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Materials presenting nanoscale porosity are able to condensate gases in their structure. This "capillary condensation" phenomenon has been studied for more than one century. Theoretical models help to understand experimental results, but fail in explaining all experimental features. Most of the time, the difficulties in making quantitative or even qualitative predictions are due to the geometric complexity of the porous materials, like large pore size distribution, chemical heterogeneities, or pore interconnections.

The numerical calculations (lattice gas models or molecular simulations) are of considerable interest to calculate the adsorption properties of a fluid confined in a porous model with characteristic sizes up to several tens of nanometers. For instance, the Grand Canonical Monte Carlo method (GCMC) allows to compute the average amount of fluid adsorbed in the porous model as a function of the temperature and the chemical potential of the fluid. However, the grand potential, necessary for a complete characterization of the system, is not a direct output of the algorithm. It is shown in this paper that, the use of the isobaric-isothermal (NPT) ensemble allows to circumvent this problem, that is to say it is possible to get in one single Monte Carlo run the absolute grand potential for any given thermodynamic state of the fluid. A simplified thermodynamic integration scheme is then used to evaluate the grand potential over the whole isotherm branch passing through this initially given point. Since, the usual NPT technique is a priori limited to homogeneous pores, it is proposed, for the first time, to generalize this procedure to pores presenting a chemical heterogeneity along its axis. The new method gives the same results as the previous for homogeneous pores, and allow new predictions for chemically heterogeneous pores. Comparison with the full integration scheme shows that the proposed direct calculation is faster since it avoids multiple Monte Carlo run, and more precise because it avoids the possible cumulative errors of the integration procedure.

INTRODUCTION

In many situations fluids are confined in porous systems. [START_REF] Gregg | Surface Area and Porosimetry[END_REF][START_REF] Rouquerol | Adsorption by Powders and Porous Solids[END_REF] Even for simple fluids adsorbed in geometrically simple pores, the confinement has non-trivial effects on the thermodynamic properties of the adsorbed phase. [START_REF] Heffelfinger | [END_REF][4][5][6][7][8][9][10][11][12][13][14][15][16] The situation is even more interesting in disordered porous materials which is the most common situation from the experimental point of view. The possible ways to introduce disorder are for instance to reproduce the experimental structure of materials [17][18][19][20][21][22][23][24][25][26][27][28][29][30] (with large pore size distribution, non cylindrical pores, interconnections), or to consider random systems [31][32][33][34] , or to introduce chemical heterogeneities by spatial modulation of the fluid/substrate interaction [35][36][37][38][39][40] . However, the theoretical studies on disordered systems are much more difficult.

The complexity of such realistic models is generally a drawback for purely analytical theoretical studies. The numerical approach, like molecular simulation [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] offers the possibility to calculate the properties of fluids adsorbed in very realistic pore models. However, the length of Monte Carlo or molecular dynamics simulations rapidly increases with the size of the system, which results in practice in a very limited volume of the porous matrix model. The porous models are then not yet completely realistic, but they allow to understand some of the effects of the different sources of disorder (pore size distribution, chemical disorder, pore interconnections) by considering models of intermediate complexity containing for instance geometric variations, or chemical heterogeneities. The thermodynamic or macroscopic equilibrium properties of such systems are generally computed by the Metropolis algorithm [START_REF] Metropolis | [END_REF] , which generates a chain of molecular configurations following the probability distribution of the corresponding statistical ensemble. [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] In a Grand Canonical Monte Carlo (GCMC) simulation, the temperature and the chemical potential of the adsorbed fluid are fixed, while the internal energy and the number of particles fluctuate. For a fixed temperature, the average density or coverage acquired as a function of the chemical potential corresponds to the experimental determination of the adsorption isotherm. However, this technique is unable to give directly the entropy which would be the extensive quantity conjugate to the temperature. This introduces difficulties in the integration procedure of the corresponding thermodynamic potential (the grand potential Ω), which is however the only quantity able to give the relative stability of the different phases observed in the adsorption isotherms. 5,18,19 The knowledge of Ω also allows to calculate all thermodynamic quantities, like Helmholtz free energy, or entropy. See Ref. [ 45 ] for further details.

In this paper, it is proposed to partially replace this integration procedure by a direct calculation of the thermodynamic grand potential for some chosen states, which greatly simplifies the calculations. The isobaric-isothermal (NPT) ensemble used to perform this direct calculation has been generalized so that it is able to treat also the case of porous models presenting some physico-chemical heterogeneities. The paper is organized as follows: the molecular model (fluid and chemically homogeneous and heterogeneous pores) is presented. The GCMC + thermodynamic integration procedure is shortly presented and used to calculate all thermodynamic quantities of interest on the systems. For the homogeneous pore, it is shown that the integration procedure may be completed by a direct calculation of the grand potential (which reduces to the pressure for simple fluids) in the isobaric-isothermal NPT ensemble. This combined method is shown to be significantly faster, specially for pores presenting numerous branches in their adsorption/desorption isotherms. For heterogeneous pores, an extension of the NPT method is introduced. Its implementation for both homogeneous and heterogeneous pores is presented, and comparisons with the usual NPT ensemble shows perfect agreement for homogeneous pores. The thermodynamic properties of the fluid adsorbed in the chemically heterogeneous pore are computed in this framework, showing perfect agreement with expected results, and better performance in terms of CPU time consumption compared to the use of the GCMC + thermodynamic integration procedure alone.

THE POROUS SYSTEMS

The molecular model is a Lennard-Jones fluid confined in pores of various shapes. The peculiar choice of argon adsorbed in solid CO 2 has been considered due to interesting modifications in the thermodynamic properties of the confined fluid, and possible fruitful comparisons with previous studies. [START_REF] Heffelfinger | [END_REF][4][5][6]45,46 The fluid-fluid and fluid-substrate interactions are described by the Lennard-Jones potential between particles i and j:
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with the parameters given in Table 1. All thermodynamic quantities are normalized to the argon-argon parameters (reduced quantities, noted by an asterisk). Since the considered systems are not very large, no distance cutoff is used, and minimal image convention is applied. [START_REF] Allen | Computer simulation of liquids[END_REF] The first pore considered in this study is a perfectly homogeneous cylinder of diameter 8 in reduced units. Due to the large pore size, it is reasonable to neglect the atomic roughness of the substrate (see Ref [45] for more details).

The chemical heterogeneity is directly introduced by modulating the amplitude of the external potential along the axial direction, which introduces an explicit dependence of the potential on r and z:
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where a (taken equal to 0.25 in this study) measures the amplitude of the heterogeneity, and the characteristic spatial extension L of the chemical heterogeneity is taken equal to Ar Ar -σ
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. This potential mimics the existence of more or less attractive sites distributed alternatively along the pore.

The main quantities introduced in this paper are the temperature T, the internal energy E, the configurational energy U, the number N of particles contained in the volume V of the simulation box, the global coverage Γ=N/V as opposed to the local density ρ, the pressure P conjugate to the volume, the chemical potential µ conjugate to the number of particles, the entropy S conjugate to the temperature, and the grand potential Ω = E -TS -µN. The corresponding reduced quantities are noted with an asterisk: T*, U*, V*, Ω* etc

3: THE GCMC + THERMODYNAMIC INTEGRATION SCHEME

The grand canonical monte carlo (GCMC) simulation method consists in sampling the statistical grand canonical ensemble where the temperature T and the chemical potential µ of a fluid are imposed by a reservoir. [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF] When the system of interest is a fluid adsorbed in a porous matrix, which is the case in this study, the chemical potential is imposed by the gas reservoir above the adsorbent. From a thermodynamic point of view, the system is completely characterized if one is able to calculate the appropriate thermodynamic potential i.e. the grand potential Ω = E-TS-µN in our case. However this quantity is not a direct output of the GCMC simulation (thermal quantity) [START_REF] Frenkel | Understanding Molecular Simulation[END_REF] . A way to circumvent this problem was proposed by Peterson and Gubbins 5 , who proposed two differential equations involving the total number of particles N and the total energy E of the system, that is to say the sum of the configurational energy U and the kinetic energy taken equal to 3/2NkT. By introducing the grand potential per unit volume ω = Ω/V, where V is the volume of the system, the differential equations write in reduced units: 45
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where Γ* and u* are the reduced average coverage and molecular configurational energy calculated by GCMC. These equations allow to calculate the difference in grand potential between any two states by integration along reversible path joining both states. Absolute values are obtained in the low chemical potential or low coverage limit, where the adsorbed fluid follows essentially its ideal gas approximation (independent particles evolving in the static external potential of the porous matrix):
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The thermodynamic properties of the confined fluid have been characterized for two reduced temperatures T* = 1.20 and 0.77. The amount of adsorbed fluid obtained by GCMC are given in Fig 1 for the perfectly homogeneous and the chemically heterogeneous pores. As can be seen the T* = 1.20 isotherms are reversible in both cases (supercritical temperature), whereas the T* = 0.77 isotherms present hysteresis. The chemically heterogeneous pore shows a narrower hysteresis, and three branches because a state of intermediate coverage can be stabilized in the region of deep external potential (socalled "bridge-phase" [36][37][38][39][40] ). However, the stability or metastability of the different "phases" cannot be given with this information. It is necessary to calculate the grand potential. Its integration along the supercritical isotherm and the low coverage branch of the low temperature isotherm requires equations 3 and 5. Since the low temperature isotherms present discontinuities (one discontinuity for the homogeneous pore, for instance), the equation 4 is used along a path of constant chemical potential to integrate the grand potential from the high temperature to the low temperature isotherm in the high chemical potential region. The result for the reduced grand potential per unit volume (ω*) is shown in Fig 2 for the homogeneous and the heterogeneous pores. Note that in the case of the chemically heterogeneous pore the low temperature isotherm presents three branches (see Fig 1). Two constant chemical potential paths were then required to link the bridgelike and liquidlike branches to the supercritical isotherm through a reversible path. These figures summarize the thermodynamic behavior of the confined fluid. The grand potential is multivalued at low temperature (T* = 0.77), reproducing the number of possible states already visible in the adsorption isotherms. The stability of these states can now be discussed: for a given chemical potential, the stable phase has the lowest grand potential value.

For the perfectly homogeneous pore, the gaslike phase is stable for µ * <-10.6 whereas the liquidlike phase is metastable if it exists. Conversely, for µ * >-10.6 the liquidlike phase is stable whereas the gaslike phase is metastable. The intersection point corresponds to the equilibrium or coexistence point (µ * = -10.6). For the chemically heterogeneous pore, the grand potential shows three different states for the fluid: the gaslike, bridgelike and liquidlike " phases" . As previously, for any given chemical potential, the stable phase is given by the lowest value of the grand potential. The two other phases are metastable when they exist. There are two coexistence points (µ = -10.609 for gaslike-bridgelike coexistence and -10.600 for bridglike-liquidlike coexistence). As can be seen, the thermodynamic behavior of the fluid is strongly affected by the chemical heterogeneity.

4: DIRECT CALCULATION OF THE GRAND POTENTIAL: THE NPT ENSEMBLE

As shown previously, the grand potential completely characterizes the thermodynamic behavior of a fluid. However, the thermodynamic integration procedure might be very difficult in some circumstances, specially in the case where several discontinuities appear in the isotherms, that is to say the fluid can exist in many different states or " phases" . In this case it might be almost impossible to find a constant µ reversible path to link a given " phase" to the supercritical isotherm. It might be necessary to divide the path in constant µ and constant T portions, which considerably increases the amount of calculations. It is shown in the following that it is possible to avoid this constant µ integration by performing a direct calculation of the grand potential for any given " phase" .

Let us consider a system characterized by its (imposed) temperature T, chemical potential µ, and volume V. The variation of the corresponding grand canonical potential Ω(V,T,µ) is given by:
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If the system is homogeneous at macroscopic scale, that is to say one can define properly extensive and intensive quantities, the grand potential Ω is a homogeneous function of order one in the volume (extensive quantity), and Euler's theorem gives:
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The grand potential per unit volume ω = Ω/V previously introduced is then the opposite of the pressure, which can be calculated directly by various simulation techniques. The Monte Carlo simulation in the isobaric-isothermal ensemble (constant N, P, and T) [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] has been chosen since it allows generalization to porous materials and does not require any hypothesis about the interaction terms (like the pairwise additivity of the intermolecular forces required for the application of the virial theorem). The principles of this widely used NPT technique are shortly explained. The reader is reported to the cited textbooks for further details.

Let us consider a system of N interacting particles at temperature T, occupying a volume V under pressure P. The thermalization of the system is performed as for a canonical NVT Monte Carlo simulation, where particle displacements are tempted and accepted with the probability 42
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where ∆E is the minimum reversible work, or difference in configurational energy, associated to the displacement trial, and k B is Boltzmann constant. Since the pressure is kept constant, the volume is free to fluctuate and additional trials must be considered. A volume change is performed by applying a (small) homothetic transformation to the system. In the case of a fluid confined in a cylindrical pore, the pressure is measured in the axial direction. Due to confinement in the radial direction, the volume changes are performed only in the axial direction, like for a piston. In this case the volume of the simulation box is proportional to its length in the axial direction which is allowed to fluctuate. Let us note ∆V the positive or negative volume change of the system, ∆E the associated variation in the configurational energy. The probability to accept this Monte Carlo trial is given by 42
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This algorithm has been applied to the case of the perfectly homogeneous cylindrical pore, and the coverage Γ has been averaged for different values of the applied pressure P. The results are given in As can be seen, the NPT Monte Carlo simulation points fall on the previous GCMC + thermodynamic integration results, as expected since equation 7 identifies -ω to the pressure in the system. Some discrepancies can be observed, but never excess few percent (4% for P*=1.0 at T*=0.77). However, despite small, some systematic errors are observable for T*=1.20 above P*=0.3, or for T*=0.77 above P*=0.2. This shows that the integration method may cumulate over the whole branch an error introduced by an erroneous point of the adsorption isotherm. The grand potential calculated by the isobaric-isothermal direct calculation method is free from such cumulative errors, and therefore give more reliable results.

Of course, the NPT simulation results alone are not sufficient to completely characterize the thermodynamic behavior of the confined fluid. Both the adsorption isotherms (GCMC) and the grand potential (obtained by thermodynamic integration or NPT calculation) are necessary. Considering the advantages of each method, one can propose an optimized combination. The GCMC algorithm is used to obtain the adsorption isotherms since it is the most efficient to calculate them. This allows to establish the number of possible " phases" for the system (given by the number of discontinuities in the adsorption isotherms). Their relative stability is then determined by the grand potential. The equation 5 gives the simplest way to determine the absolute value of the grand potential in the low density limit for the gaslike branches. For the other branches which does not admit a low density limit (liquidlike or bridgelike branches for instance), the NPT technique should be used to determine directly the absolute value of the grand potential for at least one point of each branch. This method is much faster and more precise than the use of the equation 4 along a reversible path of constant µ. Finally, the Gibbs equation isotherm (equation 3) allows to calculate the grand potential along any branch by integration from the previously calculated absolute point. This combination of methods is the most efficient way to completely characterize the thermodynamic properties of a confined fluid. In this study, the pressure was calculated for the entire branches to show the efficiency of the NPT technique. However, only one NPT point is enough (for the liquidlike branch), that is to say one single Monte Carlo run instead of the entire acquisition of a complete constant µ path required by the use of equation 4. The direct NPT calculation method can also be used to control the possible errors introduced by integration along the isotherms, by doing a direct calculation at both ends of a given branch for instance. This allows to evaluate, as we did before, the possible cumulative errors introduced during the integration along the isotherms.

5: IMPROVED NPT ENSEMBLE FOR HETEROGENEOUS PORES

5-1: presentation of the problem

It has been shown in the previous section that the NPT calculations shorten efficiently the thermodynamic integration procedure for the characterization of a confined fluid. However, this technique cannot be directly applied in the case of chemically heterogeneous pores because they lack a translation invariance in the axial direction. In the perfectly homogeneous pore, the homothetic transformation of the particle positions (spatial dilatation or contractions along the pore axis) results in no variation of the external potential since it does not depend on the axial coordinate z. Such a dilatation performed in the chemically heterogeneous pore would result in undesirable changes in its physicochemical properties, like the characteristic wavelength of the energetic heterogeneity. An improved NPT algorithm is then proposed to circumvent this problem, which was already successfully used to study coexistence phenomena. 47 In a first step, a theoretical development will allow to introduce most of the important concepts. The implementation of the new method is then explained in details, and its validity demonstrated. The method is then applied to the case of the perfectly homogeneous pore to show the coherence with the original NPT method. Finally, it is applied to the chemically heterogeneous pore where the conventional NPT method cannot be applied. It is shown that this method allows to generalize the pressure in a porous material, and that the values obtained give directly the grand potential in the heterogeneous pore. This direct calculation method as proven to be very efficient in the heterogeneous situation where the thermodynamic integration along constant µ path is more difficult due to the presence of a larger number of " phases" .

5-2: The thermodynamic point of view

The aim of this paragraph is to introduce a generalization of the NPT statistical ensemble to systems lacking translational invariance due to heterogeneities for instance. Note that this generalization has also been applied successfully to the Gibbs Ensemble in the case of coexistence phenomena studies. 47 The translation invariance required in the implementation of the NPT algorithm is reminiscent of the way the thermodynamic formalism corresponding to this ensemble is defined. Indeed, in the case of a natural translation invariance along at least one axis (the z axis for instance), the partial derivatives of the extensive thermodynamic quantities (like the entropy, or the free energy) with respect to the size of the system (for instance its volume V, or its extension L in the axial direction for a cylindrical pore) are independent of the system size (homogeneous functions of degree zero). These extensive thermodynamic quantities are then homogeneous functions of the first degree of their extensive variables. This facts leads to the well-known Gibbs-Duhem relation when applied to the free energy, or to equation 7 when applied to the grand potential. On the other hand, for systems which do not show translation invariance, like a spherical droplet in vapor, it is impossible to transpose directly this formalism. However, in the case of the droplet, one can use the spherical invariance to develop a thermodynamic formalism similar to the classical one. [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF] See also the work of Nishioka [START_REF] Nishioka | [END_REF]50 for a recent application of this formalism to surface tension calculations. The system is considered as an assembly of identical infinitesimal conical subsystems contained in an infinitely small solid angle. Note that it would have been impossible to consider the radius R of the sphere as a good parameter to define an extensive variable (volume 4/3 π R 3 ) since changing the radius not only changes the volume but also the curvature radius of the interface, and then the geometric characteristics of the system. Concerning the pores considered in this study, the chemical heterogeneity introduced by modulating the amplitude of the fluid/wall interaction presents a cylindrical invariance. This formalism can then be applied. Let us consider, as the system, the portion of the pore contained in a dihedron of angle Θ (see Fig. 4). The
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V is the volume of the complete (Θ = 2π) pore of the same length.

Due to rotational invariance, all extensive quantities (like volume itself) are proportional to Θ. For instance the energy of the system is given by π

π 2 / 2 Θ =E E
where π 2 E is the energy of the complete

π 2 = Θ
pore. The thermodynamic state of the dihedron system is determined by the energy E, the number of particles N, and the angle Θ, proportional to the volume V. The fundamental (microcanonical) equation for the differential of the entropy S is given by:
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where T is the temperature, µ the chemical potential, and Π (generalized pressure) is such that
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corresponds to the mechanical work associated to a volume variation ( ) Θ
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(due to both the internal pressure in the pore and the fluid/wall interface tension). Let us now consider the grand potential
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, which is the thermodynamic potential associated to the Θ Tµ ensemble.

Its differential is given by:
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is a homogeneous function of degree one in one of its variable: Θ (note that
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V is a constant). The application of Euler's theorem gives the equivalent of equation 7 for the Θ Tµ ensemble:
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According to this result, a Monte Carlo simulation in the NΠT-ensemble allows to calculate directly the average coverage of the fluid as a function of the generalized pressure, that is to say the grand potential, for any fluid adsorbed in a pore presenting a rotational invariance around its axis. Despite the fact that this thermodynamic formalism is quite natural for systems presenting a rotational invariance, it has never been applied to fluids adsorbed in pores. The aim of this paper is precisely to show that it is possible to deduce, from that formalism, a Monte Carlo algorithm able to sample the NΠT ensemble, exactly like for the usual NPT-ensemble. The statistical point of view presented in the next subsection gives directly the Monte Carlo algorithm to sample the NΠT ensemble.

5-3: The statistical mechanics point of view

Let us consider a fluid adsorbed in a pore presenting a rotational invariance along its axis. The natural coordinates in such a symmetry are the cylindrical one (r,θ, z) where r is the radial distance of the particle to the axis, θ is the angle between the radial vector and a given reference vector, and z is the axial coordinate. To avoid any confusion with the radial distance r, the 3D vector defining the position of the particle i is written i x . Due to the rotational invariance of the pore, the potential describing the fluid/wall interaction depends only on r and z:
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where Λ is de Broglie wavelength, β = 1/kT with k the Boltzmann constant, U is the intermolecular interaction energy of the N particles confined in a pore of radius R and length L. In cylindrical coordinates 1 Firstly, the (cylindrical) coordinates are free to take any real value within a given interval :
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defining the phase space.

2 Secondly, the statistical weight of a given configuration is given by a Hamiltonian which decomposes in two parts: an external potential contribution (one body term) and a many bodies (interaction) term.

Each particle evolves in an environment where it " sees" (interacts) with any particle which falls within the same interval as those defined by equation 15.

3 These interaction terms are given by the relative distances between the particles. However, to reduce boundary effects, the periodic boundary conditions are generally used: the system is made periodic in the axial direction (tore-like topology). The mutual distance between two particles is then not uniquely defined (two distances exist, depending on the path used to link two points on a circle). The minimal image convention consists in considering the smallest as " the distance between the two particles" . In other words, the algebraic axial distance between two points z 1 and z 2 is

∆z = z 2 -z 1 modulo L = z 2 -z 1 [L] (16) 
Two particles interact if their mutual axial minimal distance z ∆ is smaller than L/2. It is to be noted that the periodic boundary conditions have to be accompanied by this improved definition of the distance between particles, which is the required quantity to calculate the interaction energy. Note that in the angular coordinate direction the periodicity is natural (modulo 2π), and here again two particles interact only if their mutual angular distance ∆θ = θ 1 -θ 2 [2π] is smaller than π in absolute value. The formula giving the distance d between the particles is then:
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It is important to note that these three prescriptions being given, the original physical situation may be forgotten. The partition function (equation 14) can now be seen as a purely mathematical procedure to calculate the physical properties of the system through formula linking physical quantities to this partition function, like the identification of the free energy to the logarithm of Q. The physical meaning of the cylindrical coordinates may be forgotten.

It is now possible to extend this mathematical statistical analysis to take into account the previous thermodynamic developments. For instance, from a purely mathematical point of view, the 2π periodicity imposed to the second variable (θ) may look arbitrary. Of course, its physical origin is clear, but if one forgets that θ was originally an angular coordinate, the choice of its interval could now a priori be different. The external potential in the mathematical expression of Q is the only point to be considered for the definition of the intervals for the three variables: for instance the first variable r should be limited to [0,R] because the potential if not definite for r<0 and infinite for r>R. Similarly, the modulation of the external potential along the third coordinate (z) imposes a natural interval for z: ]-L/2,L/2]. However, since the expression of the external potential is independent of the second coordinate (θ), the 2π periodicity is arbitrary, and can be replaced by any arbitrary interval of extension Θ. The physical justification of this is that the rotational invariance of the external potential allows to consider slices of the system of angular extension Θ, as explained in the previous thermodynamic point of view. The constraints (phase space) given by equation 15 should now be replaced by:
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As for the axial coordinate, finite size (or boundary) effects are minimized by periodization of the angular coordinate (period Θ). The angular separation between two points θ 1 and θ 2 has then two possible values, and the minimal image convention is adopted, which consists in considering the smallest value as the good angular distance between the two points. In other words:

∆θ = θ 1 -θ 2 [Θ].
Note that this periodization procedure is standard and commonly used in any simulation work. Its impact on the physical results is evaluated by considering different sizes. This will be done for L and Θ.

Let us now define the geometric distance between two points (r 1 ,θ 1 ,z 1 ) and (r 2 ,θ 2 ,z 2 ), with ∆θ = θ 1 -θ 2 [Θ],

and ∆z = z 2 -z 1 [L]. In order to preserve the local topology of the space, the same formula as equation 17 will be used. However, this formula is valid only for ] ]

π π θ ; - ∈ ∆
. For the other cases, it is not necessary to define a distance since, as was shown previously in the second point, particles more than π radians apart do not interact. However, for completeness, such a distance has been defined for π θ > ∆ . The distance d between the particles is then given by:
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Note that these equations really define a distance (from a mathematical point of view) since
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for any given triplet of particles. Furthermore, for two points close enough ( π θ ≤ ∆

), one recovers the usual physical distance in cylindrical coordinates. The proposed generalization is then compatible with the physical constraints imposed by the system. The particles interact if π θ ≤ ∆ : their mutual distance in that case (eq 19) is exactly the same as the physical distance (eq 17), that is to say the energies are identical. The environment " seen" by a given particle is identical to the ordinary 3D space for Θ>2π since two particles interact only for π θ ≤ ∆ . In the case where Θ<2π, the environment " seen" by the particle is limited to Θ, that is to say the angular size of the simulation box due to the minimal image convention. In the following, it will be shown that this special case introduces finite size or boundary effects, which are absent for Θ>2π.

Let us now write the canonical partition function for a system of particles evolving in this extended phase space (eq 18):
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where the interacting terms for U are calculated only for particles which verify π θ ≤ ∆ . In the case of a homogeneous pore (external potential independent on the axial direction z, which implies that the fluid is homogeneous along this direction) containing a fluid with short range interactions in the same axial direction, it is straightforward to get convinced that this integral results in a power law in the axial extension L (in other words, the logarithm of Q, or the free energy, is proportional to L). In the heterogeneous cases considered in this paper, the external potential is independent on the angular coordinate, and the interactions in that direction are short range (angular cutoff of π). Then the same argument as previously shows that the integration results in a power law in Θ, of a function which depends only on intensive parameters, like the temperature, the density of particles, etc. A natural choice for this function consists in taking the partition function for Θ = 2π, which corresponds to the angular cutoff:

( ) ( ) π π π 2 , , 2 , , 2 , , , , Θ Θ Θ       = extended T L R N extended T L R N Q Q (22) ( ) [ ] π 2 , , , Θ = T L R n Q (23)
where

( ) T L R n Q , , ,
is the partition function of the initial real pore (in the usual 3D space), containing n particles so that the global coverage n/(πR 2 L) is equal to the global coverage of the extended pore 2N/(ΘR 2 L). This argument shows that the extended partition function is a power law (in the size Θ of the system) of the usual partition function of the 3D pore (Θ=2π). The free energy (logarithm of Q) divided by the system size is then identical for both the extended and the initial system: both representations are then equivalent from a statistical mechanics point of view.

Is it possible to represent this extended parameter space? The space defined by the equations 18, 19 and 20 correspond to the usual 3D space for Θ=2π. For Θ<2π it can be represented by a portion of space as shown in fig 4, that is to say the portion of space defined by a dihedron of angle Θ. However, for Θ>2π the whole extended space cannot be represented in 3D space. However, it can always be represented locally, around any geometric point of coordinates (r 0 ,θ 0 ,z 0 ): the " local" portion of extended space which can be represented is defined by

[ ] ] ] ] ] 2 / ; 2 / , ; , ; 0 0 0 L L z R r - ∈ + - ∈ ∈ π θ π θ θ (24) 
Its angular size (2π) corresponds to the angular interaction cutoff: a particle at position (r 0 ,θ 0 ,z 0 ) interacts with any particle falling into that portion of space. In other words, each particle sees a portion of extended space which corresponds exactly to the real 3D space.

Monte Carlo simulations have been performed in order to check the influence of Θ on the canonical properties of the system (finite size effects). In a first step, the simple extended canonical ensemble is considered. Since the volume and temperature are fixed, the relevant (conjugate) thermodynamic quantities are the pressure and the internal energy. However, the pressure cannot be calculated directly in porous material in canonical ensemble (the virial method cannot be used for instance). Then, we focused on the internal energy. The extended canonical ensemble is performed as a usual canonical Monte Carlo simulation in the extended space, with displacements trials performed as follows. Let us consider a given particle of cylindrical coordinates (r 0 ,θ 0 ,z 0 ). This particle is moved according to a " displacement vector D " which verifies two criteria: its length is chosen arbitrarily in a given interval [ ] max ; 0 D , and its direction is arbitrary to preserve isotropy. The figure 5 shows a 2D representation of the portion of extended space around the particle initial position (r 0 ,θ 0 ,z 0 ) in the radial and angular directions only (the axial coordinate is not represented for clarity). Since the geometric characteristics (topology) of the space are identical to the usual 2D geometry in any portion of extended space of angular extension less than 2π, the new cylindrical coordinates can be calculated easily. Let us note ∆r the length of the displacement D, ∆θ its direction relative to the angular coordinate θ 0 (see fig 5), and ∆z its axial component. The new cylindrical coordinates (r 1 ,θ 1 ,z 1 ) of the particle after displacement are given by:

( ) ( ) 2 2 0 1 sin cos θ θ ∆ ∆ + ∆ ∆ + = r r r r (25) ( ) ( ) ( ) 
          ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ + = 2 2 0 0 0 1 sin cos cos cos θ θ θ θ θ θ r r r r r Ar sign ( 26 
)
z z z ∆ + = 0 1 (27)
The associated variation in energy is noted ∆E. This displacement trial is accepted with the probability:

{ } ) / exp( , 1 min T k E P B displ acc ∆ - = (28) 
according to the usual canonical Monte Carlo algorithm. The simulation has been performed for the perfectly homogeneous pore. The results for the averaged configurational energy are given in fig 6 as a function of the extensive parameter Θ (circles). As can be seen, for Θ < 2π, the configurational energy is not proportional to the size Θ of the simulation box, whereas for Θ > 2π, it is proportional to Θ, as expected for an extensive quantity. The configurational energy coincides with the expected value (solid line passing through the square point at Θ = 2π which corresponds to the conventional canonical Monte Carlo in the usual space). This nice behavior is explained by the constant angular cutoff of π which is used in this calculation. If this was not done, then the energy would increase more rapidly with the system size since more and more particles would be taken into account in the calculation of the energy.

With this constant angular cutoff, each particle " sees" an environment identical to the 3D usual space.

For Θ < 2π, the angular extension of the extended space is smaller than 2π, which results in an underevaluation of the configurational energy (strong finite size effects). In the following, Θ will always be chosen larger than 2π to avoid finite size effects.

5-4: Homogeneous pores: validation of the method

It is expected that for Θ > 2π, the previous formal analysis is equivalent to the initial physical system.

The verification of this equivalence in the generalized isobaric isothermal (NΠT) ensemble on physical systems which can be also treated by the conventional NPT technique is exposed in this section.

Let us now focus on the implementation of the NΠT Monte Carlo technique. The thermalization of the particles is performed as previously for the extended canonical ensemble, with the displacement acceptance probability given by formula 28. The second type of trials in NPT ensemble consists in changing the volume of the simulation box. In our case of interest, where the external potential presents a rotational invariance, the natural way to perform volume changes is along the angular coordinate. The size Θ of the simulation box is the conjugate parameter associated to the generalized pressure Π as introduced previously. Let us note ∆Θ the (small) change in Θ. A new molecular configuration occupying the new volume is deduced from the initial configuration by simple homothetic transformation, as standard procedure in NPT ensemble Monte Carlo simulation. Formally, the new coordinates (r i ',θ i ',z i ') are given by: r i ' = r i , θ i ' = (1+∆Θ/Θ) θ i , and z i ' = z i . The change in energy is noted ∆Ε. The acceptance probability for this volume change trial is given by the same formula as 9, with the generalized pressure Π and the volume V replaced by V=ΘR 2 L/2 : (33) This extended procedure has been implemented for the perfectly homogeneous pore of reduced radius 4.
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As seen previously in the canonical analysis, the angular size Θ should be maintained larger than 2π during the simulation. Two simulations where performed, where the angular size is allowed to fluctuate reduced average coverage as a function of the reduced pressure P* or Π* for two temperatures. The results show the perfect equivalence of both techniques within few percent, that is to say the identification of the generalized pressure Π to the usual pressure P. This is expected since both formula 7 and 12 giving Ω are valid for the homogeneous pore. grand potential is by combining the new proposed method which allows to calculate directly the grand potential for any given point of each branch, and the Gibbs equation (eq. 3) to integrate the grand potential along each branch. Several direct calculations can be performed on each branch to evaluate the errors, which should not exceed few percents (see Fig 9).

6: DISCUSSION AND CONCLUSION

This preliminary study aimed at showing how the isobaric-isothermal NPT ensemble can be used to considerably fasten the thermodynamic study of confined fluids. The GCMC method gives the adsorption/desorption isotherms as a function of the chemical potential. The possible " phases" correspond to the different branches of the isotherm, which can be very numerous in heterogeneous pores. The NPT method gives directly the pressure for any fluid state. It is enough to choose one point per branch. Multiplied by minus the volume, the pressure gives the grand potential for each chosen state.

The Gibbs equation (eq 3) is then used to obtain very rapidly the grand potential along the isotherm branches. For any given chemical potential, the stable phase is the one with the lowest grand potential, or largest pressure, the other being metastable. This method is much more efficient than the complete integration scheme which obliges to calculate one constant-µ reversible path for each " phase" . However, the NPT method could not be used for heterogeneous pores. In the case where the invariance per rotation is preserved, which is realistic for heterogeneity extensions larger than the pore diameter, this invariance is used to implement an isobaric method able to predict directly the grand potential of the system. Such direct methods are appreciated since they enable calculations in large systems. The proposed method is actually the first direct calculation of the pressure (or grand potential per unit volume) in pores which no not present a translation invariance, as the chemically heterogeneous pore.

This study has shown that the introduction of a simple chemical heterogeneity strongly affects the thermodynamic behavior of a fluid. A new state of intermediate coverage appears, named " bridgephase" by several authors. [36][37][38][39][40] The size of the system may not be large enough to make sure that this phase has a real thermodynamic status. This point was discussed by Evans 51 who showed that despite the fact that a true phase transition in a finite system cannot exist, it may appear sharp enough to be assumed as a phase transition, in which case the observed " phases" may have a thermodynamic sense. However, it is very interesting to introduce more disorder in larger systems to observe its influence on the thermodynamic properties, and check if these " phases" persist when the system size increases.

Preliminary studies shows that the number of " phases" increases very rapidly with disorder. The new method introduced should facilitate the study of such more realistic systems since it considerably improves the calculation procedure for the grand potential, specially in situations where many " phases" appear. This method should help to answer some questions on the thermodynamics of fluids confined in disordered materials, with a molecular point of view. Such studies are complementary to lattice-gas models, which have proven the importance of disorder to understand the experimental results. 33,52,53 The proposed generalization of the NPT Ensemble can also be applied to the Gibbs statistical ensemble, which allows to calculate directly the coexistence curves of confined fluids. 47,54 These studies have also proven to be very complementary. Geometric representation of the extended space (eq 18-20) around a given point of radial, angular and axial coordinates r 0, θ 0 , and z 0 . For clarity, the axial coordinate is not represented, and the angular coordinate is limited to [θ 0 -π;θ 0 +π]. After translation (D) the coordinates r 1, θ 1 , and z 1 are given by eq 25-27. Reduced coverage Γ* for a Lennard-Jones fluid immersed in the extended space (eq 18-20), in the perfectly homogeneous pore of reduced diameter 8, as a function of the applied reduced generalized pressure Π* (angular isobaric-isothermal ensemble Monte Carlo results). Two system sizes are considered, so that the angular size Θ fluctuates around 4π (circles) or 6π (squares). 

(

  smooth-wall approximation). The external potential is obtained by integration of the Lennard-Jones potential over the uniform distribution of substrate sites (CO 2 ) around the cylindrical void representing the pore. The reduced density of the substrate sites is 8265 solid CO 2 of density 1530 kg/m 3 . Note that the calculated external potential has a cylindrical symmetry, and depends on the radial distance only. It is noted

Fig 3

 3 Fig 3 in reduced units, for both temperatures (T*=1.20 and 0.77, circles). The curves are very similar to

  statistical system reproducing the same partition function is equivalent to the initial physical situation. The three main points characterizing this partition function are the following:

  around 13 radians (around 2 times 2π) and 19 radians (around 3 times 2π). The fluctuations are small enough during the simulation to insure Θ>2π every time. The results are given in Fig 7, where the average coverage Γ = 2N/ΘR 2 L is calculated as a function of the applied pressure Π. As can be seen, the simulation box size Θ has negligible influence, showing the internal coherence of the proposed method, and in particular eq. 22. The next point to be checked is the equivalence with the initial physical system: this is shown in Fig 8 where the pressure isotherms calculated in the extended ensemble are shown with the results previously obtained in the usual NPT ensemble (volume variations in the axial direction):
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5-5: Chemically heterogeneous pores

The homogeneous pore studied previously by the new technique allowed to check the equivalence of this method with the usual NPT ensemble. However, such perfect pores have been widely studied in the literature, and heterogeneities should now be introduced to model more realistic pores. The chemically undulated pore introduced previously is an example where the usual NPT method cannot be applied: any change in volume along the axial direction would modify the physico-chemical properties of the adsorbent, like the local curvature radius. On the other hand, the rotational invariance can be used to perform volume changes in the angular direction as described previously. The chemically heterogeneous pore was then studied with the new technique. Two reduced temperatures of 1. isotherm is reversible, and the T=0.77 isotherm present a large hysteresis, and an intermediate coverage " bridge phase" , which is stabilized by the chemical heterogeneity of the pore. The combination of the GCMC isotherms (Γ versus µ) and the new method results (Γ versus Π) allow to discuss the stability of the different " phases" observed in the adsorption/desorption isotherms, as was done in the first section.

It would be useless to reproduce here these comments. However, it is instructive to compare quantitatively both methods. To do so, the previously obtained results for -ω by thermodynamic integration are reported on the same figure (solid lines). As can be seen, the methods are perfectly coherent. The small observable discrepancies never exceed few percent, and are comparable to those observable in Fig 3 . Since the new procedure is a direct calculation of the generalized pressure Π of the system (or the grand potential -ΠV), the results are probably more precise than the thermodynamic integration procedure which may introduce cumulative errors. These results constitute the first direct determination of the grand potential in a pore presenting some heterogeneities along its axis. As previously, from a time consumption point of view, the most efficient way to calculate completely the