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Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions

The thermodynamic pressure or grand potential density is calculated by isobaric-isothermal Monte Carlo algorithm for simple Lennard-Jones fluid confined in cylindrical pores presenting chemical heterogeneities along their axis. Heuristic arguments and simulation results show that the thermodynamic pressure of the confined fluid contains two contributions. The first term is the usual pressure of the bulk fluid for a density equal to the confined fluid density defined as the total number of confined particles divided by the accessible volume due to thermal agitation. A second term has to be added, which is empirically shown to be proportional to the fluid/wall interface area, and almost constant

along the adsorption and desorption branches. This interfacial contribution, calculated for various pore models, has small variations reminiscent of the fluid adsorption/desorption properties calculated in the various pores. In particular, it is shown that this interfacial quantity is maximum for fluid/substrate interaction intensity of the same order as fluid/fluid one, while the thermodynamic pressure at which rapid desorption occurs presents a minimum.

Stronger or weaker fluid/wall affinity favors gas state nucleation on desorption of confined fluids.

INTRODUCTION

In many natural or industrial situations, a fluid is confined in a porous material. In such situations, the thermodynamic properties of the fluid are expected to be influenced.

Depending on the cases, it may be desirable to enhance or minimize these effects. They are also used to characterize the porous substrate. As a consequence, in order to optimize industrial processes and characterization methods, many efforts are devoted to understand adsorption/desorption phenomena. For a recent review see Ref [1]. Molecular simulation approaches are well suited to study fluid confinement in nanometric pores, allowing a description at the molecular level taking into account all intermolecular interactions. Various simulation methods allow the evaluation of all thermodynamic quantities. However, the calculations are sometimes cumbersome, and some simplifications in the pore model, chosen to keep the main pore features, may greatly simplify the calculations.

The properties of fluids confined in nanopores are influenced by the fluid/wall interactions.

For large pores, where the fluid/wall contributions are expected to be small, it is natural to write the confined fluid free energy as the bulk contribution plus an interfacial correction. It is actually always possible to consider any thermodynamic property of a confined fluid in terms of bulk plus interfacial contributions. However, for strong confinement, the interfacial contributions are expected to be large and strongly dependent on the nature of the substrate and the external parameters like the temperature and the chemical potential in the grand canonical ensemble. It is emphasized that this dependence on many parameters makes a systematic study of fluid/substrate interfacial properties extremely difficult. In comparison, the systematic study of liquid/gas interfacial properties is easier because the substrate is absent and the external parameters generally reduce to only one due to the coexistence condition. References [2-10] give some examples of such studies using molecular simulation.

In a recent paper, 11 a new empirical approach in terms of bulk plus interfacial contributions was proposed. It was shown, on few examples, to greatly simplify the problem since this approach reduces the dependence of the interfacial contributions to only one external parameter instead of two. In this paper, it is attempted to give a theoretical justification of the approach, which allow giving the conditions for its validity. Another point is addressed: the influence of the fluid/wall interaction. It is shown that the thermodynamic pressure for which abrupt desorption occurs is not monotonous with the fluid/wall interaction intensity. The interfacial contribution to the thermodynamic pressure is shown to reproduce this behavior.

THEORY

For fluid adsorbed in large pores, the thermodynamic properties are expected to be close to the bulk ones with a correction arising from the fluid/wall interactions. For nanometric pores, the interfacial terms dominate. However, within the context of the capillary approximation, it is always possible to write any thermodynamic quantity in terms of bulk plus interfacial contributions. For the grand potential ( )

N TS E T µ µ - - = Ω ,
, where Τ is the temperature, µ the chemical potential, E the internal energy, S the entropy, and N the number of molecules, one has:

( ) ( ) ( ) A T V T p T µ γ µ µ , , , bulk + - = Ω (1)
where bulk p is the pressure of the bulk fluid, V is the volume occupied by the fluid, γ is the fluid/substrate interfacial tension and A in the fluid/substrate interfacial area. The grand potential and the pressure are calculated for the same temperature T and chemical potential µ.

As a consequence, the interfacial tension γ is expected to depend on T and µ, and is therefore not a constant along the isotherm. In a recent paper 11 , another interfacial quantity ζ was introduced such that:

( ) ( ) ( ) ( ) A T V T T p T µ ζ µ µ , , , , bulk can + Γ - = Ω (2) 
where ( )

V N T p / , bulk can
is the bulk pressure as a function of the canonical variables NVT, and Γ is the confined fluid density, obtained as the average number of particles in the system divided by the pore volume. 

( ) ( ) ( ) ( ) ( ) ( ) A V T T p T p T T / , , , , bulk can bulk µ µ ζ µ γ Γ - + = (3) 
Let us consider simple examples to illustrate this approach.

The first case to be considered is an ideal fluid (fluid-fluid interactions are neglected)

confined in a given external potential ( )

r ext 1
. This approximation is available at low chemical potential, where the fluid coverage is low enough so that fluid particles are almost isolated and fluid/fluid interactions can be neglected compared to fluid/wall contributions. Within this approximation, the integration of the "barometric law", [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF] gives the amount of ideal fluid adsorbed in the substrate:

( )       Λ = = Γ ∫ Ψ - kT kT e d V e V N / 3 / id id ext 1 r r µ ( 4 
)
where µ is the chemical potential, Λ is de Broglie's wave length, and the integral of the exponential of the external potential ext 1 is performed over the accessible volume V of the pore. Considering the Gibbs equation along the adsorption/desorption isotherms µ Nd d -= Ω at constant volume V and temperature T, and performing the integration using Eq. 4 gives:

kTV d N id id id Γ - = - = Ω ∫ ∞ - µ µ (5) 
Taking into account the ideal fluid equation of state 

( ) ( ) ( ) ( ) ( ) [ ] ∫ Ψ - - Λ = Ω + = kT kT e d V A e kT A T V T p T / 3 / id bulk id ext / , , , r r µ µ µ µ γ (6) 
and ( ) 0 , = µ ζ T

. In this example, the interfacial free energy γ depends on T and µ, while the quantity ζ is constant (equal to zero) along the isotherms. This result is expected to be valid along the gaslike branches of adsorption as long as the fluid density is not too high.

The second case concerns a real fluid (fluid-fluid interactions are now taken into account) in a uniform external potential

( ) 0 ext ext 1 1 = r
. In this case, the energetic contribution

0 ext 1 N
has to be added to the fluid free energy. In the canonical ensemble, the chemical potential is shifted by 0 ext 1 , while in the grand canonical ensemble the average density reads:

( ) ( )

0 ext bulk 1 , , - = Γ µ ρ µ T T (7)
Integration of the Gibbs equation gives:

( ) ( ) ( ) ∫ ∫ ′ - ′ - = ′ ′ Γ - = Ω µ µ ρ µ µ µ d T V d V T T 0 ext bulk 1 , , , ( ) ( ) 
( )V T T p V T p µ µ , , 1 , bulk can 0 ext bulk Γ - = - - = (8) 
As a consequence,

( ) ( ) ( ) ( ) A V T p T p T / 1 , , , 0 ext bulk bulk - - = µ µ µ γ (9) 
and ( ) 0 , = µ ζ T . In this second example, the interfacial free energy γ depends on T and µ, while the quantity ζ is constant (equal to zero) along the isotherms.

Finally, let us now consider the general case of a fluid confined in an external potential ( )

r ext 1
. The low density part of the isotherm was considered in the first case; let us now focus on the liquidlike portion of the isotherm where the fluid is dense. It is assumed that the external potential varies slowly compared to the fluid characteristic length. The local density is then given by:

( ) ( ) r r ext bulk local 1 - , ) , , ( µ ρ µ T T = Γ (10) 
A grand potential density may be defined using the Gibbs equation and performing integration along the chemical potential path at a given position r :

( ) ( ) ( ) ( ) r r r ext bulk local local 1 , , , , , 2 - - = ′ ′ Γ - = ∫ µ µ µ µ T p d T T ( 11 
)
A second integration over space gives the grand potential:

( ) ( ) ∫ ′ - = Ω r r d T T , , 2 , local µ µ (12) 
Let us now write the external potential as a constant plus a fluctuating contribution:

( ) ( ) r r ext 0 ext 1 1 1 δ + = (13) 
For instance, the external potential produced by a cylindrical pore exhibits a plateau close to the pore center and a fluctuating contribution which changes sign close to the pore wall. Note that 0 1 is not specified by Eq. 13. Additional specifications are given later. It is however assumed that 0 1 is chosen so that the fluctuating contribution is minimized and close to the adsorbent surface. Using Eqs. 11 and 13, the grand potential density may be written as:

( )

) ( 1 ) , , ( 1 - , ) , , ( 2 
ext local 0 bulk local r r r δ µ µ µ T T p T Γ + - ≈ (14) 
Equation 14 then shows that the grand potential decomposes in two contributions:

( ) ( ) ( ) ( ) r r r d T V T p T ext local 0 bulk 1 , , 1 - , , δ µ µ µ ∫ Γ + - ≈ Ω (15) 
Equation 15 may be rewritten as:

(

Γ + Γ - ≈ Ω r r r d T V T T p T ext local 0 bulk can 1 , , , , , δ µ µ µ ) ( ) ( ) ( ) ( ) ∫ 
where ( ) ( ) 

0 bulk 0 1 - , , µ ρ µ T T = Γ corresponds
( ) ( ) ( ) ∫ Γ ≈ r r r d T A T ext local 1 , , 1 , δ µ µ ζ (17) 
This proportionality was empirically confirmed based on simulations results. 11 Let us now focus on the variations of ζ with the chemical potential along the liquidlike portion of the adsorption isotherm. According to Eqs. 17 and 10, these variations are given by the variations of the local density with µ, i.e. the slope of the grand canonical bulk adsorption isotherm. This quantity is a priori small in the dense fluid state. In conclusion, along the high density portion of the adsorption isotherm, the interfacial quantity ζ is expected to have small variations with µ. One may then write:

( ) ( ) ( ) ( ) ( ) V A T T T p V T T / , , / , , 0 bulk can ζ µ µ µ - Γ ≈ Ω - = Π (18) 
It is possible to make these variations even smaller: As previously mentioned, the choice of 0 1 is actually not unique, and then ext 1 δ may be tuned to minimize the variations of ζ with µ.

This will be empirically shown to be possible in next section. The main consequence of such a choice is that the value of ( )

µ , 0 T Γ
entering into Eq. 18 may not be the local fluid density in the pore center. The new value will be empirically shown to remain however very close to that value, and compatible with the confined fluid global density N/V, where N is the total number of adsorbed molecules and V the accessible pore volume where the external potential is less than roughly 10 3 in reduced units.

PORE MODELS AND SIMULATION METHODS

As mentioned in introduction, the molecular simulation methods allow in principle the determination of all thermodynamic quantities of confined fluid. For instance, the grand potential is obtained by acquiring adsorption/desorption isotherms at various temperatures (sub-and super-critical temperatures) in the grand canonical ensemble, and then performing integration along thermodynamic paths. [START_REF] Peterson | [END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] This method is however quite lengthy, and simplifications in the pore model allow the use of much less time consuming direct methods.

The thermodynamic pressure (minus the grand potential density) is directly accessible in the isobaric-isothermal statistical ensemble [START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Nicholson | Computer simulation and the statistical mechanics of adsorption[END_REF][START_REF] Allen | Computer simulation of liquids[END_REF] (or its generalization [START_REF] Puibasset | [END_REF][18][19] ) which requires a translational (respectively rotational) invariance of the external potential. More details are given below. The atomic roughness has then to be smoothed. However, nanometric scale modulation of the external potential is possible if the required invariance is satisfied. The pores are then chosen to be tubular capillaries presenting fluid/wall interaction intensity modulated along the pore axis while satisfying the rotational invariance around the pore axis.

All intermolecular interactions are supposed to be Lennard-Jones like. The interaction parameters entering the potential are chosen to be those of argon for the fluid, and argon/solid carbon dioxide to model the fluid/substrate interactions. This model is frequently used in literature for fundamental issues concerning fluids at an interface. [START_REF] Peterson | [END_REF][20][21][22][23][24] For more details see also Ref [25]. The Lennard-Jones parameters are given in Table 1. All thermodynamic quantities are normalized to the Ar-Ar parameters (reduced quantities, denoted by an asterisk). The interaction sites of the solid matrix are supposed to be uniformly distributed (smooth wall approximation), and the fluid/adsorbent interactions give rise to an external potential, denoted ( )

r cyl ψ
for an infinite cylindrical pore. In this study, the reduced pore diameter is chosen to be 5 for all pore models. The obtained external potential fields was given elsewhere. 11 In order to evaluate the effect of the fluid/substrate interaction intensity, the external potential may be multiplied by a factor denoted a:

) ( ) ( cyl cyl a r a r ψ ψ = (19) 
The factor a varies between 0.5 and 1.2 in this work. The chemical heterogeneity is directly introduced by modulating the amplitude of the external potential along the axial direction.

This introduces an explicit dependence of the potential on r and z, the radial and axial coordinates in a cylindrical representation. The characteristic spatial extension of the chemical heterogeneity is taken equal to λ . The chemically heterogeneous external potential is given by:

( ) { } ) ( cos 1 ) , ( cyl 2 heter r b z r z ψ ψ λ π + = ( 20 
)
where b measures the amplitude of the heterogeneity (less than 0.2 in this study). This potential mimics the existence of more or less attractive sites distributed alternatively along the pore. The simulation box size along the axial coordinate is 12 in reduced units, large enough to avoid finite system size effects. The values of λ considered in this study are 2.4, 4.0 and 12.0 in reduced units. The calculations are performed at the reduced temperature T* = kT/ε Ar-Ar = 0.77.

As previously mentioned, the smooth wall approximation allows to produce models presenting a rotational invariance around the pore axis. In such situations, a recently developed generalization of the isobaric-isothermal ensemble may be used, [START_REF] Puibasset | [END_REF][18][19] where the

thermodynamic pressure ( ) ( ) V V T V T ∂ Ω -∂ = Π / , , , , µ µ
is imposed and the system is allowed to equilibrate in the corresponding statistical ensemble. Due to the invariance, the thermodynamic pressure is actually independent of V and the grand potential is directly given by ( )

( )V T V T µ µ , , , Π - = Ω
It is emphasized that the thermodynamic pressure Π (scalar quantity) differs from the mechanical pressure, which is an anisotropic tensor for confined fluids. However, for a homogeneous fluid, Π reduces to the bulk scalar mechanical pressure denoted p bulk , and, for a fluid at an interface, the thermodynamic pressure also contains fluid/substrate contributions, or interfacial tension contributions in a classical capillarity theory point of view (see Eq. 1).

For each simulation run, a minimum of 5. volume is defined as the region of the pore where the potential does not reach infinity, which is equivalent to taking the pore diameter equal to 5 in our case. It will be emphasized later that another more physical convention will emerge, taking into account that the whole volume is

actually not accessible at usual temperatures due to the effect of the repulsive part of the external potential.

SIMULATION RESULTS

The adsorption/desorption isotherms obtained in the various pores are given in Figs. 123. In Fig. 1 are reported the homogeneous cylindrical pore results for various fluid/wall interaction intensity. Figures 2 and 3 concern heterogeneous pores, and show the effect of the heterogeneity amplitude (Fig. 2) and wavelength (Fig. 3). As can be seen, the isotherms for homogeneous cylindrical pores (Fig. 1) exhibit large hysteresis for all fluid/wall interaction intensities considered in this study, which is expected at low temperature. Starting from low thermodynamic pressure Π, the amount adsorbed increases continuously with Π (gaslike branch), until the so-called capillary condensation point is reached: at this point, the amount adsorbed is discontinuous (vertical adsorption branch). The Monte Carlo procedure jumps irreversibly to the liquidlike state. On desorption, this dense state persist below the capillary condensation point, down to the so-called desorption pressure where the fluid rapidly desorbs via a mechanism which is expected to be cavitation (meniscus recession from the boundaries is impossible due to the periodic boundary conditions used in the simulations). As can be seen, the capillary condensation and desorption pressures are modulated by the fluid/wall interaction intensity. These quantities are shown in Fig. 4 and 5 as a function of a (see Eq.

19)

. The thermodynamic pressure, at which capillary condensation occurs, increases with fluid/wall interaction intensity. This shows that the gaslike state is stabilized by higher fluid/wall interactions. On the other hand, the cavitation thermodynamic pressure presents a minimum (see Fig. 5) for a around 0.8-0.9. Note that fluid/wall interactions are equal to the fluid/fluid interactions for a = 0.78 (see Table 1). This suggests that fluid/wall interactions stabilize the liquidlike state when they are similar to fluid/fluid interactions. Weaker or stronger interactions tend to destabilize the fluid. This may be specific to strong confinement in nanopores, and is not necessarily valid close to a plane interface. 26 The chemical heterogeneities along tubular pores are expected to strongly affect adsorbed fluid properties. Three pore models are then compared, where the amplitude of the chemical heterogeneity is varied: b = 0 (perfectly homogeneous pore), b = 0.1, and b = 0.2 (see Eq. 20).

In these cases, the heterogeneity wavelength is constant and equal to 12σ Ar-Ar . The adsorption isotherms are given in Fig. 2. As can be seen, the high density parts of the isotherms are quite similar. However, below a reduced thermodynamic pressure Π* = 0.2 the chemical heterogeneity strongly distorts the isotherm. The hysteresis width slightly reduces when b increases, and the gaslike part of the isotherm exhibits a reversible step reminiscent of a third state of intermediate global density. This state was clearly observed in larger pores where multiple hystereses were possible. 25,27 It corresponds to a liquidlike meniscus trapped in the most attractive part of the tubular pore, while the less attractive part contains few molecules (gaslike fluid). The global density is then intermediate between gaslike and liquidlike. In the present case, the pore size is small and the transition between the purely gaslike state and this third state of intermediate density is continuous. The last point to be mentioned is that the hysteresis shifts towards larger thermodynamic pressure for stronger chemical heterogeneity. This is due to the presence of weakly attractive regions in the pore which disfavors the then introduce the pore size as a free parameter which links ( )

µ , 0 T Γ in Eq. 18 with ( ) µ , T Γ
given by the simulation results. Note that the area A and volume V are also affected by this redefinition of the pore radius. For a given temperature, the quality of the fit is measured by the quantity:

( ) ( ) ∑             - Γ - Γ Π = n i i i V A p n 1 2 0 bulk can 0 1 ζ χ (21) 
where the sum is performed over the n simulation points, labeled by i, for a given isotherm.

This quantity evaluates the difference between the calculated thermodynamic pressure and its phenomenological expression in terms of bulk pressure (taken from Ref [28]) plus interfacial contribution. Minimization of the quantity χ allows the determination of both the effective pore size and interfacial term ζ with uncertainties of the order of few percent and 5 to 10 percent respectively.

The result of the minimizations along the adsorption branches always exhibit very small values for ζ, compatible with zero within error bars. This is expected since, at low coverage, the fluid follows the ideal gas approximation (see section 2). The results obtained along the liquidlike branches are given in Tables 234. As can be seen, the effective pore size is equal to 2.06 in all situations, except for very weak fluid/wall interactions where the effective pore radius reaches 2.08. For comparison, the external potential is equal respectively to zero, 10 3

and reaches infinity for a reduced radial coordinate equal to respectively 1.73, 2.04 and 2.5.

The effective pore size deduced from the minimizations is then very close to the accessible pore size where the external potential reaches 10 3 in reduced units. When decreasing the external potential amplitude a, the effective pore size slightly increases because the repulsive part of the potential also slightly decreases. The value obtained for the interfacial term ζ * varies between -1.20 and -0.99. The Figs. 6-8 show 0 Γ (see Eq. 18) as a function of the

quantity V A / ζ + Π
(symbols) and the bulk fluid equation of state (solid line, T* = 0.77). 28 As can be seen, a good agreement is obtained over the whole liquidlike branch of the isotherm, which validates the analysis. Systematic small deviations are however visible at low thermodynamic pressure, showing that ζ is actually slightly dependent on the chemical potential µ. It is however emphasized that this dependence is quite small compared to the variations of the true interfacial tension γ with µ (see Eq. 1). 11 As can be seen, the modulation of the fluid/wall external potential does not drastically changes the values of ζ, which are almost all identical within the uncertainty of few percent.

The most important effect is observed when a 10 percent amplitude modulation of the external potential of wavelength λ* = 12 is produced (b = 0.1). In this case, ζ is 14% larger in magnitude (Table 3). However, further increase of the modulation amplitude does not increase ζ by much. The reduction of the heterogeneity wavelength has the opposite effect (see Table 4). Reducing this wavelength seems to produce values of ζ closer to the perfectly cylindrical case. This is reminiscent of the discussion on the adsorption/desorption isotherms where it was shown that the chemical heterogeneity effect was the strongest for λ* = 12 and that short wavelength heterogeneities reduce to simple surface roughness. The evolution of ζ with the fluid/wall interaction intensity is shown in Fig. 9 with error bars. Despite the fact that the variations are within error bars, a maximum is observable. This is reminiscent of the minimum previously observed in desorption pressure of the dense confined fluid (see Fig. 6). 

  to the plateau value, i.e. a typical value for the density of the fluid confined in the pore. Considering the fact that ext 1 δ is the fluctuating contribution of the external potential, which is a priori localized close to the substrate wall, the last term in Eq. 16 is expected to be proportional to the surface area A. It is then possible to define an interfacial contribution to the grand potential, which corresponds to the definition of ζ (Eq. 2):

10 6

 10 Monte Carlo trials were performed to acquire statistical data. The thermodynamic pressure (imposed parameter) is varied between -0.5 and 10. Negative values are possible in the liquidlike states at low temperature due to the existence of cohesive forces. The highest values of the thermodynamic pressure are reached at high density due to the repulsive part of the intermolecular potential. During these simulations, the fluctuating variable is the volume (isobaric-isothermal ensemble). After averaging, one introduces the global reduced density Γ of the confined fluid, defined as the total number of particles N divided by the average reduced volume V. By convention, this

The parameter ζ 5 CONCLUSIONFIG. 1 .FIG. 2 .FIG. 3 .FIG. 4 .FIG. 5 .FIG. 6 .FIG. 7 .FIG. 8 .FIG. 9 .

 5123456789 FIGURE CAPTIONS

Figure 2 reduced

 2 Figure 2

TABLE 1 :

 1 Lennard-Jones argon/argon and argon/solid CO 2 interaction parameters.

		ε/k (K)	σ (Å)
	argon-argon	119.8	3.405
	argon-CO 2	153.0	3.725

TABLE 2 :

 2 Reduced interfacial contribution liq ζ * and effective reduced pore size R* defined by Eq. 18 along the liquidlike portion of the isotherms for a Lennard-Jones fluid confined in perfectly homogeneous cylindrical pores, with various values for the fluid/wall interaction intensity a (see Eq. 19).

	a	0.5	0.7	0.8	0.9	1.0	1.1	1.2
	R*	2.08	2.07	2.06	2.06	2.06	2.06	2.06
	ζ*	-1.06	-1.06	-1.02	-0.99	-1.04	-1.03	-1.07

TABLE 3 :

 3 Reduced interfacial contribution liq ζ * and effective reduced pore size R* defined by Eq. 18 along the liquidlike portion of the isotherms for a Lennard-Jones fluid confined in heterogeneous pores (see Eq. 20) with λ * = 12 and various values for b.

	b	0.0	0.1	0.2
	R*	2.06	2.06	2.06
	ζ*	-1.03	-1.17	-1.20

TABLE 4 :

 4 Reduced interfacial contribution liq ζ * and effective reduced pore size R* defined by Eq. 18 along the liquidlike portion of the isotherms for a Lennard-Jones fluid confined in heterogeneous pores (see Eq. 20) with b = 0.1 and various values for λ * .

	λ*	12	4.0	2.4
	R*	2.06	2.06	2.06
	ζ*	-1.17	-1.12	-1.10

/ε ε ε ε Ar-Ar 0.00 0.05 0.10 reduced density Γ Γ

σ Ar-Ar 3 /ε ε ε ε Ar-Ar 0.00 0.05 0.10 0.15 0.20 reduced density Γ Γ
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capillary condensation at low thermodynamic pressure (region of the pore where the cosine in Eq. 20 is less than zero).

The last point concerns the influence of the heterogeneity wavelength. Figure 3 shows the adsorption/desorption isotherms for three reduced wavelength λ* = 2.4, 4.0, and 12 and the same amplitude b = 0.1 (see Eq. 20). In the case of the largest wavelength, the system exhibits one single hysteresis. However, as previously mentioned, the gaslike branch presents a step reminiscent of an intermediate state stabilized by the chemical heterogeneity. For shorter wavelengths λ* = 2.4 and 4.0, the system does not exhibit this state: the hysteresis is wider, and close to the perfectly homogeneous case b = 0. According to these results, it seems that the heterogeneity wavelength λ* = 4.0 is too short to allow the stabilization of the intermediate state: in this case, the heterogeneity has the same effect as a simple atomic roughness λ* around 1.

The previous analysis on confined fluid thermodynamic pressure in terms of bulk plus interfacial contributions (see Eq. 18) is now applied to the adsorption/desorption isotherms obtained by simulation. As mentioned in section 2, the effective confined fluid density ( ) µ , 0 T Γ depends on the choice of 0 1 . It is however expected to be close to the global density of the confined fluid ( )

. This last quantity is also ill defined, since it relies on the exact definition of the pore volume. For instance, ( )

was calculated with a reduced pore radius of 2.5 where the external potential is infinite. However, for a reasonable temperature around 1 in reduced units, the accessible pore volume, due to thermal fluctuations, is expected to be delimited to the pore region where the external potential is less than few hundreds in reduced units (the external potential varies sharply close to the pore wall). The quantities