX, T q be a topological dynamical system of zero entropy with countably many ergodic invariant measures. Then Conjecture B holds for pX, T q.

In particular, logarithmic Sarnak's conjecture holds for all zero entropy uniquely ergodic systems. As a matter of fact, some new42 consequences are derived: Theorem 3.30 ([68]). Let pX, T q be a topological dynamical system with zero entropy. Assume that x P X is generic for a measure ν with only countably many ergodic components all of which yield totally ergodic systems. Then, for every f P CpXq, ş X f dν " 0, we have

lim N Ñ8 1 log N ÿ nďN f pT n xq ś ℓ j"1 µpn `kj q n " 0
for all ℓ P N and k 1 , . . . , k ℓ P Z.

New conjectures are proposed in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF]:

1. Every real-valued u P M has a unique Furstenberg system (i.e. u is generic) which is ergodic and isomorphic to the direct product of a Bernoulli automorphism and an odometer.

2. If, additionally, u P M takes values ˘1 then its Furstenberg system is either Bernoulli or it is an odometer.

Finally, it is noticed in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] that the complexity of the Liouville function has to be superlinear, that is [START_REF] Chowla | On abundant numbers[END_REF] lim

N Ñ8 1 N ˇˇtB P t´1, 1u N : B appears in λu ˇˇ" 8.
The reason is that, as shown in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF], for transitive systems having linear block growth we have only finitely many ergodic measures (and clearly systems with linear block growth have zero topological entropy). Hence, by Theorem 3.29, such systems are Liouville disjoint. As X λ is not Liouville disjoint, λ cannot have linear block growth, i.e. (37) holds.

4 The MOMO and AOP properties

The MOMO property and its consequences

We will now consider Sarnak's conjecture from the ergodic theory point of view. We ask whether (already) measure-theoretic properties of a measurable system pZ, D, κ, Rq imply the validity of (1) for any pX, T q, f P CpXq provided that x P X is a generic point for a measure µ such that the measure-theoretic system pX, BpXq, µ, T q is measure-theoretically isomorphic to pZ, D, κ, Rq. More specifically, we can ask whether some measure-theoretic properties of pZ, D, κ, Rq can imply Möbius disjointness of all its uniquely ergodic models. 43 We recall that the Jewett-Krieger theorem implies the existence of a uniquely ergodic model of each ergodic system. 44 As a matter of fact, there are plenty of such models and they can have various additional topological properties including topological mixing 45 [START_REF] Lehrer | Topological mixing and uniquely ergodic systems[END_REF]. Here is another variation of the approach to view Möbius disjointness as a measure-theoretic invariant:

Question 2. Does the Möbius disjointness in a certain uniquely ergodic model of an ergodic system yield the Möbius disjointness in all its uniquely ergodic models?

To cope with these questions we need a definition. Let u : N Ñ C be an arithmetic function. 46 Definition 4.1 (strong MOMO 47 property [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF]). We say that pX, T q satisfies the strong MOMO property (relatively to u) if, for any increasing sequence of integers 0 " b 0 ă b 1 ă b 2 ă ¨¨¨with b k`1 ´bk Ñ 8, for any sequence px k q of points in X, and any f P CpXq, we have

(38) 1 b K ÿ kăK ˇˇˇˇˇÿ b k ďnăb k`1 f pT n´b k x k qupnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0.
Remark 4.1. The property [START_REF] Cornfeld | Ergodic theory[END_REF] looks stronger than the condition on Möbius disjointness. The idea behind it is to look at the pieces of orbits (of different points) in one system as a single orbit of a point in a different, larger but "controllable" (from measure-theoretic point of view) system. 43 Note that the answer is positive in all uniquely ergodic models of the one-point system: each such a model has a unique fixed point that attracts each orbit on a subset of density 1, cf. the map e 2πix Þ Ñ e 2πix 2 , x P r0, 1q. This argument is however insufficient already for uniquely ergodic models of the exchange of two points: in this case we have a density 1 attracting 2periodic orbit ta, bu, but we do not control to which point a or b the orbit returns first. Quite surprisingly, it seems that already in this case we need [START_REF] Matomäki | Multiplicative functions in short intervals[END_REF] to obtain Möbius disjointness of all uniquely ergodic models. 44 If all uniquely ergodic systems were Möbius disjoint, then as noticed by T. Downarowicz, we would get that the Chowla conjecture fails in view of the result of B. Weiss [START_REF]Single orbit dynamics[END_REF] Thm. 4.4' on approximation of generic points of ergodic measures by uniquely ergodic sequences. 45 Topological mixing for example excludes the possibility of having eigenfunctions continuous. 46 Our objective is of course the Möbius function µ, however the whole approach can be developed for an arithmetic function satisfying some additional properties. 47 The acronym comes from Möbius Orthogonality of Moving Orbits.

Remark 4.2. One can easily show (as in Section 3.4.1) that the strong MOMO property (relative to µ) implies f bθ K L 2 pInv, ρq for each ρ P Q-genppx, µq, T Ŝq.
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By taking f " 1 in Definition 4.1, we obtain that whenever strong MOMO holds, u has to satisfy:

(39) 1 b K ÿ kăK ˇˇˇˇˇÿ b k ďnăb k`1 upnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0 for every sequence 0 " b 0 ă b 1 ă b 2 ă ¨¨¨with b k`1 ´bk Ñ 8. In particular, 1 N ř năN upnq Ý ÝÝÝ Ñ N Ñ8
0. This is to be compared with ( 18), ( 20) and ( 19) to realize that we require a special behavior of u on a typical short interval.

Theorem 4.3 ([4]

). Let pZ, D, κ, Rq be an ergodic dynamical system. Let u : N Ñ C be an arithmetic function. The following conditions are equivalent:

(a) There exist a topological system pY, Sq enjoying the strong MOMO property (relative to u) and ν P M e pY, Sq such that the measurable systems pY, BpY q, ν, Sq and pZ, D, κ, Rq are isomorphic.

(b) For any topological dynamical system pX, T q and any x P X, if there exists a finite number of T -invariant measures µ j , 1 ď j ď t, such that

• pX, BpXq, µ j , T q is measure-theoretically isomorphic to pZ, D, κ, Rq for each j,

• any measure for which x is quasi-generic is a convex combination of the measures µ j , i.e. Q-genpxq Ă convpµ 1 , . . . , µ t q,

then 1 N ř nďN f pT n xqupnq Ý ÝÝÝ Ñ N Ñ8
0 for each f P CpXq.

(c) All uniquely ergodic models of pZ, D, κ, Rq enjoy the strong MOMO property (relative to u).

The proof of implication (a)ñ(b) borrows some ideas from [START_REF] Huang | Möbius disjointness for topological models of ergodic systems with discrete spectrum[END_REF] and the proof of implication (b)ñ(c) uses some ideas from [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF]. property (relative to µ) holds for every zero entropy dynamical system. 49(b) If Sarnak's conjecture holds then it holds uniformly, that is, the convergence in ( 1) is uniform in x. 50 (c) Fix δ p...0.00...q ‰ κ P M e ppD L q Z , Sq, where D L " tz P C : |z| ď Lu. Let pX, T q be any uniquely ergodic model of ppD L q Z , κ, Sq. Then for any u P pD L q Z for which Q-genpuq Ă convpκ 1 , . . . , κ m q, where ppD L q Z , κ j , Sq for j " 1, . . . , m is measure-theoretically isomorphic to ppD L q Z , κ, Sq, the system pX, T q does not satisfy the strong MOMO property (relative to u). 51 Remark 4.6. Let us come back to Theorem 3.4 and Remark 3.6, i.e. to the reformulation of Sarnak's conjecture using completely deterministic sequences. We intend to show that a natural generalization of Corollary 4.5 (b) to the completely deterministic case fails. Indeed, consider the square-free system pX µ 2 , Sq. In Remark 3.3, we have already noticed that whenever k j , j " 1, . . . , r are different non-negative integers, then (˚) ÿ nďN µ 2 pn `k1 q . . . µ 2 pn `kr´1 qµpn `kr q " opN q.

It follows that for each f P CpX µ 2 q, for each k P Z, we have

(˚˚) 1 N ÿ nďN f pS n`k µ 2 qµpnq Ñ 0.
On the other hand, the convergence in (˚˚) cannot be uniform in k P Z. Indeed, if it were then the whole square-free system would be Möbius disjoint. This is however impossible since pX µ 2 , Sq is hereditary, see Remark 6.2. Indeed, we can find y P X µ 2 such ypnq " 1 if and only if µpnq " 1 and ypnq " 0 otherwise (then y ď µ 2 ) and if we set θpzq :" zp0q then lim N Ñ8

1 N ř nďN θpS n yqµpnq " 3 π 2 . See also [START_REF] Murty | A remark on a conjecture of Chowla[END_REF], where a quantitative version of p˚q has been proved.

Note that Theorem 4.3 does not fully answer Question 2. In certain situations the following general (lifting) lemma of Downarowicz and Lemańczyk can be helpful: Lemma 4.7 ([2, 51]). Assume that an ergodic automorphism R is coalescent. 52 Let p r X, r T q and pX, T q be uniquely ergodic models of R. Assume that T is a topological factor of r T , i.e. there exists π : r X Ñ X which is continuous and onto and which satisfies π ˝r T " T ˝π. If T is Möbius disjoint then also r T is Möbius disjoint. 50 It is not hard to see that the MOMO property implies the relevant uniform convergence. As a matter of fact, the strong MOMO property is equivalent to the uniform convergence (in x, for a fixed f P CpXq) on short intervals:

1 M ř 1ďmăM ˇˇ1 H ř mďhăm`H f pT h xqµpnq ˇˇÑ 0 (
when H, M Ñ 8 and H " opM q). It follows that we have equivalence of: Sarnak's conjecture (2), Sarnak's conjecture in its uniform form, Sarnak's conjecture in its short interval uniform form and the strong MOMO property. Moreover, each of these conditions is implied by the Chowla conjecture. 51 This result means that there must be an observable sequence in pX, T q which significantly correlates with u. 52 This means that each measure-preserving transformation commuting with R must be invertible. Finite multiplicity of the Koopman operator associated to R guarantees coalescence. In particular, all ergodic rotations are coalescent.

Möbius disjointness and entropy

Sarnak's conjecture deals with deterministic systems but Möbius disjointness, a priori, does not exclude the possibility of positive (topological) entropy systems which are Möbius disjoint. 53 The first "natural" trial would be to take the square-free system pX µ 2 , Sq which has positive entropy (see Section 6.2) and clearly µ 2 is orthogonal to µ. However, in spite of the orthogonality of the two sequences, as we have noticed in Remark 4.6, the square-free system is not Möbius disjoint.

Recently, Downarowicz and Serafin [START_REF] Downarowicz | Almost full entropy subshifts uncorrelated to the Möbius function[END_REF] constructed Möbius disjoint positive entropy homeomorphisms of arbitrarily large entropy. On the other hand, see [START_REF]On Möbius orthogonality for subshifts of finite type with positive topological entropy[END_REF], in the subshift of finite type case we do not have Möbius disjointness. Using Katok's horseshoe theorem, it follows that C 1`δ -diffeomorphisms of surfaces are not Möbius disjoint but the following question seems to be open: Question 3. Is there a positive entropy diffeomorphism of a compact manifold which is Möbius disjoint? Viewed all this above, another natural question arises: Question 4. Does there exist an ergodic positive entropy measure-theoretic system all uniquely ergodic models of which are Möbius disjoint? Using Theorem 4.3, Sinai's theorem on Bernoulli factors (see e.g. [START_REF] Glasner | Ergodic theory via joinings[END_REF]) and B. Weiss' theorem [167] on strictly ergodic models of some diagrams a partial answer to Question 4 is given by the following result: Corollary 4.8 ([4]). Assume that u P pD L q Z is generic for a Bernoulli measure κ. Let v P pD L q Z , u and v correlate. Then for each dynamical system pX, T q with hpX, T q ą hppD L q Z , κ, Sq, we do not have the strong MOMO property relatively to v.

By substituting u " λ, v " µ and assuming the Chowla conjecture for λ, we obtain that no system pX, T q with entropy ą log 2 satisfies the strong MOMO relatively to µ. When µ is replaced by λ, we still have a stronger result. Proposition 4.9 ([4]). Assume that the Chowla conjecture holds for λ. Then no topological system pX, T q with positive entropy satisfies the strong MOMO property relatively to λ.

Remark 4.10. The proof of Theorem 4.3 tells us that when pZ, D, κ, Rq is ergodic and has positive entropy then there exists a system pX, T q, which is not Liouville disjoint, with at most three ergodic measures and all of these measures yield a measurable system isomorphic to R. Therefore, it seems reasonable to conjecture that the answer to Question 4 is negative.

We now have a completely clear picture for the Liouville function: it follows from Theorem 3.4 (for λ) and Proposition 4.9 that if the Chowla conjecture holds for λ then the strong MOMO property (relatively to λ) holds for pX, T q if and only if hpX, T q " 0. Using footnote 50, we immediately obtain Proposition 4.9 in its equivalent form: Corollary 4.11. Assume that the Chowla conjecture holds for λ. Then, the short interval uniform convergence in (1) (with µ replaced by λ) takes place if and only if hpX, T q " 0.

The AOP property and its consequences

We need an ergodic criterion to establish the strong MOMO property in models of an automorphism. This turns out to be a natural ergodic counterpart of the KBSZ criterion (Theorem 2.13). Following [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF] an ergodic automorphism R is said to have asymptotically orthogonal powers (AOP) if for each f, g P L 2 0 pZ, D, κq, we have ( 40) lim

PQp,qÑ8,p‰q sup κPJ e pR p ,R q q ˇˇˇż XˆX f b g dκ ˇˇˇ" 0.

Rotation Rx " x`1 acting on Z{kZ with k ě 2 has no AOP property because of Dirichlet's theorem on primes in arithmetic progressions. Hence, AOP implies total ergodicity (clearly, AOP is closed under taking factors). The AOP property implies zero entropy [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF].

Clearly, if the powers of R are pairwise disjoint 54 then R enjoys the AOP property. In order to see a less trivial example of an AOP automorphism, consider any totally ergodic discrete spectrum automorphism R on pZ, D, κq. For f, g take eigenfunctions corresponding to eigenvalues c, d, respectively. Now, take ρ P J e pR p , R q q and consider ż

ZˆZ f b g dρ " ż ZˆZ pf b ½ Z q ¨p½ Z b gq dρ.
Notice that f b ½ Z and ½ Z b g are eigenfunctions of pZ ˆZ, ρ, R p ˆRq q cor- responding to c p and d q , respectively. If c p ‰ d q (and this is the case for all but one pair pp, qq because of total ergodicity) then these eigenfunctions are orthogonal and we are done. We will see more examples in Section 5.

Remark 4.12. For an AOP automorphism the powers need not be disjoint. As a matter of fact, we can have an AOP automorphism with all of its non-zero powers isomorphic. 55 Theorem 4.13 ([3, 7]). Let u P M. Suppose that pZ, D, κ, Rq satisfies AOP.

Then the following are equivalent:

• u satisfies (39);

• The strong MOMO property relatively to u is satisfied in each uniquely ergodic model pX, T q of R.

In particular, if the above holds, for each f P CpXq, we have

1 N ÿ nďN f pT n xqupnq Ý ÝÝÝ Ñ N Ñ8 0 uniformly in X.
54 This is a "typical" property of an automorphism of a probability standard Borel space [START_REF] Del Junco | Disjointness of measure-preserving transformations, minimal selfjoinings and category, Ergodic theory and dynamical systems[END_REF]. Möbius disjointness for uniquely ergodic models for this case is already noticed in [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF]. 55 Take an ergodic rotation with the group of eigenvalues te 2πiαm{n : m, n P Z, n ‰ 0, α R Qu.

M of constant negative curvature. Let us consider the corresponding horocycle flow 61 ph t q tPR and the geodesic flow pg s q sPR on X. Since (43) g s h t g ´1 s " h e ´2s t for all s, t P R, the flows ph t q tPR and ph e ´2s t q tPR are measure-theoretically isomorphic for each s P R. In order to show that T :" h 1 is Möbius disjoint, the KBSZ criterion is used, and, given x P P SL 2 pRq, one studies limit points of 1 N ř nďN δ pT pn Γx,T qn Γxq , N ě 1. Now, the celebrated Ratner's rigidity theorem [START_REF]On Raghunathan's measure conjecture[END_REF] tells us two important things: the point pΓx, Γxq is generic for a measure ρ (which must be a joining by unique ergodicity: ρ P JpT p , T q q) and moreover this joining is ergodic. 62 Again using Ratner's theory (cf. [START_REF] Ratner | Horocycle flows, joinings and rigidity of products[END_REF]) such joinings are determined by the commensurator CompΓq of the lattice Γ:

CompΓq :" tz P P SL 2 pRq : z ´1Γz X Γ has finite index in both Γ and z ´1Γzu.

Set x p,q :" xg 1 2 logp p q q x ´1p8q. The intersection of the stabilizer of x p,q with CompΓq yields the correlator of x p,q : it is a subgroup CpΓ, x p,q q Ă R ˚and if ρ is not the product measure then p q P CpΓ, x p,q q. The careful analysis of the arithmetic and non-arithmetic cases done in [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF] shows that given x P P SL 2 pRq, p q P CpΓ, x p,q q only for finitely many different primes p, q. Hence, the joining ρ has to be product measure for all but finitely many pairs pp, qq P P 2 with p ‰ q which, by Theorem 2.13, yields the following: Remark 5.2. As noticed in [START_REF]A dynamical point of view on the set of B-free integers[END_REF], this is (43) which yields the absence 63 of AOP and makes the following questions of interest.

Question 5. Do we have the MOMO property for horocycle flows? Are all uniquely ergodic models of horocycle flows Möbius disjoint? Do we have uniform convergence in (1)?

Since the method to prove Möbius disjointness is through the KBSZ criterion (hence offers no rate of convergence), the following question is still open: Question 6 (Sarnak). Do we have a PNT for horocycle flows?

For a partial answer, see [START_REF] Sarnak | The horocycle flow at prime times[END_REF], where it is proved that if Γx is a generic point for Haar measure µ X of X then any limit point of ´1 πpN q ř pďN δ T p Γx ¯is a measure which is absolutely continuous with respect to µ X .

Question 7 (Ratner). Are smooth time changes for horocycle flows Möbius disjoint?

As smooth time changes of horocycle flows enjoy so called Ratner's property, the above question can be asked in the larger context of flows possessing Ratner's property. 61 We have htpΓxq " Γ ¨ˆx ¨" 1 t 0 1 ˙a nd gspΓxq " Γ ¨ˆx ¨" e ´s 0 0 e s

˙;

we identify gs and ht with the relevant matrices. 62 The measure ρ depends on p, q and x and it is so called algebraic measure, i.e. a Haar measure. 63 To be compared with Remark 4.12; the difference however is that when the ratio of p and q is close to 1, we can choose graph joinings in a compact set.

Added in September 2017: In the recent paper [START_REF] Kanigowski | On disjointness properties of some parabolic flows[END_REF], a new criterion (of Ratner's type) for disjointness of different time-automorphisms of flows has been proved. The criterion applies for some classes of flows with Ratner's property, namely, in case of so called Arnold flows and for non-trivial smooth time changes of horocycle flows (in particular, the answer to Question 7 is positive).

Nilrotations, affine automorphisms

Green and Tao in [START_REF] Green | The Möbius function is strongly orthogonal to nilsequences[END_REF] proved Möbius disjointnes in the following strong form: [START_REF] Green | The Möbius function is strongly orthogonal to nilsequences[END_REF]). Let G be a simply-connected nilpotent Lie group with a discrete and cocompact subgroup Γ. Let p : Z Ñ G be any is polynomial sequence 64 and f : G{Γ Ñ R a Lipschitz function. Then ˇˇˇˇ1

Theorem 5.3 ([
N ÿ nďN f pppnqΓqµpnq ˇˇˇˇ" O f,G,Γ,A ˆN log A N ḟor all A ą 0.
In particular, by considering T g pxΓq " gxΓ, we see that all nilrotations are Möbius disjoint with uniform Davenport's estimate [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF].

Also, a PNT holds for nilrotations: Let 2 " p 1 ă p 2 ă . . . denote the sequence of primes.

Theorem 5.4 ([80], Theorem 7.1). Assume that a nil-rotation T g is ergodic. 65 Then, for every x P G, we have

lim N Ñ8 1 N ÿ nďN f pT pn g xΓq " ż G{Γ f dλ G{Γ
for all continuous functions f : G{Γ Ñ r´1, 1s.

In [START_REF] Flaminio | Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds[END_REF], it is proved that all nil-rotations enjoy the AOP property (hence all uniquely ergodic models of nil-rotations are Möbius disjoint). In fact, the result is proved for all nil-affine automorphisms whose Möbius disjointness has been established earlier in [START_REF] Liu | The Möbius function and distal flows[END_REF]. Earlier, AOP has been proved for all quasi-discrete spectrum automorphism in [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF], that is (following [START_REF] Hahn | Some characteristic properties of dynamical systems with quasi-discrete spectra[END_REF]) for all unipotent affine automorphisms T x " Ax`b of compact Abelian groups (A is a continuous group automorphism and b is an element of the group). The Möbius disjointness of the latter automorphisms has been established still earlier in [START_REF] Liu | The Möbius function and distal flows[END_REF].

The proof of the following corollary in [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF] shows that Furstenberg's proof [START_REF] Furstenberg | Strict ergodicity and transformation of the torus[END_REF] (see e.g. [START_REF] Einsiedler | Ergodic theory with a view towards number theory[END_REF]) of Weyl's uniform distribution theorem can be adapted to the short interval version. , where p j : N Ñ N is a polynomial, j " 1, . . . , k. See, Section 6 in [START_REF]The quantitative behaviour of polynomial orbits on nilmanifolds[END_REF] for the equivalence with the classical definition of polynomials sequences in nilpotent Lie groups. 65 We assume that G is connected. 66 For degree 1 polynomials, the result is already in [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF].

Recall that a sequence pa n q Ă C is called a nilsequence if it is a uniform limit of basic nilsequences, i.e. of sequences of the form pf pT n g xΓqq, where f P CpG{Γq (here, we do not assume that G{Γ is connected, neither that T g is ergodic).

Corollary 5.6 ([64]

). We have

1 M ÿ Mďmă2M 1 H ˇˇˇˇÿ mďnăm`H a n upnq ˇˇˇˇÝ ÝÝÝÝÝÝÝÝÝÝÝ Ñ H,MÑ8,H"opMq 0.
It has been proved by Leibman [117] that all polynomial multicorrelation sequences 67 are limits in the Weyl pseudo-metric of nil-sequences, all such polynomial sequences are orthogonal to µ on typical short interval, cf. Section 6.

The main problem connected with nilsequences is to prove the uniform version of convergence on short intervals as it is made precise in Conjecture C of Tao (see Section 3.3 and also Frantzikinakis' proofs [START_REF]Ergodicity of the Liouville system implies the Chowla conjecture[END_REF]).

Other algebraic systems

For a more general zero entropy algebraic systems and their Möbius disjointness we refer the reader to [START_REF] Peckner | Two dynamical perspectives on the randomness of the Mobius function[END_REF], where in particular the Ad-unipotent translation case is treated.

Systems of measure-theoretic origin. Substitutions and interval exchange transformations

Systems whose powers are disjoint

We are interested in ergodic automorphisms pZ, D, κ, Rq for which (sufficiently large) prime powers R p are pairwise disjoint. Clearly, such automorphisms enjoy the AOP property. A typical automorphism has this property [START_REF] Del Junco | Disjointness of measure-preserving transformations, minimal selfjoinings and category, Ergodic theory and dynamical systems[END_REF] but there are also large classes of rank one (we detail on this class below) automorphisms with this property [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF][START_REF]On the correlation of the Moebius function with rank-one systems[END_REF][START_REF] Ryzhikov | Bounded ergodic constructions, disjointness, and weak limits of powers[END_REF]. Also minimal self-joining automorphisms [START_REF] Del Junco | On ergodic actions whose self-joinings are graphs[END_REF] enjoy this property. Chaika and Eskin in [START_REF] Chaika | Mobius disjointness for interval exchange transformations on three intervals[END_REF] show that for a.e. 3-interval exchange transformation (we detail on interval exchange transformations below) there are sufficiently many prime powers that are disjoint. It follows that all uniquely ergodic models of these automorphisms are Möbius disjoint.

Adic systems and Bourgain's criterion

Let pZ, D, κ, Rq be a measure-theoretic system.

Definition 5.1. In pZ, D, κ, Rq, a Rokhlin tower is a collection of disjoint measurable sets called levels F , RF , . . . , R h´1 F . If Z is equipped with a partition P such that each level R r F is contained in one atom P wprq , the name of the tower is the word wp0q . . . wph ´1q. 67 More precisely, given an automorphism T of a probability standard Borel space pX, B, µq, we consider

an " ż X g 1 ˝T p 1 pnq ¨. . . ¨gk ˝T p k pnq dµ,
where g i P L 8 pX, µq, p i P Zrxs, i " 1, . . . , k (k ě 1).

Proof. We look at Theorem 2 of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF]. It requires a stronger assumption, denoted by relations (2.2) and (2.3) in p. 119 of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], which is indeed the assumption of the present theorem with the estimate C 200s replaced by βpsq for some function satisfying log βpsq s Ñ 8 when s Ñ 8 (note that the assumption in [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF] that the words W n are on the alphabet t0, 1u is not used in the proof, which works for any finite alphabet). Then this theorem gives, for any word w 1 ¨¨¨w N in some W m and N large enough, an estimate for ż ˇˇˇˇÿ nďN w n e 2πinθ ˇˇˇˇˇˇˇˇÿ nďN µpnqe 2πinθ ˇˇˇˇd θ, and this, through the relation (1.62) on p. 118, implies that ř nďN w n µpnq " opN q.

Lacking space to rewrite the extensive computations in [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], we explain how to weaken the hypothesis. First, as suggested in the remark at the beginning of Section 2, p. 119, of that paper, we replace βpsq by C s 0 for some constant C 0 , as yet unknown (the C 0 s written in the same p. 119 is a misprint). The relations (2.2) and (2.3) are used twice in the course of the proof: first, to get the relation (2.15), namely

ˆC log |W | n ˙s ă |W | ǫ
for a word W inW n , and then to get the estimate (2.42), which states that

ˆC log K s ˙s ă K ǫ ,
where s is the number of stages such that a word of length N in W n is divided into words of W n´s , of lengths in the order of N K . Under our hypothesis, in the first case, |W | is in C n 0 , and in the second case K is in C s 0 . Thus both (2.15) and (2.42) are implied by the relation

log log C 0 `log C log C 0 ă ǫ.
The value of ǫ is dictated by relation (2.49), which requires Q ǫ K ǫ pQ `Kq ´1 4 ď pQ `Kq ´1 5 for some large numbers Q and K, thus we can take ǫ " 1 20 . Then

log log C0 log C0
will be bounded if C 0 is large enough independently of C, while to bound log C log C0 we need to take C 0 " C a ; as C ě 2, we see that a " 200 is convenient for the sum of the two terms. Now, if we replace w n by upnq " f pT n px 0 qq, because of Definition 5.3 above, we can first assume that f is constant on all levels of the towers of some stage m, and then conclude by approximation. Such an f is also constant on all levels of all towers at stages q ą m; fixing x 0 and N , except for some initial values up1q to upN 0 q where N 0 is much smaller than N , we can replace upnq by w 1 n , where w 1 n is the value of f on the n-th level of some tower with name W in some W q for q ě m. Then the w 1 1 ¨¨¨w 1 N are built by the same induction rules as the w 1 ¨¨¨w N , and the estimates using the w 1 n are computed as those using the w n in the proof of Theorem 2 of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], thus we get the same result.

The PNT is in (3.4), (3.7), (3.14) of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF] ((3.14) is proved for the particular case of 3-interval exchanges but holds in the same way for the more general case).

Of course, the value of C 0 could be improved, but we need it to be at least some power of C.

Substitutions

We start with some basic notions. Definition 5.4. A substitution σ is an application from an alphabet A into the set A ‹ of finite words on A; it extends to a morphism of A ‹ for the concatenation. A fixed point of σ is an infinite sequence u with σu " u. The associated symbolic dynamical system pX σ , Sq is pX u , Sq for a fixed point u.

Substitution σ has constant length q if |σa| " q for all a in A.

The Perron-Frobenius eigenvalue is the largest eigenvalue of the matrix giving the number of occurrences of j in σa. A substitution σ is primitive if a power of this matrix has strictly positive entries.

For the class of constant length substitutions, there have been a lot of partial results on Möbius orthogonality:

• First for the most famous example, the Thue-Morse substitution 0 Ñ 01, 1 Ñ 10, with Indlekofer and Kátai [START_REF] Indlekofer | Investigations in the theory of q-additive and qmultiplicative functions. I[END_REF], Dartyge and Tenenbaum [START_REF] Dartyge | Sommes des chiffres de multiples d'entiers[END_REF], Mauduit and Rivat [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF], El Abdalaoui, Kasjan and Lemańczyk [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF]. 68 • The case of the Rudin -Shapiro substitution 0 Ñ 01, 1 Ñ 02, 2 Ñ 31, 3 Ñ 32 was solved by Mauduit and Rivat [128]. Then Drmota [START_REF] Drmota | Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte Carlo methods[END_REF], Deshouillers, Drmota and Müllner [START_REF] Deshouillers | Automatic sequences generated by synchronizing automata fulfill the Sarnak conjecture[END_REF],

• Ferenczi, Kułaga-Przymus, Lemańczyk and Mauduit [START_REF] Ferenczi | Substitutions and Möbius disjointness, Ergodic Theory[END_REF] extended these results to various subclasses of systems of arithmetic origin. 69 See also [START_REF] Martin | Théoréme des nombres premiers pour les fonctions digitales[END_REF]123] for a PNT for some digital functions. But all this was superseded by the general result of Müllner [START_REF] Müllner | Automatic sequences fulfill the Sarnak conjecture[END_REF], whose proof uses the arithmetic techniques of [128] together with a new structure theorem on the underlying automata: Theorem 5.8 ([134]). For any substitution of constant length, the associated symbolic system is Möbius disjoint. Moreover, a PNT holds if the substitution is primitive.

The substitutions which are not of constant length are much less known: • The most famous example is the Fibonacci substitution, 0 Ñ 01, 1 Ñ 0:

in that case, the associated symbolic system is a coding of an irrational rotation, hence it is Möbius disjoint as a uniquely ergodic model of a discrete spectrum automorphism, see Section 5.3.1.

• Drmota, Müllner and Spiegelhofer [START_REF] Drmota | Möbius orthogonality for the Zeckendorf sum-of-digits function[END_REF] have just shown Möbius disjointness for a new example, a substitution which generates p´1q s φpnq , where s φpnq is the Zeckendorf sum-of-digits function. 70 68 In [START_REF] Dartyge | Sommes des chiffres de multiples d'entiers[END_REF][START_REF] Indlekofer | Investigations in the theory of q-additive and qmultiplicative functions. I[END_REF][START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] it is proved that the sequence p´1q upnq , n ě 1 is orthogonal to µ. 69 While in [START_REF] Drmota | Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte Carlo methods[END_REF][START_REF] Ferenczi | Substitutions and Möbius disjointness, Ergodic Theory[END_REF] Möbius disjointness is proved for the dynamical systems given by bijective substitutions, [START_REF] Deshouillers | Automatic sequences generated by synchronizing automata fulfill the Sarnak conjecture[END_REF] treats the opposite case, so called synchronized. As noted in [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF], this leads to dynamical systems given by rational sequences and such are Möbius disjoint. Note also that for the synchronized case, once the system is uniquely ergodic, it is automatically a uniquely ergodic model of an automorphism with discrete spectrum, cf. Corollary 3.20 and Remark 4.4. 70 This example has partly continuous spectrum.

• Also, we can exhibit a small subclass of examples which are Möbius disjoint, by a straightforward translation of Bourgain's criterion above:

Theorem 5.9. Suppose that σ is a primitive substitution satisfying

• for all i P A, σi " pj 1 piqq a1piq . . . pj qi piqq aq i piq , , a 1 piq P A, . . . , a qi piq P A, q i ď C (this can be expressed as: the multiplicative length of σ is smaller than C),

• the Perron-Frobenius eigenvalue of σ is larger than C 200 ; then the associated symbolic dynamical system is Möbius disjoint. If pX σ , Sq is weakly mixing, the fixed points satisfy a PNT.

Proof. If all fixed points are periodic, the result is trivial. If σ has a non-periodic fixed point, it is well known (and proved by the methods of [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF] together with the recognizability result of [START_REF] Mossé | Puissances de mots et reconnaissabilité des points fixes d'une substitution[END_REF]) that the system has an adic presentation, where the names of the towers in Z n are the words σ n a, a P A. Thus the results come from Theorem 5.7 above and the properties of the matrix of σ.

Example 5.1. Here are some substitutions for which the above theorem applies, with a PNT:

0 Ñ 0 k`1 12, 1 Ñ 12, 2 Ñ 0 k 12, k `2 ą 3 200 .
Question 8. Are dynamical systems associated to substitutions Möbius disjoint? 71 5.2.4 Interval exchanges Definition 5.5. A k-interval exchange with probability vector pα 1 , α 2 , . . . , α k q, and permutation π is defined by T x " x `ÿ π ´1pjqăπ ´1 piq α j ´ÿ jăi α j .

when x P ∆ i " " ř jăi α j , ř jďi α j ¯.
Exchanges of 2 intervals are just rotations, thus Möbius disjointness holds for them by the Prime Number Theorem (on arithmetic progressions) when the rotation is rational and from a result of Davenport [START_REF]On some infinite series involving arithmetical functions[END_REF] -using a result of Vinogradov [START_REF]The method of trigonometrical sums in the theory of numbers[END_REF] -when the rotation is irrational, cf. (3) in Introduction.

Then [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF] exhibits exchanges of 3 intervals which are Möbius disjoint, with a PNT if weak mixing holds: these use the criterion developed in Theorem 5.7 above, together with the adic presentation built in [START_REF] Ferenczi | Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories[END_REF]. Generalizing these methods, it is shown in [START_REF] Ferenczi | On Sarnak's conjecture and Veech's question for interval exchanges[END_REF] that Möbius disjointness holds for examples of exchanges of k intervals for every k ě 2 and every Rauzy class, with a PNT in the weak mixing case. A breakthrough came with [START_REF] Chaika | Mobius disjointness for interval exchange transformations on three intervals[END_REF], for a large subclass of exchange of 3 intervals: Theorem 5.10 ( [START_REF] Chaika | Mobius disjointness for interval exchange transformations on three intervals[END_REF]). For (Lebesgue)-almost all pα 1 , α 2 q, Sarnak's conjecture holds for exchanges of 3 intervals with permutation πi " 3 ´i and probability vector pα 1 , α 2 , 1 ´α1 ´α2 q. 71 One can also ask about Möbius disjointness of related systems as tiling systems.

Bourgain's result was improved in [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF], where so called recurrent rank one constructions are considered with a stabilizing bounded subsequence of spacers (that is, of a subsequence of pa n,i q). 72 One of main tools in [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF] is a representation of each rank one transformation as an integral automorphism over an odometer with so called Morse-type roof function which goes back to [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF]. See also [START_REF] Ryzhikov | Bounded ergodic constructions, disjointness, and weak limits of powers[END_REF] for a simpler proof of a generalization of Bourgain's result to a class of partially bounded rank one constructions.

Spectral approach

In order to prove Möbius disjointness for standard models of rank one transformations, both papers [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF] and [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF] use a spectral approach. In [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF], unitary operators U (of separable Hilbert spaces) are considered and weak limits of powers pU pm k q (for different primes p) are studied. Once such limits yield sufficiently different (for different p) analytic functions (of U ), the powers U p and U q are spectrally disjoint. 73 If for a positive real number a we set s a pxq " ax mod 1 on the additive circle T " r0, 1q, then the above spectral disjointness means that [START_REF] Davenport | On sequences of positive integers[END_REF] σ ppq :" ps p q ˚pσq are mutually singular for different p P P, where σ " σ U stands for the maximal spectral type of U . In [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], a different spectral approach (sufficient for a use of the KBSZ criterion, hence, sufficient for Möbius disjointness) is used. Namely, if r ě 1 is an integer, then by σ r , we will denote the measure which is obtained first by taking the image of σ under the map x Þ Ñ 1 r x, i.e. the measure σ p1{rq , and then repeating this new measure periodically in intervals r j r , j`1 r q, that is:

σ r :" 1 r r´1 ÿ j"0 σ 1{r ˚δj{r .
Bourgain [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF] uses a representation of the maximal spectral type of a rank one transformation as a Riesz product and then shows the mutual disjointness of measures σ p and σ q for different p, q P P (for more information about the measures σ r , see e.g. [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF], p. 196). Although, there seems not to be too much relation between the measures σ prq and σ r , the following observation 74 explains some equivalence of these both spectral approaches:

Lemma 5.11. Assume that σ and η are two probability measures on the circle. Then:

(a) if σ prq K η psq then σ s K η r ;

(b) if pr, sq " 1 then σ prq K η psq if and only if σ s K η r .

Rokhlin extensions

Let T be a uniquely ergodic homeomorphism of a compact metric space and let f : X Ñ R be continuous. Set T f px, tq :" pT x, f pxq `tq to obtain a skew product homeomorphism on X ˆR. Note that the latter space is not compact. But, if we take any continuous flow S " pS t q tPR acting on a compact metric space Y then the skew product T f,S acting on X ˆY by the formula:

T f,S px, yq " pT x, S f pxq pyqq, px, yq P X ˆY is a homeomorphism of the compact space X ˆY and it is called a Rokhlin extension of T . To get a good theory, usually one has to put some further assumptions on f (considered as a cocycle taking values in a locally compact but not compact group, see e.g. [START_REF] Lemańczyk | Lifting mixing properties by Rokhlin cocycles[END_REF][START_REF] Schmidt | Cocycles on ergodic transformation groups[END_REF]). It is proved in [START_REF]Möbius disjointness along ergodic sequences for uniquely ergodic actions[END_REF] that there are irrational rotations T x " x `α and continuous f : T Ñ R (even smooth) such that T ϕ,S has the AOP property for each uniquely ergodic S. 75We would like to emphasize that the Rokhlin skew product construction are usually relatively weakly mixing [START_REF] Lemańczyk | Lifting mixing properties by Rokhlin cocycles[END_REF], so the class we consider here is drastically different from the distal class which is our next object to give account.

This approach leads in [START_REF]Möbius disjointness along ergodic sequences for uniquely ergodic actions[END_REF] to so called random sequences 76 pa n q Ă R such that 1 N ÿ nďN gpS an yqµpnq Ñ 0 for each uniquely ergodic flow S acting on a compact metric space Y , each g P CpY q and (due to [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF]) uniformly in y P Y .

Distal systems

Assume that R is an ergodic automorphism of a probability standard Borel space pZ, D, κq. R is called (measurably) distal if it can be represented as transfinite sequence of consecutive isometric extensions, where in case of a limit ordinal, we take the corresponding inverse limit (i.e. we start with the one-point dynamical system, the first isometric extension is a rotation and then we take a further isometric extension of it etc.). Recall that by a separating sieve we mean a sequence

Z Ą A 1 Ą A 2 Ą . . . Ą A n Ą . . .
of sets of positive measure such that µpA n q Ñ 0 and there exists Z 0 Ă Z, µpZ 0 q " 1, such that for each z, z 1 P Z 0 if for each n ě 1 there is k n P Z such that R kn z, R kn z 1 P A n , then z " z 1 . A theorem by Zimmer [START_REF]Extensions of ergodic group actions[END_REF] says that T is distal if and only if it has a separating sieve. Distal automorphisms play a special role in ergodic theory: each automorphism has a maximal distal factor and is relatively weakly mixing over it [START_REF]Recurrence in ergodic theory and combinatorial number theory[END_REF][START_REF] Zimmer | Ergodic actions with generalized discrete spectrum[END_REF][START_REF]Extensions of ergodic group actions[END_REF]. Hence, many problems in ergodic theory can be reduced to study the two opposite cases: the distal and the weak mixing one. 77 Recall that distal automorphisms have entropy zero.

There is also a notion of distality in topological dynamics. A homeomorphism T of a compact metric space X is called distal if the orbit pT n x, T n x 1 q, n P Z, is bounded away from the diagonal in X ˆX for each x ‰ x 1 . Some of topologically distal classes already appeared in previous sections. Indeed, zero entropy (minimal) affine transformations are examples of distal homeomorphisms. Another natural class of distal (uniquely ergodic) homeomorphisms is given by nil-translations and, more generally, affine unipotent diffeomorphisms of nilmanifolds. A theorem by Lindenstrauus [START_REF] Lindenstrauss | Measurable distal and topological distal systems, Ergodic Theory Dynam[END_REF] says that a measurably distal automorphism R has a minimal 78 model pX, T q together with µ P M e pX, T q of full support (and pX, µ, T q is isomorphic to pZ, κ, Rq) in which T is topologically distal.

The following (still open) question seems to be a natural and important step in proving Sarnak's conjecture: Question 9 (Liu and Sarnak [START_REF] Liu | The Möbius function and distal flows[END_REF]). Are all topologically distal systems Möbius disjoint?

As transformations with discrete spectrum are measurably distal and Theorem 5.12 holds, we can of course ask whether given a measurably distal automorphism, all of its uniquely ergodic models are Möbius disjoint. 79 We now focus on the famous class of Anzai skew products. This is the class of transformations defined on T 2 by the formula:

T ϕ : T 2 Ñ T 2 , T ϕ px, yq " px `α, ϕpxq `yq.
In other words, Anzai skew products are given by T x " x `α an irrational rotation on the (additive) circle, and a measurable ϕ : T Ñ T; the skew product T ϕ preserves the Lebesgue measure. If ϕ is continuous, T ϕ is a homeomorphism of T 2 . If we cannot solve the functional equations [START_REF]On sequences of positive integers[END_REF] kϕpxq " ξpxq ´ξpT xq (k P N) in continuous functions ξ : T Ñ T, then T ϕ is minimal, but if for one k P N we have a measurable solution then T ϕ is not uniquely ergodic. In [START_REF] Liu | The Möbius function and distal flows[END_REF],

we find examples of Anzai skew products which are minimal not uniquely ergodic but are Möbius disjoint, 80 moreover it is proved that if ϕ is analytic with an additional condition on the decay (from below) of Fourier coefficients then T ϕ is Möbius disjoint for each irrational α. In [START_REF] Kułaga-Przymus | The Möbius function and continuous extensions of rotations[END_REF], it is proved that if ϕ is of class C 1`δ then for a typical (in topological sense) α, we have Möbius disjointness of T ϕ . 81 A remarkable result is proved by Wang [START_REF] Wang | Möbius disjointness for analytic skew products[END_REF]: all analytic Anzai skew products are Möbius disjoint. The proofs in all these papers are using Fourier analysis techniques but in [START_REF] Wang | Möbius disjointness for analytic skew products[END_REF], it is also a short interval argument from [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF] used in one crucial case. 78 In general, there is no uniquely ergodic model pX, T q of R with T topologically distal. 79 As a matter of fact, such a question remains open even for 2-point extensions of irrational rotations. 80 As a matter of fact, in [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF] it is proved that if a uniquely ergodic homeomorphism T satisfies the strong MOMO property (see Definition 4.1 on page 30) and (continuous) ϕ : X Ñ G (G is a compact Abelian group) satisfies ϕ :" ξ ´ξ ˝T has a measurable solution ξ : X Ñ G, then the homeomorphism Tϕ of X ˆG is Möbius disjoint. This applies if (45) has a measurable solution for k " 1. It is however an open question whether we have Möbius disjointness when there is no measurable solution for k " 1 but there is such a solution for some k ě 2.

81 It follows from a subsequent paper [START_REF]Möbius disjointness along ergodic sequences for uniquely ergodic actions[END_REF] that the Anzai skew products considered in [START_REF] Kułaga-Przymus | The Möbius function and continuous extensions of rotations[END_REF] enjoy the AOP property.

Nothing seems to be proved about a PNT in the class of distal systems (except for rotations).

Discrete spectrum automorphisms

The simplest examples of (measurably) distal automorphisms are those with discrete spectrum. Recall that a measure-theoretic system pZ, D, κ, Rq is said to have discrete spectrum if the L 2 -space is generated by the eigenfunctions of the Koopman operator T f :" f ˝T . The classical Halmos-von Neumann theorem tells us that each ergodic automorphism with discrete spectrum has a uniquely ergodic model being a rotation on a compact Abelian (monothetic) group.

Theorem 5.12. All uniquely ergodic models of automorphisms with discrete spectrum are Möbius disjoint.

This result was first proved in [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF] for totally ergodic discrete spectrum automorphisms (as they have the AOP property) and in full generality by Huang, Wang and Zhang in [START_REF] Huang | Möbius disjointness for topological models of ergodic systems with discrete spectrum[END_REF]. In fact, the latter result is stronger: Theorem 5.13 ([91]). Let pX, T q be a dynamical system, x P X and N

i Ñ 8. Assume that 1 Ni ř nďNi δ T n x Ý ÝÝ Ñ iÑ8 µ.
Assume that µ is a convex combination of countably many ergodic measures, each of which yields a system with discrete spectrum. Then lim iÑ8 1 Ni ř nďNi f pT n xqµpnq " 0 for each f P CpXq. Note that Theorem 5.12 also follows from Theorem 4.3 because ergodic rotations enjoy the strong MOMO property [START_REF]Möbius disjointness for models of an ergodic system and beyond[END_REF] (see Remark 4.4). As a matter of fact, as we have already noticed in Corollary 3.20, Theorem 5.12 follows from [START_REF] Matomäki | An averaged form of Chowla's conjecture[END_REF].

Sub-polynomial complexity

Let T be a homeomorphism of a compact metric space pX, dq and let µ P M pX, T q. Assume also that a : N Ñ R is increasing with lim nÑ8 apnq " 8. In the spirit of [START_REF] Ferenczi | Measure-theoretic complexity of ergodic systems[END_REF], we say that the measure complexity of µ is weaker than a if lim inf nÑ8 mintm ě 1 : µp Ť m j"1 B dn px j , εqq ą 1 ´ε for some x 1 , . . . , x m P Xu apnq " 0

for each ε ą 0 (here d n py, zq " 1 n ř n j"1 dpT j y, T j zq). The main result of the recent article [START_REF] Huang | Measure complexity and Möbius disjointness[END_REF] states the following: Theorem 5.14 ([90]). If pX, T q is a topological system for which all its invariant measures have sub-polynomial complexity, i.e. their complexity is weaker than n δ for each δ ą 0, then pX, T q is Möbius disjoint.

As shown in [START_REF] Huang | Measure complexity and Möbius disjointness[END_REF], Theorem 5.14 applies to: topological systems whose all invariant measures yield systems with discrete spectrum (cf. Corollary 3.20), Anzai skew products of C 8 -class (over each irrational rotation), KpZq-sequences introduced by Veech [160] and tame systems. 82entropy continuous maps of the interval and (orientation preserving) homeomorphisms of the circle. In [START_REF] Eisner | A polynomial version of Sarnak's conjecture[END_REF], Eisner proposes to study a polynomial version of Sarnak's conjecture (in the minimal case). See also [START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF][START_REF] El Abdalaoui | A cubic non-conventional ergodic average with multiplicative or von Mangoldt weights[END_REF][START_REF] De La Breteche | A remark on Sarnak's conjecture[END_REF][START_REF] Downarowicz | Isomorphic extensions and applications[END_REF][START_REF] Fan | Weighted Birkhoff ergodic theorem with oscillating weights[END_REF][START_REF] Huang | Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture[END_REF].

6 Related research: B-free numbers

Introduction

Sets of multiples

We have already seen that some properties of the Möbius function µ can be investigated by looking at its square µ 2 , i.e. the characteristic function of the set of square-free numbers Q :" tn P Z : p 2 ffl n for all primes pu. A natural generalization comes when we study sets of integers that are not divisible by elements of a given set. Let B Ă N and let M B be the corresponding set of multiples, i.e. M B " Ť bPB bZ and the associated set of B-free numbers F B :" ZzM B (for convenience, we will deal now with subsets of Z instead of subsets of N -the Möbius function µ is not defined for negative arguments, but its square has a natural extension to negative integers). By η " η B we will denote the characteristic function of F B . It is not hard to show that a symmetric subset F Ă Z is a B-free set (for some B) if and only if F is closed under taking divisors.

Historical remarks Sets of multiples were an object of intensive studies already in the 1930s [25,[START_REF] Chowla | On abundant numbers[END_REF][START_REF] Davenport | Über numeri abundantes[END_REF][START_REF] Erdös | On the Density of the Abundant Numbers[END_REF]]. The basic motivating example there was the set of abundant numbers (n P Z is abundant if |n| is smaller than the sum of its (positive) proper divisors, i.e. |n| ă σp|n|q), see also more recent [START_REF] Iannucci | On the smallest abundant number not divisible by the first k primes[END_REF][START_REF] Jennings | Variations on a theorem of Davenport concerning abundant numbers[END_REF][START_REF] Kobayashi | A new series for the density of abundant numbers[END_REF] on that subject. Also many natural questions on general B-free sets emerged. Besicovitch [START_REF] Besicovitch | On the density of certain sequences of integers[END_REF] showed that the asymptotic density of M B may fail to exist. It turned out that it was more natural to use the notion of logarithmic density (denoted by δ) which always exists in this case and equals the lower density. More precisely, we have the following result of Davenport and Erdös: Theorem 6.1 ( [START_REF] Davenport | On sequences of positive integers[END_REF][START_REF]On sequences of positive integers[END_REF]). For any B, the logarithmic density δpM B q of M B exists. Moreover, δpM B q " dpM B q " lim nÑ8 dpM tbPB:bďnu q.

In the so-called Erdös case when B consists of pairwise coprime elements whose sum of reciprocals converges, the density does exist, cf. [START_REF] Halberstam | Sequences[END_REF] (in particular, ½ F B is rational). We refer the reader to [START_REF] Halberstam | Sequences[END_REF][START_REF] Hall | Sets of multiples[END_REF] for a coherent, self-contained introduction to the theory of sets of multiples from the analytic and probabilistic number theory viewpoint.

Dynamics comes into play Sarnak in [148]

, suggested to study µ 2 from the dynamical viewpoint and he announced the following results: (i) µ 2 is generic for an ergodic S-invariant measure ν µ 2 on t0, 1u Z such that the measure-theoretical dynamical system pX µ 2 , ν µ 2 , Sq has zero measuretheoretic entropy;86 

(ii) the topological entropy of pX µ 2 , Sq is equal to 6 {π 2 ;

Further generalizations Several further generalizations of B-free integers were discussed in the literature from the dynamical viewpoint. Let us briefly recall them here:

• Pleasants and Huck [START_REF] Pleasants | Entropy and diffraction of the k-free points in n-dimensional lattices[END_REF] considered k-free lattice points F k " F k pΛq :" Λz Ť pPP p k Λ, where Λ is a lattice in R d (the corresponding dynamical system given by the orbit closure of ½ F k P t0, 1u Λ under the multidimensional shift).

• Cellarosi and Vinogradov [START_REF] Cellarosi | Ergodic properties of k-free integers in number fields[END_REF] considered k-free integers in number fields F k " F k pO K q :" O K z Ť pPP p k . Here K is a finite extension of Q, O K Ă K is the ring of integers, P stands for the family of all prime ideals in O K and p k stands for p . . . p (p is taken k times).

• Baake and Huck in their survey [START_REF] Baake | Ergodic properties of visible lattice points[END_REF] considered B-free lattice points F B " F B pΛq :" Λz Ť bPB bΛ. Here Λ is a lattice in R d and B Ď Nzt1u is an infinite pairwise coprime set with ř bPB 1{b d ă 8. • Finally, one can consider B-free integers F B in number fields as suggested in [START_REF] Baake | Ergodic properties of visible lattice points[END_REF]. Here K is a finite extension of Q, O K Ă K is the ring of integers and B is a family of pairwise coprime ideals in O K such that the sum of reciprocals of their norms converges.

We will recall some of the main results from the above papers in the relevant sections below.

Invariant measures and entropy

Mirsky measure Cellarosi and Sinai proved (i) in [START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF]: they showed that ν µ 2 is generic for a shift-invariant measure ν µ 2 on t0, 1u Z , and that pX µ 2 , ν µ 2 , Sq is isomorphic to a rotation on the compact Abelian group ś pPP Z{p 2 Z. In particular, pX µ 2 , ν µ 2 , Sq is of zero Kolmogorov entropy. 87 In case of k-free lattice points and k-free integers in number fields an analogous result can be found in [START_REF] Pleasants | Entropy and diffraction of the k-free points in n-dimensional lattices[END_REF] and [START_REF] Cellarosi | Ergodic properties of k-free integers in number fields[END_REF], respectively and for B-free lattice points it was announced in [START_REF] Baake | Ergodic properties of visible lattice points[END_REF]. Recently, Huck [START_REF] Huck | On the logarithmic probability that a random integral ideal is relatively A-free, From Chowla's conjecture: from the Liouville function to the Moebius function[END_REF] showed that in case of B-free integers in number fields, the logarithmic density of F B always exists and equals the lower density, thus extending Theorem 6.1 in the (1-dimensional) Erdös case.

Since F B may fail to have asymptotic density, the more η may fail to be a generic point. However (Proposition E in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]), for any B Ă N, η is always a quasi-generic point for a natural ergodic S-invariant measure ν η on t0, 1u Z (the relevant Mirsky measure). Moreover, B is Besicovitch if and only if η is generic for ν η . Now, if we additionally assume that B is taut, then pX η , ν η , Sq is isomorphic to an ergodic rotation on a compact metric group (Theorem F in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]). 88 In particular, pX η , ν η , Sq has zero entropy.

Finally, for a generalization to so-called weak model sets, see [START_REF] Baake | On weak model sets of extremal density[END_REF], and for some results related to the distribution of B-free integers, see [START_REF] Avdeeva | Variance of B-free integers in short intervals[END_REF][START_REF] Avdeeva | Ergodic and statistical properties of B-free numbers[END_REF].

Entropy The topological entropy of X µ 2 is positive and equals 6{π 2 " ś pPP p11 {p 2 q " dpF B q for B " tp 2 : p P Pu, see [136]. This extends to the Erdös case, where the topological entropy of X η " r X η " X B equals ś bPB p1 ´1{bq " dpF B q, see [START_REF]A dynamical point of view on the set of B-free integers[END_REF]. In the general case of B-free systems, we have h top p r X η , Sq " h top pX B , Sq " δpF B q (see Theorem K in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]). The formula for the topological entropy of k-free lattice points is provided in [START_REF] Pleasants | Entropy and diffraction of the k-free points in n-dimensional lattices[END_REF].

In view of the variational principle, the positivity of the topological entropy evokes two problems: whether the system under consideration is intrinsically ergodic (i.e. whether there is a unique measure of maximal entropy) and to describe the set of all invariant measures. We address them next.

Maximal entropy measure In the square-free case, the intrinsic ergodicity is proved by Peckner in [136]. This extends to the Erdös case, see [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF] by Kułaga-Przymus, Lemańczyk and Weiss. Finally, for any B Ă N, the subshift p r X η , Sq is intrinsically ergodic, see Theorem J in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]. In particular, if B has light tails and contains an infinite pairwise coprime subset then pX B , Sq is intrinsically ergodic.

All invariant measures Notice that for each B, the map M : X η ˆt0, 1u Z Ñ r X η given by the coordinatewise multiplication of sequences is well-defined and each S ˆS-invariant measure ρ on X η ˆt0, 1u Z yields an S-invariant measure on r X η . In particular, this applies to those ρ whose projection on the first coordinate is ν η . It turns out that the converse is also true: for any S-invariant measure ν on r X η there exists an S ˆS-invariant measure ρ on X η ˆt0, 1u Z whose projection on the first coordinate is ν η and such that M ˚pρq " ν. For the Erdös case see [START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF] and for general B-free systems, see Theorem I in [START_REF] Bartnicka | B-free sets and dynamics[END_REF] (for further generalizations of B-free systems listed before (see page 51) no analogous description of the set of all invariant measures is known).

It turns out that a special role is played by B that are taut. We have the following: for any B, there exists a unique taut set B 1 Ă N such that F B 1 Ă F B , r X η 1 Ă r X η and all S-invariant measures on r X η are in fact supported on r X η 1 (Theorem C in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]). More subtle properties of the simplex of invariant measures of the B-shift have been studied in [START_REF]Hereditary subshifts whose simplex of invariant measures is Poulsen, Ergodic theory, dynamical systems, and the continuing influence of[END_REF] by Kułaga-Przymus, Lemańczyk and Weiss -it was shown that in the positive entropy case the simplex of S-invariant measures on r X η is Poulsen, i.e. the ergodic measures are dense. In particular, if we additionally know that X η is hereditary (and has positive entropy), then its simplex of invariant measures is Poulsen. However, this is no longer true for a general (not necessarily B-free) hereditary system. On the other hand, Konieczny, Kupsa and Kwietniak [START_REF] Konieczny | Arcwise connectedness of the set of ergodic measures of hereditary shifts[END_REF] showed that the set of ergodic invariant measures of a hereditary shift is always arcwise connected (when endowed with the d-bar metric).

Topological results

A lot can be said about the topological properties of pX η , Sq. E.g. for any B Ă N the subshift X η has a unique minimal subset that is the orbit closure of a Toeplitz system (Theorem A in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]). In particular, X η is minimal if and only if X η is a Toeplitz system. 89 In fact, η itself can be a Toeplitz sequence (see Example 3.1 in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]) and it was shown in [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF] that η is a Toeplitz sequence different from . . . 0.00 . . . if and only if B does not contain a subset of the form dA , where d P N and A Ă Nzt1u is infinite and pairwise coprime. Moreover, if η is Toeplitz then B is necessarily taut [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF].

On the other hand, the proximality of X η is equivalent to t. . . 0.00 . . . u being the unique minimal subset of X η . Moreover, X η is proximal if and only if B contains an infinite pairwise coprime subset (Theorem B in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]).

Some of the properties of the B-free subshift X η can be characterized via properties of a set W called the window: W " th P H : h b ‰ 0 for all b P Bu, cf. [START_REF] Deshouillers | Automatic sequences generated by synchronizing automata fulfill the Sarnak conjecture[END_REF]. This name has its origins in the theory of weak model sets (for more details see [START_REF] Baake | Aperiodic Order[END_REF]); F B is an example of such a set. Again a special role is played by sets B that are taut. In [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF], Kasjan, Keller and Lemańczyk show the following:

• B is taut if and only if W is Haar regular, i.e. the topological support of Haar measure restricted to W is the whole W ;

• if B is primitive then X η is a Toeplitz system if and only if W is topologically regular;

• X η is proximal if and only if W has empty interior.

In [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF] there is also a detailed description of the maximal equicontinuous factor of X η (with no extra assumptions on B). See also [START_REF] Keller | Dynamics on the graph of the torus parametrisation[END_REF].

Clearly, if X η is hereditary, i.e. X η " r X η then p. . . 0.00 . . . q P X η and hence X η is proximal. If we assume that B is taut then the converse is true: proximality yields heredity (Theorem D in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]). However, r X η " X B may fail to hold, even under quite strong assumptions on B. Indeed, the set of abundant numbers A is the corresponding set of multiples M B for a certain set B with the property that ř bPB 1{b ă 8. Here, r X η ‰ X B , see Section 11 in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]. More subtle results on heredity were recently obtained by Keller in [START_REF] Keller | Generalized heredity in B-free systems[END_REF]. He shows that whenever X η is proximal then it is contained in a slightly larger subshift that is hereditary (there is no need to make extra assumptions on B). He also generalizes the concept of heredity to the non-proximal case.

It is also interesting to ask about the (invertible) centralizer of pS, X η q. In the Erdös case it was proved by Mentzen90 in [START_REF] Mentzen | Automorphisms of subshifts defined by B-free sets of integers[END_REF] that the group of homeomorphisms commuting with the shift pS, X η q consists only of the powers of S. In case of some Toeplitz B-free systems an analogous result was proved by Bartnicka in [START_REF] Bartnicka | Automorphisms of Toeplitz B-free systems[END_REF].

Question 11. Is the invertible centralizer trivial for each B-free subshift?

Ergodic Ramsey theory

We will now see some connections of the theory of B-free sets with the theory uniform distribution and ergodic Ramsey theory. Theorem 6.4 ([21]). Given B Ă N that is Besicovitch, there exists a set D Ă F B with dpF B zDq " 0 such that the set F B ´r is an averaging set of polynomial multiple recurrence if and only if r P D. Moreover, D " F B if and only if the set B is taut.

This can be generalized to B that are not Besicovitch by considering divisibility and recurrence along a certain subsequence pN k q kě1 . As a combinatorial application, one obtains in [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF] the following result: Suppose that pN k q kě1 is such that the density of F B along pN k q kě1 exists and is positive. Then there exists D Ă F B which equals F B up to a set of zero density along pN k q kě1 such that for all r P D and for all E Ă N with positive upper density, for any polynomials p i P Qrts, i " 1, . . . , ℓ, which satisfy p i pZq Ă Z and p i p0q " 0, for all 1 ď i ď ℓ, there exists β ą 0 such that the set ! n P F B ´r : d ´E X pE ´p1 pnqq X . . . X pE ´pℓ pnqq ¯ą β ) has positive lower density along pN k q kě1 . If, additionally, B is taut then one can take D " F B . Results of similar flavor as above have been also obtained in [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF] in the context of level sets of multiplicative functions. In particular, if E is a level set of a multiplicative function and has positive density then every self-shift of E is an averaging set of polynomial multiple recurrence (Corollary C in [START_REF]A structure theorem for level sets of multiplicative functions and applications[END_REF]).

The key tool here is [START_REF] Bartnicka | B-free sets and dynamics[END_REF] that provides an important link between level sets of multiplicative functions and rational sets. See also [START_REF]A generalization of Kátai's orthogonality criterion with applications[END_REF].

  Conjecture C: Let f P CpG{Γq be Lipschitz continuous and x 0 P G. Then (for H ď N ) ÿ nďN sup gPG ˇˇř hďH f pT h`n g px 0 Γqqµpn `hq ˇň " opH log N q. Theorem 3.10 ([155]). Conjectures A, B and C are equivalent. Remark 3.11. Tao also shows that if instead of logarithmic averages we come back to Cesàro averages, then Conjecture A ñ Conjecture B ñ Conjecture C and it is the implication Conjecture C ñ Conjecture A that requires logarithmic averages.

ř

  nďM k θpS n µq " 0 (by the PNT). Denoting by Inv the σ-algebra of S-invariant (modulo the measure κ) subsets of X µ , we recall that 1 Hÿ hďH θ ˝Sh Ý ÝÝÝ Ñ HÑ8 Epθ|Invq in L 2 pX µ , κq(by the von Neumann ergodic theorem). We want to show that θ K L 2 pX µ , Inv, κq (i.e. κ must be "slightly" ergodic). In other words, we want to show that ż

  ¨p1 b θq dρ " 0.

Remark 4 . 4 . 3 :

 443 It can be easily shown that any minimal (hence uniquely ergodic) rotation on a compact Abelian group satisfies the strong MOMO property (say, relatively to µ). It follows from Theorem 4.3 (and the Halmos-von Neumann theorem) that in each uniquely ergodic model of an ergodic automorphism with discrete spectrum, we also have the strong MOMO property (in particular, the Möbius disjointness).We now list three consequences of Theorem 4.Corollary 4.5 ([3]). (a) If Sarnak's conjecture holds then the strong MOMO

Theorem 5 . 1 (

 51 [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF]). All time-automorphisms of horocycle flows are Möbius disjoint.

Corollary 5 . 5 (

 55 [START_REF]Automorphisms with Quasi-discrete Spectrum, Multiplicative Functions and Average Orthogonality Along Short Intervals[END_REF]). Assume that u : N Ñ C, u P M. Then, for each non constant polynomial P P Rrxs with irrational leading coefficient, we have

  1 ´zp1q (z P X b ) as our continuous function, we can see that f has zero mean but neither (8) nor[START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and Möbius orthogonality[END_REF] are satisfied if the sequence c is badly behaving. It follows that we can expect a PNT to hold only in some classes of "natural" dynamical systems, samples of which we will see in Section 5.Returning to our discussion on a PNT, in any such situation, given a bounded sequence pf pnqq Ă C, we can write ÿ

	nďN	f pnqΛpnq "	´ÿ nďN	f pnq	ÿ d n	µpdq logpdq "	´ÿ dďN	µpdq log d	ÿ eďN {d	f pedq.

Most often, however not always, T will be a homeomorphism.

µ stands for the arithmetic Möbius function, see next sections for explanations of notions that appear in Introduction.

To be compared with Möbius Randomness Law by Iwaniec and Kowalski[START_REF] Iwaniec | Analytic number theory[END_REF], page 338, that any "reasonable" sequence of complex numbers is orthogonal to µ.

In order to establish Möbius disjointness, we need to show convergence (1) (for all x P X) only for a set of functions linearly dense in CpXq, so, for the rotations on the (additive) circle T " r0, 1q, we only need to consider characters. Note also that if the topological system pX, T q is uniquely ergodic then we need to check (1) (for all x P X) only for a subset of CpXq which is linearly dense in L[START_REF] El Abdalaoui | Spectral properties of the Möbius function and a random Möbius model[END_REF] .In what follows, for inequalities (as (3)), we will also use notation ! or Op¨q, or ! A or O A p¨q if we need to emphasize a role of A ą 0.

For a presentation of a part of it, see[START_REF] De La Rue | La fonction de Möbius à la rencontre des systèmes dynamiques[END_REF].

For a detailed account of these results, we refer the reader to[START_REF] Soundararajan | The Liouville function in short intervals [after Matomäki and Radziwiłł[END_REF].

As proved by Tao[START_REF]Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF], the logarithmic averages version of the Chowla conjecture is equivalent to the logarithmic version of Sarnak's conjecture. We will see later in Section 3 that once the logarithmic Chowla conjecture holds for the Liouville function λ, we have that all configurations of ˘1s appear in λ (infinitely often).

The same argument applied to the Liouville function λ implies that the subshift X λ generated by λ is uncountable, see Section 3.

σ f stands for the spectral measure of f .

We recall that Bourgain in[START_REF] Bourgain | An approach to pointwise ergodic theorems[END_REF][START_REF]On the maximal ergodic theorem for certain subsets of the integers[END_REF][START_REF]On the pointwise ergodic theorem on L p for arithmetic sets[END_REF], proved that for each α ě p1 `?3q{2, each automorphism T of a probability standard Borel space pX, B, µq and each f P L α pX, B, µq the sums in (5) converge for a.e. x P X. The result has been extended by Wierdl in[START_REF] Wierdl | Pointwise ergodic theorem along the prime numbers[END_REF] for all α ą 1.

We recall that if pZ, D, κ, Rq is a measure-preserving system then by its uniquely ergodic model we mean a uniquely ergodic system pX, T q with the unique (Borel) T -invariant measure µ such that pZ, D, κ, Rq is measure-theoretically isomorphic to pX, BpXq, µ, T q.

This proof of[START_REF] Baake | On weak model sets of extremal density[END_REF] has been shown to us by G. Tenenbaum.

We recall that either x is generic or Q-genpxq is a connected uncountable set, see Proposition 3.8 in[START_REF] Denker | Ergodic theory on compact spaces[END_REF].

The point µ 2 is recurrent, so there is a "completion" of µ 2 to a two-sided sequence generating the same subshift.

Consider Bernoulli measure Bp1{2, 1{2q on t´1, 1u Z and Mirsky measure ν µ 2 on t0, 1u Z . Measure p ν µ 2 is the image of the product measure Bp1{2, 1{2q b ν µ 2 via the map px, yq Þ Ñ ppxpnq ¨ypnqqq nPZ P t´1, 0, 1u Z .

Recall that if R i is an automorphism of a probability standard Borel space pZ i , D i , ν i q, i " 1, 2, then each R 1 ˆR2 -invariant measure λ on pZ 1 ˆZ2 , D 1 b D 2 q having the projections ν 1 and ν 2 , respectively is called a joining of R 1 and R 2 : we write λ P JpR 1 , R 2 q. If R 1 , R 2 are ergodic then the set J e pR 1 , R 2 q of ergodic joinings between R 1 and R 2 is non-empty. A fundamental notion here is the disjointness (in sense of Furstenberg)[START_REF]Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF]: R 1 and R 2 are disjoint if JpR 1 , R 2 q " tν 1 b ν 2 u: we write R 1 K R 2 . For example, zero entropy automorphisms are disjoint with automorphisms having completely positive entropy (Kolmogorov automorphisms) and also a relativized version of this assertion holds.

We will see later that some special cases of validity of convergence in (25) also have their ergodic interpretations and they imply Möbius disjointness for restricted classes of dynamical systems of zero entropy; in particular, see Corollary 3.20 and Corollary 3.25.

The above proof was already suggested bySarnak in [148].

If Möbius disjointness in a dynamical system is shown through the KBSZ criterion then we obtain orthogonality with respect to all multiplicative functions.

The product decomposition depends on the component.

They are new even for irrational rotations. Cf. the notions of (S)-strong and (S 0 )-strong and their equivalence to the Chowla type condition in[START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF].

Inv stands here for the σ-algebra of T ˆS-invariant sets modulo ρ.

That is, Sarnak's conjecture and the strong MOMO property (relatively to µ) for all deterministic systems are equivalent statements.

Sarnak in [148] mentions that Bourgain has constructed a positive entropy system which is Möbius disjoint but this construction has never been published.

Moreover, Möbius disjointness is established for some other famous classes of rank one transformations such as: Katok's α-weak mixing class (these are a special case of three interval exchange maps) or rigid generalized Chacon's maps.

Hence, T p and T q are disjoint in Furstenberg's sense, and, in fact, we even have AOP.

This has been proved, e.g. in an unpublished preprint of El Abadalaoui, Kułaga-Przymus, Lemańczyk and de la Rue.

If S preserves a measure ν then T ϕ,S preserves measure µ b ν, the AOP property is considered with respect to this measure.

Such a sequence panq is of the form pϕ pnq pxqq with ϕ pnq pxq " ϕpxq `ϕpT xq `. . . φpT n´1 xq, n ě 0.

See the most prominent example of such a reduction, namely, Furstenberg's ergodic proof of Szemerédi theorem on the existence of arbitrarily long arithmetic progressions in subsets of integers of positive upper Banach density[START_REF]Recurrence in ergodic theory and combinatorial number theory[END_REF].

For the latter two classes all invariant measures yield discrete spectrum.

This is clearly a refinement of the fact that the asymptotic density of square-free integers exists (it is given by 6{π 2 " 1{ζp2q). It follows that µ 2 is a completely deterministic point.

The frequencies of blocks on µ 2 were first studied by Mirsky[START_REF] Mirsky | Note on an asymptotic formula connected with r-free integers[END_REF][START_REF]Arithmetical pattern problems relating to divisibility by rth powers[END_REF] and that is why we refer to ν µ 2 (and the analogous measure in case of general B-free systems) as the Mirsky measure.

More precisely, it is isomorphic to pH, P, T q, where H is the closure of tpn mod b k q kě1 : n P Zu in ś kě1 Z{b k Z and T g " g `p1, 1, . . . q, cf.[START_REF] Diamond | Elementary methods in the study of the distribution of prime numbers[END_REF].

This has been recently improved in[START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF] and by A. Bartnicka: Xη is minimal if and only if η is Toeplitz.

Mentzen's result is extended in[START_REF] Baake | Postive entropy shifts with small centraliser and large normaliser[END_REF] to every hereditary B-free subshift.
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Corollary 4.14. Assume that pZ, D, κ, Rq enjoys the AOP property. Then, in each uniquely ergodic model pX, T q of R, we have [START_REF] Dartyge | Sommes des chiffres de multiples d'entiers[END_REF] 1

H,MÑ8,H"opMq 0 for all f P CpXq, x P X.

The AOP property can be defined for actions of locally compact (second countable) groups. Then, for induced actions this property lifts [START_REF] Flaminio | Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds[END_REF], and in particular (by taking the induced R-action), if we have an automorphism then the corresponding suspension flow 56 has this lifted property. In particular, using induced Z-actions (for aZ Ă Z), one can derive easily that for uniquely ergodic systems pX, T q with the measure-theoretic AOP property we not only have Möbius disjointness but also [START_REF] Davenport | Über numeri abundantes[END_REF] 1 N

for each a, b P N, f P CpXq and the convergence is uniform in x [START_REF] Flaminio | Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds[END_REF]. 57 5 Glimpses of results on Sarnak's conjecture

The cases for which the Möbius disjointness has been proved, depend on the complexity of the deterministic system. They fit into two basic types. The first comes with sufficiently quantitative estimates for the disjointness sums which makes possible an analysis of the sums on primes yielding a PNT. This group includes Kronecker systems (Vinogradov [162]), nilsystems (Green and Tao [START_REF] Green | The Möbius function is strongly orthogonal to nilsequences[END_REF]) and, perhaps the most striking, the Thue-Morse system (Mauduit and Rivat [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF]) which resolved a conjecture of Gelfond [START_REF] Porter Lectures | Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF]. When the systems are more complex, such as horocycles flows, 58 then at least to date they do not come with a PNT, 59 and for them the KBSZ criterion is used, in other words, the disjointness (perhaps in its weaker form, see Section 4) is achieved. We now review most of important cases in which Möbius disjointness has been proved.

Systems of algebraic origin

Horocycle flows

Let Γ Ă P SL 2 pRq be a discrete subgroup with finite covolume. 60 Then the homogeneous space X " ΓzP SL 2 pRq is the unit tangent bundle of a surface 56 By the suspension flow of R we mean the special flow over R under the constant function (equal to 1). 57 The same argument shows that if Sarnak's conjecture holds then [START_REF] Davenport | Über numeri abundantes[END_REF] holds for each zero entropy pX, T q, a, b P N, f P CpXq uniformly in x P X. 58 Horocycle flows are mixing of all orders, see [START_REF] Marcus | The horocycle flow is mixing of all degrees[END_REF]. 59 In case of horocycle flows (Bourgain, Sarnak and Ziegler [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF]) Ratner's theorems on joinings are used and these provide no rate. 60 We will tacitly assume that Γ is cocompact, so that the homogenous space ΓzP SL 2 pRq is compact and the system is uniquely ergodic by [START_REF]The unique ergodicity of the horocycle flow[END_REF]; otherwise, as in the modular case when Γ " P SL 2 pZq we need to compactify our space. The proof of Theorem 5.1 in the modular case is slightly different than what we describe below. Definition 5.2. A system pZ, D, κ, Rq is of rank one if there exists a sequence of Rokhlin towers pF n , . . . , R hn´1 F n q, n ě 1, such that the whole σ-algebra is generated by the partitions tF n , RF n , . . . , R hn´1 F n , Xz Ť hn´1 j"0 R j F n u. For topological systems, there is no canonical notion of rank, but the useful notion is that of adic presentation [161], which we translate here from the original vocabulary into the one of Rokhlin towers. Definition 5.3. An adic presentation of a topological system pX, T q is given, for each n ě 0, by a finite collection Z n of Rokhlin towers such that:

• the levels of the towers in Z n partition X,

• each level of a tower in Z n is a union of levels of towers in Z n`1 ,

• the levels of the towers in Ť ně0 Z n form a basis of the topology of X. In that case, the towers of Z n`1 are built from the towers of Z n by cutting and stacking, following recursion rules: a given tower in Z n`1 can be built by taking columns of successive towers in Z n and stacking them successively one above another. These rules are best seen by looking at the partition P into levels of the towers in Z 0 ; possibly replacing Z 0 by some Z k , we can always assume P has at least two atoms. The names of the towers in Z n form sets of words W n , and the cutting and stacking of towers gives a canonical decomposition of every

. . , k r ; all these parameters depend on the word W . These decompositions are called the rules of cutting and stacking of the system.

The following result is an improvement on Theorem 3.1 of [START_REF] Ferenczi | On Sarnak's conjecture and Veech's question for interval exchanges[END_REF], which itself can be found in [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], though it is not completely explicit in that paper (it is stated in full only in a particular case, as Theorem 3, and its proof is understated). The following effective bound stems from a closer reading of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF]: Theorem 5.7. Let pX, T q be a topological dynamical system admitting an adic presentation, as in Definition 5.3 and the comment just after. Suppose that for any n and W in W n , we have:

• in the rules of cutting and stacking r ď C, with C ě 2,

• if we decompose W into words W ℓ P W n´s by iteration of the rules of cutting and stacking then for all ℓ and s large enough, we have

Then pX, T q is Möbius disjoint. If such a system is uniquely ergodic and weakly mixing for its invariant probability, it satisfies also the following PNT: for any word W " w 1 . . . w N which is a factor of a word in any W n , we have

To prove this, Chaika and Eskin use first the well-known fact that such an exchange of 3 intervals, denoted by T , is the induced map of the rotation of angle α " 1´α1 1`α2 on the interval r0, xq where x " 1 1`α2 . This approach, of course, does not generalize to 4 intervals or more.

In fact, in [START_REF] Chaika | Mobius disjointness for interval exchange transformations on three intervals[END_REF] two different results are proved. In the easier one, they deduce Möbius disjointness from the disjointness of powers of T ; they give a sufficient condition for T m to be disjoint from T n for all m ‰ n, which is satisfied by almost all these T . Namely, if we take pa 1 , . . .q to be the continued fraction of α and pb 1 , . . .q the α-Ostrowski expansion of x, then it is enough that, for any ordered k-tuple of pairs ppc 1 , d 1 q, . . . pc k , d k qq of natural numbers such that d i ď c i ´1, there are infinitely many i with a i " c 1 ,. . . ,

Then most of the paper is used to give an explicit Diophantine condition on α and x, which implies a slightly weaker property than the disjointness of powers. Under that condition, there exists a constant C such that for all n, and 0 ď m ď n, T m is disjoint from T n except maybe when m belongs to a sequence m i pnq in which any two consecutive terms satisfy m i`1 pnq ą Cm i pnq, and this is proved to imply Möbius disjointness. The Diophantine condition holds for almost all T , and, as it is long, we refer the reader to Theorem 1.4 of [START_REF] Chaika | Mobius disjointness for interval exchange transformations on three intervals[END_REF]; it expresses the fact that the geodesic ray from a certain flat torus with two marked points, defined naturally from T and its inducing rotation, spends significant time in compact subsets of the space of such tori.

Systems of rank one

These systems form a measure-theoretic class defined in Definition 5.2 above. It is well known, but has been shown explicitly for all cases only in the recent [START_REF] Adams | Constructive symbolic presentations of rank one measure-preserving systems[END_REF], that each system of rank-one is measure-theoretically isomorphic to one of the topological systems we define now. Definition 5.6. A standard model of rank one is the shift on the orbit closure of the sequence u which, for each n ě 0, begins with the word B n defined recursively by concatenation as follows. We take sequences of positive integers q n , n ě 0, with q n ą 1 for infinitely many n, and a n,i , n ě 0, 0 ď i ď q n ´1, such that, if h n are defined by h 0 " 1, h n`1 " q n h n `řqn´1 j"0 a n,i , then

We define B 0 " 0,

for n ě 0.

In [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF], Bourgain proved Möbius disjointness for a standard model of rank one if both the q n , n P N Y t0u and a n,i , n P N Y t0u, are bounded by some constant C (we will refer to this as to a bounded rank one construction).

Note however that, in the same paper, the half-hidden criterion deduced from Theorem 2 or 3, see Theorem 5.7 above, is much more than an auxiliary to prove the supposedly main Theorem 1 of [START_REF]On the correlation of the Moebius function with rank-one systems[END_REF]; it applies to a much wider class of systems, and even for some famous rank one systems this criterion works while Theorem 1 does not apply.

Systems of number-theoretic origin

Recall that a sequence x P t0, 1u N is called a generalized Morse sequence [START_REF] Keane | Generalized Morse sequences[END_REF] if [START_REF] De La Breteche | A remark on Sarnak's conjecture[END_REF] x " b 0 ˆb1 ˆ. . . with b i P t0, 1u ℓi , ℓ i ě 2, b i p0q " 0 for each i ě 0. 83 The following question still remains open.

Question 10 (Mauduit (2014)). Are dynamical systems arising from generalized Morse sequences Möbius disjoint?

Consider the simplest subclass of the class of generalized Morse sequences, for which in [START_REF] De La Breteche | A remark on Sarnak's conjecture[END_REF] we have |b i | " 2 for all i ě 0 (in other words, either b i " 01 or b i " 00). Such sequences are called Kakutani sequences [START_REF] Kwiatkowski | Spectral isomorphism of Morse dynamical systems[END_REF]. A particular case of Sarnak's conjecture, namely:

for the classical Thue-Morse sequence x " 01 ˆ01 ˆ. . . follows from [START_REF] Indlekofer | Investigations in the theory of q-additive and qmultiplicative functions. I[END_REF][START_REF] Kátai | A remark on a theorem of H. Daboussi[END_REF] (see also [START_REF] Dartyge | Sommes des chiffres de multiples d'entiers[END_REF] where, additionally, the speed of convergence to zero is given and [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF], where, additionally, a PNT has been proved). Then [START_REF] Denker | Ergodic theory on compact spaces[END_REF] has been proved for some subclass of Kakutani sequences in [START_REF] Green | On (not) computing the Möbius function using bounded depth circuits[END_REF]. As a matter of fact, in [START_REF] Green | On (not) computing the Möbius function using bounded depth circuits[END_REF], the problem whether 1 N ř N n"1 p´1q sE pnq µpnq Ñ 0 is considered. Here E Ă N is fixed and s E pnq :" ř iPE n i , where n " ř 8 i"0 n i 2 i (n i P t0, 1u). To see a relationship with Kakutani sequences define a Kakutani sequence x " b 0 ˆb1 ˆ. . . with b n " 01 iff n `1 P E; it is now not hard to see that s E pnq " xpnq mod 2. Finally, using some methods from [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF], Bourgain [START_REF]Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat[END_REF] completed the result from [START_REF] Green | On (not) computing the Möbius function using bounded depth circuits[END_REF] so that [START_REF] Denker | Ergodic theory on compact spaces[END_REF] holds in the whole class of Kakutani sequences (moreover, in [START_REF]Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat[END_REF][START_REF] Green | On (not) computing the Möbius function using bounded depth circuits[END_REF] a relevant PNT has been proved). One can show that the methods used in the aforementioned papers allow us to have [START_REF] Denker | Ergodic theory on compact spaces[END_REF] with x replaced by every y P Opxq (as shown in [START_REF] Ferenczi | Substitutions and Möbius disjointness, Ergodic Theory[END_REF] in Lemma 6.5 therein, this can be sufficient to show Möbius disjointness for the simple spectrum case; for example, this approach works for the Thue-Morse system).

The problem of Möbius disjointness is also studied (and solved) in the class of (generalized) Kakutani sequences taking values in compact (even non-Abelian) groups, see [160].

Other research around Sarnak's conjecture

As all periodic observable sequences are orthogonal to µ, one could think that a limit of periodic constructions of type of Toeplitz sequences 84 also yields systems that are Möbius disjoint. 85 However, in [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF] (and then [START_REF] Downarowicz | Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture[END_REF]) there are examples of Toeplitz systems which are not Möbius orthogonal. These examples have positive entropy [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF][START_REF] Downarowicz | Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture[END_REF]. Karagulyan in [101] shows Möbius disjointness of zero 83 If B P t0, 1u k and C " Cp0qCp1q . . . Cpℓ ´1q P t0, 1u ℓ then we define B ˆC :" pB Cp0qqpB `Cp1qq . . . pB `Cpℓ ´1qq. 84 A sequence x P A N is called Toeplitz if for each n P N there is qn P N such that xpn`jqnq " xpnq for each j " 0, 1, . . . 85 So called regular Toeplitz sequences are treated in [START_REF] El Abdalaoui | 0-1 sequences of the Thue-Morse type and Sarnak's conjecture[END_REF] and [START_REF] Downarowicz | Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture[END_REF], these are however uniquely ergodic models of odometers.

(iii) X µ 2 " X tp 2 :pPPu (see the definition of admissibility below);

(iv) pX µ 2 , Sq is proximal.

This triggered intensive research in analogous direction for dynamical systems given by other B-free sets. In [START_REF]A dynamical point of view on the set of B-free integers[END_REF], Abdalaoui, Lemańczyk and de la Rue developed the necessary tools in the Erdös case and covered (i)-(iii) from the above list. Given B " tb k : k ě 1u, In particular, they defined a function ϕ : G " ś kě1 Z{b k Z Ñ t0, 1u Z given by ϕpgqpnq " 1 ðñ g k `n ı 0 mod b k for all k ě 1.

Note that η B " ϕp0q and ϕ is the coding of points under the translation by p1, 1, . . . q on G with respect to a two-set partition tW, W c u, where

W " th P G : h b ‰ 0 for all b P Bu.

This study was continued in a general setting in [START_REF] Bartnicka | B-free sets and dynamics[END_REF] and the first obstacle was that it was no longer clear which subshift to study -it turned out that the most important role is played by the following three subshifts, which coincide in the Erdös case (for the square-free, case see [136] by Peckner and for the Erdös case, see [START_REF]A dynamical point of view on the set of B-free integers[END_REF]):

• X η is the closure of the orbit of η B under S (B-free subshift),

• r X η is the smallest hereditary subshift containing X η (a subshift pX, Sq is hereditary, whenever x P X and y ď x coordinatewise, then y P X),

• X B is the set of B-admissible sequences, i.e. of x P t0, 1u Z such that, for each b P B, the support supp x :" tn P Z : xpnq " 1u of x taken modulo b is a proper subset of Z{bZ (B-admissible subshift).

Remark 6.2. As X B is hereditary, we have X η Ă Ă X η Ă X B . In the Erdös case, we have X η " X B [START_REF]A dynamical point of view on the set of B-free integers[END_REF] (for the square-free system [148]).

Also the group G turned out to be too large for the studies -it is natural to consider its closed subgroup [START_REF] Diamond | Elementary methods in the study of the distribution of prime numbers[END_REF] H :" tpn, n, . . . q P G : n P Zu.

In the Erdös case we have H " G. Certain special cases more general than the Erdös one were considered in [START_REF] Bartnicka | B-free sets and dynamics[END_REF]:

• we say that B is taut whenever δpF B q ă δpF Bztbu q for each b P B;

• we say that B has light tails, i.e. dp ř bąK bZq Ñ 0 as K Ñ 8. Following [START_REF] Hall | Sets of multiples[END_REF], we also say that B is Besicovitch if dpM B q exists (equivalently, dpF B q exists). A set B Ă Nzt1u is called Behrend if δpM B q " 1. Throughout, we will tacitly assume that B is primitive, i.e. does not contain b ‰ b 1 with b b 1 . Recall that B is taut if and only if B does not contain dA , where A Ă Nzt1u is Behrend and d P N.

Polynomial recurrence and divisibility Recall that Szemerédi showed [START_REF] Szemerédi | On sets of integers containing no k elements in arithmetic progression[END_REF] that any set S Ă N with positive upper density contains arbitrarily long arithmetic progressions and Furstenberg [START_REF]Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions[END_REF][START_REF]Recurrence in ergodic theory and combinatorial number theory[END_REF] introduced an ergodic approach to this result that proved very fruitful from the point of view of various generalizations. In particular, it allowed one to prove the following: for any probability space pX, B, µq, invertible measure preserving transformation T : X Ñ X, A P B with µpAq ą 0 and any polynomials p i P Qrts satisfying p i pZq Ă Z and p i p0q " 0, 1 ď i ď ℓ, there exists arbitrarily large n P N such that [START_REF] Downarowicz | Isomorphic extensions and applications[END_REF] µ `A X T ´p1pnq A X . . . X T ´pℓ pnq A ˘ą 0.

In fact, we have

µ ´A X T ´p1pnq A X . . . X T ´pℓ pnq A ¯ą 0 [START_REF] Bergelson | Polynomial extensions of van der Waerden's and Szemerédi's theorems[END_REF][START_REF] Host | Convergence of polynomial ergodic averages[END_REF][START_REF] Leibman | Convergence of multiple ergodic averages along polynomials of several variables[END_REF]. One can now restrict attention to a specific subset R of n P N for which we ask whether (50) holds or even demand

If (51) holds for any invertible measure preserving system pX, B, µ, T q, A P B with µpAq ą 0, ℓ P N and any polynomials p i P Qrts, i " 1, . . . , ℓ, with p i pZq Ă Z and p i p0q " 0 for all i P t1, . . . , ℓu, we say (cf. [20, Definition 1.5]) that R Ă N is averaging set of polynomial multiple recurrence. If ℓ " 1, we speak of an averaging set of polynomial single recurrence.

We will be interested in polynomial recurrence for B-free sets. Before we get there, let us direct our attention to so-called rational sets. Recall that R Ă N is rational if it can be approximated in density by finite unions of arithmetic progressions, cf. footnote 18. Note that the rationality of F B is equivalent to B being Besicovitch. An easy necessary condition for R Ă N to be an averaging set of polynomial recurrence is that the density of R X uN exists and is positive for any u P N (indeed, otherwise consider the cyclic rotation on Z{uZ to see that even usual recurrence fails). If the latter holds, we will say that R is divisible. It turns out that in case of rational sets, divisibility is not only necessary but also sufficient for polynomial recurrence. More precisely, we have the following: Recall that it was proved in [START_REF] Bergelson | Squarefree numbers, IP sets and ergodic theory[END_REF] that every self-shift Q ´r, r P Q, of the set of square-free numbers Q is divisible and these are the only divisible shifts of Q. For general B-free sets the situation is more complicated and we have the following result: