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The influence of pore size and chemical heterogeneities on the adsorption / desorption hysteresis loop of a Lennard-Jones fluid confined within simple models of heterogeneous cylindrical nanopores is investigated. The thermodynamic pressure, or grand potential density, is calculated by a new method which was previously developed in mesopores (few nanometers) to allow the introduction of chemical heterogeneities and further improved in this work for micropores (down to molecular diameters). The efficiency of the algorithm is first verified on simple cases. Secondly, we focus on the pore size effect. It is shown to have a weak influence on the capillary condensation phenomenon which occurs always around the same value of the thermodynamic pressure. On the other hand, desorption pressure (corresponding to liquid fracture or cavitation threshold) exhibits a linear dependence with the inverse pore radius. Finally, the effect of chemical heterogeneities, which are characterized by their relative amplitude (< 40%) and wavelength (< 4 nm), is investigated. They are shown to strongly influence the desorption branch of the hysteresis loop. As expected, the liquid fracture is favored by large amplitude heterogeneities. However, for given amplitude, atomic-scale heterogeneities have a minor influence whereas the longest wavelengths considered (4 nm) destabilize the confined liquid. It is proposed to correlate this with the typical size of the bubble critical nucleus.

INTRODUCTION

Many materials present a porous structure where a fluid or a mixture of fluids is confined. These systems are natural or build for industrial purposes. Understanding the properties of fluids confined in such materials is required to predict and/or optimize their behavior. These properties are sometimes reminiscent of the bulk fluid, but most generally, strong modifications do occur [1][2][3][4][5][6]. Simple pore models are still used [7][8][9][10][11][12][13][14][15] to interpret the experimental data in porous materials, specially in regular ones like the mesoporous silica MCM41. However, for quantitative predictions and for more complex systems, the physico-chemical heterogeneities of the material have to be taken into account. Simulation techniques [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF] offer the possibility to consider realistic models of porous materials [START_REF] Pitard | [END_REF][20][21][22][23][24][25][26][27][28][29][30][31][32] (large pore size distribution, non cylindrical pores, interconnections), or fully disordered systems [33][34][35][36].

However, the more realistic the model, the longer the simulation runs. It is sometimes preferable to investigate specific aspects, like the effect of chemical heterogeneities, for instance by modulating the fluid / substrate interactions [37][38][39][40][41][42][43][44][45][46][47][48]. This paper focuses on heterogeneous tubular pores, which have been much less studied than heterogeneous slit pores, while they probably constitute a natural and realistic description of MCM-41 or porous silicon porosity. In order to compare the simulation results with experimental adsorption data, the amount of adsorbed fluid is generally calculated as a function of the chemical potential µ in the Grand Canonical Ensemble [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF]. However, to obtain a full characterization of the fluid properties (free energy, metastability, coexistence, etc.) it is also required to calculate the corresponding thermodynamic potential. Peterson and Gubbins [49] proposed a very general thermodynamic integration procedure to calculate the grand potential Ω. However, this indirect method requires a complete set of adsorption / desorption isotherms, which is time-consuming and then ineffective for large realistic systems. Furthermore, cumulative errors are possible. Direct simulation methods are then preferable. Theoretical expressions for the thermodynamic pressure (or grand potential density) have been proposed for fluids confined in fully disordered systems [50,51]. Perturbative methods (performed in canonical ensemble) have also been proposed [52,53], which have proven to be very efficient as simulation algorithms. The isobaric-isothermal ensemble is another direct method where the grand potential (thermodynamic pressure) is imposed and the system is allowed to equilibrate in the corresponding statistical ensemble [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF]. The problem is that these powerful techniques are generally limited to systems presenting translation invariance like homogeneous fluids, or fluids confined in very simple (slit or cylinders) or fully disordered materials. Taking into account the physicochemical heterogeneities generally breaks this invariance, especially in tubular pores. However, in the case where the physico-chemical heterogeneities are along the pore axis, the axial symmetry may be preserved. In this case, an original approach was proposed to calculate the thermodynamic pressure as a function of the density of a confined fluid using a generalized isothermal-isobaric algorithm [54]. In previous work, the method was applied to large pores (mesopores) of diameter greater than few nanometers, which allowed some approximations. In this paper, the full algorithm is presented. Its validity is checked for various pore sizes down to molecular diameter (micropores) by comparison with usual techniques when possible. It is then applied to various heterogeneous pores to emphasize the influence of the amplitude and size of the heterogeneous domains.

2: THEORY

2-1: The generalized isothermal-isobaric ensemble

The isothermal-isobaric ensemble is complementary to the grand canonical ensemble because it allows calculating the thermodynamic pressure of the system, which gives the grand canonical potential Ω. Indeed, let us consider a fluid characterized by its (imposed) volume V, temperature T, and chemical potential µ (grand canonical ensemble). The differential of the corresponding grand canonical potential ( )

N TS E V T µ µ - - = Ω , ,
where E is the internal energy, S the entropy, and N the number of molecules, is given by:

µ Nd SdT PdV d - - - = Ω (1) 
where P (thermodynamic pressure) is such that PdV corresponds to the mechanical work associated to a volume variation dV . For bulk fluid, P is identical to the mechanical pressure p. For confined fluids, the mechanical work also contains surface terms, and P is in general not equal to the mechanical pressure. If the system presents invariance along at least one direction, then the partial derivatives (like the thermodynamic pressure P) of an extensive thermodynamic quantity (like the grand potential Ω)

with respect to the volume V of the system is independent of its size (homogeneous function of degree zero). In this case, the extensive quantity Ω is a homogeneous function of the first degree of its volume (the only extensive parameter), and Euler's theorem gives:

PV - = Ω (2) 
The grand potential is then calculable by Monte Carlo simulations in the isobaric-isothermal ensemble (constant N, P, and T) [START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF]. The invariance is actually not necessarily translational, and can be generalized to a spherical [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF][START_REF] Nishioka | [END_REF][57] or cylindrical symmetry [47,54]. This last case applies to axisymmetric tubular pores, which may present heterogeneities along their axis. This paper focuses on such pores. In this case, if one considers, as the system, the portion of the pore contained in a dihedron of angle Θ radians (see Fig. 1), the volume is

π π 2 / 2 Θ = V V where π 2 V is the volume of the complete ( π 2 = Θ
) pore of the same length. Due to rotational invariance, all extensive quantities (like volume itself) are proportional to Θ. For instance the energy of the system is given by π

π 2 / 2 Θ = E E where π 2 E
is the energy of the complete π 2 = Θ pore. Considering the fluid contained in this dihedron, its thermodynamic potential (associated to the Θ T µ ensemble) is the grand potential

N TS E µ - - = Ω ,
where N is the number of particles in the dihedron, µ the chemical potential, S the entropy, T the temperature. Its differential is given by: [Insert Fig. 1 about here]

µ π π Nd SdT d V d - - Θ Π - = Ω 2 2 (3)
where Π (thermodynamic pressure) is such that V is a constant), Euler's theorem gives:

( ) Θ Π - d V π π 2 / 2 corresponds
V V Π - = Θ Π - = Ω π π 2 2 (4) 
According to this result, a Monte Carlo simulation in the NΠT-ensemble allows to calculate directly the grand potential Ω of the confined fluid.

In order to deduce the Monte Carlo algorithm, the statistical mechanics point of view is presented now. Let us first consider the complete (Θ = 2π) system consisting of a fluid confined in a tubular pore described by an external potential ( ) z r, pore ψ depending on radial and axial coordinates only. The canonical partition function is given by:

( ) ( ) ( ) ∫         + - ∑ Λ = = N N U N N T L R N e d d N Q 1 i i pore 1 ,..., 1 3 , , , .... ! 1 x x x x x ψ β (5)
where Λ is de Broglie's wavelength, β = 1/kT where k is Boltzmann's constant, U is the intermolecular interaction energy of the N particles confined in a pore of radius R and length L. In cylindrical coordinates (r,θ, z),

( ) ( ) ( ) [ ] N N N N z z r r U R L L N z r N N N N T L R N e d d e dz dz r r dr dr N Q ,..., , ,..., , ,..., 0 2 / 2 / 1 , 1 1 1 3 , , , 1 1 1 1 i i i pore ... .... ... ... ! 1 θ θ β π π ψ β θ θ - - -         - ∫ ∫ ∫ ∑ Λ = = (6)
The intermolecular energy U generally depends on the mutual distances r ij between particles i and j.

Note that this is not restrictive to pairwise additive intermolecular potentials. One has:

( ) 2 i j j i 2 j 2 i 2 ij cos 2 z r r r r r ∆ + - - + = θ θ ( 7 
)
where ∆z is the distance between the two particles along the axial direction. Since simulations are performed in relatively small finite systems, periodic boundary conditions are generally introduced to reduce boundary effects: the system is made periodic in the axial direction. In this tore-like topology, the mutual distance between two particles can take two values, depending on the path. The minimal image convention consists in considering the smallest as "the distance between the two particles". In other words, the algebraic axial distance between the two points is:

∆z = z j -z i modulo L = z j -z i [L] (8) 
Note that in the angular coordinate direction the periodicity is natural (modulo 2π), while in the radial direction no periodicity is required since the system is confined along that direction. The integration boundaries in Eq. 6 take into account these physical constraints:

[ ] ] ] ] ] 2 / ; 2 / , ; , ; 0 L L z R r - ∈ - ∈ ∈ π π θ (9) 
The formula 6 to 9 allow the calculation of ( )

T L R N Q , , ,
, which completely characterizes the statistical mechanics of the system through the identification of the free energy to Q kT ln -. It is now possible to detach from the original physical system, and find a mathematically equivalent formulation of these equations which would allow taking into account the previous thermodynamic developments on the dihedron Θ.

Let us reexamine the conditions defining the phase space for the three variables. Both conditions on r and z are imposed by the function

( ) z r, pore ψ
which appears in Eq. 6. However, the condition on the

second variable ( ] ] π π θ ; - ∈
) looks arbitrary if one forgets its physical origin. It is then proposed to introduce an arbitrary interval for the second variable:

[ ] ] ] ] ] 2 / ; 2 / , 2 / ; 2 / , ; 0 L L z R r - ∈ Θ Θ - ∈ ∈ θ (10) 
As usual, periodic boundary conditions are introduced for the variable θ, as well as minimal image convention, i.e. the algebraic angular distance between two particles i and j in the direction θ is

i j θ θ θ - = ∆ modulo Θ = [ ] Θ - = i j θ θ (11)
The formula giving the distance between two particles has now to be generalized to

2 j i 2 j 2 i 2 ij cos 2 z r r r r r ∆ + ∆ - + = θ if π θ ≤ ∆ (12) 2 2 j i 2 ij ) ( z r r r ∆ + + = if π θ > ∆ (13) 
Note that these equations really define a distance from a mathematical point of view since

kj ik ij r r r + ≤
for any given triplet of particles. Furthermore, for two points close enough ( π θ ≤ ∆

), one recovers the usual physical distance in cylindrical coordinates. The proposed generalization is then compatible with the local topology of the original physical space. The last point to be generalized is the function U which was originally defined only for π θ ≤ ∆ between all subgroups of interacting particles (pair, triplet, etc).

It is natural to generalize the function U by keeping the same function for π θ ≤ ∆

, and setting its value to zero every time π θ > ∆ for at least two particles of the subgroup. A two-body interaction term keeps its usual value if π θ ≤ ∆ and equals zero otherwise. A three-body term keeps its usual expression if the three particles fall within an angular interval smaller than π, and is zero if two particles are more than π apart along the θ coordinate, etc. With these prescriptions concerning the inter-particle distances and interaction potential, the environment "seen" by any given particle in this generalized space is identical to that "seen" in the ordinary three-dimensional space. This can be seen on Fig. 2 which represents a portion of the generalized space around a given particle (particle 1). In order to simplify the figures, the axial coordinate z is not considered here. Two representations are proposed: in the first one (Fig. 2a) the radial and angular coordinates of the particles are reported on the usual cylindrical coordinate system.

The advantage is that the metric of the generalized space is respected, i.e. the distances between the particles are exact. However, only a limited portion of extension 2π around particle 1 can be drawn on this figure. The cuts in the angular direction at θ = ± π are materialized by the thick line. In the second representation (Fig. 2b), the radial and angular coordinates are reported on a Cartesian axis system. The advantage is that the whole generalized space can be drawn, i.e. for angular coordinates out of [-π,π].

One has however to keep in mind that the metric is distorted, i.e. the distances between the particles are not exact on Fig. 2b. Five other particles are represented, the position of which being given by the crosses. As previously mentioned, particle 1 interacts with these particles since their angular distance to particle 1 is less than π. On the other hand, particles 2 and 3 do not interact because their mutual angular distance θ ∆ is larger than π. Let us now focus on the particles close to the pore axis, for instance particles 5 and 6. If their mutual distance is less than one van der Waals radius, the particles are expected to repel. To clarify the situation, the van der Waals radii of the particles have been materialized

by circles in Fig. 2a (diameter 1 in reduced units). The same van der Waals disks are represented in the lower figure. Note the strong distortions, especially close to the pore axis (r = 0). In this representation, the shape of the van der Waals disk depends only on the radial coordinate of the particle. The distortion is continuous with the radial coordinate, except for r = 0.5, that is to say when the van der Waals disk touches the pore axis. This is the case for particle 4. To appreciate the discontinuity, the particle 4 has been represented three times in Fig. 2b, for radial positions r = 0.51, 0.5 and 0.49. Note that when the particle overlaps the central axis, the hard disk extension in the angular coordinate discontinuously jumps from π to 2π. Note also that in the case where the radial coordinate is smaller than the van der Waals radius (particles 5 and 6) the disk cannot be entirely represented in the upper figure since these particles span beyond the angular limits [-π,π]. On the other hand, they are entirely represented in the lower panel. Considering particle interactions, Fig. 2b clearly shows that in the case of particles close to the pore axis, the overlapping between the van der Waals disks dominates. Since, for such particles, the angular extension of the van der Waals disk is always equal to 2π (see Fig. 2b), the particles repel if their mutual angular distance is smaller than 2π. This is why for particles very close to the pore axis, the angular cutoff switches to 2π. This discontinuity is intimately related to the discontinuous jump in the angular extension of the van der Waals disk when the particles touch the pore axis, as previously explained with the example of particle 4. To summarize, let us introduce a distance δ of the order of the van der Waals diameter. If two particles are very close to the pore axis (less than δ/2) they repel if their mutual angular distance θ ∆ is less than 2π. On the other hand, if the particles are far from the pore axis (more that δ/2), they interact if their mutual angular distance θ ∆ is less than π. This ensures that the environment " seen" by the particles is identical to the ordinary three-dimensional space. It is shown (see next section) that a fine tuning of the δ parameter is not necessary: any value around the van der Waals diameter is efficient in avoiding the overlapping of particles close to the central axis. The extended system is now entirely defined and the usual statistical mechanics analysis can be used to calculate the new canonical partition function:

( ) ( ) ( ) [ ] N N N N z z r r U R L L N z r N N N N T L R N e d d e dz dz r r dr dr N Q ,..., , ,..., , ,..., 0 2 / 2 / 2 / 2 / 1 , 1 1 1 3 extended , , , , 1 1 1 1 i i i pore ... ... ... ... ! 1 θ θ β ψ β θ θ - - Θ Θ -         - Θ ∫ ∫ ∫ ∑ Λ = = (14)
where the interaction terms are calculated according to the previous prescriptions. We are now in a position to establish the relation between the two partition functions defined by Eqs. 6 and 14 and show the equivalence between the two systems. Let us consider an extended space twice as large as the previous one along the θ coordinate, and 2N particles evolving in this space (in other words the system is doubled). The new partition function reads: 

( ) ( ) ( ) ( ) [ ] N N N N z z r r U R L L N z r N N N N T L R N e d d
θ θ β ψ β θ θ - - Θ Θ -         - Θ ∫ ∫ ∫ ∑ Λ = = (15)
The complete system can be divided in two parts ( ] ]

0 ; Θ - ∈ θ and ] ] Θ ∈ ; 0 θ
) labeled 1 and 2. The 2N particles can also be split in two corresponding subgroups N 1 and N 2 , with internal energies U 1 and U 2 and an interaction term U 12 between the two subgroups such that U = U 1 + U 2 + U 12 . The integral then splits in several terms depending on the number N 1 of particles in the first interval. The most probable and energetically favorable configuration corresponds to an equal division of the particles between the subsystems: N 1 = N 2 = N. Since particles are indistinguishable, many contributions are strictly identical.

Their number is given by the number of way 2N particles can be split in two identical groups:

(2N)!/(N!) 2
. By construction, U 1 (resp. U 2 ) contains only interaction terms between particles in the first (resp. second) interval, while U 12 contains crossed terms. These crossed terms are in general not ,..., , ,..., , ,...,

0 2 / 2 / 2 / 2 / 1 , 1 1 1 2 6 extended , , 2 , , 2 1 1 1 1 1 i i i pore ... ... ... ... ! 1           ∑ Λ = - - Θ Θ -         - Θ ∫ ∫ ∫ = N N N N z z r r U R L L N z r N N N N T L R N e d d e dz dz r r dr dr N Q θ θ β ψ β θ θ ( ) ( ) 2 extended , , , , T L R N Q Θ = (16) 
This equation can be generalized to any size ratio as long as the subsystems are larger than the interaction range in the angular direction. A natural choice for the subsystem size is Θ 1 = 2π, which corresponds to the original physical situation:

( ) π π π 2 extended , , 2 , , 2 extended , , , , Θ       Θ Θ         = T L R N T L R N Q Q (17) ( ) [ ] π 2 , , , Θ = T L R n Q (18)
where ( )

T L R n Q , , ,
is the partition function of the initial real pore in the usual 3D space (Eq. 6), containing n particles so that the density n/(π R 2 L) is equal to that in the extended pore 2N/(ΘR 2 L). This argument shows that the extended partition function is a power law (in the size Θ of the system) of the usual partition function of the 3D pore (Θ = 2π). The free energy ( Q kT ln -) divided by the system size is then identical for both the extended and the initial systems: both representations are then equivalent from a statistical mechanics point of view. Coming back to the possible finite size effects evoked previously, it has been shown elsewhere [54] that such effects are unobservable as long as π 2 > Θ .

2-2: The generalized isothermal-isobaric Monte Carlo algorithm

The objective of this paragraph is to present a Monte Carlo algorithm to sample the extended isothermal-isobaric ensemble. This algorithm is an adaptation of the classical isothermal-isobaric [START_REF] Allen | Computer simulation of liquids[END_REF] one to the extended space presented previously. It decomposes in two parts, corresponding to thermalization, and volume variations. Thermalization is performed through particle displacements trials. Let us consider a particle with cylindrical coordinates (r 0 , θ 0 , z 0 ). This particle is moved according to a " displacement vector D " which verifies two criteria: its length is chosen arbitrarily in a given interval [ ] max ; 0 D , and its direction is arbitrary to preserve isotropy. The displacement is generally small: the particle positions before and after the displacement are then close enough to be within an angular extension less than π. The usual metric (Eq. 12) then applies, and the new cylindrical coordinates can be easily calculated. Let us denote ∆r the length of the displacement D, ∆θ its direction relative to the angular coordinate θ 0 of the initial position, and ∆z its axial component (see Fig. 3). The new cylindrical coordinates (r 1 , θ 1 , z 1 ) of the particle after displacement are given by: [Insert Fig. 3 about here] 

( ) ( ) 2 2 0 1 sin cos θ θ ∆ ∆ + ∆ ∆ + = r r r r (19) ( ) ( ) ( )           ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ + =
z z z ∆ + = 0 1 . ( 21 
)
The associated variation in energy is denoted ∆E. According to the usual Monte Carlo algorithm, this displacement trial is accepted with the probability:

{ } ) / exp( , 1 min displ acc kT E P ∆ - = . ( 22 
)
Since the size Θ of the simulation box is the conjugate parameter associated to the generalized pressure Π previously introduced, the second kind of trials in the isobaric ensemble consists in changing the volume of the simulation box by small angular increments denoted ∆Θ. A new molecular configuration occupying the new volume is deduced from the initial configuration by simple homothetic transformation, as standard procedure in isobaric Monte Carlo simulation. Formally, the new coordinates (r i ' , θ i ' , z i ' ) are given by: r i ' = r i , θ i ' = (1+∆Θ/Θ)θ i , and z i ' = z i . The change in energy is denoted ∆Ε. The acceptance probability for this volume change trial is given by the standard formula [START_REF] Allen | Computer simulation of liquids[END_REF] where the volume is replaced by ΘR 2 L/2 :

                  Θ ∆Θ + + + ∆Θ Π + ∆ - = ) / 1 ln( ) 1 ( / ) 2 ( exp , 1 min 2 vol acc N kT LR E P ( 23 
)
As mentioned previously, the angular size Θ should be larger than 2π during the course of the simulation to avoid finite size effects. In the following, the angular size is chosen around 13 radians, which corresponds to 2 times 2π, and allowed to fluctuate around this value. The fluctuations are small enough during the simulation to insure Θ > 2π every time.

3: SIMULATION RESULTS

3-1: Validation of the method

The first point to be shown is the efficiency of the proposed method. For large pores, this was performed elsewhere [54]. The algorithm was proven to be much faster and more accurate than integration procedures which are the only other possible methods to calculate grand potential in heterogeneous pores. These performances were shown for a wide range of temperatures and densities (from diluted gas to dense liquid at various temperatures). The aim of this section is to focus on small pores, and determine the influence of the δ parameter previously introduced.

As a first step, the model capillaries are chosen to be cylindrical pores of radius R. For the sake of simplicity, all intermolecular interactions are supposed to be Lennard-Jones like. The interaction parameters entering the potential are those of Argon for the fluid, and Argon-Carbon dioxide to model the fluid / substrate interactions. This model was previously used by other authors [8,9,49,58], which allow comparisons of the new method with previous calculations. For more details see also Ref [46].

The Lennard-Jones parameters are given in Table 1. All thermodynamic quantities are normalized to the Ar-Ar parameters (reduced quantities, denoted by an asterisk). The interaction sites of the solid matrix are supposed to be uniformly distributed (smooth wall approximation), and the fluid / adsorbent interactions are integrated to calculate the external potential

( ) r R cyl ψ
for an infinite pore of radius R.

Figure 4 shows the different external potential fields obtained for various pore radii. As expected, the smaller the pore, the deeper the resulting fluid / wall interaction.

[Insert Fig. 4 about here]

[Insert Fig. 5 about here]

The choice of simple cylindrical pores allows comparison of the new method (denoted NΠT) with the usual NPT Monte-Carlo algorithm with volume variations along the pore axis [58]. The results are shown in Fig. 5 where the global reduced density of the confined fluid, defined as the total number of particles divided by the reduced volume ΘR* 2 L*/2, is given as a function of the reduced pressure. This quantity is averaged during the course of the simulation, for two temperatures and four pore radii of 1.5, 2.0, 3.0 and 4.0 in reduced units. The parameter δ is set equal to the van der Waals radius σ Ar-Ar . As can be seen, both methods give identical results for a wide range of fluid densities and pore radii. This validates the algorithm. The last point to be discussed is the choice of the δ parameter. Let us first introduce a quantity to measure the discrepancy between the new method and the expected results:

( ) ∑ - = n n 1 2 * T P N * T N 1 ρ ρ χ ( 24 
)
where ρ* = N / V* is the global averaged density, NΠT stands for the generalized isobaric-isothermal simulation in the extended space, NPT stands for the classical isobaric-isothermal simulation, and the summation is performed over the n data points of the curves. The lower χ , the better the agreement between both methods. Note that the lowest possible value of χ is given by the uncertainty in the simulation results. This quantity is shown in Fig. 6 for various pore radii and δ values. As can be seen, the larger the pore, the better the agreement between the methods. In the case of the largest pore, the agreement is within errors whatever the δ parameter. On the other hand, disagreements are important in the smallest pore, especially for δ* = 0. This is expected in this strongly confined situation because the molecules spend a lot of time very close to the central axis. The disagreement is also expected to be strong for large values of δ, because in this case the additional prescription introduces an excessive repulsion. The natural choice δ* = 1, which consists in taking δ as the van der Waals radius, appears to be the best choice to minimize χ down to statistical uncertainty for all pore radii. As can be seen, a good agreement (low χ value) is actually obtained for a wide range of δ values (flat minimum),

showing the weak sensitivity of the method to the exact value of the δ parameter. This was expected since this parameter was simply introduced to suppress the topological artifact close to the central axis and avoid particles overlapping along the axis.

[Insert Fig. 6 about here]

[Insert Fig. 7 about here]

3-2: Influence of pore radius and chemical heterogeneity

The generalized isobaric-isothermal method has first been used to calculate the fluid density as a function of the thermodynamic pressure in cylindrical pores of various sizes. Figure 7 shows that the pore diameter strongly influences the adsorption / desorption isotherms. The hysteresis is shown to shrink for small pores, until it eventually disappears for the so called pseudo-critical pore. Such behavior was previously described by other authors [7]. However, when plotted as a function of the thermodynamic pressure as in Fig. 7, the adsorption isotherms show a quite remarkable result: the point of capillary condensation, which corresponds to a sudden uptake of fluid, occurs for the same thermodynamic pressure whatever the pore diameter. Interestingly, even for reversible adsorption isotherms, a vertical slope is observable at the same thermodynamic pressure, except for the smallest pore. This suggests that the thermodynamic pressure is a good parameter to characterize fluid adsorption and that capillary condensation occurs as a divergence of the amount adsorbed when a thermodynamic pressure threshold is reached. On the other hand, the fluid evaporation (which corresponds to sudden desorption) occurs for a thermodynamic pressure which decreases as the pore size increases. Negative values are eventually reached, which means that tensile strength is necessary to fracture the liquid, in agreement with recent experimental results [59]. When gas condensation and cavitation pressures are reported as a function of the inverse pore radius (see Fig. 8), condensation shows no dependence, while cavitation pressure exhibits a linear dependence. The origin of this simple behavior is not yet clear.

However, in a simple classical point of view, the thermodynamic pressure of a fluid confined in a pore of radius R is given by

= Π L R P / 2 LW L γ -
where L P is the classical internal pressure in the liquid and LW γ is the liquid / wall surface tension. If it is supposed that the liquid fracture (cavitation) mechanism is controlled by the fluid internal pressure, then one expects the linear dependence shown in Fig. 8, with a slope given by LW 2γ , characteristic of the fluid / substrate interactions.

[Insert Fig. 8 about here]

The most interesting issue is to evaluate the influence of the pore heterogeneities on the adsorption / desorption properties. These heterogeneities originate in geometric undulations and variations of the chemical nature of the surface which modulate the fluid / substrate interactions. In a previous work, it was shown that moderate purely geometric deformations of the external potential does not influence the adsorption properties, while amplitude modulations have strong consequences [46,47]. In the following we focus on such amplitude modulations of the external potential, characterized by their amplitude A and wavelength λ:

[Insert Fig. 9 about here]

( ) ( ) ( ) r z A z r R R cyl heter / 2 cos , ψ λ π ψ = (25) 
where

( ) r R cyl ψ
is the external field in the perfectly cylindrical pore of radius R previously introduced (see Fig. 4). The amplitude is chosen smaller than 0.4 to remain weak, and the wavelength is taken as simple fractions of the simulation box size (L* = 12): λ* = 2.4, 4.0, 6.0, and 12.0. These values describe atomic roughness to large scale heterogeneities. The undulated potential is modulated along the pore axis. Our generalized isobaric isothermal formalism is then the only one able to give the density versus thermodynamic pressure isotherms. In this study, we focus on pores of radius R * = 2.5. A hysteresis is always observed, but its width depends on the heterogeneity characteristics. In the following, we focus on the capillary condensation and evaporation (cavitation) processes, and the associated thermodynamic pressures. The capillary condensation has shown to be weakly influenced by the presence of heterogeneities, with an almost constant value of the associated thermodynamic pressure (but, of course, not necessarily the same chemical potential). On the other hand, the process of desorption is shown to be more sensitive to heterogeneities (see Fig. 9). As can be seen, for a given wavelength, the larger the amplitude the larger the thermodynamic pressure of desorption, and, for a given amplitude, the shorter the wavelength the smaller the thermodynamic pressure. Note that a low thermodynamic pressure of desorption corresponds to an enhanced liquid stabilization in the pore, while larger values are associated to an easy liquid fracture. The chemical heterogeneities of large amplitude and wavelength are then shown to destabilize the metastable liquid confined in the pore. These results may be explained as follows. The rapid desorption is believed to occur by a cavitation process. Fluid / wall affinity is known to greatly influence the nucleation barrier. For instance, the presence of weakly attractive domains may be considered as possible sites for gas bubble nucleation at the walls. In the case of a sinusoidal modulation, large amplitude produces strongly attractive domains, but also weakly attractive regions which may favor gas bubble nucleation. This explains why the liquid is destabilized by large amplitude heterogeneities. Let us now consider the wavelength influence. Of course, the shorter the wavelength, the larger the number of possible nucleation sites. However, the most important in nucleation processes is the energetic barrier, which is lowered if the weakly attractive domain is as large as the nucleation critical radius (nanometer size). As a consequence, as long as desorption processes are considered, relevant chemical heterogeneities are not those associated to atomic roughness but nanometer scale heterogeneities.

3: CONCLUSION

Considering the adsorption / desorption phenomena in porous materials, most of simulation works performed in order to explain experimental results focus on the calculation of the adsorption / desorption isotherms in the grand canonical ensemble. However, a complete characterization of the fluid requires the calculation of the associated grand potential given by the thermodynamic pressure. This paper

proposes a new algorithm able to calculate directly this quantity as a function of the confined fluid density. It does not require a complete set of isotherms like for integration procedures. This work first

shows that the results obtained with the new algorithm are undistinguishable from the usual direct calculation methods in cylindrical pores of any diameter, which validates its implementation.

Furthermore, this new algorithm is the first one which can be applied to any tubular pore presenting physico-chemical heterogeneities along its axis. This study focuses on sinusoidal-like modulations of the external field created by an initial cylinder, mimicking a series of more and less attractive domains in the pore. The results show a broad adsorption / desorption hysteresis loop in large pores, which shrinks for small pores. The thermodynamic pressures (grand potential densities) delimiting the hysteresis loop (capillary condensation and rapid desorption points) are calculated as a function of the pore size in cylindrical pores. The capillary condensation shows weak dependence. On the other hand, the evaporation pressure shows a linear behavior with the inverse pore diameter. In a simple classical capillary point of view, the slope is shown to be characteristic of the fluid / substrate interactions if one supposes that the cavitation threshold depends on the liquid internal pressure only. Introducing sinusoidal modulation of the external field has minor consequences on capillary condensation which seems to occur always for the same thermodynamic pressure (but not necessarily the same chemical potential). On the other hand, the cavitation pressure shows interesting behavior which can be summarized as follows: The larger the amplitude and the wavelength of the modulation, the larger the pressure, and then the easier the cavitation process. In other words, strong chemical heterogeneities favor the confined liquid fracture because nucleating bubble sites are created. It also shows that long wavelength heterogeneities are very efficient in destabilizing the metastable liquid state, whereas short wavelengths of the order of the atomic roughness are significantly less efficient. It is proposed that the chemical heterogeneity is most efficient for a typical wavelength of the order of the size of the critical gas nucleus. Further investigations are underway in larger systems (several nanometers) and using the temperature dependence of the critical radius, to enlighten this point.
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TABLE 1 :

 1 Lennard-Jones argon / argon and argon / solid CO 2 interaction parameters.

		ε/k B (K)	σ (Å)
	Argon-Argon	119.8	3.405
	Argon-CO 2	153.0	3.725

negligible (finite size effects). However, using periodic boundary conditions (PBC) on the system and subsystems allows making this term negligible, as shown now. When PBC are used, the total energy U splits in four terms: two correspond to interactions between particles in the first (resp. the second) subsystem denoted u 1 (resp. u 2 ), and two correspond to interactions through the two (due to PBC) boundaries between both subsystems. These are denoted a The total energy of system 1 is made of the contribution u 1 plus the contribution through the simulation box boundaries raising from the PBC on system 1, denoted PBC 1 u . By definition,

). The subsystems being equivalent to the complete system 1+2, it is expected that U 12 = 0. U 12 is actually not exactly zero because the PBC introduce a cut off in the natural fluctuations of the systems which depends on the simulation box size. However, the consequences are negligible as long as the simulation box is larger than the correlation length, and then the crossed term U 12 is negligible, and the integral in Eq. 15 naturally splits in two identical integrals: