greatly favored the study of such simple geometries for two reasons. Firstly, the technique is very efficient to calculate the phase diagram, since each run (at a given temperature) converges directly to an equilibrium between a gas-like and a liquidlike phase. Secondly, due to volume exchange procedure between the two phases, at least one invariant direction of space is required for applicability of this method, which is the case for slits or cylinders. Generally, the introduction of some disorder in such simple pores breaks the initial invariance in one of the space directions, and prevents to work in the Gibbs Ensemble. The simulation techniques for such disordered systems are numerous (Grand Canonical Monte Carlo, Molecular Dynamics, Histogram Reweighting, NPT+test method, Gibbs-Duhem integration procedure, etc). However, the Gibbs Ensemble technique which gives directly the coexistence between phases, was never generalized to such systems.

In this work, we focus on two weakly-disordered pores, for which a modified Gibbs Ensemble Monte Carlo technique can be applied. One of the pores is geometrically undulated, whereas the second is cylindrical but presents a chemical variation which gives rise to a modulation of the wall potential. In the first case almost no change in the phase diagram is observed, whereas in the second strong modifications are reported.

Phase coexistence in heterogeneous porous media : a new extension to Gibbs Ensemble Monte-Carlo simulation method
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INTRODUCTION

Understanding the behavior of a given fluid in a porous media is still a challenge for scientists, specially in disordered porous materials. [START_REF] Gregg | Adsorption, Surface Area and Porosimetry[END_REF][START_REF] Rouquerol | Adsorption by Powders and Porous Solids[END_REF][START_REF] Gelb | [END_REF][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20] As a matter of fact, the general trend of confinement effect in geometrically simple pores (slits, cylinders…) is consistently described by theoretical and computational approach. [21][22][23][24][25] However, real pores in materials are generally more complex, even in the most ordered experimental samples. This is why there is now a great interest in studying realistic models containing some degree of disorder. It can take the form of a morphological disorder, like a large pore size distribution in a single pore (cylindrical pore presenting a variation of its section along the axis), or chemical heterogeneity, or even topological disorder with interconnections between pores.

Due to the complexity of such models, molecular simulation studies are sometimes the only way to perform calculations which can be compared to experimental results. Molecular Dynamics (MD) and Monte Carlo in the Grand Canonical Ensemble (GCMC) are the most general methods to calculate dynamical, structural and thermodynamic quantities to be compared to experiments. [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] However, even so the GCMC method mimics the experimental determination of the adsorption-desorption isotherms, it is generally lengthy to acquire a complete set of isotherms, which is necessary if one wants to get the complete phase diagram of the confined fluid. 9,10,[START_REF] Page | [END_REF][30][31][32] However, obtaining such a phase diagram is essential, from a theoretical point of view because it makes it possible to classify the behavior of the different systems, but also from a practical point of view because the equilibrium properties are needed in industry for phase separation purposes. Panagiotopoulos 33 proposed an entirely new simulation approach to determine directly such phase diagrams by working in the Gibbs Ensemble (Gibbs Ensemble Monte Carlo, GEMC), which consists in equilibrating mechanically and chemically the liquid and gas phases in a single simulation calculation. 22,33,34 However, this technique suffers one lack of generality since it demands that the space in which the system evolves contains at least one invariant direction to accommodate continuous variations of the volume. This is obviously the case for the empty space used to determine the equilibrium properties of bulk fluids (the initial aim of this technique), but it is also the case for perfect cylinders 22 or slit 24 pores, which enabled the use of this powerful technique for the determination of phase diagrams in such simples geometries. But this technique has not yet been applied to realistic pores presenting some disorder at length scale from few Angstroms to few nanometers, except in the special case of random porous media in the limit of very low density (few percents). 13,35 The aim of this work is to propose a new extension of this technique to a new class of material shape. This new extension of the Gibbs Ensemble technique can handle with any porous material which can be described by an external potential ) , ( z r Ψ

, where r and z are the radial and axial coordinates in a cylindrical representation of space. For comparison, in the same cylindrical representation of space (natural for a long pore) the original technique proposed by Panagiotopoulos could only deal with an external potential ) (r Ψ . In this paper we concentrate on three pores, presenting or not some morphological disorder. The first pore is a perfect cylinder, whose role is to validate the technique. The second pore is geometrically undulated, whereas the third is cylindrical but presents a chemical variation which gives rise to a modulation of the wall potential along the pore axis. A real undulated pore would present a potential which is both deformed in position and amplitude. But, to disentangle the two effects, it was decided to create the two non-realistic above mentioned potentials representing typical geometric and chemical heterogeneities in pores. In the geometrically disordered pore almost no change in the phase diagram is observed, whereas in the chemically disordered pore strong modifications are reported.

THE EXTENDED GIBBS ENSEMBLE TECHNIQUE

The main objective of this paragraph is to present a new technique capable of simulating the phase coexistence of fluids confined in heterogeneous porous materials. The underlying hypothesis of the existence of a phase transition has been discussed by Evans 36 , who shows that, despite the fact that a true phase transition in a finite system (in the radial direction) cannot exist, it will appear sharp enough to be assumed as a phase transition. The pore shapes considered in this study essentially derive from the cylinder. In the first case, a geometrical modulation (variation of the pore diameter along the cylinder axis) is introduced to generate an enlarged pore size distribution. See for example Fig. 1 which shows a typical realistic undulated pore. The second case is a cylindrical pore with a modulation of the fluid / substrate interaction along the pore axis to model a chemical disorder. In both cases the initial translation invariance along the pore axis is broken. The proposed method generalizes the Gibbs Ensemble Monte Carlo simulation technique (GEMC) 33,34 to systems lacking a translation invariance, due to some degree of disorder. The inapplicability of the Gibbs Ensemble formalism to disordered systems is actually intimately related to the difficulty in defining an accurate thermodynamic formalism for these systems. Indeed, in the case of a translation invariance along the z axis for instance, the partial derivatives (with respect to the size L of the system in the z direction) of the extensive thermodynamic quantities (like the free energy) are independent of L (homogeneous functions of degree zero). These extensive thermodynamic quantities are then homogeneous functions of the first degree of their extensive variables (in particular L). This fact leads to the well-known Gibbs-Duhem relation when applied to the free energy. On the other hand, for systems which do not show translation invariance, like a spherical droplet in vapor, it is not straightforward to transpose the classical thermodynamic formalism. However, in the case of the droplet, using the spherical invariance enables one to develop a thermodynamic formalism similar to the classical one. [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF] See also the work of Nishioka 38,39 for a recent application of this formalism to surface tension calculations. The system is considered as an assembly of identical infinitesimal conical subsystems contained in an infinitely small solid angle. Note that it would have been impossible to consider the radius R of the sphere as a good parameter to define an extensive variable (volume 4/3 π R 3 ) since changing the radius not only changes the volume but also the curvature radius of the interface, and then the geometric characteristics of the system. Concerning the pores considered in this study, the disorder introduced by modulating the shape of the pore or the fluid / wall interaction presents a cylindrical invariance. The following method can be applied to any system presenting such a cylindrical invariance. Let us consider, as the system, the portion of the pore contained in a dihedron of angle θ (see Fig. 1). The volume is

π θ 2 / V
where V is the volume of the entire undulated pore of given length. Due to rotational invariance, all extensive quantities are proportional to θ. For instance the energy of the system is given by π θ 

θ π µ d V T dN T dE T dS 2 1 Π - - = (1) 
where T is the temperature, µ the chemical potential, and

Π is such that θ π d V 2 Π
corresponds to the mechanical work (due to the internal pressure in the pore and the fluid / wall interface tension). Let us now consider two such systems in contact, able to exchange energy, particles and volume through variations of their dihedral angle. The usual derivation for thermal, chemical and mechanical equilibrium shows that the two subsystems tend to equilibrate their temperature by energy exchange, their chemical potential by particle exchange, and generalized pressure Π by volume exchange. The numerical method we propose to calculate the phase coexistence will take into account these three equilibria, as in the Gibbs Ensemble Monte Carlo method.

This theoretical analysis shows a possible way to vary continuously the volume of the system without changing its intrinsic geometrical parameters (curvature, pore size distribution …) and physico-chemical properties (potential and surface heterogeneities) by exploiting its angular invariance. However, to implement the simulation method one has to give a numerical representation of the above mentioned dihedral system. Obviously, the simple truncation of the dihedron introduces strong boundaries effects, the molecules close to the cut surfaces having much less neighbors than in the real complete system. This simple procedure would introduce strong heterogeneities. This small size effect is generally solved by introducing Periodic Boundary Conditions [START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] . To better illustrate this procedure, let us focus on the 2-Dimensional case, where the system would be a disk containing adsorbed 2-D molecules (the edge of the disk would be the substrate) (see Fig. 2a). One has to find a way to increase the volume of the system without changing the geometry (radius of the disk). In a first step we give a different but equivalent representation of the system which enables such continuous expansions.

Let us first cut the disk along a radius, raise one of the edges and lower the other one to form the beginning of an helix (Fig. 2b). A duplicate of this disk (containing the molecules) can then be added to the first one, by joining one of the straight (cut) edges of the first disk to the opposite straight edge of the second disk in order to double the length of the helix. One can add an infinite number of disks in the same spirit to form an infinite helix (Fig. 2c), which shows the periodic images (1', 1'', etc.) of the initial particles. The spatial deformation of the system in the helix axis direction is for clarity of the figure and does not imply a real geometric deformation of the system. Note that this helix is periodic, and any period corresponds to the initial system (an example of period centered on particle 1 is represented in gray in Fig. 2c). An analog to this system would be an helix-like stair with a thin vertical column in the center. The molecules can evolve in the infinite periodic system, and as they turn around the center of the disk they jump from one disk to another, as people in the helix-like stair which pass from one floor to another. If the stair is not transparent, the visible horizon in the stair cannot exceed two-pi radians (one cannot see people above or below for instance). By implementing such minimal image convention in the molecular model, each molecule A in the helix can feel any other molecule which falls within one period of the helix centered on the molecule A. All other molecules are not visible. Note that exactly one replica of any molecule falls within this period of the helix. That is to say, the molecule A interacts with all molecules exactly once, as in the original disk-like system. This shows that with such PBC + minimal image convention the infinitely periodic helixlike system is exactly the same as the initial disk-like system. Each molecule feels an environment exactly the same as in the original system. Furthermore, the choice of the position of the initial radial cut which was carried out to construct the helix has absolutely no consequences since the helix is periodic. All positions are equivalent, or, in other words, the helix-like system is perfectly homogeneous. The explanations given above can be easily generalized to the 3-Dimensional case, the helix being now a 4-D object. The application of the PBC in the third direction (along the axial coordinate in the 3-D pore) follows the usual procedure: a particle moving out of the box through one side is re-injected through the opposite side at the same radial and angular coordinates. The distance d between two particles, which is necessary to calculate the intermolecular potentials (within minimal image convention), is given by the formula:
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where r i , θ i and z i are the radial, angular and axial coordinates of the two molecules, and ∆ = θ 2 -

θ 1 .
We have now an infinitely periodic and exact representation of our system which enables continuous volume variations. These volume variations are carried out simply by changing the size of the simulation box in the angular coordinate direction, which is now a given portion of the infinite helix not necessarily equal to 2π radians (for instance slightly larger in Fig. 2d). In other words we simply change the period of the helix which is given by the size of the simulation box.

The successive replica of a molecule are then not aligned any more parallel to the helix axis. Of course, the minimal image convention is still applied in the same spirit, so that each molecule will still experience the same forces as if the system was not made periodic. In other words, the dihedron system is one period of the helix-like system. If the period is exactly 2π, then the system can be easily represented on the paper (which is 2π periodic). If the period is exactly 4π, it can also be represented on the paper by two systems equivalent to the original one (the volume has then been multiplied by two without changing any geometric characteristics like the radius of the pore). Actually, any multiple of 2π can be represented by the corresponding integer number of the original system, which multiplies the volume by the same integer. The strength of the helix representation is that it actually allows any period to be considered, not necessarily an integral multiple of 2π, which cannot be easily represented in our geometric space. However, in all cases it can always be locally represented since the helix is locally flat everywhere from a topological point of view. For instance, if the period is smaller than 2π, the system can be represented by a portion of a disk where a slice has been cut (in the 2-D case), or a dihedron (in the 3-D case). It is to be noted that the visible cut is required for the representation but has no real existence, like any boundaries in the representation of the elementary unit of a periodic system. The local flatness is actually a required criteria: the space has to be flat on any extension corresponding to the range of the interactions (short-range Lennard-Jones-like in our case) so that the local structure of the fluid, or the spatial pair correlation function g(r), is not distorted by the topology of the helix. The central point is the only punctual topological defect of the helix, which could a priori induce artifacts, specially for long-range interactions like electrostatics. However, as will be shown later in the section devoted to the perfectly cylindrical pore, the results obtained with this method (helix representation) are identical to the results previously obtained by other authors with the conventional GEMC method, applicable in this case. This shows that the central topological defect does not introduce noticeable effects. The last point to be checked is that the extensive thermodynamic quantities are actually proportional to the length of the period of the helix (at constant density), or in other words proportional to the size of the system. We illustrate this point by considering the configurational energy of a Lennard-Jones fluid confined in a cylindrical pore.

The external potential produced by the pore is described in the next section. The number of particles is chosen to keep the density at the constant value of 0.52 in reduced units, which corresponds to a dense phase as will be seen in the next sections. The temperature is fixed, and the total energy allowed to fluctuate in the canonical ensemble. The average value of the configurational energy is reported in Fig. 3 (circles) as a function of the length of the period of the helix (size of the system) in radians. As can be seen, the energy is essentially proportional to the size of the system except for values of the period significantly lower than 2π which certainly introduces over-correlations in the system. The square corresponds to the same quantity calculated in the original pore, without using the helix representation. The value coincides exactly with that obtained in the helix representation. This exact proportionality of the configurational energy with the period of the helix for values not necessarily multiple of 2π meets exactly the requirement for such extensive thermodynamic quantities. The period of the helix is thus a good parameter to modulate continuously the size of the system while keeping all geometric and physico-chemical characteristics constants (pore size distribution, chemical heterogeneities …).

Note that no other geometric parameter like the radius or the length of an heterogeneous pore meet these requirements.

The Fig. 4 shows the complete system consisting of two dihedron labeled 1 and 2. The size of the dihedrons are chosen smaller than 2π for clarity, but should actually be chosen larger (Fig 3). The periodic boundary conditions + minimal image convention previously explained are applied separately to both dihedron in order to minimize the simulation box boundaries effects.

Both parts of the system are supposed to be in thermal contact with a reservoir at temperature T.

It is also supposed that the two parts of the system can exchange particles and volume even though they are not in direct contact. In a real macroscopic system, both phases would be in contact at their interface, but the explicit introduction of such an interface (and finite size effects) is likely to be avoided in a simulation study of coexistence.

The Monte Carlo acceptance probabilities associated to the trial moves corresponding to the different possible exchanges are given as follows:

Particle displacements: each part of the system being in thermal contact with a reservoir at temperature T, particle displacements inside each simulation box are attempted (see Fig. 4a). The acceptance probability of the Monte Carlo trial corresponding to one such displacement in any of the two boxes is given by: { }
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where E ∆ is the minimum reversible work, or difference in configurational energy, associated to the displacement trial, and k is Boltzmann' s constant.

Particle exchange: since both simulation boxes are supposed to be representative of coexisting phases they should be able to exchange particles. For instance Fig. 4b shows an example where a particle is removed from box 1 and inserted into box 2. Let us suppose that the associated change

in configurational energy is 1 E ∆ and 2 E
∆ in boxes 1 and 2. The acceptance probability for this trial is given by:
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where the prefactor of the exponential takes into account the ideal gas entropy contribution.

Volume exchange: this step consists in varying the relative volumes of the two regions, while keeping the total volume constant. This Monte Carlo step enables to equilibrate the generalized pressure Π previously introduced, that is to say enable the mechanical equilibrium. The way the volume is changed is simply by varying the extensive parameter θ describing the system. The volume of space actually accessible to the particles is simply proportional to θ , as long as the other geometric parameters are identical (specially the length of the pores), which is the case in this work. The new molecular configuration is obtained from the previous one by scaling the angular particle positions to the new angular width of the system. In this situation, the acceptance probability for the Monte Carlo step is given by:
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where θ d is the angular variation of the region 1.

POROUS MODELS AND COMPUTATIONAL DETAILS

This work aims at studying the phase coexistence of fluids confined in pores presenting some disorder. For the sake of simplicity, the new technique previously introduced has been applied to a simple fluid confined in an external potential created by the surrounding substrate. The Lennard-Jones (6,12) potential
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is used to model all interactions in the system. No distance cut-off is used, and minimal image convention is applied. [START_REF] Allen | Computer simulation of liquids[END_REF] However, the angular cut-off equal to π is maintained so that particles can interact with neighbors less than π radians apart from it (as in ordinary three dimensional space). We did not perform long-range corrections either, since they cannot be easily calculated for inhomogeneous phases as in cylinders. The porous substrate is described by an external potential. The substrate is supposed to be rigid and structureless, which is meaningful if the size of the pore is large enough compared to the atomic roughness of the substrate. Since we are considering mesoporous matrix with pores of several nanometers in diameter such a smooth wall approximation will be adopted. The fluid-wall interaction is chosen to be stronger than the fluidfluid one to induce large effects on the fluid phase diagram. The peculiar choice of argon adsorbed in solid CO 2 meets this requirement. The fluid-fluid and fluid-substrate interaction parameters are given in Table 1. In the following, all thermodynamic quantities are normalized to the argon-argon parameters. The Ar-CO 2 system has already been chosen to study phase diagrams of fluids confined in cylindrical pores 21-23, 25, 40 , but it is now extended to heterogeneous porous substrates. Fruitful comparisons are then possible.

The perfectly cylindrical pore potential is obtained by integrating the Lennard-Jones potential on a uniform distribution of substrate site of reduced density 8265 . 0 . It has been checked that this size of the simulation box is large enough not to introduce obvious artifacts. Some of the calculations have been performed in twice as large a system and give the same results.

The disorder is directly introduced by modulating the external potential. In the first case, geometric disorder is produced by spatially deforming the potential, while in the second case, chemical disorder is realized by modulating the amplitude of the initial cylindrical potential. In both cases the modulation along the direction z introduces an explicit dependence of the potential on r and z. The geometrically disordered reduced potential is then given by (Fig. 5, middle view):
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and the chemically disordered reduced potential is given by (Fig. 5 bottom view):
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The parameter a is a measure of the disorder, taken equal to 0.25 in this work, and L is the length of the simulation box, equal to

f f - σ 12
. The radius of the geometrically undulated pore varies between
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In this system, the disorder consists in an enlargement of the pore size distribution up to 25% of its average value. For the second system the pore radius is constant, but the intensity of the fluid-wall interaction varies within 25% of its average value: this mimics some chemical disorder with more or less attractive sites distributed along the pore. It is important to note that the geometric modulation has not been applied to the solid CO 2 prior to the potential calculation. This would have been certainly more realistic, but it would have induced the appearance of zones of higher potential in the regions of higher curvature for instance. However, in this work we wanted precisely to decouple geometric from amplitude modulation effects. 
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The quantity V is defined as the volume of space where the potential is not infinite. In the case of the cylindrical pore of reduced radius 4, the volume is
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. The volume of the chemically heterogeneous pore is exactly the same since both potentials are infinite in the same region of space:

2 16 f f chem L V - = σ π
. The volume of the undulated pore is calculated by integration of the sinusoidal modulation: 

CYLINDRICAL PORE: VALIDATION OF THE NEW METHOD

The local density in the perfectly cylindrical pore has been calculated for different temperatures.

The Fig. 6 shows the result for a reduced temperature of 0.6 for the gas and liquid phases. As can be seen, the so-called gas phase is actually an adsorbed phase on the substrate plus a very dilute gas in the rest of the pore. Since both adsorbed and dilute components are intimately linked together, and there is no discontinuity between them (in density for instance), they will be considered as being one "gas-like" phase. Inspection of Fig. 6 shows a uniform density along the axial coordinate, as expected since the potential has this translation invariance. The liquid-like phase (Fig. 6, bottom) also shows an adsorbed layer on the substrate, and a dense liquid in the rest of the pore. Both components are again to be considered to belong to a unique phase. Due to the small size of the pore, layering effects are enhanced up to the fourth layer, which is actually a chain of molecules in the very center of the pore. The high intensity of the fourth layer peak located on the axis of the pore is not induced by a larger number of molecules in that region, but an extreme localization due to the commensurability of the pore radius to the molecule diameter.

The molecules located in the other layers can move freely in the z and the orthoradial direction (at constant distance from the center), whereas the central molecules can only move freely in the z direction. The Fig. 7 shows a molecular configuration (axial view, molecules having an angular coordinate between -π and π only), where the layering is visible. Visual inspection does not show accumulation in the center. On the other hand, while averaging on several configurations, the local density in the very center is constant because it is always occupied by molecules, whereas this is not the case for other points of the cylinder due to possible movement in the angular direction. This explains why, on average, the central local density is much higher. The Fig. 8 shows the integrated local density along the angular and axis coordinates, as a function of the radial coordinate. As can be seen, integration shows that there is no accumulation of atoms in the center.

The integration of the local density over the whole cylinder gives the total coverage (Eq. 8). For each reduced temperature
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, where B k is Boltzmann' s constant, the points corresponding to the gas-like and liquid-like phases have been reported on the so-called coexistence diagram (Fig. 9, circles). For comparison, the results obtained by other authors 22 for the same system are reported (squares). As can be seen, the agreement is quite good. This validates our implementation of the extended Gibbs Ensemble method in cylindrical geometries.

The bulk Lennard-Jones coexistence curve from ref. 22 and 33 is also reported (crosses). As a general comment, one can see that confinement strongly affects the thermodynamics of the adsorbed fluid. The gas-like phase is denser, due to adsorption. The liquid-like phase is less dense, partly due to hard core effect of the pore wall and accessible volume definition. And finally, the reduced apparent critical temperature of the fluid is lowered by confinement effects (1.3 in bulk, 1.05 in cylindrical pore of reduced radius 4).

However, one might wonder if this coexistence diagram established on the basis of local analysis in small portions of pores can be extrapolated to macroscopic pores. Indeed, a mechanical statistical result shows that a one dimensional system with finite range interactions is expected not to present macroscopic phases coexistence (derived from Ising model analysis). One could then have coexistence of "local phases" at microscopic scale, without macroscopic separation of phases. However, a real macroscopic porous material always contains interconnections between pores, which changes dramatically its topology (from a simple 1dimensional to a complex 3-dimensional network of interconnected pores). One of the consequences is, for instance, the existence of an interface between the two coexisting phases which grows with the size of the domain (this is not the case in a 1-dimensional system, but appears for a number of spatial dimensions larger than one. Another consequence is that the interconnections introduce correlations in the system (through loops in the network of pores).

These two consequences prevent the infinite fluctuations and make it possible, in a realistic system, for a macroscopic segregation in two distinct phases (phase transition). It is believed that the correlations introduced in the simulation box by the "periodic boundary conditions' procedure mimic the correlations in a real porous material made of a 3-dimensional network of interconnected pores. The "local phase" coexistence obtained in this study can then be interpreted as macroscopic equilibrium between phases. However, it has to be noted that the correlations introduced by the periodic boundary conditions are obviously stronger than in a real pore since they take place on a shorter distance (the length of the simulation box, against the length of the loops in the interconnected network of pores, which are certainly several times longer). But this certainly does not affect the existence of the phase transition. According to this analysis, the local coexistence diagrams can be considered as phase diagrams of fluids adsorbed in macroscopic mesoporous systems.

THE WEAK INFLUENCE OF GEOMETRIC DISORDER

The external potential of the geometrically disordered pore is deduced from the previous one (perfectly cylindrical) by spatial deformation. As for the cylindrical pore the local particle density is calculated and shown in Fig. 10 for the gas-like and the liquid-like phases at a reduced temperature of 0.60. For both phases, the adsorbed layer is now deformed, accommodating the substrate geometry, as illustrated by the snapshot given in Fig. 11 (molecules having an angular coordinate between -π and π only). This snapshot is actually a projection of a molecular configuration along the angular coordinate. In other words, the particles are plotted according to their radial coordinate times the sign of the angular coordinate, and the axial z coordinates, independently of the absolute value of the angular coordinate. Despite the geometric deformation, the intensity of the adsorbed layers density peaks (Fig. 10) are comparable to the previous cylindrical case (Fig. 6). The local density of fluid close to the wall is then directly related to the depth of the external potential, irrespective of the geometry of the surface, at least for large admitted. This point will be discussed in conclusion.

CHEMICAL UNDULATION AND THE BRIDGE PHASE

In the chemically disordered pore the external potential is obtained by a 25% modulation of the amplitude of the perfectly cylindrical potential. As previously, for each temperature, the total coverage is calculated by integrating the local density, and the complete coexistence diagram is drawn in Fig. 12 (squares). For comparison the coexistence diagram of the fluid confined in the perfectly cylindrical pore is also given (circles). The chemical undulation strongly modifies the thermodynamic behavior. A new phase of intermediate density (around 0.3) has appeared, [41][42][43][44] and consequently, two apparent critical temperatures are now visible. The local densities are shown for a reduced temperature of 0.60 for the gas-like and liquid-like phases (Fig. 13), and for a reduced temperature of 0.75 where the three phases, gas-like, liquid-like, and intermediatedensity phase can coexist (Fig. 14). The gas-like phase shows an adsorbed layer on the substrate.

However, unlike the two preceding cases, the adsorbed layer is not uniform. The density is modulated along the axial direction, according to the external potential. Furthermore, at T=0.75 the second layer is visible. Concerning the liquid phase, one can see again the adsorbed layer and up to three subsequent layers for both temperatures. For the higher temperature, the peaks are broader due to thermal agitation. This is particularly visible for the central peak (r=0) which is very high at low temperature due to low mobility of molecules, as previously discussed. As for the adsorbed gas-like phase, the density is modulated along the z direction, the modulation being larger close to the surface, and disappearing in the center. The third phase of intermediate density appearing for temperatures higher than 0.75 also shows layering effects, and a strong modulation along the axial direction. Actually, in the regions of low potential the density of the phase is almost liquid-like, whereas in the regions of high potential the density is very low (gas-like). The snapshot shown in Fig. 15 (molecules having an angular coordinate between -π and π only) confirms this analysis, and shows that the molecules are concentrated in a bridge anchored to the attractive sites of the substrate. This is why authors called this state " bridge phase" . [41][42][43][44] .

As a consequence of the stabilization of the bridge-like phase, two apparent critical temperatures are now visible. The gas-bridge critical temperature is lower than the bridge-liquid one, probably because the energetic barrier between both phases is lower.

CONCLUSION

A new method has been presented to calculate coexistence phase properties of fluid confined in pores presenting some geometric or chemical disorder. Similarly to Panagiotopoulos 33 method, the Gibbs Ensemble is used. However, the continuous space variable usually used in classical thermodynamics and Gibbs Ensemble method (the volume for a bulk phase, or the length of the system for fluids adsorbed in cylindrical or slit-like pores) has been replaced by the angular extension of a virtual representation of the system. The method applies to system presenting an angular invariance around an axis. The particles are represented by their usual cylindrical coordinates, except that the angular coordinate is free to evolve in an interval a priori different from π 2 . The system represents argon fluid adsorbed in a carbon dioxide porous solid. The method has been compared to the usual Gibbs Ensemble Monte Carlo simulation in a perfectly cylindrical pore. The results validate the new method, which has then been applied to two variants of the cylindrical pore: firstly, geometric disorder has been introduced by spatially deforming the external potential of the initial cylinder, and secondly, chemical disorder has been created by modulating the amplitude of the external potential.

The coexistence diagrams show strong effects of chemical disorder, and almost no effect of geometric disorder. The chemical undulation is able to stabilize a new intermediate phase, the so-called bridge phase. Such an intermediate phase has already been observed by other authors in slit pores but has never been described in chemically undulated cylindrical pores. On the other hand, the geometric constriction is not able to stabilize this phase. The local structure of the bridge phase is close to a liquid phase, but the average coverage is different from liquid because of a sequence of gas bubbles along the pore axis. A detailed structure analysis is underway. One has to insist on the unexpected absence of effect of purely geometric deformation of the potential.

To the contrary, constrictions, and more generally any location with short curvature radius in pores, are usually considered as adsorption sites. However, this work shows that this effect is essentially due to the fact that the amplitude of the external potential is larger in regions of short curvature radius (the adsorbed fluid " sees" more substrate particles). There is essentially no effect of the geometric shape of the volume of space in which the atoms can evolve at mesoscopic scale. The case of very small (microporous) systems is underway. Furthermore, additional calculations of the chemical potential of the different phases (by direct methods like widom algorithm) should allow to draw the phase diagram in the chemical potential -temperature plane.

These complementary studies are underway. 
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 2 is the energy of the complete π θ 2 = pore. The thermodynamic state of the dihedron system is determined by the energy E, the number of particles N, and the angle θ. The fundamental (microcanonical) equation for the differential of the entropy S is thengiven by:

  a solid CO 2 density of 1530 kg/m 3 . The pore diameter is equal to 2.724 nm, which corresponds to a reduced diameter of 8. The calculated external potential has a cylindrical symmetry, and can be given as a function of the radial and axial distances only. The reduced potential

  The local state of the fluid in the pore is measured through the local density of the center of mass of the particles. Due to angular invariance, the local density is expected to be dependant on the radial and axial coordinates only: ) , ( z r ρ . The local density of particles is calculated on a grid with 40 divisions in the radial direction (sharp variations) and 20 in the axial direction (smooth variations). The elementary cells have then a circular shape. The local density is obtained as the number of particles in each cell divided by the reduced volume of the cell. The result is averaged during the course of the simulation for each simulation box. Since the central cells are smaller than the peripheral ones, the result converges more slowly and the uncertainty is larger. The macroscopic state of the fluid in the pores is described by the adsorbed quantity, or coverage, equal to the space average of the local density, or to the number of particles in the simulation box divided by the reduced volume 3 / *

  slightly larger than the cylindrical volume. The complete coexistence diagram is obtained as follows. First, for a given temperature, random initial configurations are made such that their densities are homogeneous and equal to 0.4. The program is then ran until equilibrium is reached. This gives the first points of the coexistence diagram. For temperatures close enough, the initial conditions are taken from equilibrium configurations of the previous calculation. This allows to construct the whole diagram up to singular points. When such points are reached, random initial conditions are used to generate new coexisting phases. The consistency of the procedure is confirmed by the fact that the different branches of the coexistence diagram meet at singularity points, and consistent coexistent phase densities are found with very different initial conditions (random configurations or equilibrium configurations from another temperature run).

12 (

 12 enough local curvature radius (several atomic diameters). On the other hand, the local density is not uniform any more along the undulated pore wall (or along the line of minimum potential). As a matter of fact, one can see short wavelength variations in the density. This can be explained by the lost of translation invariance along the pore axis. Due to geometric constriction, the adsorbed layer cannot move as one piece along the axis. It is anchored by geometric disorder to a minimum in energy, which induces localization points in the local density. Furthermore, the local layer structure of the liquid-like phase is much more affected due to size variations of the pore. The number of layers the fluid can accommodate in the pore varies along the z coordinate. This induces frustration in the fluid structure.The integration of the local density in the pore volume gives the total coverage, which is reported as a function of the temperature in the so-called coexistence diagram of Fig. triangles). The comparison to the fluid behavior in the perfectly cylindrical pore (circles) shows no difference. The geometric deformation up to 25% of the external potential does not change the thermodynamics of the adsorbed fluid, in partial contradistinction with what is commonly
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 789 figure 7 : Example of a liquid-like phase molecular configuration at T* = 0.60. Front view. For clarity, the diameter of the atoms has been reduced to 40% of their nominal value.

figure 10 :

 10 figure 10 : Local density in the geometrically undulated pore as a function of the reduced radial and axial coordinates, at a reduced temperature of 0.60, for the gas-like phase (top view), and liquid-like phase (bottom view).

figure 13 :

 13 figure 13 : Local density in the chemically undulated pore as a function of the reduced radial and axial coordinates, at a reduced temperature of 0.60, for the gas-like phase (top view), and liquidlike phase (bottom view).

figure 15 :

 15 figure 15 : Example of a bridge-like and a liquid-like phase molecular configuration at T* = 0.75 in the chemically undulated pore. Side views.

  

  

  

  

  

  

TABLE 1 :

 1 Argon/solid CO 2 interaction parameters.
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