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Abstract—The US Department of Energy sets a limit of 20 to
30 MW for future exascale machines. In order to control their
power consumption, modern processors provide many features.
Power capping and uncore frequency scaling are examples of
such features which allow to limit the power consumed by a
processor.

In this paper, we propose to combine dynamic power capping
to uncore frequency scaling. We propose DUFP, an extension
of DUF, an existing tool which dynamically adapts uncore
frequency. DUFP dynamically adapts the processor power cap to
the application needs. Finally, just like DUF, DUFP can tolerate
performance loss up to a user-defined limit. With a controlled
impact on performance, DUFP is able to provide power savings
with no energy loss.

The evaluation of DUFP shows that it manages to stay
within the user-defined slowdown limits for most of the studied
applications. Moreover, combining uncore frequency scaling to
power capping: (i) improves power consumption by up to
13.98 % with additional energy savings for applications where
uncore frequency scaling has a limited impact, (ii) improves
power consumption by up to 7.90 % compared to using uncore
frequency scaling by itself and (iii) leads to more than 5 % power
savings at 5 % tolerated slowdown with no energy loss for most
applications.

Index Terms—Power capping, Uncore frequency, Power con-
sumption, Energy consumption

I. INTRODUCTION

Reducing the power consumption of supercomputers has
become one of the key challenges in high performance com-
puting. As a matter of fact, Fugaku, the most powerful super-
computer consumes 20 MW [29] while the US Department
of Energy sets a limit of 20 to 30 MW for future exascale
machines [1].

There have been many efforts to reduce processors power
consumption when an application is being executed. Some
techniques rely on frequency scaling, targetting either core
frequency [23], uncore frequency [4], [13] or both [24], [26],
[27]. Computing the best frequency to apply can also be done
through learning techniques [14], [19].

Another adopted solution within HPC systems is power
capping. Power capping forces the power consumption to stay
within the enforced power cap. By running applications under
a reduced power budget, large power savings can be reached.
However, this comes with an impact on performance which
is not negligible. Moreover, studies showed that under power

capping, the default frequency scaling fails to adapt to the
application needs [4], [13].

In this work, we tackle the problem of power capping
dynamically with a controlled impact on performance. We
combine both power capping and uncore frequency scaling.
This work tries to answer the following question: Using power
capping, can we reduce the power consumed by an application
with a limited impact on its energy consumption?

In previous work [4], we presented DUF, a tool which
dynamically adapts the uncore frequency to the application
needs. DUF outperforms the default uncore frequency scaling.
In this work, we extend DUF in order to handle power capping
dynamically. This new version is called DUFP (Dynamic
Uncore Frequency scaling and Power capping) in the rest
of this paper. Similarly to DUF, DUFP takes power capping
decision according to a user-defined tolerated slowdown. Note
that DUFP uses the same algorithm as DUF when it comes to
uncore frequency. In other words, DUFP handles both uncore
frequency scaling and power capping. Note that we did not
study power capping by itself, since as already mentioned,
uncore frequency scaling is better handled with DUF than
with the default uncore frequency scaling [4].

The main goal of DUFP is to save power without degrading
energy consumption. In other words, the goal of DUFP is not
to save energy (since lowering the power cap will necessarily
impact performance), but rather to save power without energy
loss. We implemented and tested DUFP on 10 applications
with 4 different slowdown-tolerance. We show that for all
applications, combining dynamic power capping to uncore
frequency scaling (i) improves the power consumption by up
to 13.98 % with additional energy savings for applications
where uncore frequency scaling has a limited impact and (ii)
provides at most 7.90 % more savings than uncore frequency
scaling by itself. Moreover, for most applications, a tolerated
slowdown of 10 % allows for power savings with no energy
loss.

The paper is organized as follows: Section II introduces a
motivation to dynamic power capping before presenting DUF
and some background on power capping. Section III presents
DUFP. The experimental setup is described in Section IV
while Section V presents DUFP evaluation.
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Fig. 1: Power capping on CG on four Intel Xeon Gold 6130 CPUs. Figure 1a represents the behavior throughout the execution.
On Figure 1b, only one phase of the application is measured while Figure 1c shows the total execution time with partial power

capping. The ratios are computed over the default values.

II. BACKGROUND AND MOTIVATION

This section presents a motivating example and introduces
the basic principle behind power capping.

A. Motivating example

In order to understand the need for dynamic power capping,
we conducted two set of experiments on the application CG
from the NAS Parallel Benchmarks. More details on the
architecture and the applications are provided in Sections IV-A
and IV-B. In the first experiment, presented in Figure la, we
ran CG in the default architecture configuration, with uncore
frequency scaling and with uncore frequency scaling when
applying power capping. The power cap was set before starting
the application and was not modified until the execution
completed. We studied the behavior of the application under
two different power caps: 110 W and 100 W. For each run,
we measured the execution time and the processor power
consumption (as shown in Figure 1a). The default execution
time represents the execution time of the application in the de-
fault architecture configuration while the power consumption
is computed over the default power budget allocated to the
architecture (125 W in this case). In other words, the power
ratio is computed over the budget allocated to the processor
rather than the power consumed by the application in the
default configuration. The results show that, uncore frequency
scaling provides limited power savings. Furthermore, combin-
ing uncore frequency scaling with a power cap of 110 W
improves the power savings by 16 % while the savings reach
24 % with a power cap of 100 W. However, these savings
come with a high impact on performance. As a matter of fact,
the overhead reaches 7.15 % with a power cap of 110 W and
12 % with a power cap of 100 W. As a consequence, applying
a power cap throughout the execution of an application while
being oblivious to the application characteristics may lead to
an uncontrolled overhead.

We then wanted to study if a better knowledge of the
application may help the impact on performance. Therefore,
we looked closely at CG. In the beginning, the application
mainly performs memory accesses for several seconds, with
very few computations. We applied the same power caps
as described earlier (100 W and 110 W) but only on this
part of the code. Uncore frequency scaling was also used
under these power caps. After this phase completed, we
just reset the power cap to the default value. Note that this
phase accounts for 5 % of the total execution time of CG.
Figure 1b shows the results obtained regarding the power
consumption of the phase being modified. Recall that the ratios
are computed over the budget allocated to the processor. This
experiment shows that, on the one hand, applying a power
cap for even a fraction of an application execution can have a
large impact on power consumption. As a matter of fact, the
power consumption of the studied phase is reduced by 16 and
19 % with a power cap of 110 W and 100 W respectively
and is better than using uncore frequency scaling by itself.
Moreover, Figure 1c shows the impact of the power capping
on the first phase of the application, on the total execution
time (not just the first phase). It shows that reducing the
power budget on the first phase of CG does not impact at
all its overall execution time. As a consequence, reducing
the power budget for phases where mainly memory accesses
are performed has no impact on performance. On the other
hand, under the default configuration, the power consumption
is almost at the maximum processor budget. This indicates
that reducing the power budget according to the application
needs has a positive impact on power consumption with no
impact on performance. Note that we studied the impact of
applying power capping on only 5 % of the application. As a
consequence, the overall power savings are minimal. However
the goal of this experiment was to show the benefits of
dynamic power capping combined to uncore frequency scaling
while considering the application characteristics.



B. Power capping

In this work, we focus on Intel architectures. By default,
the processor is designed to respect TDP (Thermal Design
Power). Thermal Design Power is defined as the maximum
amount of power that can be dissipated by the processor
cooling systems [2]. In other words, as long as the power
consumption is under TDP, Intel guarantees that the chip will
operate as intended. Note that TDP is not the maximum power
a processor can consume [2].

A similar idea is provided by RAPL (Running Average
Power Limit) regarding power capping: the user can define
a long-term constraint and a short-term constraint [15]. This
means that when setting a power cap, the processor has to
respect the long-term constraint for most of the time, but can
consume more for a short time while respecting the short-
term constraint. From our observation, by default, the long-
term period is equal to the Thermal Design Power of the
processor. Note that in order to respect the power cap, RAPL
uses Dynamic Voltage and Frequency Scaling [15]. RAPL
provides power capping capabilities for different components
like the processor, the memory, ... However, memory power
capping is not available on the processor that we used. As
a consequence, we will no further address memory power

capping.
C. DUF

In [4], we presented DUF, a tool that dynamically adapts the
uncore frequency to the application needs. DUF takes a user-
defined slowdown. Periodically, DUF monitors the FLOPS/s
and the operational intensity. Every time the operational inten-
sity indicates a phase change, the uncore frequency is reset. We
assume that if the operational intensity is lower than 1, then the
current phase is memory intensive, otherwise it is assumed to
be CPU-intensive. If the FLOPS/s dropped by more than the
tolerated slowdown, then the uncore frequency is increased.
Otherwise, DUF keeps decreasing the uncore frequency (until
the minimum uncore frequency is reached). We will not further
detail DUF. Readers can refer to [4] for the full algorithm.

Compared to the default uncore frequency scaling, DUF
manages to better adapt to the application needs: it improves
the power consumption by up to 18.7 %. Moreover, DUF is
able to improve performance under power capping.

III. DYNAMIC POWER CAPPING ALGORITHM

This section presents DUFP algorithm. More specifically,
it only describes how power capping is handled. Because the
decisions are taken separately, we do not provide any detail on
uncore frequency management. Note that DUFP and does not
require any application modification. In order to use DUFP,
the user specifies the tolerated slowdown and the processors
(sockets) where DUFP must be applied. Then one instance of
DUPFP is started on each user-specified socket.

Figure 2 presents an overview of DUFP behavior. The basic
principles are similar to those of DUF: Periodically, DUFP
monitors the FLOPS/s and the memory bandwidth, and the
operational intensity is computed. Whenever a new phase is

detected, the power cap is reset. We consider a phase change
as any important variation in the behavior of the applications
(from CPU to memory intensive phase or the opposite or if
the FLOPS/s double within the same phase). Note that CPU
or memory intensiveness depends on the architecture. But
in this work, we only consider the ratio between FLOPS/s
and memory and ignore architecture characteristics. This is
however discussed in Section V-G.

If no new behavior is detected, DUFP compares the current
FLOPS/s to the maximum FLOPS/s observed in the current
phase. If the FLOPS/s are still within the tolerated slowdown
(compared to the maximum FLOPS/s), then the power cap
is decreased. Moreover, for applications which are highly
memory-intensive (empirically defined as phases with an op-
erational intensity lower than 0.02, like the phase studied in
Section II-A), power capping can be decreased with no impact
on performance. Note that at every iteration, if the FLOPS/s
are equivalent to the slowdown (with respect to the considered
measurement error), the power cap is kept steady.

Otherwise, i.e. the FLOPS/s are below the tolerated slow-
down, then the power cap is increased. For highly CPU
intensive phases (empirically defined as phases where the
operational intensity is larger than 100), if the FLOPS/s drop
below the tolerated slowdown, the power cap is reset. The
reason for this is we want to avoid any negative impact on per-
formance. Furthermore, for these applications, we also monitor
the memory bandwidth. As a matter of fact, we have observed
that such applications may suffer an overhead because of the
memory bandwidth drop. As a consequence, we assume that
the slowdown also applies to memory bandwidth. In other
words, for these applications, if the memory bandwidth drops
by more than the tolerated slowdown, the power cap is reset.
However, a deeper study and modeling of the impact of power
capping on memory bandwidth is required for more accurate
decisions.

Note that DUFP and DUF algorithms are similar since
they both monitor the performance and decide whether the
slowdown is still respected or not, however, each metric is
handled separately. There are only two situations where power
capping and uncore frequency scaling decisions impact one
another:

1) Unlike power capping, uncore frequency scaling deci-
sions monitor memory bandwidth for all phases (and
not only highly compute-intensive phases). As a conse-
quence, uncore and power capping decision may diverge.
In this case, if the decision to increase uncore frequency
did not improve performance (even if the FLOPS/s are
still within the tolerated slowdown), the power cap is in-
creased (to avoid any negative impact on performance).

2) When resetting both the uncore frequency and the power
cap, the applied uncore frequency may be different from
the maximum (because the power cap impact is still
observed). As a consequence, whenever we reset both
values, DUFP checks if the uncore frequency is at the
maximum. If not, it tries to reset it once again.
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Finally, note that DUFP does not handle the long term and
the short term constraints the same way. As soon as the power
cap is decreased, both constraints are set to the same value.
When the power cap is increased, if the value reached by the
long term constraint is equal to its default value, the power cap
is reset. Resetting the power cap will reset each constraint to its
default value. Note that in the next iteration after resetting the
power cap, DUFP checks the current power consumption. If
it is lower than the power cap, we set the short term constraint
to the same value as the long term constraint.

IV. EXPERIMENTAL SETUP

This section first presents the target platform and appli-
cations and the measurement framework before presenting
DUFP configuration in Section IV-D.

A. Target platform

All experiments were performed on the YETI cluster of
Grid’5000 [7]. More specifically, all experiments were run on
yeti-2. It is equipped with four Intel Xeon Gold 6130 CPUs
(Skylake microarchitecture) with 16 cores per CPU. Each
NUMA node has 64 GiB of memory. The uncore frequency
ranges from 1.2 GHz to 2.4 GHz. The power cap long term
constraint is 125 W while the short term constraint is at 150 W.
It runs under Intel Pstate with performance governor. Note that
we use power capping on the whole processor in this work.
The architecture characteristics are summarized in Table 1.

The uncore frequency step is set to 100 MHz while the
power cap step is set to 5 W.

In our study, we use 65 W as a minimum value for power
capping. This is because from our observations, only highly
memory intensive applications can sustain low power caps
(because they have few flops), but we have noticed that lower
power cap values have an impact on memory bandwidth,
which impacts memory-intensive applications.

B. Target applications

We conducted the experiments using several applications.

cores short term (W)

150

uncore frequency (GHz)
[1.2-2.4]

long term (W)
125

TABLE I: Target architecture characteristics

o The NAS Parallel Benchmarks [6] provide a set of small
applications. We use: BT, CG, EP, FT, LU, MG, SP,
UA from NPB-3.3.1 OpenMP version. We choose the
problem size so that each application execution time is
in the [20s-400s] range. All benchmarks run using class
D except SP for which we use class C. The OpenMP
threads are bound to cores in a round-robin fashion.

o High-Performance Linpack (HPL) [20] is a software
package that solves dense linear algebra systems. We
use HPL version 2.3 compiled with Math Kernel Library
(MKL) version 2019.1.144. HPL uses a configuration file
where we set the problem size (N) to 91840, the (NB) to
224 and (PxQ) to (8x8).

o LAMMPS [21] ! performs molecular dynamics sim-
ulation. We use input file in.17j provided for the
accelerate suite where we set the run value to
100000.

On all platforms, the applications were compiled with gcc
6.3.0 with -O3 flag. The machines were running Linux version
4.9.0-9. HPL and LAMMPS were compiled against Open MPI
3.1.4. Finally, all 64 cores of yeti-2 were used during all the
experiments while hyperthreading was disabled.

C. Measurement framework

Just like DUF, DUFP relies on PAPI [28] for power,
FLOPS/s and bandwidth measurements. Uncore frequency is
directly accessed and modified through the MSR registers.
Finally, power capping is performed by using the power cap
library?. Note that we are working on using PAPI for power
capping as well, but this is still work in progress.

lcommit aa2b88578
Zhttps://github.com/powercap/powercap.git



D. DUF and DUFP configurations

Just like with DUF, we consider a 200 ms measurement
interval. Shorter intervals lead to an overhead, while longer
intervals lead to applying a power cap for longer intervals and
having a larger impact on performance. As a consequence,
we used 200 ms as a good trade off between overhead and
accuracy. Note that we have observed that in some cases, some
time is needed to apply a new power cap. As a consequence,
the consumed power may be larger than the power cap. This
happens on the iteration right after a decrease for instance
(since we decrease both constraints at the same time). As a
consequence, whenever this situation occurs, the power cap is
reset.

V. EXPERIMENTS

This section presents the evaluation of DUFP and its
impact on performance (Section V-A), on processor power
consumption (Section V-B), on DRAM power consumption
(Section V-C) and finally on processor + memory energy
consumption (Section V-D).

We performed 10 runs of each experiment. To mitigate
outliers, we removed the lowest and highest execution times
and returned the average over the remaining 8 executions. For
each application, all the results are presented as a percent-
age over its default execution time and power and energy
consumption. The default values are obtained when running
the application under the default architecture configuration
described in Section IV-A.

To quantify the stability of our measurements (over the 8
remaining runs), we present error bars showing the minimum
and maximum observed values. The measurement difference
is lower than 2 % for most of the configurations, while very
few applications see a variation over 3 %. This indicates that
our measurements are stable and accurate.

A. Impact on performance

Figure 3a shows the impact of DUFP on the execution
time of the applications and how DUFP respects the tolerated
slowdown. The results show that for most applications, DUFP
manages to respect the tolerated slowdown. More specifically,
DUFP manages to respect the tolerated slowdown for 34 out
of the 40 configurations. For the 6 remaining configurations,
the maximum slowdown is 3.17 %.

Compared to DUF, there are 5 configurations where DUFP
does not respect the tolerated slowdown, naming: LAMMPS
for all configurations except at 10 % slowdown, CG at 20 %
slowdown and UA at 0 % slowdown. For LAMMPS, the
observed overhead is 1.67 %, 0.14 % and 3.17 % at 0, 5
and 20 % tolerated slowdown respectively, while it reaches
1.17 % for UA and 0.4 % for CG. CG overhead is small
and we could not explain why it occurs. The reason behind
UA overhead lies in the behavior of the application itself.
UA alternates between 1 compute bound iteration followed
by several memory bound iterations. At every phase change,
the power cap should be reset. However, since the memory-
intensive phase lasts few iterations, the power cap is decreased.

As a consequence, not all CPU-intensive iterations are detected
because the low power cap has an impact on performance and
does not allow the FLOPS/s to sufficiently increase to detect
a phase change. As a consequence, to solve UA overhead,
we should have a smaller monitoring period (which will
however introduce an overhead due to both monitoring and
uncore frequency and power capping changes). We are still
investigating LAMMPS overhead. From our observations, at
20 % tolerated slowdown for instance, we do not observe
an impact on performance (with respect to the tolerated
slowdown) before DUFP sets low power caps. In order to
understand why there is no visible impact on performance
while the global performance are impacted, we decreased
the measurement interval to 50 ms (only measurements were
performed, no power capping). We observed that the power
consumption have some bursts sometimes that are missed with
a 200 ms interval. As a consequence, just like UA, it would be
preferable to reduce the measurement period to better catch the
variations. Note however that applying DUF or DUFP with
50 ms interval induces a larger overhead (as already discussed
in Section IV-D).

Note that both DUFP and DUF introduce an equivalent
overhead for LU. This is due to uncore frequency rather than
power capping because the applied uncore frequency is similar
throughout both executions.

Finally, DUFP manages to slow down some applications
where DUF could not (while still respecting the tolerated
slowdown). This is the case for BT, EP and UA. In the next
section, we will show that this additional slowdown comes
with additional power savings.

Overall, DUFP manages to respect the tolerated slowdown
for 85 % of the configurations while staying within 3 % extra
overhead in the 5 % remaining situations.

B. Impact on processor power consumption

Figure 3b shows the impact of combining power capping
and uncore frequency scaling on the processor power con-
sumption. In all configurations, DUFP manages to provide
power savings. The best savings are reached for EP with
2427 %. Note that for EP, uncore frequency scaling has
the larger impact on power consumption compared to power
capping.

Comparing the impact of power capping (DUFP compared
to DUF) one can see that power capping provides additional
power savings. The maximum improvement is observed with
CG at 20 % tolerated slowdown where DUFP improves the
power consumption by 7.90 % (9.66 % power savings with
DUF and 17.57 % for DUFP). Moreover, with a 10 %
tolerated slowdown, the power savings with FT almost double
with DUFP compared to DUF.

Finally, because DUFP is able to introduce additional
slowdown (still within the tolerated slowdown), it manages
to provide power savings when DUF could not. This is the
case for BT where DUFP provides 5.14 % power savings for
20 % slowdown while DUF manages only to save 0.64 % of
power.
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As a conclusion, setting aside EP, with less than 2 %
slowdown, DUFP manages to save up to 6.65 % power. With
less than 5 % slowdown, it manages to reach 8.76 % power
savings.

C. Impact on memory power consumption

Figure 4 shows the impact of DUFP on memory power con-
sumption. Just like for processor power consumption, DUFP
manages to reach power savings for most configurations. Con-
sidering only applications where DUFP respects the tolerated
slowdown, the best savings are reached for CG with 8.83 %
savings with 20 % slowdown. Power loss is only observed
with MG with 0 % tolerated slowdown (with 0.81 % power
loss).

Compared to DUF, DUFP manages to outperform DUF
for most configurations except for MG at 20 % tolerated

slowdown (where DUF outperforms DUFP with 0.78 % im-
provement). Moreover, DUFP is also able to provide memory
power savings (or at least no power consumption increase)
when DUF fails to. This is the case for BT and UA. In
this case, the best savings are for UA with 20 % slowdown
(3.23 %).

D. Impact on total energy consumption

As previously stated, the goal of this work is not to improve
energy savings, but rather to reduce the power consumption
without impact on energy consumption. Figure 3c shows the
impact of DRAM + processor energy consumption. The results
show that overall, DUFP (i) avoids energy loss on almost all
applications, (ii) provides energy savings for some applications
and (iii) provides better savings than uncore frequency scaling
by itself.
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Energy loss occurs at 20 % tolerated slowdown. This is the
case for LAMMPS, CG, LU and MG and MG at 10 %. For
these configurations, the power savings are not enough to cover
the performance loss. Moreover, for all applications except UA
and BT, it is not beneficial to tolerate 20 % slowdown. And
even for BT and UA, the energy savings at 20 % tolerated
slowdown are close to those at 10 % slowdown (0.98 %
improvement for BT and 0.78 % for UA). Besides, for all
applications except MG, a 10 % tolerated slowdown leads to
no energy loss with the best power savings. For instance, for
CG, with a 10 % tolerated slowdown, DUFP manages to save
both power and energy (13.98 % processor power savings and
4.7 % total energy savings).

Finally, DUFP leads to more energy consumption than
DUF for EP with 20 % tolerated slowdown and for HPL with
all configurations. However, even in the worst case, DUFP
still provides no or small energy savings, but no energy loss.

Overall, DUFP manages to provide equivalent to better
energy consumption compared to DUF for most applications.

E. Impact of power capping on CPU frequency

In order to understand the power savings provided by
DUFP, Figure 5 shows the measured frequency while using
DUF and DUFP for CG with a 10 % tolerated slowdown.
Note that only the frequency of the core O is presented, but
all cores have equivalent behaviors in this case.

The comparison shows that, using uncore frequency by
itself, the CPU frequency is at the maximum for the majority
of the execution, whereas power capping enables frequency
reduction which provides power savings. As a matter of fact,
the average observed frequency with DUFP is 2.5 GHz while
it is 2.8 GHz with DUF.

FE. Discussion on the impact of applications characteristics

Characterizing how much an application will be impacted
by power capping (both in terms of performance and power
consumption) is not straightforward.

On the one hand, although CPU-intensive applications (like
HPL or BT) show processor power savings, they remain below
7 % while the memory power savings are negligible. This is
because CPU-intensive applications are very sensitive to CPU
frequency, and power capping impacts frequency.

On the other hand, highly-memory intensive applications (or
at least phases of the application) are not impacted by power
capping. This was already stated in Section II-A. From our
observations, the power cap can be set to low values with no
impact. As a matter of fact, for such phases, the power cap was
set to 65 W (which was the minimal value that we defined).
This behavior was observed on both CG and FT.

For the remaining applications, it is not easy to draw
any characteristic without further studying the application
behavior. This is due to the application behavior in terms of
FLOPS/s which drives DUFP decisions.

G. Limitations and possible improvements

Although DUFP manages to achieve its goal of saving
power with no performance loss, we have identified some
limitations that can be improved.

Just like DUF, DUFP assumes that the slowdown can
be used to control the memory bandwidth drop the same
way as the FLOPS/s (as shown in Figure 2). This is an
approximation and modeling the impact of power capping on
memory bandwidth would improve the algorithm behavior. We
could also match the operational intensity to the architecture
and prevent DUFP from detecting a new behavior while it is
actually not.

The second improvement is related to applications where the
FLOPS/s at each iteration are within the tolerated slowdown,
but the overall performance are over the tolerated slowdown
(as shows with LAMMPS in Section V-A). We should inves-
tigate if other performance counters provide more insight on
the application behavior and could help detect any slowdown.
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Finally, as shown in Figure 5, power capping impacts CPU
frequency. Therefore, better handling CPU frequency under
power capping, instead of relying on power capping to change
the CPU frequency may improve even more both performance
and power consumption.

H. Conclusions

The goal of DUFP was to provide power savings without
energy loss. The experiments show that for all applications, in
the worst case scenario, DUFP manages to improve power
consumption without increasing energy consumption, while
in the best case, energy consumption is decreased as well.
In other words, it is possible to find a tolerated slowdown
configuration which reaches power savings with no energy
loss: At 5 % tolerated slowdown, DUFP improves the power
consumed of all applications while improving the energy
consumption as well. For most applications, tolerating 10 %
slowdown also allows for power savings with no increase on
energy consumption.

The following conclusions can be drawn:

o« DUFP manages to respect the tolerated slowdown for

85 % of the studied configurations.

o DUFP manages to reduce the power consumption of all
applications.

o« DUFP manages to save up to 6.65 % power with less
than 2 % slowdown. With less than 5 % slowdown, it
manages to reach 8.76 % power savings.

« For most applications, 0 % tolerated slowdown offers the
best energy savings, while a 10 % performance slowdown
leads to the best power savings with no energy loss.

e« DUFP manages to provide power savings when DUF
failed to.

VI. RELATED WORK

There are many studies which rely on power capping,
however very few studies rely on dynamic power capping
while fewer studies combine uncore frequency scaling to
dynamic power capping. In [32] the authors propose to rely
on reinforcement learning to get the best energy consumption
with uncore frequency and power capping. Instruction Per Cy-
cles (IPC) are used to control performance loss. This approach

is complementary to DUFP which makes all decisions at
runtime without any prior knowledge. Moreover, DUFP takes
performance loss as a parameter (and thus can be configured
according to the user needs).

Focusing on dynamic power capping with no uncore fre-
quency scaling, DNPC is the closest to our work [25]. It
is a library which dynamically adapts power capping to the
application and uses a user-defined performance degradation
limit. Based on measurements of the current period, DNPC
estimates the performance degradation for the next period and
decides to increase or decrease the power cap accordingly. One
of the main differences between DUFP and DNPC is that the
performance degradation model described in DNPC relies on
frequency. In other words, the authors assume that there is a
linear relation between CPU frequency and performance. This
is not the case especially when targeting memory-intensive or
vectorized applications. DUFP reads the flops to detect if there
was a performance change. Note that we tried using DNPC,
but the architecture that we used for our experiments is not
yet supported.

CoPPer [16] is a tool that automatically adapts the power
cap to reach user-specified performance: based on a model,
CoPPer computes the power cap to apply to meet the per-
formance. The performance are provided per application, by
the user, as absolute performance (not percentage) depending
on the architecture and the execution configuration (like the
number of cores). One of the main differences between CoPPer
and DUFP (in addition to uncore frequency scaling) is that
CoPPer relies on application instrumentation to measure the
performance and call CoPPer for decisions. Moreover, with
DUPFP, the user specifies how much slowdown he can accept,
rather than performance the application must reach. As a
consequence no knowledge of the application is needed by
DUFP.

In [8], the authors use control theory to dynamically adapt
the power cap to the application needs. They accurately
model the impact of power capping on the performance of
the STREAM benchmark. The authors noted that the model
extends similarly to memory-intensive applications (or phases
of applications) but it would need to be adapted for CPU-



intensive applications. Instead, DUFP is able to adapt to the
application phases. Note that the model presented in [8] can be
used by DUFP to adapt the power cap for memory-intensive
phases.

Many studies rely on adapting the frequency or number of
cores under a user-specified power cap. In [30] the authors
propose OPAM, an operation-aware management strategy.
The idea is to apply the best core and uncore frequency
to limit performance loss under a user-specified power cap.
Similar studies like [17] use a defined power capping and rely
on frequency and voltage scaling to limit performance loss.
As a consequence, these studies does not rely on dynamic
power capping but rather on a static user-defined power cap.
Similarly, in [10] the authors adapted the number of cores
and the frequency to match a defined power cap. In [33], the
authors study the resources configuration to set in order to
respect a power cap (hyperthreading, number of cores, ...).
As a consequence the power cap is not set: the resource
configuration must respect the power cap. Finally, in [22]
the authors propose a performance prediction model under
power capping constraints. The power cap is set at different
values during the execution and the model is evaluated. They
evaluated how much a metric is impacted by power capping.
As already mentioned, unlike DUFP, these studies do not
target dynamic power capping.

Many studies focus on power budget distribution on several
nodes through models [3], [5], [9], [18]. In these studies
power capping is used to reduce the power consumed by
a node and allocate it to another node. In [12] the authors
provide heuristic on the power budget to allocate to different
domains (CPU, memory, GPU). In [31], the authors describe
DAPS, a strategy to allocate power among nodes on a cluster.
Finally, GEOPM [11] is a job-level energy manager which
assigns a power cap for the jobs. It is also able to adjust
CPU frequency to the application phases. These studies are
complementary to DUFP since they propose power budget
allocation strategies across nodes while DUFP provides node-
level dynamic power-capping.

VII. CONCLUSION AND FUTURE WORK

This work tries to answer the following question: Using
power capping, can we reduce the power consumed by an
application with a limited impact on its energy consumption?

For that purpose, we extended a tool which uses dy-
namic uncore frequency scaling to also apply dynamic power
capping. The results show that combining both techniques
improves power consumption with no impact on energy con-
sumption up to 10 % tolerated slowdown. As a conclusion,
while uncore frequency scaling by itself shows power and
energy savings with respect to the tolerated slowdown, power
capping provides an additional leverage and manages to pro-
vide additional savings.

As a future work, as already mentioned, we plan to study
if CPU frequency is properly managed under power capping
and manage it with DUFP if not. Moreover, we could rely on

learning techniques to get the best configuration depending on
the applications and the target architectures.

Finally, we plan to target heterogeneous architectures: With
a specified shared power budget to distribute over a CPU and
a GPU, can we benefit from dynamic power capping to reduce
the budget of the CPU when in does not need it and increase
the GPU power budget? In that context, we could consider two
different applications, one running on the CPU and another one
on the GPU and try to match both applications needs in terms
of performance and power needs.
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