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Abstract: State of the art diarization systems now achieve decent performance but those performances
are often not good enough to deploy them without any human supervision. Additionally, most
approaches focus on single audio files while many use cases involving multiple recordings with
recurrent speakers require the incremental processing of a collection. In this paper, we propose a
framework that solicits a human in the loop to correct the clustering by answering simple questions.
After defining the nature of the questions for both single file and collection of files, we propose two
algorithms to list those questions and associated stopping criteria that are necessary to limit the
work load on the human in the loop. Experiments performed on the ALLIES dataset show that a
limited interaction with a human expert can lead to considerable improvement of up to 36.5% relative
diarization error rate (DER) for single files and 33.29% for a collection.

Keywords: speaker diarization; human assisted learning; evaluation

1. Introduction

Speaker diarization answers the question “Who speaks when?” within an audio
recording [1,2]. Being important for audio indexing, it is also a pre-processing step for
many speech tasks such as speech recognition, spoken language understanding or speaker
recognition. For an audio stream that involves multiple speakers, diarization is usually
achieved in two steps: (i) a segmentation of the audio stream into segments involving a
single acoustic event (speech from one speaker, silence, noise...); (ii) a clustering that groups
segments along the stream when they belong to the same class of event. A last step could
be added to name the resulting speakers but this step is out of the scope of this paper.

Speaker diarization addresses the case of a single audio recording while it is often re-
quired to link the outputs of a speaker diarization system across consecutive audio recordings
where speakers might appear in a recurrent manner. This use-case corresponds to the archiv-
ing of group meeting recordings or TV and radio shows. We will refer to the first scenario,
addressing a single audio recording, as within-show speaker diarization and to the second
one, addressing a collection of audio recordings, as cross-show speaker diarization.

When the sequence of shows is finite and the time constraint is not strong, cross-show
speaker diarization can be done by concatenating all recordings and considering this task
as a global process. However, for the case of long meeting series or TV/Radio shows, it is
not reasonable to wait for the end of the collection process before processing the data. In
this case, we will consider an incremental cross-show speaker diarization task that consists
of processing one show after the other as soon as they are collected. Each show is processed
and linked to the previous ones to incrementally extend a database of annotations. In this
scenario, we will consider that annotations of a show which has been processed will not be
modified once archived.

Modern diarization systems achieve decent performance depending on the type of
data they process [3,4] but those performances are often not good enough to deploy such
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systems without any human supervision [5,6]. Human assisted learning offers a way to
achieve better performance by engaging an interaction between the automatic system
and a human expert in order to correct or guide the automatic diarization process [7,8].
Amongst the different modes of human assisted learning, our work focuses on active
learning where the automatic system, while processing an incoming sequence of audio
recordings, is allowed to ask simple questions to the human expert [9]. In a previous work,
we proposed a human-assisted correction process for within-show speaker diarization [10].
Here, we provide more analyses on this work and extend this approach by considering
the case of incremental cross-show speaker diarization also including a human active-
correction process.

We propose in this study a system architecture depicted in Figure 1. Given a current
show and an history of already processed shows, the human assisted speaker diarization
(HASD) system first produces an hypothesis based on which a questioning module sends
a request to the human expert. The expert’s answer is taken into account to correct the
current hypothesis and possibly adapt the diarization system. This process iterates until
reaching a stopping criteria out of those three: (i) the system has no more questions (ii) the
human expert stops answering, or (iii) a maximum interaction cost is reached.

Figure 1. Life-cycle of a human-assisted cross-show speaker diarization system.

In this work, we define a binary question that allows a user/system interaction. For the
stage of within-show diarization, we propose two questioning methods with the associated
correction module and one method for the stage of cross-show diarization. The scope of
this paper does not encompass the integration of both stages nor the system adaptation
that will be studied in a future work.

Section 2 describes the related works. Corpora and evaluation protocols, developed
in the context of the ALLIES project are detailed in Section 3. Baseline systems for within-
show diarization together with their performance are provided in Section 4. We then
propose our human-assisted approaches for within-show speaker diarization in Section 5.
Section 6 describes the baseline cross-show diarization system while its active counterpart
is proposed in Section 7. Finally, the outcomes and the perspectives of this study are
discussed in Section 8.

2. Related Works

Within-show speaker diarization is a very active field of research in which deep learn-
ing approaches have recently reach the performance of more classic methods based on
Hierarchical Agglomerative Clustering (HAC) [1], K-Means or Spectral Clustering [11] or
variational-bayesian modeling [12]. Recent neural approaches have shown tremendous im-
provement for audio recordings involving a limited number of speakers [13–16]; however,
the inherent difficulty of speaker permutation, often addressed using a PIT loss (permuta-
tion invariant training) does not allow current neural end-to-end systems to perform as
well as HAC based approaches when dealing with a large number of speaker per audio file
(>7) as explained in [17].

Literature on active learning for speaker diarization is very sparse and existing ap-
proaches are complementary to our work more than competitive. In [18], active learning
is used to find the initial number of speaker models in a collection of documents. This
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information is used to perform within-show speaker diarization without involving the
human expert anymore. In [19], multi-modal active learning is proposed to process speech
segments according to their length to add missing labels, task that is out of the scope of
our study. Ref. [5] proposed an active learning framework to apply different types of
corrections together with metrics to evaluate the cost of human-computer interactions.

Unlike the previous cited papers, in our work, one interaction with the human expert
can lead to correct a whole cluster of segments (obtained with first of two clustering steps)
instead of correcting a single segment only.

In [20], active learning is used to leverage training data and improve a speaker recogni-
tion system similar to the one we use for clustering. Active learning based approaches have
been developed for other speech processing tasks including speech recognition [21–23],
language recognition [24], speech activity detection [25] or speech emotion recognition [26]
but are not directly applicable to speaker diarization.

Active learning literature for clustering is much wider [27,28] but mostly focuses
on K-means clustering [29,30] or spectral clustering [31,32]. Hierarchical agglomerative
clustering, that is used in many speaker diarization systems including our baseline, has
also been studied for semi-supervised clustering [33,34]. Those studies propose to use
predefined constraints to modify the clustering tree. In our work, instead of modifying the
dendrogram, we propose a dynamic approach to update the threshold used to merge and
split the clusters.

Regarding evaluation of the active learning process, multiple approaches have been
proposed [5,35]. In [5], systems are evaluated by DER together with an estimate of the
human work load to correct the hypotheses. We make the choice to use a penalized version
of DER described in our previous work [36]. The human correction effort is computed to
be in the same unit and thus added to the DER in order to provide a single performance
estimator reflecting both the final performance and the cost of interacting with humans.

Cross-show speaker diarization is often considered as the concatenation of two distinct
tasks including within show speaker diarization and speaker linking [37–39]. A few studies
have considered cross-show speaker diarization as a whole [40,41] while, to our knowledge
only [4] considers the case of incremental cross-show speaker diarization.

3. Evaluation and Corpus

Extending diarization to a human-assisted incremental cross-show speaker diarization
task requires to extend metrics to take into account both the cost of human interaction
and the incremental nature of the task. In this section, we first describe the metrics used
to evaluate our baseline systems. Then we give a brief overview of the Penalized DER
introduced in [36] and describe the computation of penalized DER for the case of incremen-
tal cross-show diarization. Finally, we describe the user simulation module developed to
enable reproducible research in the context of human-assisted diarization.

3.1. Baseline Systems Assessment

Within-show speaker diarization results are reported using the weighted diarization
error rate (DER) [42]. For incremental cross-show speaker diarization, each speaker from
the system hypothesis is matched with a speaker from the reference just after processing
the first show they appear in the collection. Once a couple of speakers have been associated,
this link can not be changed in the future (remember, we do not allow re-processing of past
shows). Speaker labels must be kept consistent across shows. The incremental cross-show
DER is computed as the diarization error rate on the overall sequence of shows.

3.2. Human Interaction Assessment

Final performance assessment of a human assisted system must take into account
the cost of human interaction in order to evaluate the quality of the interaction process.
Penalized DER (DERpen), a metric introduced in [10], is used to merge the information
about the final performance (after human interaction) with the cost of the interaction
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required to reach this result. This metric adds a constant amount of error time, called
penalized time (tpen), to the diarization error time, for each question asked to the human
expert. Equation (1) defines the DERpen.

DERpen =
FA + Miss + Con f + N · tpen

Ttotal
(1)

where FA is false time, Miss is missed time, Con f is confusion time of diarization hypothe-
sis, N is the number of questions asked to the human expert and Ttotal is the total duration
of audio files. For all experiments conducted in this paper, tpen is set to 6 seconds. Al-
though fixed empirically, this value has been chosen based on on-going work with human
annotators from different companies; this time corresponds to the time required to listen
two segments of 3 seconds each. An analysis of the value of tpen has been produced in
work to be publish soon. Incremental cross-show penalized DER is computed following
the same formula in the incremental framework as explained earlier. We also propose
to use the number of corrections over number of questions (CQR) ratio as a questioning
performance criteria. It is used to evaluate the early stopping criteria and the question
generation module for within-show speaker diarization.

3.3. User Simulation

To enable fair and reproducible benchmarking, a human expert is simulated by using
ground truth reference to provide a correct answer to each question. In the context of this
study, the user can ask questions of the form: “Have the segments A and B been spoken
by the same speaker?”. Since segments A and B might not be pure (i.e., they can include
speech from several speakers), each segment is first assigned to its dominant speaker in the
reference. The dominant speaker of a segment S that spreads between tstart and tend is the
one with maximum speech duration in the interval [tstart, tend] in the reference segmentation.
Eventually, the user simulation answers the question by comparing the dominant speakers
from segments A and B. This simulation is provided as part of the ALLIES evaluation
package (https://git-lium.univ-lemans.fr/Larcher/evallies, accessed on 09-02-2022).

3.4. The ALLIES Corpus

Experiments are performed on the ALLIES dataset (Database and protocols will be
made publicly available after the ALLIES challenge), an extension of previously existing
corpora [43–45], that includes a collection of 1008 French TV and Radio shows partitioned
in three non-overlapping parts whose statistics are provided in Table 1.

Table 1. ALLIES dataset description, all durations are given in hh:mm:ss, The Recurrent speaker ratio
is the number of the speakers encountered in a show who have already been seen at least once in the
past (in a show with older recording date) to the total number of speakers.

Partition Duration #speaker #shows Recurrent Speaker Ratio

Training 127:15:11 2384 273 34.8%
Dev 100:39:37 1212 362 52.9%
Eval 102:04:51 1284 373 50.6%

Total 329:59:39 5901 1008 49.4%

The training set is used to train the x-vector extractor and the PLDA model while
the Development set is used to estimate the optimal clustering threshold. Performance is
reported on the Evaluation set.

4. Automatic Within-Show Diarization Baseline Systems

This section describes the automatic systems used in this study for within-show
speaker diarization and their performance.

https://git-lium.univ-lemans.fr/Larcher/evallies
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4.1. Baseline System Description

To provide a fair study, all experiments are performed with two baseline automatic
diarization systems. Both systems perform the diarization in two steps: a segmentation
process, that splits the audio stream into (possibly overlapping) segments and a clustering
process, that groups the segments into clusters: one cluster per speaker.

The LIUM Voice Activity Detection (VAD) system is used to segment the audio stream
by discarding non-speech segments (silence, noise, breathing, etc.). This VAD, based on
stacked LSTM [3], is implemented in the S4D open-source framework [46]. The output of
the network is smoothed by removing non-speech segments shorter than 50ms and speech
segments shorter than 25 ms.

The clustering is then performed in four steps: (i) a first hierarchical agglomerative
clustering (HAC) is performed on vectors of 13 MFCC using the BIC criteria [46]; (ii) a
Viterbi decoding is then used to smooth the segment borders along the audio stream;
(iii) x-vectors are extracted from each segment and averaged to provide a single x-vector
per BIC-HAC cluster; (iv) a second (final) HAC clustering is done by using x-vectors. The
distance matrix used for this clustering is computed using a PLDA scoring [47].

The only difference between both baseline systems lays in the x-vector extractor. The
SincNet Diarization System (SincDS) uses the SincNet extractor described in Table 2. The di-
mension of the produced x-vectors is 100. The input of the SincDS model is 80 dimensional
MFCC extracted on a sliding window of 25 ms with a shift of 10 ms. The ResNet Diarization
System (ResDS) uses a Half-ResNet34 extractor (see Table 3) to produce embeddings of size
256. As input, the ResDS model takes 80 dimensional Mel filter bank coefficient vectors
extracted every 10 ms on sliding windows of 25 ms. Both MFCC and Mel-spectrogram
means and variances are normalized.

Training of both networks is performed using an Adam optimizer with a Cyclic
Triangular scheduler and cycles of length 20 steps. The learning rate oscillates between 1e-8
and 1e-3. One epoch corresponds to 100 audio chunks for each training speaker. Batches of
256 chunks are balanced across speakers and data augmentation is performed by randomly
applying a single transformation among: noise addition, reverb addition, compression
(GSM, ULAW, MP3 or Vorbis coded), phone filtering and pass-band filtering. Time and
frequency masking are then applied for each chunk. Both networks are implemented using
the SIDEKIT open-source framework [48] while the remaining of the system makes use of
S4D [46].

Table 2. Architecture of the SincNet x-vector extractor. Dropout is used for all layers except the
Linear layers. The activation function for Convolutional and Fully Connected layers is LeakyReLu.
(C, F, T, stand for Channels, Features, Time.

Layer Name Structure Output (C × F × T)

Input - 1× 80× T

MFCC
SincNet [80, 251, 1]
1D-Conv [60, 5, 1]
1D-Conv [60, 5, 1]

Conv1D-1 [512, 5, 1]
Conv1D-2 [512, 3, 2]
Conv1D-3 [512, 3, 3]
Conv1D-4 [512, 1, 1]
Conv1D-5 [1536, 1, 1]
StatPooling
Linear-1 [3072, 100] 100
Fully-Connected-1 [100, 512] 512
Fully-Connected-2 [512, 512] 512
Linear-2 [512, 659] 659
SoftMax
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Table 3. Architecture of the x-vector Half-ResNet34 extractor with 9.5M trainable parameters.
Dropout is used for all layers except the Linear layers. The activation function for Convolutional and
Fully Connected layers is LeakyReLu. The Squeeze-and-Excitation layer is abbreviated as SE.

Layer Name Structure Output (C × F × T)

Input - 1× 80× T
Conv2d 3× 3, stride=1 32× 80× T

ResBlock-1

3× 3, 32
3× 3, 32
SE Layer

× 3, stride = 1 32× 80× T

ResBlock-2

3× 3, 64
3× 3, 64
SE Layer

× 4, stride = 2 64× 40× T/2

ResBlock-3

3× 3, 128
3× 3, 128
SE Layer

× 6, stride = 2 128× 20× T/4

ResBlock-4

3× 3, 256
3× 3, 256
SE Layer

× 3, stride = 2 256× 10× T/8

Flatten -
Attentive Pooling - 5120

Dense(Emb) - 256
AAM-Softmax - 7205

Applying two consecutive clustering steps makes the application of active correction
more complex but removing one of the steps degrades the performance of the baseline
system. Thus we chose to keep the two consecutive clustering steps but to only apply active
correction at the second clustering step while considering the BIC-HAC clusters as frozen.
This choice has the advantage of reducing the correction to a simpler HAC-tree correction
process, it also reduces the possibility of having short segments and extracts a more stable
x-vector from several segments. One drawback is that errors from the BIC-HAC clustering
will not be corrected so that the purity of those clusters is thus very important.

4.2. Within-Show Baseline Performance

For each system and data set (Dev and Eval), performance of within-show diarization
is given in Table 4. For each system, all parameters and thresholds are optimized to
minimize DER on the development set and then used on the evaluation set.

Table 4. Performance of the two baseline within-show diarization systems on both Development (Dev)
and Evaluation sets (Eval) when using the reference segmentation (Ref) or an automatic segmentation
(VAD). The performance is given as a weighed average of within-show Diarization Error Rate (DER).
DER is computed for each show and weighted according to the duration of the shows.

System Segmentation
Within-Show DER

Dev Eval

SincDS
Ref 17.77 13.38

VAD 19.07 20.20

ResDS
Ref 14.12 10.63

VAD 14.97 16.74

From this table, it is noticeable that the ResDS system strongly out-performs the SincDS
system in terms of within-show DER. This is due to the highest quality of its speaker represen-
tations (x-vectors). Using an automatic segmentation degrades the within-show DER for all
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systems but this degradation is more important on the evaluation set than on the development
set. For instance, ResDS within-show DER increases by a relative 6% on the Dev set but 57%
on the Eval set. We observe that our two baseline systems perform better on Eval than on Dev
when using the Reference segmentation but that they face strong degradation when using
an automatic segmentation. This can be due to an over optimization of the system hyper
parameters on the Dev set when using an automatic segmentation or to a mismatch between
Dev and Eval sets but we do not have any clue of that.

5. Human-Assisted Within-Show Diarization

The proposed Human-assisted Speaker Diarization (HASD) system is depicted in
Figure 1 and includes four modules: a fully automatic baseline diarization system, a
question generation module, a correction module and an adaptation module. This section
describes the proposed question generation and hypothesis correction modules. The
adaptation module is out of the scope of this work and will be considered in future work.

Given a single audio stream, within-show speaker diarization consists of producing
a segmentation hypothesis, i.e., a list of segments and speaker IDs with each segment
allocated to a single speaker ID (segments might overlap). Within-show speaker diarization
errors can be due to errors in the segment borders or to a wrong label allocation. The
latter error being the most harmful in terms of performance [5], this work only focuses on
correcting labeling errors.

5.1. Within-Show Question Generation Module

When processing a single file, we propose to generate questions by following the
architecture of the dendrogram produced by HAC (Figure 2a). HAC is done with no prior
on the number of clusters so the threshold is empirically determined on the development
set. This threshold separates the dendrogram in two parts (above and below the threshold).
From this point, the same question can be asked to the human expert for each node of the
dendrogram: “Do the two branches of the node belong to the same speaker?”. A “yes” answer
from the human expert requires either to merge the two branches of a node above the
threshold (merging operation) or, if the node is before the threshold, to leave the branches
as they are (no splitting is required here). In case of a “no” answer, a node above the
threshold would not be modified (no merging required) and the two branches of a node
below the threshold would be separated (split operation).

One must now determine which node to ask about and when to stop asking. To do
so, we rely on the distance between the threshold and the nodes, referred to as delta to
differentiate with distance between x-vectors. Examples of those delta are labeled d1 to d6
on Figure 2a. Nodes are ranked in increasing order according to their absolute delta value.
We propose to ask questions about the nodes in this order, and consider two different
stopping criteria.

First, a two confirmation (2c) criterion illustrated in Figure 2b, in which we assume
that if a node above the threshold is confirmed by the human expert to be separated then
other nodes above it, with higher deltas will not be investigated. Similarly, if one node
below the threshold is confirmed by the human expert to be merged, the other nodes, lower
in the dendrogram, will not be investigated.

Second, we consider a per-branch strategy (All) to explore the tree in more details
(see Figure 2c). Initially, a list of all nodes, according to their ranked delta, is prepared for
investigation. Applying the All criterion, each time a question gets a confirmation (i.e., the
human validates the system decision and no correction is required), the list of ranked nodes
to investigate is updated by removing some of the following nodes as follows: (i) for a node
lower than the threshold, if the human expert confirms the merge, its children nodes in the
two branches will be removed from the list of nodes to investigate. (ii) for a node above
the threshold, if the human expert confirms the split, its parents nodes will be removed
from the list of nodes to investigate. For example in Figure 2c, d4 will not be investigated
because d3 has been confirmed as a split.
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(c) Stopping criterion: All

Figure 2. The change of HAC dendrogram after interaction with human expert. In (a), the nodes
located below the threshold (d1, d2, d5 and d6, ranked by increasing distance to this threshold) will be
investigated for splitting correction, and the nodes located above the threshold (d3 and d4, ranked
by increasing distance to this threshold) will be investigated for merging correction. The d1 node in
(b) (and d1 and d5 nodes in (c) has been modified according to the human correction.

The 2c criterion relies on a high confidence in the delta ranking (the estimation of the
distance between x-vectors) and strongly limits the number of questions, while the All
criterion leads to more questions and thus a finer correction of the dendrogram.



Appl. Sci. 2022, 1, 0 9 of 19

To facilitate the work of the user answering the question, we consider that the HASD
system proposes two audio segments (samples), for the user to listen to; one for each branch
of the current node. Each branch can link several segments, even for nodes located at the
very bottom of the tree (remember that, due to the sequential HAC clustering process,
leaves of the dendrogram are clusters linked by the BIC-HAC clustering). The system must
select the two most representative or informative samples. In a previous work [10], we
investigated 4 sample selection methods:

Longest selects the longest segment from each cluster. It assumes that x-vectors from
those segments are more robust and that the gain provided by the correction would
lead to higher improvement of DER.
Cluster center selects the closest segment to cluster center assuming this is the best
representation of this cluster. The center is selected according to the euclidean distance
between segments’ x-vectors.
Max / Min selects the couple of segments, one from each branch, with the lowest
(max) or highest (min) similarity in terms of PLDA score (distance).
The results of our study [10] showed that Max/Min criterion are not competitive and
we thus only focus on Longest and Cluster center in this work.

5.2. Performance of Within-Show Human Assisted Diarization

Figure 3 illustrates the evolution of DER for an audio file for both stopping criteria.
As expected, All leads to more questions and achieve a better, lower, final DER than the
2c criterion. This example shows the necessity of taking into account the cost of human
interaction to fairly compare HASD systems.

A first set of experiments is performed to compare the Longest and Cluster center sample
selection methods for both stopping criteria. Results are presented in Tables 5 and 6. The two
sample selection methods are comparable in terms of number of questions asked per hour of
audio and CQR. This is visible on the penalized DER which preserves the conclusions drawn
by observing the DER.

Comparing the two stopping criteria, we observe that the All criterion succeeds to
improve the DER more than the 2c criterion for SincDS and ResDS models on the Devel-
opment and Evaluation sets (see Tables 5 and 6). However, by taking into account the
cost of question generation (for a tpen empirically set to 6s), it can be concluded that the 2c
criterion presents a better compromise between DER improvement and human interaction
cost, except when the longest (or resp. cluster center) segments are the representative of
clusters and ResDS model is used on the Evaluation (resp. Development) set.

Figure 3. Tracking of the DER corresponding to a single show file (with duration of 42 min) by
applying question-correction with different methods. Points in each question indicate that it has
resulted in a correction.
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Table 5. DER improvement using different stopping criteria and segment selection methods on the
Development and Evaluation sets for the SincDS model using the reference segmentation.

Method Stopping Criteria
Dev Eval

DER Avg. #Q/h DERpen DER Avg. #Q/h DERpen

Baseline - 14.12 - - 10.63 - -

Baseline - 17.77 - - 13.38 - -

Longest
2c 15.29 7.00 16.45 11.06 7.07 12.24

All 14.29 25.55 18.54 9.96 27.16 14.4

Cluster center
2c 15.66 7.03 16.83 10.86 7.12 12.05

All 15.19 25.60 19.45 9.82 27.17 14.39

Table 6. DER improvement using different stopping criteria and segment selection methods on the
Development and Evaluation sets for the ResDS model using the reference segmentation.

Method Stopping Criteria
Dev Eval

DER Avg. #Q/h DERpen DER Avg. #Q/h DERpen

Baseline - 14.12 - - 10.63 - -

Longest
2c 12.78 21.65 16.39 9.42 24.02 13.42

All 11.93 27.09 16.45 8.15 29.96 13.14

Cluster center
2c 14.56 21.29 18.11 9.42 24.17 13.45

All 12.71 26.90 17.19 8.58 29.98 13.58

5.3. Analysis

In order to further improve our approach, we analysed the correlation between the
benefit of human active correction (in terms of DER reduction or number of questions
asked) and the characteristics of the processed audio files (number of speakers, duration
of the file...). Based on the Pearson correlation coefficient, no strong correlation has been
found (all less than 0.4).

The question generation module is inspired by the idea that closer nodes to the
HAC’s threshold reflect a lower confidence from the automatic system and thus should
be questioned. In order to confirm this hypothesis, the benefits of successive questions for
each show, has been checked in an ordinal way. The total DER improvement and CQR
(number of corrections over the number of questions) are calculated based on the question
order. For both stopping criteria, the first questions lead to larger DER reductions. This
confirms that following the delta ranking as the sorting method for questioning nodes is a
reasonable choice.

The proposed stopping criteria have been compared according to their average CQR
per ranked question. Our observation shows that when using the 2c criterion, successive
questions keep contributing to the DER reduction while, for the All criterion, the CQR
reduces. This demonstrates the expected behaviour where the All criterion leads to more
questions and thus a finer correction, while the 2c criterion limits the number of questions
to assure higher benefits per question. The choice between these two methods can be
guided by the available human resources.

6. Automatic Cross-Show Diarization Baseline System

This section describes the proposed cross-show speaker diarization baseline system
and its results on both Development and Evaluation ALLIES partitions.

6.1. Baseline System Description

For incremental cross-show speaker linking, we assume that at time T, a number N
of shows, {F1, F2, ...FN}, has already been processed by the automatic system to produce a
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cross-show diarization hypothesis including a set of M detected speakers, referred to as
known-speakers. A database of x-vectors is built by including one single x-vector per known-
speaker and per show, resulting in a collection of x-vectors: {S1

1, S1
2, S1

3, S2
4, S2

5, S3
1, ...SN

M},
where Si

j is the x-vector of speaker j observed in show i. Note that a single speaker k might
have appeared in several shows Fn, Fm and thus be represented in the x-vector database by
several x-vectors {Sn

k , Sm
k }.

When receiving a new show, FN+1, the within-show speaker diarization is performed.
All new-speakers, detected in this show, are then compared to the known-speakers from the
existing database in order to detect recurrent speakers and link them with their previous
occurrences in the collection. For each speaker α detected in the current show, all segments
attributed to α in this show are processed to extract a collection of x-vectors that are then
averaged to obtain one single x-vector SN+1

α representing this speaker. As a result, the
current file produces a set {SN+1

α , ..., SN+1
λ } of x-vectors.

For comparison of known-speakers and new-speakers, all x-vectors extracted from
multiple shows for a same known-speaker are averaged to produce one single x-vector for
this speaker. A pseudo-distance matrix is computed by comparing the new-speakers to the
known-speakers using a PLDA model. A verification score is computed for each pair of
(known, new)-speaker. The verification score is then multiplied by −1 and shifted so that
the minimum of pseudo-distances is 0.

Values of this modified pseudo-distance matrix are processed in increasing order. Each
value is compared to an empirical threshold (defined using a development set). If the
pseudo-distance is lower than the threshold, then the corresponding couple of speakers is
merged and both merged known- and new-speakers are removed from the linking process
to avoid linking with others. Indeed, merging with another speaker would mean merging
two known-speakers together or two new speakers together which is forbidden by our
initial assumption. At the end of the process, each new speaker SN+1

j merged with a

known-speaker Sk
i is renamed accordingly (SN+1

i ) and her x-vector from the current file is
added to the database. The database of known-speakers is then updated and used to process
new incoming shows.

6.2. Cross-Show Baseline Performance

The proposed baseline cross-show speaker diarization method is applied on top of
each of the two within-show baseline systems with the reference segmentation or an
automatic segmentation. Performance is given in Table 7. The within-show averaged DER
(weighed by the duration of the shows) is given for comparison in the fourth column.

The gap between SincDS and ResDS is more important that for within-show diarization.
This is explained by the higher robustness of ResDS x-vectors compared to SincDS ones.
One could be surprised by the fact that the DER obtained by the ResDS system on the
Development set is lower when using an automatic segmentation than when using the
reference. A first analysis shows that an automatic segmentation generates a higher number
of speakers in the within show hypothesis. Each of these speakers having thus a shorter
speech duration, the clustering errors that occur during the cross-show diarization affects
less the final DER when a speaker is misclassified. The side effect of within show diarization
errors on the cross-show diarization will be studied in further studies.



Appl. Sci. 2022, 1, 0 12 of 19

Table 7. Performance of the baseline cross-show diarization system applied on top of both within-
show diarization baseline systems for both Development (Dev) and Evaluation sets (Eval). The
performance is provided when using the reference segmentation (Ref) or an automatic segmentation
(VAD) as a weighed average of within-show Diarization Error Rate (DER) and weighed average of
incremental cross-show DER (i.e., computed for each show and weighed according to the duration of
the shows).

System Segmentation Data
DER

Within Cross-Show

SincDS

Ref
Dev 17.77 53.38

Eval 13.38 51.33

VAD
Dev 19.07 53.75

Eval 20.20 53.85

ResDS

Ref
Dev 14.12 32.02

Eval 10.63 30.43

VAD
Dev 14.97 27.31

Eval 16.74 31.13

7. Human Assisted Cross-Show Diarization

Once a within-show speaker annotation has been produced, the resulting speakers are
linked to the already existing database of speakers from past shows. After this stage, we do
not question the within-show segmentation anymore and only focus on speaker linking
between current and past shows.

7.1. Cross-Show Question Generation Module

Similarly to the human-assisted within-show speaker diarization, our method only
focuses on speaker linking (clustering) and does not modify the segmentation nor the
clustering obtained during the stage of within-show diarization. During the incremental
cross-show speaker linking process described in Section 6, the automatic system selects
a couple of speakers (Si, SN+1

α ) where Si appeared in the past and SN+1
α appeared in the

current show. The human operator is then asked to listen to one speech sample from each
speaker (Si and Sα) and to answer the question: “Are the two speech samples spoken by
the same speaker? “

The human-assisted cross-show diarization correction process differs from the within-
show as no clustering tree can be used to define the question. In the cross-show scenario,
we decompose the task into two steps:

1. detection of recurrent speakers, i.e., detect if a given speaker from the current file
has been observed in the past;

2. human-assisted closed-set identification of speakers detected as seen during the first
step. Speakers who have not been categorized as seen are simply added to the known
speaker database.

To detect the recurrent speakers we propose to use a pseudo-distance matrix based on
the one described in Section 6.1. The information conveyed in this matrix is the pseudo-
distance between couples of x-vectors, the lower the pseudo-distance, the more likely two
speakers are the same. This matrix is depicted in Figure 4.

This matrix can be computed in different manners depending on the representation
chosen for known-speakers. Based on the idea that a known-speaker owns many x-vectors
in each show where they appear, we consider here three speaker representations:

• The speaker can be represented by the average of her existing x-vectors (corresponding
to all segments of this speaker in all already processed shows).
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• A second representation, referred to as Averaging in the remaining of this study, consists
of a set of one x-vector per file in which this speaker appears. The x-vector for a show
being the averaged of all x-vector for this speaker in the given show.

• Eventually, we could keep, to represent a speaker, the set of all x-vectors belonging to
this speaker (one x-vector per segment). We will later on refer to this last approach as
No averaging.

Due to a high cross-show variability, we found that the first option is not optimal,
probably because TV and radio shows have high acoustic variability for which a single
average x-vector computed on all of them would not be a good representative of the
speaker; for this reason we only focus in this article on two methods: Averaging of x-vectors
per show and No averaging, where all possible x-vectors are kept for comparison.

S1
a S1

b S1
c S1

d S1
e

Known-speakers

S2
1

S2
2

S2
3

S2
4
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threshold (here: 1)
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Figure 4. Detection of new and known speakers for the current show by comparing speakers from
the current show with known-speakers from the existing speaker database. All speakers from the
current show who do not obtain at least one verification score lower than a fixed threshold are labeled
as new speakers; others are then considered for human-assisted closed-set identification.

The pseudo-distance matrix is computed by comparing each speaker single x-vector
from the current show to all past-speakers Averaging and No averaging representations. A
threshold, set empirically on the development set, is then applied on the pseudo-distances.
If a speaker from the current show has no distance below the threshold (see Figure 4) it
is categorized as new (never seen in the past). Other speakers are categorized as possibly
recurrent and selected for the following closed-set speaker identification phase.

In a second step, human-assisted closed-set identification is applied for all speakers
categorized as possibly recurrent. For each possibly recurrent speaker, x-vectors from
all known-speakers (i.e., Averaging or No averaging representations of those speakers) are
sorted by increasing pseudo-distance (Note that the number of those x-vectors depends
on the chosen representation: averaging or no averaging). By increasing pseudo-distance, a
binary question is asked to the human operator to compare the couples of speakers. This
question makes use of one single audio segment selected for each speaker. Similarly to the
within-show human-assisted process, the human operator is offered two audio segments
(one belongs to the current speaker and one belongs to a known-speaker) to listen to: the
longest for each speaker. Based on those two segments, the question asked to the human
expert is: “Is the speaker from this segment (a known-speaker) the same as the one speaking
in this current segment?”.

If the operator answers “Yes”, the two speakers are linked and the selected known-
speaker is not proposed anymore to link with any other current speaker. If the operator
answers “No”, the next x-vector per order of pseudo-distance is considered. For one current
speaker, the process ends either when linked with a known-speaker or after a number of
questions chosen empirically; in the latest case, the current speaker is added to the known
speaker database.

Cross-show acoustic variability can pollute x-vectors and cause errors in their pseudo-
distance sorting. In other words, two segments with a higher acoustic mismatch can have
lower pseudo-distance, which misleads the close-set speaker identification. We assume
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here that the shows are homogeneous enough so that if the current speaker has appeared in
past show (so that actually SN+1

α is the same as Sx), then Sx pseudo-distance to SN+1
α must

be lower than other speakers in the current show. This assumption motives us to keep only
the most similar speaker (the one with lower pseudo-distance) in each past show to include
in the checking list. In order to find the best match of speakers cross-show (a speaker from
current show and a speaker from past shows), two strategies are proposed: (i) Nearest
speaker per show: in which one single speaker per show is included in the list (with respect
to the pseudo-distance order) as candidate for matching with the current speaker. (ii) All:
in which all speakers for all shows are ranked with respect to their pseudo-distance to the
current speaker without limiting of number of speaker per show.

7.2. Performance and Analyses of Cross-Show Human Assisted Diarization

This section reports the performance of our human-assisted cross-show speaker linking
for the two baseline systems (SincDS and ResDS) and the combination of both Averaging
and No averaging speaker representations considering the ranking of All speakers or only
the Nearest speaker per show.

All results are given in Figure 5. A first look at the Figure confirms that the ResDS
system strongly outperforms the SincDS system due to the quality of the produced em-
beddings. We then observe that all four systems benefit from asking more questions to
the human operator (improving final DER), and this for all speaker representations and
when considering the entire list of speakers or only the nearest per show. According to
the penalized DER (lightest bars), the benefit obtained when using the proposed active
correc-tion method is higher than the cost of active correction (except for some cases in
the ResDS system using VAD). Compared to the baseline systems, asking seven questions
per current speaker allows to reduce the incremental cross-show DER by a relative 24%
for the ResDS system using a VAD segmentation and all x-vectors from the Averaging
representation of past speakers and can be reduced by up to 35% for the case of ResDS
system using the reference segmentation with the Averaging representation of the Nearest
speaker per file.

Now comparing the two speaker representations—Averaging of No-averaging—we find
that the No-averaging representation always perform (at least slightly) better the Averaging
representation. This might be explained by the fact that averaging all x-vectors from a
speaker per show merges robust x-vectors extracted from long clean segments with other
x-vectors extracted from noisy and short segments that degrade the speaker representations.
This effect is more clear for the SincDS system which embedding’s quality is lower than for
the ResDS system. Reducing the set of x-vectors to the nearest speaker per show does not
provide any clear benefit.

This experiment also shows that when using ResDS system, active correction of the
clustering is highly dependent on the quality of the segmentation, which is less the case for
SincDS. For ResDS, by comparing the performance of active correction when using reference
segmentation or an automatic one (the difference of dash line and bars in two below line of
Figure 5), it can be observed that the proposed active correction process is more efficient
with the reference segmentation. Indeed, when using an automatic segmentation, allowing
more questions per speaker leads to an increase of DERpen that ends to be higher than
the baseline one. The benefit of active human correction does not compensate for its
cost. Remember that the number of questions from 1 to 7 is an upper limit but in many
practical cases this number is not reached. Future work will focus on active correction for
segmentation.

One could be surprised by the fact that the DER obtained by the ResDS system on
the Development set is lower when using an automatic segmentation than when using
the reference. A first analysis shows that an automatic segmentation using this system
generates a higher number of speakers in the within show hypothesis. Each of these
speakers having thus a shorter speech duration, the clustering errors that occur during
the cross-show diarization affect less the final DER when a speaker is misclassified. The
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same effect not being observed with the SincDS system underline the fact that side effects
of within show diarization errors on the cross-show diarization are complex and will be
studied in further studies.

Figure 5. Performance of the proposed human-assisted cross-show diarization approach on the
Development partition of the ALLIES corpus. Results are given for both ResDS and SincDS systems
for Averaging and No-Averaging speaker representations ranking all speakers or only the nearest
speaker per show. For each configuration, performance is given for a limit of one to seven questions
per current speaker. For each graph, the darkest bars show the DER obtained after human-assisted
correction while the lightest bars show the penalized DER. The horizontal dash line on each graph
represents the performance of the cross-show baseline described in Section 4.2.

After analysing the results obtained on the Development set, we set the optimal con-
figuration for each system using both reference or automatic segmentation, we also set a
maximum number of questions per speaker in the current file for each system and perform
the corresponding experiment. Results are given in Table 8.
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Table 8. Performance of the human assisted cross-show diarization systems on the Eval set for the
best configuration of each baseline system using either reference or automatic segmentation.

System SincNet ResNet

Segmentation Ref VAD Ref VAD

Speaker representation No-averaging

Ranked speakers ALL Nearest per file All

Limit of questions per new speaker 2 2 4 2

Baseline DER 51.33 53.85 30.43 31.13

DER 33.78 37.74 20.30 23.88

DER penalized 43.98 46.20 26.84 29.20

Relative improvement of DER 34.19% 29.92% 33.29% 23.29%

Relative improvement of DER pen 14.31 % 14.21% 11.79% 6.19%

The results obtained on the Evaluation set and provided in Table 8 confirm observations
from the Dev set. The quality of the segmentation is essential for the efficiency of the human
assisted correction process. We also note that when using the reference segmentation,
enabling more questions per speaker during the incremental process leads to better per-
formance even in terms of penalized DER. This means that theoretically allowing more
questions might be beneficial without necessarily leading to a higher number of questions
actually asked (the automatic system does not need to ask all possible questions).

8. Conclusions

The benefit of human active correction for speaker diarization has been investigated
for both within-show diarization and incremental cross-show diarization. This preliminary
study has focused on an active correction of HAC clustering errors for the case of within-
show diarization and active correction of speaker linking for incremental cross-show
diarization.

For within-show diarization, starting from a strong automatic baseline, we proposed
two criteria to ask questions to a human expert. Five methods to select samples for auditory
tests have been proposed and evaluated using a large and challenging dataset that will be
publicly released.
Performance of our human assisted speaker diarization system have been evaluated by
using a penalized DER proposed in [36] and shows that it can decrease DER by up to 22.29%
relative when applying active correction with the 2c criterion. This leads to a reduction
of 32.07% relative without taking into account the cost of human interaction. The second
proposed stopping criterion (All) can achieve a relative reduction of 36.51% of DER but
requires a higher and less efficient human effort.

For incremental cross-show speaker diarization, we propose a baseline system and
an active correction process based on a two step process: detection of previously seen
speakers and human-assisted speaker identification. In the best case, our approach reduces
the incremental cross-show DER by a relative 33.29% and the Penalized DER by a relative
11.79%.

This preliminary study is very promising and opens large avenues for future studies.
More analyses are ongoing to understand and refine the stopping criteria depending on the
nature of the processed audio file and its difficulty for diarization systems. Current studies
are conducted to improve the question generation module by estimating the quality of the
question before soliciting the human expert. We are also developing the adaptation process
in order to improve the automatic system using the information provided by the human
expert. A limitation of this work comes from the restriction to HAC clustering when many
works in the literature have been exploring active learning for other clustering algorithms.
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