

Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils

Emmeline d'Incau, Alexandra Lépinay, Hervé Capiaux, Pierre Gaudin, Jean-Yves Cornu, Thierry Lebeau

▶ To cite this version:

Emmeline d'Incau, Alexandra Lépinay, Hervé Capiaux, Pierre Gaudin, Jean-Yves Cornu, et al.. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. Science of the Total Environment, 2022, 809, pp.152113. 10.1016/j.scitotenv.2021.152113 . hal-03563194

HAL Id: hal-03563194

https://hal.science/hal-03563194

Submitted on 8 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1

Effect of *Pseudomonas putida*-producing pyoverdine on copper uptake by

Helianthus annuus cultivated on vineyard soils 2 3 4 D'Incau Emmeline¹, Lépinay Alexandra², Capiaux Hervé^{1,2}, Gaudin Pierre^{1,2}, Cornu Jean-5 Yves³, Lebeau Thierry^{1,2}* 6 7 8 ¹ LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France 9 ² OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France 10 ³ ISPA, Bordeaux Sciences Agro, INRA, 33140 Villenave d'Ornon, France 11 12 * Corresponding author 13 14 15 **Abstract** Bioaugmentation-assisted phytoextraction was used to reduce the Cu load in vineyard soils. 16 17 While performance is usually the end point of such studies, here we identified some 18 mechanisms underlying Cu soil to plant transfer, particularly the role of siderophores in the 19 extraction of Cu from the soil-bearing phases and its phytoavailability. 20 Carbonated vs. non-carbonated vineyard soils were cultivated with sunflower in rhizoboxes 21 bioaugmented with Pseudomonas putida. gfp-tagged P. putida was monitored in the soil and 22 pyoverdine (Pvd), Cu, Fe, Mn, and Zn were measured in the soil solution. Trace elements 23 (TE) were analysed in the roots and shoots. Plant growth and nutritional status were also 24 measured.

With bioaugmentation, the concentration of total Cu (vs. Cu²⁺) in the soil solution increased (decreased) by a factor of 1.6 to 2.6 (7 to 13) depending on the soil. The almost 1:1 relationship between the excess of Fe+Cu mobilized from the solid phase and the amount of Pvd in the soil solution in bioaugmented treatments suggests that Pvd mobilized Fe and Cu mainly by ligand-controlled dissolution via a 1:1 metal-Pvd complex. Bioaugmentation increased the Cu concentration by 17% in the shoots and by 93% in the roots, and by 30% to 60% the sunflower shoot biomass leading to an increase in the amount of Cu phytoextracted by up to 87%. The amount of Fe, Mn, Zn, and P also increased in the roots and shoots. Contrary to what was expected, carbonated soil did not increase the mobilization of TE. Our results showed that bioaugmentation increased phytoextraction, and its performance can be further improved by promoting the dissociation of Pvd-Cu complex in the solution at the soil-root interface.

- **Keywords**: Bacterial survival; Bioaugmentation; Iron availability; Phytoextraction;
- 39 Siderophore

1. Introduction

Vineyards represent 3% of French arable land, which corresponds to 20% of the phytosanitary products marketed (Aubertot et al. 2005). With the presence of contaminants in wine-growing soils resulting from vine treatments, the sustainability and durability of these agrosystems is called into question and a search is underway for other possible practices to ensure they are part of an agro-ecological approach. Among the contaminants, copper (Cu), which has been used for more than a century to control downy mildew, is a threat to the long-term sustainability of these wine-growing ecosystems.

50 Copper is a trace metal naturally occurring in soils at concentrations usually ranging from 13 to 24 mg kg⁻¹ (Kabata-Pendias 2001). For example, 90% of French soils naturally contain 51 between 5 and 36 mg Cu kg⁻¹, with an average of 20 mg kg⁻¹ (GIS Sol 2011). However, 52 depending on the frequency of Cu-fungicide treatments, over concentrations have been 53 54 measured, which vary greatly from one region to another and even within a wine growing 55 terroir. A meta-analysis conducted by Ballabio et al. (2018) at the European scale showed that 14.6% of the vineyard soils sampled showed concentrations of Cu higher than 100 mg kg⁻¹. 56 57 According to a recent meta-analysis (Karimi et al. 2021), the maximum annual copper dose authorised by the European Commission in 2018 (max. 4 kg kg⁻¹ year⁻¹ on average over a 58 59 period of 7 years) should not substantially modify the quality or biological functions of the 60 soil. However, the cumulative effect of copper inputs over decades at annual doses much higher than those currently in use may affect soil life, as shown in several studies devoted to 61 62 the microbial component. In the study of Lejon et al. (2008) with soil microcosms from longterm field experiment contaminated at 250 mg Cu kg⁻¹, the negative effect of Cu on microbial 63 64 biomass and diversity was shown to be higher in the absence of organic matter added to the 65 soil, and even higher when Cu was recently added. Regarding earthworms, a harmful effect 66 on their abundance and activity has been reported at Cu concentrations starting at around 30 mg kg⁻¹ (Eijsackers et al. 2005; Paoletti et al. 1998). Regulations in Australia, New Zealand 67 68 and Slovenia recommend an environmental impact study starting from 60 mg Cu kg⁻¹ soil 69 (Pietrzak and Mc Phail 2004; Rusjan et al. 2007). Unlike conventional winegrowers, no 70 alternative products to Cu for mildew control are available to organic winegrowers, resulting 71 in additional enrichment of soils with Cu despite the reduction in doses voted by EC 72 (European Commission). 73 Phytoextraction is a potentially relevant way to limit the Cu enrichment of soils, and even to compensate for inputs. If applied in the inter-row of vineyards or to fallow vineyard soils, 74

phytoextraction would not only reduce the copper load but also the risk of erosion. It is also conceivable that copper can be recycled from biomass. Unfortunately, no terrestrial Cuhyperaccumulating plants have been identified to date. Phytoextraction experiments are often performed with plants with Cu concentrations that usually do not exceed 100 mg kg⁻¹ of shoots (for reviews, see Lange et al. 2017; van der Ent et al. 2013), which means that the amount of copper that can be expected to be recovered would at best reach 1 kg⁻¹ ha⁻¹, based on a biomass production of 10 tons ha⁻¹. Among other factors, this moderate accumulation of Cu can be explained by its low phytoavailability in the soil, which decreases as early as seven days after vineyard treatment (Lejon et al. 2007, 2008). Indeed, Cu exhibits a strong affinity for solid phases, especially solid organic matter (Degryse et al. 2009; Manceau and Matynia 2010), and its concentration in pore water is usually low, i.e., <1 µM even in Cu-contaminated vineyard soils (Ferreira et al. 2018; Soja et al. 2018). The form of copper in solution also determines its phytoavailability, Cu²⁺ being the main chemical form removed by plants according to the most commonly used free-ion-activity model (FIAM) (Campbell, 1995). However, free copper activity is low in natural soil solutions because many organic and inorganic ligands interact with copper. In particular, dissolved organic matter has a very high affinity for copper (Arias et al. 2004). Different mechanisms can be used to increase the concentration of Cu in the soil solution, in the hope that it is in a phytoavailable chemical form, as reviewed by Cornu et al. (2017b, 2021). Some soil bacteria (e.g., *Pseudomonas*, *Streptomyces*) release complexing molecules including siderophores to meet their Fe requirements and are thus categorised as siderophoreproducing bacteria (SPB). Siderophores are low molecular weight organic chelators (150-2000 Da), characterised by a very high affinity for Fe(III) (>10³⁰ M⁻¹). Siderophores can also chelate divalent transition cations (Braud et al. 2009). Pyoverdine (Pvd) from *P. aeruginosa* has a non-negligible binding affinity for Cu of $10^{20.1}$ M⁻¹ (Cornu et al. 2014). Using a

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

collection of vineyard soils at different pH (5.9 to 8.6), Cornu et al. (2019) demonstrated that the mobility of Cu, estimated via total Cu in soil pore water, increased by a factor of between 1.4 and 8 with a supply of 200 µmol kg⁻¹ soil of purified Pvd from *Pseudomonas fluorescens*, making this bacterial species a good candidate to improve phytoextraction performance. Previously Cornu et al. (2014) showed that Pvd not only increased the mobility but also the phytoavailability and the uptake of Cu by tomato and barley. As reported for various metals, including Cu (Dimkpa 2016; Lebeau et al. 2008; Rajkumar et al. 2010; Sessitsch et al. 2013), SPB can enhance Cu phytoavailability by altering Cu dynamics at the soil-root interface and, like promoting growth plant rhizobacteria (PGPR), are able to stimulate plant growth. Bacteria for bioaugmentation-assisted phytoextraction are generally selected for their potential to produce compounds including siderophores, indole acetic acid, 1-aminocyclopropane-1-carboxylate deaminase. But only plant removal of trace elements (TE) is measured, while the complete process chain has only rarely been studied. Thus, the high variability of the effect of inoculation on phytoextraction yield is not well explained. The aim of the present study was to evaluate the role of *Pseudomonas putida* previously selected from vineyard sediments (Braud et al. 2015) on the phytoavailability and rate of phytoextraction of Cu and other TE in a carbonated and non-carbonated vineyard soils with respectively low and high concentrations of mobile iron. Indeed, Pvd production is known to be stimulated when the concentration of mobile iron is below 10 µM up to 50 µM (de Villegas et al. 2002; Manninen and Sandholm 1993; Sayyed et al. 2005). This should lead to larger amounts of Cu being extracted from carbonated soils. Sunflower plants were cultivated in rhizoboxes to investigate the mechanisms involved at the soil-root interface in depth. Soil colonisation by gfp-tagged P. putida was measured along with Pvd, Cu (by distinguishing

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Cu²⁺ and complexed Cu) and other TE recovered in the soil solution. The effect of soil
 bioaugmentation on phytoextraction performance and plant fitness was also measured.
 Material and methods

2.1. Soils

Two sandy soils developed on gravel (one non-carbonated (NC) with < 1 g kg⁻¹ and the other carbonated (C) with 9 g kg⁻¹) were collected in a Bordeaux vineyard (Graves, Pessac-Leognan area, France) in the 0-30 cm soil layer, which corresponds to the tilled soil horizon. The CEC of both soils is low, and they are both poor in organic matter. Aside from the CaCO₃ content, the main difference between the soils was in their Fe-diethylene triamine penta acetic acid (DTPA) content: 46.4 mg kg⁻¹ for NC and 12.7 mg kg⁻¹ for C soils.

The soils were homogenised, sieved to 4 mm, and stored in an aerated room at < 10 °C until use. The physico-chemical characteristics of the soils (Table 1) were determined by SADEF (Société Alsacienne pour le Développement et l'Etude de la Fertilité, Aspach-le-Bas, France).

Total copper content was measured by the INRAE Soil Analysis Laboratory (LAS, INRAE, Arras, France).

2.2. Pseudomonas putida conservation and preparation of the inoculum

Pseudomonas putida (99.51% similar to *P. putida* ATCC 8209) originates from sediments (colonised by *Phragmites australis*) accumulated in a vineyard storm water basin (Bois et al. 2011) and was selected by Braud et al. (2015) for its tolerance to Cu and its potential ability to mobilize Cu from the soil through the production of the siderophore pyoverdine.

This bacterial isolate was green fluorescent protein (gfp)-tagged with pPROBE-GT-kan plasmid (Bazot et al. 2009; Miller et al. 2000,) and after addition of 0.3 mL glycerol for 1.2 mL bacterial culture, was stored at -80 °C until required. For the experiments, cells were thawed and pre-cultivated for 48 h at 25 °C at 200 rpm in a 1:2 tryptic soy broth (TSB) medium with 50 µg mL⁻¹ of gentamicin. The cells were then transferred and cultivated for 24 h (25 °C, 200 rpm) in a larger volume of 1:2 TSB medium with 50 µg mL⁻¹ of gentamicin. Bacterial cells were centrifuged at 7,690 g, for 8 min and washed three times in KCl 9 g L⁻¹. The bacterial pellet was resuspended in a few millilitres of KCl 9 g L⁻¹ before soil bioaugmentation at the required bacterial density.

156

157

161

147

148

149

150

151

152

153

154

155

2.3. Bioaugmentation-assisted phytoextraction by sunflower

158 Soil and rhizobox conditioning: one week before the experiments started, the two soils (non-159 carbonated NC, and carbonated C) were moistened to 70% of their water-holding capacity 160 (WHC) with ultra-pure water (ca. 12% humidity). Rhizoboxes (sides 130 mm high, 120 mm wide and 20 mm thick) were immersed in 2% HNO₃ for 24 h to remove any trace of TE and 162 filled with 200 g dry weight (ca. 224 g wet soil), and the glass side was obscured. 163 Cultivation of the sunflowers in the rhizoboxes: All the rhizoboxes were planted with 164 sunflowers (Helianthus annuus L. Vellox, RAGT Semences, France). Three seeds were planted in each rhizobox. One week after germination, the most developed plantlet was 165 166 retained and the other two were discarded. The rhizoboxes containing the plantlets were 167 placed on a 45° inclined stand (glass side downwards) and incubated for four weeks in a 168 growth chamber under controlled conditions (16 h daylight at 20 °C and 8 h dark at 16 °C) 70% relative humidity and average lighting of 138 µmol of photons.m⁻² s⁻¹. The positions of 169 170 the rhizoboxes in the phytotron were regularly and randomly changed.

Inoculation with P. putida and rhizobox experimental setup: Bacteria were inoculated in rhizoboxes at the rate of 1.10¹² CFU kg⁻¹ dw soil after adjustment of water-holding capacity to 70%. NC and C soils were bioaugmented (vs. non-bioaugmented controls) with five replicates each. The rhizoboxes were bioaugmented once a week for four weeks according to Huguenot et al. (2015). The first bioaugmentation took place seven days after the seeds had germinated. The soil in the bioaugmented rhizoboxes was inoculated at the base of the plant stem. Control rhizoboxes consisted of non-inoculated soil supplied with the same volume of KCl 9 g.L⁻¹ as the bioaugmented rhizoboxes. Humidity was checked and adjusted with ultra-pure water throughout the course of the experiment. Sampling and analysis: At the end of the experiment, i.e., 31 days of sunflower culture, after the removable side of the rhizobox was removed, composite samples comprising two grams of wet soil were collected throughout the rhizoboxes without disturbing the soil and stored at -20 °C for microbiological analysis. The soil was then removed from the rhizoboxes, and the plant roots were separated from the soil. The soil adhering to the roots (averaged 117.3 g \pm 27.1) was considered as rhizospheric. Only rhizospheric soil (i.e., a 2-gram composite sample) was used for analysis. Plants roots were rinsed with tap water, followed by deionised water, and finally with ultrapure water and immersed in an ice-cold bath of HCl 10 mM for 10 min at 30 rpm to separate the apoplasmic (extracellular space) and symplastic (intracellular space) root compartments (Chaignon et al. 2002). The trace elements recovered in the HCl solution were considered as belonging to the apoplasmic compartment whereas those accumulated in the roots were considered to belong to the symplasmic compartment. After being bathed in tap water, the plants were rinsed with ultrapure water. The shoots (leaves and stems) and roots (symplastic compartment) were separated, weighed (fresh weight) and dried in an oven at 40 °C for five

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

195 days, weighed again (dry weight) then crushed and stored at room temperature until analysis. 196 The HCl baths of roots (apoplasmic solutions) were stored at 4 °C until analysis. 197 To measure total molecular microbial biomass (MMB), microbial DNA was extracted from 1 198 g (dry weight) of soil using a standard procedure developed by the GenoSol platform 199 (INRAE, Dijon, France, www.dijon.inra.fr/plateforme_genosol) (Terrat et al. 2012). 200 Concentrations of crude DNA (MMB) extracts were determined by electrophoresis in 1% 201 agarose gel stained with GelRed® using a calf thymus DNA standard curve and used as 202 estimates of molecular microbial biomass (Dequiedt et al. 2011). For gfp-tagged P. putida, 203 five grams of soil were mixed with 10 mL of 1% of sodium hexametaphosphate (Braud et al., 204 2009; Martin 2011), incubated for 2 h at 200 rpm, and centrifuged at 500 rpm for 1 min. gfp-205 tagged cells were measured in the supernatant after dilution with a spectrofluorometer (BMG 206 LabTech) at a wavelength excitation of 485 nm and emission of 520 nm. Calibration was 207 performed with pure culture of gfp-tagged P. putida. 208 Soil moisture was measured according to NF ISO 11465 (1994). 209 Available metal concentrations were measured using CaCl₂ extractions: 5 g of soil were 210 mixed with 10 mL of CaCl₂ (10 mM) for 2 h at 200 rpm and centrifuged at 500 rpm for 20 211 min. The supernatant was filtered on a 0.20 µm cellulose acetate membrane and pH was 212 immediately measured (pH-meter Mettler Toledo FE20/EL20). The absorbance of the 213 extraction solution was measured at 380 nm as a proxy of its concentration in Pvd. This 214 wavelength is indeed specific to Pvd since most metallophores, and more particularly those 215 resulting from the degradation of humic substances present in the soil solution, absorb at a 216 lower wavelength, as shown by van den Broeke et al. (2006). The concentration of Pvd in bioaugmented treatments was calculated from the difference in A³⁸⁰ values between 217 218 bioaugmented and control soils and using a molar extinction coefficient (E) equal to 13,415 M⁻¹ cm⁻¹ for the two soils. The filtered supernatants were divided into two aliquots: one was 219

220 acidified with 1% HNO₃ 65% (v/v) for inductively coupled plasma, atomic emission 221 spectrometry (ICP-AES) analysis and the second was preserved with 1 mM NaN₃ to measure 222 the free ionic Cu activity (Cu^{2+}). The plant samples (0.5 g dry weight) were mixed with 8 mL of HNO₃ 65 % (v/v) and 2 mL of 223 224 H₂O₂ 30% (v/v) in a closed Teflon vessel. All the samples were mineralised at 175 °C for 15 225 min in a microwave (CEM MARS 6, 1200 W). Blank and certified samples (INCT-MPH-2, 226 Poland) were prepared for each mineralisation cycle. After digestion, the samples were 227 cooled, recovered, and diluted to 25 mL with ultrapure water. Solutions were filtered through 228 Whatman's No. 40 or Durieux No.111 filter paper and stored in polypropylene tubes until 229 analysis. 230 Total concentrations of Cu, Fe, Mn, and Zn in CaCl₂ extract, plant digests and apoplasmic 231 solutions were analysed using ICP-AES (model iCAP 6300 DUO Radial coupled with a 232 CETAC ASX-520 auto sampler, Thermo-Fischer SCIENTIFIC, Illkirch, France), at 3,247, 233 2,599, 2,576 and 2,062 nm, respectively. Free ionic Cu²⁺ was measured in CaCl₂ soil extracts using a cupric ion-selective electrode 234 235 (ISE, 9629BNWP, Thermo Scientific Orion) according to the procedure described in Djae et 236 al. (2017). Briefly, the ISE was calibrated daily within the 5.4 to 13.2 range of pCu (= -log₁₀ a(Cu²⁺)) in Cu (CuSO₄0.1 mM) solutions buffered with iminodiacetic acid (IDA 1 mM) and 237 238 potassium phthalate (2.5 mM). The calibration curve ($r^2 = 0.995$, n = 12) showed 84% slope 239 efficiency compared with the theoretical Nernstian slope. The concentration of free ionic Cu²⁺ was calculated from pCu and the Cu²⁺ activity coefficient. The latter was given by the 240 241 extended Debye-Hückel equation in Ritsema (1993), assuming that the ionic strength of all 242 the extraction solutions was fixed by the 0.01 M CaCl₂ background electrolyte. 243 Phenotypic and physiological characterisation of the sunflower plants was performed before 244 the plants were harvested. The length of the stems and leaves was measured, and the number

of leaves counted. Pigments can also be used to reveal the health status of plants (Young 1991). From reflectance, two indexes were calculated: (i) The normalised difference vegetation index (NDVI) is a simple and effective vegetation index that quantifies "green" vegetation relative to chlorophyll content (Datt 1998; Deering 1978; Ustin et al. 2009), (ii) The carotenoid reflectance index (CRI) is a pigmentation index sensitive to carotenoids present in plant foliage (Gitelson et al. 2002; Ustin et al. 2009). The equations corresponding to these indexes are as follows:

$$NDVI = \frac{R_{\text{NIR}} - R_{\text{R}}}{R_{\text{NIR}} + R_{\text{R}}}$$

$$CRI = \frac{1}{R_{510nm}} - \frac{1}{R_{550nm}}$$

where reflectance (R) was measured at the following wavelength: R_{NIR} , 800 nm (near infrared); R_{R} , 675 nm (red); R_{510nm} , 510 nm; R_{550nm} , 550 nm.

Hyperspectral measurements were performed on three leaves per plant, on the upper surface, using a spectroradiometer (Analytical Spectral Devices FieldSpec 4, Malvern Panalytical Ltd, Malvern, United Kingdom - Sampling step of 1 nm; Average of 10 spectra per sample; one sample corresponds to one leaf).

2.4. Data and statistical analysis

The translocation factor (TF) was determined by calculating the ratio of the concentration of metal in the shoots (mg kg⁻¹) to the concentration of metal in the roots (mg kg⁻¹).

XLSTAT software (Addinsoft, 2019, Paris, France) was used for two-way analysis of variance (ANOVA), which examines the influence of "soil" and "bioaugmentation" in a randomised multifactorial design, and p-values were determined. Principal component analysis (PCA) was also performed.

273 **3. Results**

274

275

3.1. Dynamics of Cu

Figure 1a and Table 2 show that the amount of Cu in sunflower shoots increased (P < 0.05) by 276 277 a factor of ca. 2 when the soil was bioaugmented, regardless of whether the soil was 278 carbonated (C) or not (NC). Figures 1b and 1c show an increase (P < 0.05) in the 279 concentration of Cu in the sunflower shoots and roots as a result of bioaugmentation. In the 280 shoots, only the effect of bioaugmentation was significant (P < 0.05, Table 2) while in the 281 roots, both the effects of bioaugmentation and of the soil were significant (P < 0.05, Suppl. Table T1). The concentration of copper in the shoots increased from 11.4 to 13.2 µg g⁻¹ 282 (+16%) in the NC soil and from 13.3 to 15.6 µg g⁻¹ (17%) in the C soil (Table 2). The 283 284 concentration of copper in the roots (root symplast) increased almost by a factor of 2 in the two soils, from 42.8 to 82.7 µg g⁻¹ in the NC soil and from 74.4 to 121.4 µg g⁻¹ in the C soil 285 286 (Suppl. Table T1). Figure 2 shows that the fraction of root Cu present in the symplast 287 increased (P < 0.05) from 1/3 to 2/3 as a result of bioaugmentation, regardless of the type of 288 soil. The copper translocation factor (TF, Fig. 1d) decreased significantly (P < 0.001) as a result of 289 290 bioaugmentation. 291 Cu dynamics in the soil was characterized by measuring the concentration of total and free Cu 292 (Cu²⁺) in the CaCl₂ soil extract. Figure 1e shows that, as a result of bioaugmentation, the 293 concentration of total Cu increased from 1.09 to 1.71 µM in the NC soil and from 1.15 to 3.00 294 μM in the C soil (Table 3), i.e., on average by a factor of 2.1. Conversely, Figure 1f shows that the concentration of Cu²⁺ decreased as a result of bioaugmentation, from 2.8 10⁻² to 4.0 295 10⁻³ μM in the NC soil and from 9.8 10⁻³ to 7.61 10⁻⁴ μM in the C soil, i.e., on average by a 296

297 factor of 7 and 13, respectively (Table 3). Lastly, there was a significant effect of the soil, with a lower Cu²⁺ concentration in the C soil (Table 3). 298 299 300 3.2. Molecular microbial biomass and P. putida survival 301 In the controls (non-bioaugmented soils) the molecular microbial biomass (MMB) was higher in the NC soil (17.3 µg DNA g⁻¹ soil DW) than in the C soil (8.4 µg DNA g⁻¹ soil DW) (Fig. 302 303 3a). MMB increased significantly (P < 0.001) in the two soils as a result of bioaugmentation. MMB increased on average by a factor of 3 in the NC soil (49.7 µg DNA g⁻¹ soil DW) and by 304 a factor of 6 in the C soil (51.7 µg DNA g⁻¹ soil DW). 305 306 Gfp-tagged P. putida was found at harvest in bioaugmented soils (Fig. 3b) and had increased 307 by more than one Log unit. At harvest, the concentration of *P. putida* was significantly higher in the C soil (7.0 10¹³ CFU kg⁻¹ soil DW) than in the NC soil (4.3 10¹³ CFU kg⁻¹ soil DW). 308 309 310 3.3. Pyoverdine production and pH 311 The absorbance of the extraction solution at 380 nm, used as a proxy of the concentration of 312 Pvd, increased on average by a factor of 2.3 as a result of bioaugmentation (Table 3). Pvd 313 production in bioaugmented soils led to a concentration of about 1.5 µM in the CaCl₂ extract. 314 The pH of the CaCl₂ extract only slightly decreased with bioaugmentation (from 6.81 to 6.57; 315 see Table 3), although the effect of bioaugmentation was statistically significant (P< 0.05). 316 However, the main difference in pH was observed between the two soils. 317 318 3.4. Plant growth and fitness 319 A significant effect of bioaugmentation ($P \le 0.05$) was observed on almost all the biometric parameters of sunflower (Table 4). Plants grown on bioaugmented soils produced on average 320

more biomass (plant dry mass increased 1.3 to 1.6-fold), more leaves (3 to 4 more leaves) and

longer leaves (on average 1.3- to 1.4-longer than plants grown on the control C and NC soils). Conversely, the stem was on average 15% shorter (P < 0.05) in plants grown on both bioaugmented C and NC soils as well as the ratio of root to shoot biomass (RS), but only those grown on the NC soil. In the controls, the dry mass of plants was significantly higher (P < 0.05) when grown on the NC soil than on the C soil. Table 4 also shows that the two indexes (NDVI and CRI) were higher (P < 0.05) in plants grown on bioaugmented soils, suggesting better plant fitness under this treatment. It is worth noting that the increase in CRI caused by bioaugmentation was more pronounced than that in NDVI, and that both indexes increased to the same extent in the two soils (NC and C).

3.5. Dynamics of Fe, Mn, Zn, and P

Both the concentration and the amount of Fe, Mn, Zn, and P in the sunflower shoots increased significantly (P < 0.05) as a result of bioaugmentation (Table 2). The amount of Fe, Mn, Zn, and P in sunflower shoots increased by respectively a factor of 1.5, 3.3, 1.1 and 1.7 in the NC soil, and 2.4, 5.3, 1.8 and 2.7 in the C soil. In the controls, the amount of Mn, Zn, and P in sunflower shoots was significantly higher (P < 0.05) in the NC soil than in the C soil. The concentration of Fe, Mn, Zn, and P in sunflower shoots increased by respectively a factor of 1.9, 1.5, 1.1 and 1.5 in the NC soil, and 2.8, 2.2, 1.6 and 2.2 in the C soil. For Zn this increase did not exceed 15% and was only significant (P < 0.05). The difference in the root elemental composition between the two soils was more pronounced. Notably, the concentration of Mn in the roots was on average 4-fold higher (P < 0.05) in the C soil than in the NC soil, regardless of the treatment. As a consequence, the amount of Mn in the roots was on average 3- to 5-fold higher in the NC soil than in the C soil, depending on the treatment.

Table 3 shows a significant effect (P < 0.05) of bioaugmentation on the concentration of Fe in the CaCl₂ extract (1.1 to 1.3-fold increase depending on the soil) and Mn (2.3- to 3.1-fold

increase depending on the soil), but not Zn. The effect of bioaugmentation was more pronounced for P, whose concentration in the $CaCl_2$ extract was on average 8 to 9-fold higher in the bioaugmented treatments than in the controls. A significant effect (P < 0.05) of the type of soil was also observed: the concentration of Fe, Mn, and Zn was higher in the NC soil than in the C soil.

3.6. Multivariate analysis of all the parameters monitored in the CaCl₂ extract

Principal component analysis (PCA) of the parameters monitored in the CaCl₂ extract (Suppl. Fig. F2) reveals positive correlations between the concentrations of total Cu (Cu_{TOT}), Fe, Mn, P, and Pvd, as well as with the molecular microbial biomass (MMB) and *P. putida* as supplementary variables. pH was mostly negatively correlated with Zn (and to a lesser extent with Fe and Mn) whereas no correlation was observed between pH and the concentration of Cu_{TOT} and Cu_{FREE} (both negatively correlated). PCA clearly separates into two clusters according to the soil (C and NC). It also distinguishes the treatment, i.e., whether the soils were bioaugmented or not (in particular NC soil). This emphasizes the fact that the overall effect of bioaugmentation is to increase the total concentrations of elements in the CaCl₂ extract (and to decrease the concentration of Cu²⁺).

4. Discussion

4.1. Effect of bioaugmentation with *Pseudomonas putida* on the phytoextraction of Cu (and other elements)

The amounts of Cu extracted by the aerial parts of sunflower (Fig. 1a, Table 2) increased by up to 87% in soils bioaugmented with *P. putida*, i.e., in line with the few studies conducted on

372 this TE (Andreazza et al. 2010; Chen et al. 2005; Huguenot et al. 2015; Ju et al. 2019; Yang et 373 al. 2013), with copper concentrations in soils in the same range as in our study (50 up to 1,230 374 mg Cu kg⁻¹ soil). It is worth noting that this increase was also observed for Fe, Mn and P 375 (Table 2). 376 The improved performance of phytoextraction with bioaugmentation is largely due to better 377 sunflower growth (30% to 60% increase, Table 4) with our *P. putida* (well-known PGPR) 378 Numerous studies have demonstrated the effect of PGPR on plant growth (for reviews, see 379 Goswami et al. 2016, Vacheron et al. 2013, Vejan et al. 2016). The production of complexing 380 agents including pyoverdine is one of the well-known properties of PGPR (Saharan and Nehra 381 2011) with, e.g., the plant's ability to obtain more iron, as shown in our study, with an 382 increase by a factor of 1.5 up to 1.9 (Table 2). 383 The yellowing of leaves for non-bioaugmented plants (Suppl. Fig. F3) did not result of the 384 phytotoxic effect of copper since copper-CaCl₂ (Table 3) concentrations in the non-385 carbonated vineyard soil (NC) and the carbonated one (C) were 1.09 and 1.15 µM 386 respectively, i.e., well below the concentration (10 µM) defined by Garcia et al. (1999) as 387 toxic for sunflower and as causing oxidative stress. Besides shoot Cu was within the normal range, i.e., 3-30 µg Cu g⁻¹ DW (Marschner 2012) (Fig. 1b and Table 2). Although the 388 389 concentrations of iron in the shoots of sunflower grown on both control soils were lower than 390 those measured in the bioaugmented soils (Table 2), the diffuse yellowing observed did not 391 look like that of iron deficiency, which is characterised by discolouration of the veins. 392 Besides, the iron concentrations measured in the shoots (Table 2) were within the normal 393 range (Marschner 2012). Therefore, we suspected yellowing to be related to nitrogen 394 deficiency. The fact that plants grown on control soils allocated a relatively higher fraction of 395 their dry matter to the roots (higher RS) than plants grown on bioaugmented soils (Table 4) 396 may also indicate such a nitrogen deficiency (Wang et al. 2014). According to Agüera et al.

(2010), such nutritional stress can cause leaf senescence in sunflower. The uniform chlorosis of the vegetative part of the older leaves was also reported by Alves et al. (2019) in sunflower. Lastly Agüera et al. (2010) demonstrated that total chlorophyll content and the photosynthetic rate of sunflower decreased with a low level of N (2 µM). Nitrogen was not measured in our study, but the overall photosynthetic activity as shown by the two indexes was lower in the control soils (Table 4). While NDVI values can vary from 0 to +1.0, the high values in Table 4 (0.86 to 0.9) are typical of mature plants. They are close to those reported by Turhan et al. (2008) for sunflowers grown in the laboratory in sand pots, or by Tunca et al. (2018) for sunflowers grown in the field. It should be noted that the positive relationship between NDVI and leaf size was already demonstrated, especially for sunflower, by Wanjura and Hatfield (1986). Carotenoids also play an important role in photosynthesis as accessory pigments, but their content can also increase with light stress or with plant senescence (Adams et al. 1996, Ustin et al. 2009, Ustin and Jacquemoud, 2020). This was not the case in our experiment, where all plants were young and grown under optimal growth conditions, especially lighting. Hence the values obtained (5.5 to 8.4) on a scale of 1 to 12 are commonly accepted for green plants. The significantly higher CRI values for plants cultivated on bioaugmented soils (7.1 and 8.4) compared to control plants (5.5 and 5.8) indicate, like for NDVI, better plant development. In addition to the typical effect of PGPR on the plant growth, an increase in Cu concentration in aerial parts was also observed – both effects contributing to the higher amount of Cu extracted by plants –as shown in several studies (Abou-Shanab et al. 2008; Almeida et al. 2017; Andreazza et al. 2010; Brunetti et al. 2012; Ju et al. 2019; Ma et al. 2009; Mendoza-Hernández et al. 2019; Płociniczak et al. 2013). This indicates an increase in the soil-plant transfer rate of copper. The increase in Cu mobility in the soil with bioaugmentation (by a factor of 1.6 to 2.6) explains the improved phytoextraction performance (the same

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

conclusions apply to Fe, Mn and P). Since complexed forms of Cu predominate in the soil solution to the detriment of Cu²⁺ (Fig. 1e, f), this suggests that the plant took up Cu in complexed form in addition to Cu²⁺, or that a decomplexation took place during uptake by the roots. It is also possible that partially degraded Pvd complexed with Cu was more easily internalised by sunflower. Cornu et al. (2014) already showed that adding Pvd to a calcareous soil significantly increased the uptake of Cu by barley and tomato, thereby suggesting the contribution of Cu-Pvd to Cu uptake by plants. Although the free-ion-activity model (FIAM) is the most commonly used model (Campbell,1995), models derived from the FIAM have also been reported in which complexes also affected TE uptake by plant roots (for a review, see Nowack et al., 2006). These models included the dissociation of TE complexes within the diffusion layer (Degryse et al., 2006) and/or from the passive uptake by plant roots of nondissociated TE complexes, such as TE-EDTA (Schaider et al., 2006). Shirley et al. (2011) and Vansuyt et al. (2007) even showed that plants were able to incorporate iron from Fe-Pvd and, because Pvd was detected *in planta*, they proposed that Fe-Pvd was at least partially incorporated in a non-dissociated form by plant roots. Few studies have compared the Cu translocation factors (TF) in bioaugmented and control soils. Comparing studies is tricky because results depend on how the roots are prepared before the determination of Cu. Considering only symplasmic Cu, i.e., the intracellular compartment (Chaignon et al. 2002), probably explains why TF values (Fig. 1b) decreased with bioaugmentation. In contrast, when Cu was summed in the apoplasmic and symplasmic compartments, TF increased with bioaugmentation as observed by Abou-Shanab et al. (2008) and Mendoza-Hernandez et al. (2019). In any case, the TF values we measured in the present study are in the range of those reported in the literature. The transfer of Cu from the apoplasmic to the symplasmic compartment can be explained by the degradation of cell walls

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

by bacterial siderophores, as already reported by Hazotte et al. (2018), with signs of root necrosis (blackish appearance) following the addition of 50 µM Pvd.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

446

447

4.2. Establishment of *P. putida* in the soil and role played by the siderophore pyoverdine in the mobilization and phytoavailability of copper (and other trace elements)

The mechanisms governing the mobilization of Cu from the soil and its uptake by the plant, following bioaugmentation by a bacterium selected for its siderophore production potential (Braud et al. 2015), have never been described. Previous studies selected microorganisms potentially able to improve phytoextraction (Bouquet et al. 2020 for Pb; Jalali et al. 2020 for Cd, Sr, and some rare earths, Durand et al. 2016 for Ni), however without an in-depth investigation of the underlying mechanisms. Almost all studies fail to describe the succession of processes: survival of the inoculated bacterial population, production of the metabolite of interest (in our case, pyoverdine) and its effects on the mobilization and uptake of TE by the root. Regarding bacterial survival, different inocula densities and re-inoculation frequencies, as well as inoculum conditioning and nutrient supply, have been tested (for a review, see Lebeau 2011), but very few studies have monitored inoculum survival (Braud et al. 2009; Trevors et al. 1993). Huguenot et al. (2015) showed that implantation of the strain in the soil required four weekly reinoculations before the inoculated strain became established. This is why we reinoculated the soil at this frequency (Fig 3b) to be sure that *P. putida* was properly established in the soil. The proportion of *P putida* in the molecular microbial biomass (MMB) was higher in the carbonated (C) soil (Fig 3), which could be explained by the fact that pH was, as expected, 1 unit higher than in the non-carbonated (NC) soil (7.8 vs. 6.7). Indeed, the optimum pH for the growth of *P. putida* is 7-7.5 (Elsayed and El-Nady 2013). A difference in soil structure due to the difference in texture (the C soil is sandier and richer in CaO than the

NC soil, but less clayey), and also in nutrient availability could explain the difference in soil colonisation by *P. putida* (Table 1). Lastly, the difference in sunflower growth as a function of the soil (Table 4) most certainly modulates microbial abundance and composition, due to a difference in the quantity and composition of rhizodeposits (Bardgett et al. 1999; Newman and Watson 1977). The increase in absorbance (A³⁸⁰) in the CaCl₂ extract between the control (CONTROL) and the bioaugmented modality (BIOAUG) was mostly in Pvd (Table 3) as already shown in a previous study where purified Pvd was directly added to a collection of vineyard soils (Cornu et al. 2019). The increase in Pvd production when the soil is bioaugmented is attributable to the presence of gfp-tagged P. putida (Fig. 3b, Suppl. data F2), suggesting a direct effect of bioaugmentation. But other microorganisms, in particular other *Pseudomonas* that are well represented in the rhizosphere of most plants (Lugtenberg et al. 2001) may also be involved in additional Pvd production since the Pvd concentration also increased with MMB (Fig. 3a). Thus, an indirect effect of bioaugmentation cannot be excluded. With the assumption that the increase in A³⁸⁰ between CONTROL and BIOAUG only results from Pvd production, this corresponds to a Pvd concentration of more than 2 nmol/g soil, which is 20 to 2 000 times higher than the siderophore concentrations measured by Boiteau et al. (2018) and Rai et al. (2020). This discrepancy is not surprising given the densities of *P. Putida* and the repetition of the inoculations in our study. Yet the Pvd concentrations we measured in the CaCl₂ extract represent only a small fraction of the Pvd produced, which was most likely sorbed onto the soil carrier phases, as shown by Cornu et al. (2019), i.e., 73-96% of the Pvd added to a collection of vineyard soils. We would therefore expect to find 9 to 67 µM of Pvd, which is consistent with the minimum concentration of Pvd (between 25 and 50 µM) added to a calcareous soil to significantly mobilize Cu (Cornu et al. 2014).

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

495 In bioaugmented soils (BIOAUG), Cu concentration in the soil solution increased by a factor 496 of 1.57 (NC) to 2.63 (C) (Table 2). Cornu et al. (2019) obtained an average increase of a 497 factor of 4 (from 1.4 to 8 depending on the vineyard soil studied), but with the addition of 200 umol Pvd kg⁻¹ of soil, suggesting that increased Pvd production by bioaugmentation could 498 499 enhance Cu mobilization. This was also demonstrated in a previous study (Cornu et al., 2014) 500 in which the mobility of Cu in a calcareous soil increased exponentially with an increase in 501 the dose of Pvd supplied. 502 The higher concentration of Cu in the CaCl₂ extract when the soils were bioaugmented (Fig 503 1e) is due to its mobilization from the soil bearing phases. This correlates with the increase in 504 Pvd concentration (Suppl. data Fig 2) as already demonstrated by Cornu et al. (2019) in a 505 collection of vineyard soils. It is worth noting that there was no effect of the soil (C vs. NC) 506 which is consistent with Pvd whose production did not depend on the soil. Like in the study 507 by Cornu et al. (2019), in which Pvd was directly added to the soil, the slope close to one 508 (Suppl. data Fig 1a) and the close to zero intercept of the regression line suggest that all the 509 Pvd was complexed with Fe and Cu (Al non-detectable) in the CaCl₂ extract. This result 510 shows that Fe and Cu were mobilized by complexolysis by Pvd (siderophore known to form 511 1:1 M complexes) in bioaugmented soils. Strengthening this hypothesis concerning the major 512 role of complexolysis, we observed that the pH of the CaCl₂ extract was not affected when the 513 soils were bioaugmented (Suppl. data Fig 2: see PCA), like Cornu et al. (2019) who added 514 Pvd directly to their collection of vineyard soils. Although lower than that of iron $(K^{L/Fe} =$ $10^{30.8}$), the stability constant of Pvd-Cu (K^{L/Cu} = $10^{20.1}$) for *Pseudomonas aeruginosa* which is 515 much higher than that of Cd ($K^{L/Cd} = 10^{8.2}$) (Cornu et al. 2014) explains why Cu in addition to 516 517 Fe is mobilized by complexolysis from the soil-bearing phases. 518 However, like in the study by Cornu et al. (2019), bioaugmentation reduced the concentration of Cu²⁺ in the soil solution. The reduction in the Cu²⁺ concentration from a factor of 7 (NC 519

520 soil) to 12.8 (C soil), is consistent with the results of Cornu et al. (2019) (from a factor of 2 to 521 37) in which Pvd was directly added to the soil. 522 Mn showed very similar behaviour to that of Fe (Suppl. data Fig. 2). It was even more 523 strongly correlated with Pvd than Cu and Fe. Duckworth and Sposito (2007) and Harrington 524 et al. (2012a) highlighted the complexation capacities of Mn (III) by Pvd with the Log of the 525 stability constant for Pvd-Mn(III) (35.3-35.4) higher than that of Pvd-Fe (30.0-32. 4) 526 (Harrington et al. 2012b), which probably also explains the higher level of Mn extraction 527 following bioaugmentation (×3.1 for NC soil vs. × 2.3 in the C soil (Table 3)) compared to 528 that of Fe (×1.3 and ×1.13 respectively). One could hypothesize that Mn is also mobilized by 529 ligand-controlled dissolution, together with Fe and Al, although Suppl Fig.1b shows a 530 positive and close relationship with a slope close to 3 which is not consistent with what 531 should be obtained with Pvd, which forms 1:1 complexes. This suggests that the Mn 532 mobilized by Pvd is mobilized by a reductive dissolution process allowing recycling of Pvd, 533 as shown by Akafia et al. (2014) in a batch dissolution experiment. Indeed, in reductive 534 dissolution, the recycling of the mobilizing ligand (here Pvd) enables mobilization of the 535 metals with a ratio of mobilized metals to Pvd in solution higher than 1. 536 The concentration of Pvd in the bioaugmented soil did not vary significantly, whether the soil 537 was carbonated or not (\times 2.3 and \times 2.4 respectively (Table 3)), a trend that is similar to the 538 performance of bioaugmentation-assisted phytoextraction (increase by a factor of 1.9 and 1.7 539 respectively, in C and NC soils). This result goes against our initial hypothesis. Indeed, with the C soil, where iron is less available than with the NC soil (12.7 mg Fe-EDTA kg⁻¹ or 228 540 μmoles kg⁻¹ vs. 46.4 mg kg⁻¹ or 831 μmoles kg⁻¹; Table 1), one could have expected a higher 541 542 Pvd concentration, as demonstrated by Persson et al. (1990). Most authors indeed report iron 543 concentrations that stimulate vs. repress Pvd production, for example, Sayyed et al (2005) 544 who demonstrated that maximum production of Pvd by fluorescent Pseudomonads was

obtained at 1 µM of Fe and repressed from 30 µM, and Parker et al. (2007) who showed
repression of Pvd production by $\textit{Pseudomonas putida}$ GB-1 from 2 μM FeSO ₄ . But if we
consider the Fe concentrations in the CaCl ₂ extract (bioavailable fraction) of the two soils,
they were not very different (2.0 μM for soil C $vs.$ 2.2 μM for NC; Table 3), which may
explain the similar Pvd concentrations in the C and NC soils and hence the absence of a soil
effect when bioaugmented. Thus, CaCl ₂ extraction seems more suitable than EDTA extraction
to assess the effect of iron on Pvd production. Another explanation for the similar production
of Pvd suggested by Marschner and Crowley (1997) is that the concentration of iron (5 vs. 50
mM FeCl ₃) has no effect on Pvd production. These authors postulated that the strain of <i>P</i> .
fluorescens Pf-5(pvd-inaZ) they used utilized siderophores produced by other microorganisms
or by plants.
Bioaugmentation resulted in additional Zn mobilization only in the C soil (Table 3). Zinc is
negatively correlated with pH (no correlation with Pvd) indicating that Zn is mobilized mainly
by ion exchange, in agreement with the results of previous works (Al-Wabel et al., 2002;
Cornu et al., 2017, Cornu et al. 2019). The slight variation in soil pH certainly explains the
absence of a significant effect of bioaugmentation on additional Zn mobilization (Table 3).
In the end, the very high P mobilization following bioaugmentation ($\times 7.7$ for NC soil vs. \times
8.6 for C soil) (Table 3) with a high correlation between the concentration of P-CaCl ₂ and
Pvd-CaCl ₂ (Suppl. data Fig. 2) appears to reveal one of the possible mechanisms of P
solubilisation by siderophores (Sharma et al. 2013), although other more widespread
mechanisms exist, in particular the action of phosphatases. Our <i>P. putida</i> strain was selected
for its ability to produce phosphatases (Braud et al. 2015).

5. Conclusion

Bioaugmentation with *P. putida* increased the total concentration of Cu in the soil solution up to 2.6-fold and we showed that this increase was correlated with both the density of *gfp*-tagged *P. putida* and the surplus of pyoverdine produced by *P. putida* (and possibly by other native Pseudomonas populations in the soil). The concentration of Cu²⁺ was markedly reduced (by up to a factor of 13) due to its complexation by Pvd (and most probably other ligands) in the soil solution. However, the concentration and amount of Cu in the sunflower plants increased, which raises the question of the mechanisms of Cu uptake by the plant (internalisation of the complex and/or decomplexation in the rhizosphere and uptake in the form of Cu²⁺).

To achieve the required level of phytoextraction (to compensate for the maximum annual average of 4 kg Cu ha⁻¹), promoting the decomplexation of Pvd-Cu and more broadly of the Cu-ligands present in the soil solution should be explored by adjusting the pH but also by promoting the degradation of complexing agents.

6. Acknowledgements

This work was financed by France's Pays de la Loire Regional Council (in the framework of the POLLUSOLS-OSUNA Project) and by French Agency for Environment and Energy Management (ADEME) in the framework of the VITALICUIVRE project. The authors would like to thank Prof. Emile Benizri for his careful review of the manuscript.

7. References

595	Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on
596	heavy-metal extraction and uptake by plants growing on multi-metal-contaminated
597	soils. World J Microbiol Biotechnol 24:253–262. https://doi.org/10.1007/s11274-007-
598	9464-x
599	Agüera E, Cabello P, de la Haba P (2010) Induction of leaf senescence by low nitrogen
600	nutrition in sunflower (Helianthus annuus) plants. Physiologia Plantarum 138:256-
601	267. https://doi.org/10.1111/j.1399-3054.2009.01336.x
602	Almeida CMR, Oliveira T, Reis I, et al (2017) Bacterial community dynamic associated with
603	autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh
604	sediments. Marine Environmental Research 132:68–78.
605	https://doi.org/10.1016/j.marenvres.2017.10.007
606	Alves AN, Souza FG de, Chaves LHG, et al (2019) Effect of nutrient omission in the
607	development of sunflower BRS-122 in greenhouse conditions. Rev Fac Nac Agron
608	Medellín 72:8663–8671. https://doi.org/10.15446/rfnam.v72n1.69388
609	Al-Wabel MA, Heil DM, Westfall DG, Barbarick KA (2002) Solution Chemistry Influence
610	on Metal Mobility in Biosolids-Amended Soils. J Environ Qual 31:1157–1165.
611	https://doi.org/10.2134/jeq2002.1157
612	Andreazza R, Okeke BC, Lambais MR, et al (2010) Bacterial stimulation of copper
613	phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere
614	81:1149-1154. https://doi.org/10.1016/j.chemosphere.2010.09.047
615	Arias M, López E, Fernández D, Soto B (2004) Copper distribution and dynamics in acid
616	vineyard soils treated with copper-based fungicides. Soil Science 169:796–805.
617	https://doi.org/10.1097/01.ss.0000148739.82992.59
618	Aubertot JN, Barbier, JM, Carpentier A, et al (2005) Pesticides, agriculture et environnement
619	réduire l'utilisation des pesticides et en limiter les impacts environnementaux

620	Ballabio C, Panagos P, Lugato E, et al (2018) Copper distribution in European topsoils: An
621	assessment based on LUCAS soil survey. Science of The Total Environment 636:282-
622	298. https://doi.org/10.1016/j.scitotenv.2018.04.268
623	Bardgett RD, Mawdsley JL, Edwards S, et al (1999) Plant species and nitrogen effects on soil
624	biological properties of temperate upland grasslands: Soil biological properties of
625	upland grasslands. Functional Ecology 13:650-660. https://doi.org/10.1046/j.1365-
626	2435.1999.00362.x
627	Bazot S, Lebeau T (2009) Effect of immobilization of a bacterial consortium on diuron
628	dissipation and community dynamics. Bioresource Technology 100:4257-4261.
629	https://doi.org/10.1016/j.biortech.2009.03.067
630	Ben Rebah F, Prevost D, Yezza A, Tyagi R (2007) Agro-industrial waste materials and
631	wastewater sludge for rhizobial inoculant production: A review. Bioresource
632	Technology 98:3535–3546. https://doi.org/10.1016/j.biortech.2006.11.066
633	Bois P, Huguenot D, Norini M-P, et al (2011) Herbicide degradation and copper
634	complexation by bacterial mixed cultures from a vineyard stormwater basin. J Soils
635	Sediments 11:860-873. https://doi.org/10.1007/s11368-011-0354-3
636	Boiteau RM, Kukkadapu R, Cliff JB, Chuck R, Smallwood CR, Kovarik L, Wirth MG,
637	Engelhard MH, Varga T, Dohnalkova A, Perea DE, Wietsma T, Moran JJ, Hofmockel
638	KS (2020) Calcareous organic matter coatings sequester siderophores in alkaline soils.
639	Sci Total Environ 724:138250. https://doi.org/10.1016/j.scitotenv.2020.138250
640	Bouquet D, Lépinay A, Gaudin P, et al (2020) A new assay of bacterial selection with Pb
641	reveals an unexpected effect of Pb on bacterial behavior: implications for remediation.
642	Environ Chem Lett 18:983–992. https://doi.org/10.1007/s10311-020-00986-y
643	Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural
644	Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing

645	bacteria. Chemosphere 74:280–286.
646	https://doi.org/10.1016/j.chemosphere.2008.09.013
647	Braud A, Hoegy F, Jézéquel K, Lebeau T, Schalk IJ (2009) New insights into the metal
648	specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ
649	Microbiol 11:1079–1091. https://doi.org/10.1111/j.1462-2920.2008.01838.x.
650	Braud AM, Hubert M, Gaudin P, Lebeau T (2015) A quick rhizobacterial selection tests for
651	the remediation of copper contaminated soils. J Appl Microbiol 119:435-445.
652	https://doi.org/10.1111/jam.12865
653	Brunetti G, Farrag K, Soler-Rovira P, et al (2012) The effect of compost and Bacillus
654	licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae
655	species from contaminated soils in the Apulia region, Southern Italy. Geoderma
656	170:322–330. https://doi.org/10.1016/j.geoderma.2011.11.029
657	Campbell PGC (1995) Interactions between Trace Metals and Aquatic Organisms: A Critique
658	of the Free-Ion Activity Model. In: Tessier, A. and Turner, D.R., Eds., Metal
659	Speciation and Bioavailability in Aquatic Systems, John Wiley & Sons. London, pp
660	45–102
661	Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat
662	cropped in a Cu-contaminated vineyard soil. New Phytologist 154:121-130.
663	https://doi.org/10.1046/j.1469-8137.2002.00349.x
664	Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on
665	mobility of copper in soil and copper accumulation by Elsholtzia splendens.
666	Environment International 31:861–866. https://doi.org/10.1016/j.envint.2005.05.044
667	Citeau L, Bispo A, Bardy M, King D (2008) Gestion durable des sols. Editions Quae, Paris

668	Cornu JY, Dépernet C, Garnier C, et al (2017) How do low doses of desferrioxamine B and
669	EDTA affect the phytoextraction of metals in sunflower? Science of The Total
670	Environment 592:535-545. https://doi.org/10.1016/j.scitotenv.2017.03.092
671	Cornu JY, Elhabiri M, Ferret C, et al (2014) Contrasting effects of pyoverdine on the
672	phytoextraction of Cu and Cd in a calcareous soil. Chemosphere 103:212-219.
673	https://doi.org/10.1016/j.chemosphere.2013.11.070
674	Cornu JY, Randriamamonjy S, Gutierrez M, et al (2019) Copper phytoavailability in vineyard
675	topsoils as affected by pyoverdine supply. Chemosphere 236:124347.
676	https://doi.org/10.1016/j.chemosphere.2019.124347
677	Datt B (1998) Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total
678	Carotenoid Content in Eucalyptus Leaves. Remote Sensing of Environment 66:111-
679	121. https://doi.org/10.1016/S0034-4257(98)00046-7
680	Deering DW (1978) Rangeland reflectance characteristics measured by aircraft and spacecraft
681	sensors. Texas A&M University
682	Degryse F, Smolders E, Merckx R (2006) Labile Cd Complexes Increase Cd Availability to
683	Plants. Environ Sci Technol 40:830-836. https://doi.org/10.1021/es050894t
684	Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in
685	soils: concepts, methodologies, prediction and applications - a review. European
686	Journal of Soil Science 60:590-612. https://doi.org/10.1111/j.1365-2389.2009.01142.x
687	Demmig-Adams B, Gilmore AM, Adams WW III (1996). In vivo functions of carotenoids in
688	higher plants. FASEB J. 10:403-412. doi: 10.1096/fasebj.10.4.8647339
689	Dequiedt S, Saby NPA, Lelievre M, et al (2011) Biogeographical patterns of soil molecular
690	microbial biomass as influenced by soil characteristics and management:
691	Biogeography of soil microbial biomass. Global Ecology and Biogeography 20:641-
692	652. https://doi.org/10.1111/j.1466-8238.2010.00628.x

693	Díaz de Villegas ME, Villa P, Frías A (2002) Evaluation of the siderophores production by
694	Pseudomonas aeruginosa PSS. Rev Latinoam Microbiol 44:112-117
695	Dimkpa C (2016) Microbial siderophores: Production, detection and application in agriculture
696	and environment. Endocytobiosis and Cell Research 27:7-16
697	Djae T, Bravin MN, Garnier C, Doelsch E (2017) Parameterizing the binding properties of
698	dissolved organic matter with default values skews the prediction of copper solution
699	speciation and ecotoxicity in soil. Environmental Toxicology and Chemistry 36:898-
700	905. https://doi.org/10.1002/etc.3622
701	Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and
702	biogenic layer-type Mn oxides. Chemical Geology 242:497–508.
703	https://doi.org/10.1016/j.chemgeo.2007.05.007
704	Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel
705	phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth
706	promoting rhizobacteria. Plant Soil 399:179-192, https://doi.org/10.1007/s11104-015-
707	2691-2
708	Eijsackers H, Beneke P, Maboeta M, et al (2005) The implications of copper fungicide usage
709	in vineyards for earthworm activity and resulting sustainable soil quality.
710	Ecotoxicology and Environmental Safety 62:99-111.
711	https://doi.org/10.1016/j.ecoenv.2005.02.017
712	Elsayed B, El-Nady MF (2013) Bioremediation of pendimethalin-contaminated soil. Afr J
713	Microbiol Res 7:2574–2588. https://doi.org/10.5897/AJMR12.1919
714	Essén SA, Bylund D, Holmström SJM, et al (2006) Quantification of hydroxamate
715	siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269-
716	282. https://doi.org/10.1007/s10534-005-8418-8

717	Ferreira PAA, Marchezan C, Ceretta CA, et al (2018) Soil amendment as a strategy for the
718	growth of young vines when replanting vineyards in soils with high copper content.
719	Plant Physiol Biochem 126:152–162. https://doi.org/10.1016/j.plaphy.2018.03.003
720	García A, Baquedano FJ, Navarro P, Castillo FJ (1999) Oxidative stress induced by copper in
721	sunflower plants. Free Radic Res 31 Suppl:S45-50.
722	https://doi.org/10.1080/10715769900301311
723	GIS Sol (2011) L'état des sols de France. Groupement d'intérêt scientifique sur les sols,
724	Olivet
725	Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in
726	plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281.
727	https://doi.org/10.1562/0031-8655(2002)075<0272:accipl>2.0.co;2
728	Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth
729	promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture 2:.
730	https://doi.org/10.1080/23311932.2015.1127500
731	Harrington JM, Bargar JR, Jarzecki AA, et al (2012a) Trace metal complexation by the
732	triscatecholate siderophore protochelin: structure and stability. Biometals 25:393-412.
733	https://doi.org/10.1007/s10534-011-9513-7
734	Harrington JM, Parker DL, Bargar JR, et al (2012b) Structural dependence of Mn
735	complexation by siderophores: Donor group dependence on complex stability and
736	reactivity. Geochemica et Cosmochimica Acta 88:106-119.
737	https://doi.org/10.1016/j.gca.2012.04.006
738	Hazotte A, Péron O, Gaudin P, et al (2018) Effect of Pseudomonas fluorescens and
739	pyoverdine on the phytoextraction of cesium by red clover in soil pots and
740	hydroponics. Environ Sci Pollut Res 25:20680–20690. https://doi.org/10.1007/s11356-
741	018-1974-6

/42	Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite.
743	Geochimica et Cosmochimica Acta 59:3327-3330. https://doi.org/10.1016/0016-
744	7037(95)00221-K
745	Huguenot D, Bois P, Cornu JY, et al (2015) Remediation of sediment and water contaminated
746	by copper in small-scaled constructed wetlands: effect of bioaugmentation and
747	phytoextraction. Environ Sci Pollut Res 22:721-732. https://doi.org/10.1007/s11356-
748	014-3406-6
749	Jalali J, Gaudin P, Capiaux H, et al (2020) Isolation and screening of indigenous bacteria from
750	phosphogypsum-contaminated soils for their potential in promoting plant growth and
751	trace elements mobilization. Journal of Environmental Management 260:110063.
752	https://doi.org/10.1016/j.jenvman.2020.110063
753	Ju W, Liu L, Fang L, et al (2019) Impact of co-inoculation with plant-growth-promoting
754	rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in
755	copper contaminated soil. Ecotoxicology and Environmental Safety 167:218-226.
756	https://doi.org/10.1016/j.ecoenv.2018.10.016
757	Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd ed. CRC Press,
758	Boca Raton, Fla
759	Karimi B, Masson V, Guilland C, Leroy E, Pellegrinelli S, Giboulot E, Maron PA, Ranjard L
760	(2021) La biodiversité des sols est-elle impactée par l'apport de cuivre ou son
761	accumulation dans les sols vignes? Etude et Gestion des Sols 28:71-92
762	Lange B, van der Ent A, Baker AJM, et al (2017) Copper and cobalt accumulation in plants: a
763	critical assessment of the current state of knowledge. New Phytol 213:537-551.
764	https://doi.org/10.1111/nph.14175
765	Lebeau T (2011) Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success
766	of Such a Process. In: Singh A, Parmar N, Kuhad RC (eds) Bioaugmentation,

767	Biostimulation and Biocontrol. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
768	129–186
769	Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted
770	phytoextraction applied to metal contaminated soils: A review. Environmental
771	Pollution 153:497–522. https://doi.org/10.1016/j.envpol.2007.09.015
772	Lejon DPH, Martins JMF, Lévêque J, et al (2008) Copper Dynamics and Impact on Microbial
773	Communities in Soils of Variable Organic Status. Environ Sci Technol 42:2819–2825.
774	https://doi.org/10.1021/es071652r
775	Lejon DPH, Nowak V, Bouko S, et al (2007) Fingerprinting and diversity of bacterial copA
776	genes in response to soil types, soil organic status and copper contamination:
777	Fingerprinting and diversity of bacterial copA genes in soil. FEMS Microbiology
778	Ecology 61:424–437. https://doi.org/10.1111/j.1574-6941.2007.00365.x
779	Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere
780	colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490.
781	https://doi.org/10.1146/annurev.phyto.39.1.461
782	Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium
783	Achromobacter xylosoxidans strain Ax10 for the improvement of copper
784	phytoextraction by Brassica juncea. Journal of Environmental Management 90:831-
785	837. https://doi.org/10.1016/j.jenvman.2008.01.014
786	Manceau A, Matynia A (2010) The nature of Cu bonding to natural organic matter.
787	Geochimica et Cosmochimica Acta 74:2556–2580.
788	https://doi.org/10.1016/j.gca.2010.01.027
789	Manninen M, Mattila-Sandholm T (1994) Methods for the detection of Pseudomonas
790	siderophores. J Microbiol Methods 19:223-234. https://doi.org/10.1016/0167-
791	7012(94)90073-6

192	Marschner P (2012) Marschner's mineral nutrition of higher plants, 3rd edition. Academic
793	Press, Amsterdam; Boston
794	Marschner P, Crowley DE (1997) Iron Stress and Pyoverdin Production by a Fluorescent
795	Pseudomonad in the Rhizosphere of White Lupine (Lupinus albus L.) and Barley
796	(Hordeum vulgare L.). Appl Environ Microbiol 63:277–281.
797	https://doi.org/10.1128/aem.63.1.277-281.1997
798	Mendoza-Hernández JC, Vázquez-Delgado OR, Castillo-Morales M, et al (2019)
799	Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-
800	promoting bacteria. Microbiological Research 228:1–8.
801	https://doi.org/10.1016/j.micres.2019.126308
802	Miller WG, Leveau JHJ, Lindow SE (2000) Improved gfp and inaZ Broad-Host-Range
803	Promoter-Probe Vectors. MPMI 13:1243–1250.
804	https://doi.org/10.1094/MPMI.2000.13.11.1243
805	Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by
806	the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved
807	Fe(III): Metal sorption and DFOB in soil. European Journal of Soil Science 53:45-55
808	https://doi.org/10.1046/j.1365-2389.2002.00425.x
809	Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy Metal Sorption on Clay Minerals
810	Affected by the Siderophore Desferrioxamine B. Environ Sci Technol 34:2749–2755.
811	https://doi.org/10.1021/es990495w
812	Newman EI, Watson A (1977) Microbial abundance in the rhizosphere: A computer model.
813	Plant Soil 48:17–56. https://doi.org/10.1007/BF00015157
814	NF ISO 11465 (1994) Soil quality—determination of dry matter and water content on a mass
815	basis—gravimetric method

816	Nowack B, Schulin R, Robinson BH (2006) Critical Assessment of Chelant-Enhanced Metal
817	Phytoextraction. Environ Sci Technol 40:5225–5232.
818	https://doi.org/10.1021/es0604919
819	Nunes I, Jacquiod S, Brejnrod A, et al (2016) Coping with copper: legacy effect of copper on
820	potential activity of soil bacteria following a century of exposure. FEMS Microbiology
821	Ecology 92:fiw175. https://doi.org/10.1093/femsec/fiw175
822	Paoletti MG, Sommaggio D, Favretto MR, Petruzzelli G, Pezzarossa B, Barbafieri M (1998)
823	Earthworms as useful bioindicators of agroecosystem sustainability in orchards and
824	vineyards with different inputs. Applied Soil Ecology, 10:137–150.
825	https://doi.org/10.1016/S0929-1393(98)00036-5
826	Parker DL, Morita T, Mozafarzadeh ML, et al (2007) Inter-relationships of MnO2
827	precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and
828	iron limitation in Mn(II)-oxidizing bacterial cultures. Geochimica et Cosmochimica
829	Acta 71:5672–5683. https://doi.org/10.1016/j.gca.2007.03.042
830	Persson A, Molin G, Weibull C (1990) Physiological and Morphological Changes Induced by
831	Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture. Appl
832	Environ Microbiol 56:686-692. https://doi.org/10.1128/aem.56.3.686-692.1990
833	Pietrzak U, McPhail DC (2004) Copper accumulation, distribution and fractionation in
834	vineyard soils of Victoria, Australia. Geoderma 122:151–166.
835	https://doi.org/10.1016/j.geoderma.2004.01.005
836	Płociniczak T, Kukla M, Wątroba R, Piotrowska-Seget Z (2013) The effect of soil
837	bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis
838	alba L. Chemosphere 91:1332–1337.
839	https://doi.org/10.1016/j.chemosphere.2013.03.008

840	Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore
841	iron chelators in soils. Nature 287:833-834. https://doi.org/10.1038/287833a0
842	Rai V, Fisher N, Duckworth OW, Baars O (2020) Extraction and detection of structurally
843	diverse siderophores in soil. Front Microbiol 11:581508.
844	https://doi.org/10.3389/fmicb.2020.581508
845	Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing
846	bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28:142-
847	149. https://doi.org/10.1016/j.tibtech.2009.12.002
848	Ritsema CJ (1993) Estimation of activity coefficients of individual ions in solutions with
849	ionic strengths up to 0.3 mol dm-3. Journal of Soil Science 44:307-315.
850	https://doi.org/10.1111/j.1365-2389.1993.tb00454.x
851	Rusjan D, Strlič M, Pucko D, Korošec-Koruza Z (2007) Copper accumulation regarding the
852	soil characteristics in Sub-Mediterranean vineyards of Slovenia. Geoderma 141:111-
853	118. https://doi.org/10.1016/j.geoderma.2007.05.007
854	Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci
855	Med Res 21:1–30.
856	Sayyed R, Badgujar M, Sonawane H, et al (2005) Production of microbial iron chelators
857	(siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:484-490
858	Schaider LA, Parker DR, Sedlak DL (2006) Uptake of EDTA-complexed Pb, Cd and Fe by
859	solution- and sand-cultured Brassica juncea. Plant Soil 286:377–391.
860	https://doi.org/10.1007/s11104-006-9049-8
861	Sessitsch A, Kuffner M, Kidd P, et al (2013) The role of plant-associated bacteria in the
862	mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology
863	and Biochemistry 60:182-194. https://doi.org/10.1016/j.soilbio.2013.01.012

864	Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes:
865	sustainable approach for managing phosphorus deficiency in agricultural soils.
866	SpringerPlus 2:587. https://doi.org/10.1186/2193-1801-2-587
867	Shirley M, Avoscan L, Bernaud E, et al (2011) Comparison of iron acquisition from Fe-
868	pyoverdine by strategy I and strategy II plants. Botany 89:731–735.
869	https://doi.org/10.1139/b11-054
870	Soja G, Wimmer B, Rosner F, et al (2018) Compost and biochar interactions with copper
871	immobilisation in copper-enriched vineyard soils. Applied Geochemistry 88:40-48.
872	https://doi.org/10.1016/j.apgeochem.2017.06.004
873	Terrat S, Christen R, Dequiedt S, et al (2012) Molecular biomass and MetaTaxogenomic
874	assessment of soil microbial communities as influenced by soil DNA extraction
875	procedure: Soil DNA extraction impact on bacterial diversity. Microbial
876	Biotechnology 5:135–141. https://doi.org/10.1111/j.1751-7915.2011.00307.x
877	Trevors JT, van Elsas JD, Lee H, Wolters AC (1993) Survival of alginate-encapsulated
878	Pseudomonas fluorescens cells in soil. Appl Microbiol Biotechnol 39:637-643.
879	https://doi.org/10.1007/BF00205067
880	Tunca E, Köksal ES, Çetin S, et al (2018) Yield and leaf area index estimations for sunflower
881	plants using unmanned aerial vehicle images. Environ Monit Assess 190:1–12.
882	https://doi.org/10.1007/s10661-018-7064-x
883	Turhan H, Genc L, Smith SE, et al (2008) Assessment of the effect of salinity on the early
884	growth stage of the common sunflower (Sanay cultivar) using spectral discrimination
885	techniques. Afr J Biotechnol 7:750-756.Ustin SL, Gitelson AA, Jacquemoud S, et al
886	(2009) Retrieval of foliar information about plant pigment systems from high
887	resolution spectroscopy. Remote Sensing of Environment 113:S67–S77.
888	https://doi.org/10.5167/UZH-23317

889	Ustin SL, Jacquemoud S (2020) How the optical properties of leaves modify the absorption
890	and scattering of energy and enhance leaf functionality. In: Cavender-Bares J et al.
891	(eds), Remote Sensing of Plant Biodiversity 349–383. https://doi.org/10.1007/978-3-
892	030-33157-3_14
893	Vacheron J, Desbrosses G, Bouffaud M-L, et al (2013) Plant growth-promoting rhizobacteria
894	and root system functioning. Front Plant Sci 4:.
895	https://doi.org/10.3389/fpls.2013.00356
896	Van Den Broeke J, Langergraber G, Weingartner A (2006) On-line and in-situ UV/vis
897	spectroscopy for multi-parameter measurements: a brief review. Spectroscopy europe
898	18: 15-18.
899	van der Ent A, Baker AJM, Reeves RD, et al (2013) Hyperaccumulators of metal and
900	metalloid trace elements: Facts and fiction. Plant Soil 362:319–334.
901	https://doi.org/10.1007/s11104-012-1287-3
902	Vansuyt G, Robin A, Briat J-F, et al (2007) Iron Acquisition from Fe-Pyoverdine by
903	Arabidopsis thaliana. MPMI 20:441–447. https://doi.org/10.1094/MPMI-20-4-0441
904	Vejan P, Abdullah R, Khadiran T, et al (2016) Role of Plant Growth Promoting Rhizobacteria
905	in Agricultural Sustainability—A Review. Molecules 21:573.
906	https://doi.org/10.3390/molecules21050573
907	Wang C, Liu W, Li Q, et al (2014) Effects of different irrigation and nitrogen regimes on root
908	growth and its correlation with above-ground plant parts in high-yielding wheat under
909	field conditions. Field Crops Research 165:138–149.
910	https://doi.org/10.1016/j.fcr.2014.04.011
911	Wanjura DF, Hatfield JL (1987) Sensitivity of spectral vegetative indices to crop biomass.
912	Trans. ASAE 30:810–816.

913	Yang R, Luo C, Chen Y, et al (2013) Copper-Resistant Bacteria Enhance Plant Growth and
914	Copper Phytoextraction. International Journal of Phytoremediation 15:573–584.
915	https://doi.org/10.1080/15226514.2012.723060
916	Young AJ (1991). The photoprotective role of carotenoids in higher plants. Physiologia
917	Plantarum 83:702-708. https://doi.org/10.1111/j.1399-3054.1991.tb02490.x.

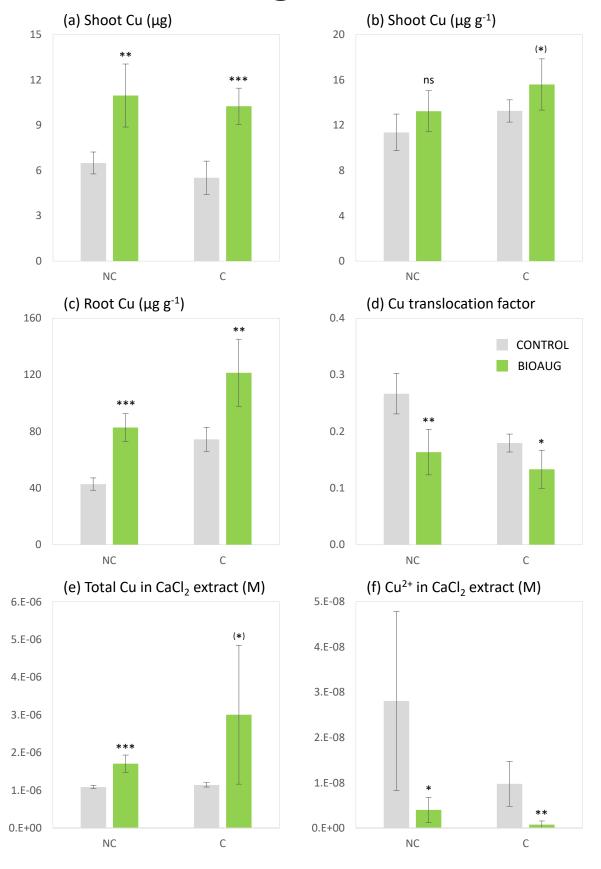

Figure captions

Figure 1. Copper dynamics at the soil-plant interface in two vineyard soils (NC for non-carbonated and C for carbonated) cultivated for 31 days with sunflower (cv. Velox) and bioaugmented (BIOAUG) or not (CONTROL) with $Pseudomonas\ putida$: (a) amount of Cu in shoots, (b) concentration of Cu in shoots, (c) concentration of Cu in roots, (d) root-to-shoot translocation of Cu, (e) total concentration of Cu in 0.01 M CaCl₂ extract, and (f) free ionic concentration of Cu in 0.01 M CaCl₂ extract. For each soil, (*), *, ** and *** indicate that the average value measured in the bioaugmented treatment differed significantly from the one measured in the control, at the probability level of P < 0.1, P < 0.05, P < 0.01 and P < 0.001, respectively. The error bars stand for mean standard deviations and ns stands for non-significant.

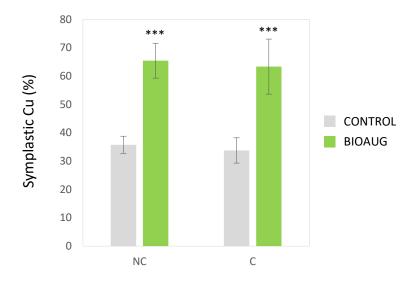

Figure 2. Fraction of root Cu stored in the symplast in sunflower (cv. Velox) grown for 31 days on two vineyard soils (NC for non-carbonated and C for carbonated) bioaugmented (BIOAUG) or not (CONTROL) with *Pseudomonas putida*. For each soil, *** indicate that the average value measured in the bioaugmented treatment differed significantly from the one measured in the control, at the probability level of P < 0.001. The error bars stand for mean standard deviations and ns stands for non-significant.

Figure 3. Total microbial biomass (a) and gfp-tagged *Pseudomonas putida* (b) determined in soil adhering to the roots (i.e. rhizospheric soil) after 31 days of sunflower (cv. Velox) cultivation in two vineyard soils (NC for non-carbonated and C for carbonated) bioaugmented (BIOAUG) or not (CONTROL) with *Pseudomonas putida*. In (a), for each soil, ** and *** indicate that the average value measured in the bioaugmented treatment differed significantly from the one measured in the control, at the probability level of P < 0.01 and P < 0.001, respectively. In (b), (*) indicate that the average value measured in the soil C differed significantly from the one measured in the soil NC, at the probability level of P < 0.1. The error bars stand for mean standard deviations and ns stands for non-significant.

Figure 1

Figure 2

Figure 3

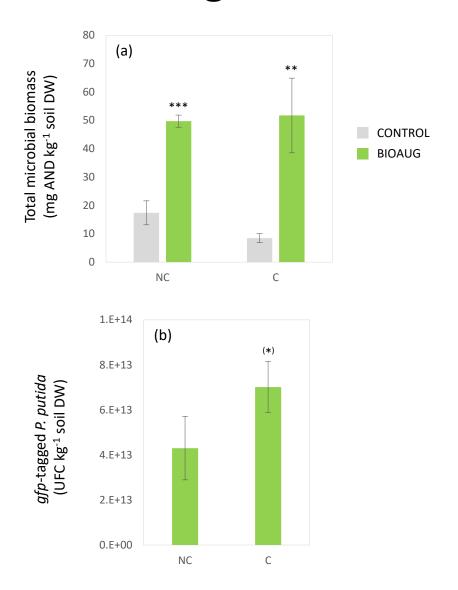


Table 1. Physico-chemical characteristics of the non-carbonated (NC) and the carbonated (C)
 soils used in the study. Results are expressed on a soil dry weight basis.

Parameters	Units	NC	С
Clay	g kg ⁻¹	84	44
Fine silt	g kg ⁻¹	45	43
Coarse silt	g kg ⁻¹	46	41
Fine sand	$g kg^{-1}$	94	134
Coarse sand	$g kg^{-1}$	731	738
pH_{water}	-	6.7	7.8
Total carbonates	$g kg^{-1}$	< 0.1	9
Organic matter	$g kg^{-1}$	44.6	43.5
C:N ratio	-	11.6	12.5
Cationic exchange capacity (Metson method)	mé kg ⁻¹	73	33
P ₂ O ₅ (Dyer method)	$g kg^{-1}$	0.4	0.4
DTPA-Cu	mg kg ⁻¹	40.2	50.9
DTPA-Fe	mg kg ⁻¹	46.4	12.7
DTPA-Mn	mg kg ⁻¹	5.8	3.5
DTPA-Zn	mg kg ⁻¹	6.4	10.7
Total Cu (HF)	mg kg ⁻¹	127	174

Table 2. Concentration and corresponding amounts of Cu, Fe, Mn, Zn and P in shoots of sunflower (cv. *Velox*) grown for 31 days on two vineyard soils (NC for non-carbonated and C for carbonated) bioaugmented (BIOAUG) or not (CONTROL) with *Pseudomonas putida*.

Soil	Treatment	Concentration in plant shoots					Amount in plant shoots				
		Cu	Fe	Mn	Zn	P	Cu	Fe	Mn	Zn	P
		μg g ⁻¹ D	W				μg				mg
NC	CONTROL	11.4	45.7	44.1	62.2	0.28	6.5	26.0	<u>25.2</u>	<u>35.5</u>	<u>1.59</u>
	BIOAUG	13.2 ns	88.6 **	68.0 **	69.0 ns	0.43 **	11.0 **	73.1 ***	56.2 ***	<u>57.0</u> **	3.56 ***
C	CONTROL	13.3	<u>68.6</u>	26.8	60.9	0.27	5.5	28.3	11.2	25.3	1.11
	BIOAUG	15.6 (*)	104 ***	<u>89.6</u> ***	68.7 *	0.46 **	10.3 ***	68.5 ***	59.0 ***	45.3 ***	3.03 ***
ANOVA	SOIL	*	**	ns	ns	ns	ns	ns	*	***	**
	BIOAUG	*	***	***	*	***	***	***	***	***	***
	SOIL*BIOAUG	ns	ns	***	ns	ns	ns	ns	**	ns	ns

Values are means of five independent replicates

Two-way ANOVA was performed to assess the effects of the soil and the bioaugmentation with *P. putida* on the concentration and the corresponding amount of metals and P recovered in plant shoots: ns stands for no significance difference while *, ** and *** indicate significant differences at the probability level of 0.05, 0.01 and 0.001, respectively

For a given soil, (*), *, ** and *** indicate that the mean value in the inoculated treatment differed significantly from that in the control, at a probability level of 0.1, 0.05, 0.01 and 0.001, respectively

For a given treatment, mean values are underlined when they are significantly higher (P < 0.05) than that measured in the other soil.

Table 3. pH, A³⁸⁰ and concentrations of pyoverdine (Pvd), Fe, Mn, Zn, P, total Cu (Cu_{tot}) and free ionic Cu (Cu²⁺) in 0.01 M CaCl₂ extract from two vineyard soils (NC for non-carbonated and C for carbonated) bioaugmented (BIOAUG) or not (CONTROL) with *Pseudomonas putida*. Soil extraction was made from soil adhering to the roots (i.e. rhizospheric soil) after 24 days of sunflower (cv. *Velox*) cultivation.

Soil	Treatment	pН	A^{380}	Pvd	Fe	Mn	Zn	P	Cutot	Cu ²⁺
				μM						
NC	CONTROL	5.68	0.014	-	2.19	1.57	<u>2.12</u>	<u>12</u>	1.09	2.81 E-2
	BIOAUG	5.70 ^{ns}	0.032 ***	1.56	2.91 **	4.82 ***	2.16 ns	94 ***	1.71 ***	4.00 E-3 *
C	CONTROL	<u>6.81</u>	0.015	-	1.98	0.94	1.56	10	1.15	9.77 E-3
	BIOAUG	6.57 **	0.036 ***	1.35	2.23 *	2.13 *	1.72 *	90 **	3.00 (*)	7.61 E-4 **
ANOVA	SOIL	***	ns	-	***	***	***	ns	ns	*
	BIOAUG	*	***	-	***	***	ns	***	**	**
	SOIL*BIOAUG	*	ns	-	*	*	ns	ns	ns	ns

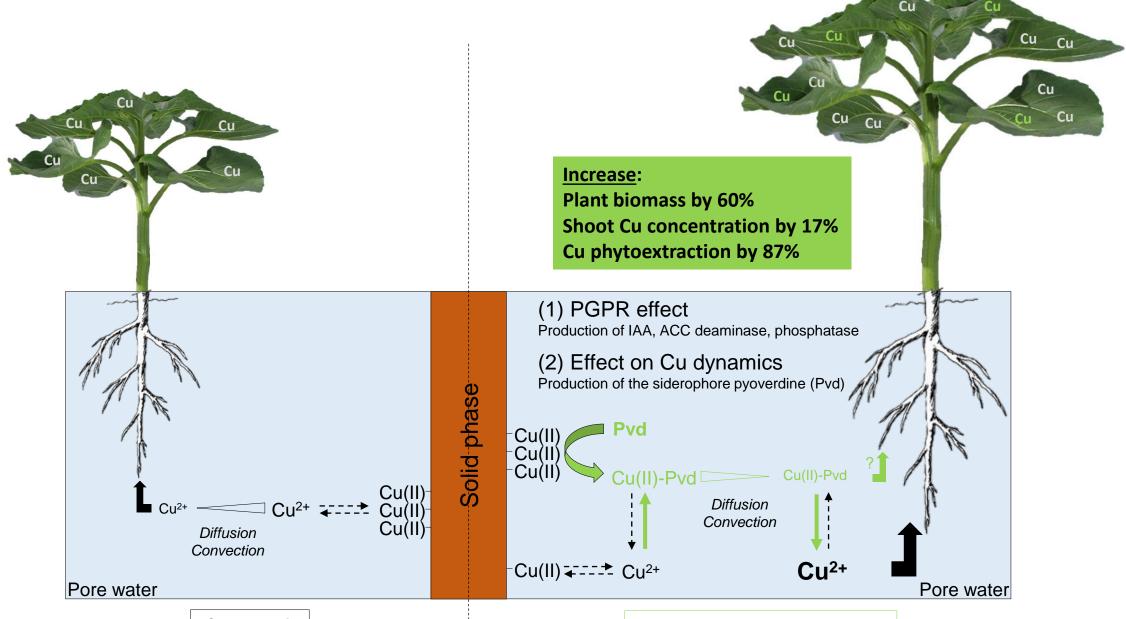
Values are means of five independent replicates

Two-way ANOVA was performed to assess the effects of the soil and the bioaugmentation with *P. putida* on the pH and the concentrations Pvd, metals and P measured in CaCl₂ extracts: ns stands for no significance difference while *, ** and *** indicate significant differences at the probability level of 0.05, 0.01 and 0.001, respectively

For a given soil, (*), *, ** and *** indicate that the mean value in the inoculated treatment significantly differed from that in the control, at the probability level of 0.1, 0.05, 0.01 and 0.001, respectively

For a given treatment, mean values are underlined when they are significantly higher (P < 0.05) than that measured in the other soil.

Table 4. Biometric parameters (biomass, ratio of root to shoot biomass (RS), stem length, average leaf length and number of leaves) and fitness (NDVI and CRI indexes) of sunflower (cv. *Velox*) grown for 31 days on two vineyard soils (NC for non-carbonated and C for carbonated) bioaugmented (BIOAUG) or not (CONTROL) with *Pseudomonas putida*.


Soil	Treatment	Plant biometric	Plant fitness					
		Plant biomass	RS	Stem length	Average leaf length	Number of leaves	NDVI	CRI
		mg DW		cm	cm			
NC	CONTROL	<u>808</u>	0.41	14.5	4.0	7.4	0.86	5.5
	BIOAUG	1066 ***	0.29 **	12.3 *	5.3 ***	10.8 ***	0.88 *	7.1 *
C	CONTROL	616	0.49	14.0	3.6	6.4	0.86	5.8
	BIOAUG	978 ***	<u>0.48</u> ns	11.9 **	5.2 ***	10.6 ***	0.90 **	8.4 *
ANOVA	SOIL	***	**	ns	ns	ns	ns	***
	BIOAUG	***	ns	***	***	***	***	***
	SOIL*BIOAUG	ns	ns	ns	ns	ns	ns	*

Values are means of five independent replicates

Two-way ANOVA was performed to assess the effects of the soil and the bioaugmentation with *P. putida* on the biometric parameters and the fitness of sunflower: ns stands for no significance difference while *, ** and *** indicate significant differences at the probability level of 0.05, 0.01 and 0.001, respectively

For a given soil, (*), *, ** and *** indicate that the mean value in the inoculated treatment differed significantly from that in the control, at a probability level of 0.1, 0.05, 0.01 and 0.001, respectively

For a given treatment, mean values are underlined when they are significantly higher (P < 0.05) than that measured in the other soil.

Control soil

Soil bioaugmented with P. putida