
HAL Id: hal-03562889
https://hal.science/hal-03562889v1

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards circular and asymmetric cooperation in a
multi-player Graph-based Iterated Prisoner’s Dilemma

Tangui Le Gléau, Xavier Marjou, Tayeb Lemlouma, Benoit Radier

To cite this version:
Tangui Le Gléau, Xavier Marjou, Tayeb Lemlouma, Benoit Radier. Towards circular and asymmetric
cooperation in a multi-player Graph-based Iterated Prisoner’s Dilemma. 14th International Conference
on Agents and Artificial Intelligence, Feb 2022, Online, France. �hal-03562889�

https://hal.science/hal-03562889v1
https://hal.archives-ouvertes.fr

Towards circular and asymmetric cooperation in a multi-player
Graph-based Iterated Prisoner’s Dilemma

Tangui Le Gléau12, Xavier Marjou1, Tayeb Lemlouma2 and Benoit Radier1

1Orange Labs, Lannion, France
2IRISA, Lannion, France

{tangui.legleau, xavier.marjou, benoit.radier}@orange.com, tayeb.lemlouma@irisa.fr

Keywords: Game theory, non-cooperative games, iterated prisoner’s dilemma, tit-for-tat

Abstract: In collaborations involving multiple actors, it is well known that tensions between individual interest and global
welfare can emerge: actors are personally incentivized to have selfish behavior whereas mutual cooperation
may provide a better outcome for all. Known as social dilemmas, these cooperation paradigms have aroused
renewed interest in solving social issues, particularly in environmental and energy issues. Hybrids methods
with Reinforcement Learning (RL) policies and Tit-for-Tat (TFT) strategies have proven successful to identify
fruitful collaboration in complex social dilemmas. However, there are also many situations, where cooperation
cannot always be given back directly, and has instead to be carried out through one or more intermediary actor(s).
This specificity ruins win-win approaches like TFT. To address this specificity, we introduce a Graph-based
Iterated Prisoner’s Dilemma: a N-player game in which the possible cooperation between players is modeled
by a weighted directed graph. In addition to this new paradigm, we propose a graph-based TFT algorithm that
we evaluate on multiple scenarios and compare to other algorithms. Our experiments show that leveraging a
graph-based structure in the original TFT algorithm allows it to spread favor better collaboration synergies in
most situations.

1 INTRODUCTION

Humanity and industry face numerous issues of co-
operation where various self-interested actors inter-
vene. Sometimes, while there is no direct personal
incentive to cooperate, mutual cooperation can pro-
vide better outcomes for all actors. Such situations
involving multiple non-cooperative intelligent agents
exist or will exist in various areas where resources
are scarce like energy among electricity, road traffic
among independent autonomous vehicles, and decen-
tralized multi-agent systems (such as machine learning
on private devices). Faced with the proliferation of
these intelligent multi-agent situations and faced with
social and environmental issues such as a possible up-
coming shortage of energy and natural resources, it
is increasingly vital to focus more on the studies of
learning agents in non-cooperative games [Hager et al.,
2019].

This category of games where players have no
incentive to cooperate despite optimal mutual coop-
eration is known as social dilemmas. For decades,
matrix games have been very popular: with atomic
actions (cooperation/defection), three kinds of canon-

ical games have emerged. They all have in common
point at least one incentive to choose defection. It can
either be fear (the fear of being exploited by a defector
while cooperating) like in trust problems known as
the Stag Hunt, or greed (the temptation to exploit a
cooperator) in the Chicken Game. At last, when both
fear and greed incentivize players to defect, they face
the famous Prisoner’s Dilemma (PD). Social dilem-
mas have been well studied for many years. The no-
tion of general-sum non-cooperative games is quite
ancient [Nash, 1951] as well as the formulation of the
PD [Flood, 1958]. Therefore, numerous real life sit-
uations have been modeled by such dilemmas: from
climate change and environmental security [Soroos,
1994] to institutions negotiation with N-person version
of the PD as well as tax policies [Zheng et al., 2020].

If the formulation of this problem is rather simple,
the issue of efficient behaviors facing such dilemmas
has raised a huge interest for decades. In a seminal
work, [Axelrod and Hamilton, 1981] tackles the ques-
tion of the Iterated Prisoner’s Dilemma (IPD) and pro-
poses to oppose various agents in a tournament where
they should maximize their rewards playing succes-
sively a PD. According to Axelrod, the key of success

rests on four properties: a ”good” agent should be nice,
provokable, forgiving and clear to understand. The
winner of IPD tournament was the algorithm Tit-for-
Tat (TFT) introduced by Anatol Rapoport [Rapoport
et al., 1965]: this simple algorithm (essentially repro-
ducing the behavior of its partner) fulfills the four
properties, manages to encourage cooperation and
to be robust to defection. Subsequently, variants of
TFT [Verhoeff, 1998] or alternatives [Nowak and Sig-
mund, 1993] have also fueled interest in social dilem-
mas. Reinforcement Learning (RL) methods have also
been used to study the IPD [Izquierdo et al., 2008].

Later, the emergence of Deep Reinforcement
Learning [Mnih et al., 2015] brought a new inter-
est since the training of complex policies has made
possible the study of cooperation in more realistic so-
cial dilemmas [Leibo et al., 2017, Jaques et al., 2019].
However, [Lerer and Peysakhovich, 2017] has shown
empirically that a Tit-for-Tat strategy remains neces-
sary to help RL policies not to fall in Nash equilibrium
(mutual defection), which suggests that studying TFT
keeps a huge interest, in particular to complement RL
policies in more general non-cooperative games.

Tit-for-Tat has been well studied and performs well.
However in some realistic situations, direct coopera-
tion may be less optimal or even impossible. Indeed,
sometimes cooperation has to go through one or more
indirect cooperator(s). Whereas it exists an optimal
multi-agent collaboration, the cooperation is now not
necessary bilateral and then the basic TFT strategies
are inefficient.

To address and study this asymmetry and possibly
enable circular cooperation, we introduce the Graph-
based Iterated Prisoner’s Dilemma (GIPD), a novel
kind of N-player Prisoner’s Dilemma with a graph-
structure to better generalize the complexity of possi-
ble cooperation between players. The key element of
our formalism is a weighted directed graph which sets
the maximal authorized cooperation for each pair of
players. To tackle this new paradigm, we extend the
classic TFT to create a novel algorithm: the Graph-
based Tit-for-Tat (GTFT). To address the asymmetry
and weighted cooperation, our extension adopts a flow
network approach to detect and maintain cycles of
cooperation within the players.

We simulate our GTFT on dilemmas involving
various patterns of circularity, and compare it to some
classic TFT. We also conduct some experiments on
the choice of the TFT functions involved in GTFT.
We study the relevance of the graph-based structure
and the choice of parameters with five designed social
metrics.

In section 2, we define social dilemmas in par-
ticular the continuous PD. Before proposing our ap-

proach of GTFT in section 5, we discuss about other
formalisms in section 3 for the N-player IPD and intro-
duce our model of GIPD in section 4. At last, methods,
results and discussions are presented in sections 6 and
7.

2 DEFINITIONS OF SOCIAL
DILEMMAS

Social dilemmas are multi-player games where at least
one of its Nash equilibria is not optimal. The literature
describes them as situations where multiple players
can choose between cooperation and defection in a
game where mutual cooperation is optimal whereas
they all are incentivized to defect. In this section,
we recall the formalism of those social dilemmas in
particular the so-called Prisoner’s Dilemma (PD) and
its continuous version.

2.1 Classic Social Dilemma

Matrix games with two players provide a basic frame-
work to introduce social dilemmas [Axelrod and
Hamilton, 1981]: Two players A and B choose be-
tween cooperation and defection, and they receive one
of the four possible payoffs given by Table 1: they
are denoted in the literature by R (Reward for mutual
cooperation), S (Sucker for being exploited by a de-
fector), P (Punishment for mutual defection) and T
(Temptation to exploit a cooperator).

Table 1: Payoffs in a 2-player social dilemma

Cooperate Defect

Cooperate (R,R) (S,T)
Defect (T,S) (P,P)

This matrix game is defined as a social dilemma
if the four payoffs verify the following inequalities
[Macy and Flache, 2002]:

1. R > P: Mutual cooperation is better than mutual
defection

2. R > S: Mutual cooperation is better than exploita-
tion

3. At least one of these two inequalities:

• T > R: Greed (3a)
• P > S: Fear (3b)

4. R > 1
2 (S+T): Mutual cooperation is better than

equiprobable different choice (4)

The last condition (4) is relevant in the iterated
version of the game to avoid that the rotation Coop-
erate/Defect becomes optimal. In the literature, there
are three kinds of social dilemma depending of which
incentive of inequality (3) is verified. In this paper, we
focus on the case of Prisoner’s Dilemma (where greed
(3a) and fear (3b) are verified). The often used pay-
offs S < P < R < T are given by S = 0,P = 1,R = 3
and T = 5 [Axelrod and Hamilton, 1981]. This par-
ticular game admits one Nash Equilibrium which is
(Defection, Defection) whereas the optimal outcome
is (Cooperation, Cooperation).

2.2 Continuous Prisoner’s Dilemma

The classic PD can be extended to a continuous ver-
sion by extrapolating a payoff with the four values of
Table 1. Let us say that two players A and B play
a dilemma. Instead of choosing a discrete action be-
tween Cooperate and Defect, they now can choose a
continuous cooperation degree a ∈ [0,1] and b ∈ [0,1]
(0 for total defection and 1 for total cooperation). [Ver-
hoeff, 1998] proposes to extrapolate the values of S, P,
R and T as by the gain function G follows:

G : [0,1]× [0,1]→ R
G(x,y) = xyR+(1− x)(1− y)P+ x(1− y)S+(1− x)yT

(1)
We then define the payoffs of a continuous Pris-

oner’s Dilemma between two players A and B choos-
ing respectively actions a and b by VA,VB = V (a,b),
with:

V : [0,1]× [0,1]→ R×R
V (a,b) = G(a,b),G(b,a)

(2)

For clarity, we can check that with discrete actions
(i.e. a,b ∈ {0,1}2), we find the four payoffs in the
discrete case given in the Table 1:

• V (0,0) = P,P

• V (1,0) = S,T

• V (0,1) = T,S

• V (1,1) = R,R

3 RELATED WORK

Social dilemmas, and in particular the Prisoner’s
Dilemma, have been studied for decades. They have
their roots in the Nash notion of non-cooperative
games [Nash, 1951] and then have been properly
introduced in the Axelrod’s tournament of Iterated
Prisoner’s Dilemmas [Axelrod and Hamilton, 1981].

The winner of this seminal tournament was the
Tit-for-Tat strategy [Rapoport et al., 1965], a rather
simple strategy basically consisting in reproducing
the opponent choice. Then, numerous improvements
have been proposed to the original TFT: [Wu and
Axelrod, 1995] tried to cope with the noise of TFT in
IPD, [Beaufils et al., 2001] proposed a memory-based
TFT. Other novel strategies similar to the TFT have
been introduced e.g. win-stay and lose-shift [Nowak
and Sigmund, 1993]. Reinforcement Learning
techniques have also been adopted to train agents
to face the IPD: [Matignon et al., 2012] conducted
a study on decentralized multi-agent Q-learning in
cooperative and non-cooperative games, [Matignon
et al., 2007] proposed the hysteretic Q-learning to
cope with non-stationarity of non-cooperative agents.
More recently, [Lin et al., 2020] conducted a very
complete tournament of bandits, RL and TFT agents.

Moreover, variants of Prisoner’s Dilemma have
emerged: [Verhoeff, 1998] introduced the continuous
PD and some corresponding adapted strategies of
TFT ; [Hamburger, 1973] proposed a formalism
of N-Iterated Prisoner Dilemmas (NIPD) in which
payoffs of players are based on the number of
cooperators. Some experiments have been conducted
on NIPD [Yao, 1996], and in particular with Rein-
forcement Learning [Agudo and Fyfe, 2011]. Some
studies also tackled the problem of graphs with
Prisoner’s Dilemmas [Ashlock, 2007], [Luo et al.,
2010]. Their models simulate situations of multiple
players placed in a (undirected) graph in which they
can play a PD only with their neighbors. Our approach
differs greatly in a sense that maximal authorized
cooperation between players is given by a directed and
weighted graph. Thus, the cooperation between each
pair of players is directed and weighted (in particular
non-existent) and can enable non-symmetrical and
even circular situations.

To finish, recently social dilemmas have known a
new interest with the emergence of deep RL: [Leibo
et al., 2017] introduced sequential social dilemmas in
the form of more realistic games in which RL agents
are trained to cooperate between each other. [Lerer
and Peysakhovich, 2017] showed empirically that RL
agents fall in non-optimal Nash Equilibrium, and that
TFT was necessary to help RL policies to mutually
cooperate and maintain cooperation. The solution mix-
ing TFT strategies and RL policies they brought is
very promising, however their solution doesn’t cover
asymmetric and circular situations.

4 GRAPH-BASED ITERATED
PRISONER’S DILEMMA

In this section, we propose to extend the N-player
Iterated Prisoner’s Dilemma with a graph structure.
The main idea is that maximal authorized coopera-
tion within each ordered pair of players is given by a
weighted directed graph.

4.1 N-player Prisoner’s Dilemma

In this section, we describe the model used for the
N-player PD, that we define here without graph exten-
sion. We consider a decentralized model, i.e. the N
players play one continuous PD between each other:
each player i chooses a continuous cooperation degree
ci j ∈ [0,1] towards every other player j (ci j = 0 for
total defection and ci j = 1 for total cooperation). In
other words, each player i chooses a vector of coop-
eration

−→
Ci = (ci j) j∈J1,NK and all decisions of players

form the matrix C = (ci j) ∈ [0,1]N×N . Note that we
adopt the convention that one player cannot cooperate
with oneself: ∀i,cii = 0. After the decision of coop-
eration degrees, the N(N−1)/2 continuous PD made
simultaneously within each pair of players (i, j) give to
them the payoffs given by 2.2. Therefore, each player
i receives the total payoff:

Vi = ∑
j ̸=i

ci jc jiR+(1− ci j)(1− c ji)P+ ci j(1− c ji)S

+(1− ci j)c jiT
(3)

4.2 Graph-based Iterated Prisoner’s
Dilemma (GIPD)

We introduce our formalism of GIPD that we define
by :

• a number N of players

• a weighted directed graph Gmax of maximal coop-
eration defined by a weighted adjacency matrix
Cmax ∈ [0,1]N×N

• a vector Dmax ∈ (R+)N of maximal cooperation
effort

• a number of steps (or rounds) Tmax

In this game, at each step t, each agent i can choose
N − 1 cooperation degrees ct

i j with two constraints:
first, the maximal value for ct

i j is fixed by the graph
Gmax, and secondly its outgoing flow cannot exceed
Di

max : Ct
i
+ = ∑ j ̸= j ct

i j ≤ Dmax[i]. In practice, the first
constraint is verified by clipping the total choice matrix

Ct = (ct
i j) by the adjacency matrix of maximal cooper-

ation graph Gmax : Ct ← min(Ct ,Cmax). It means for
example that if Cmax[a,b] = 0, player a cannot cooper-
ate with b, so even if a chooses a degree cab = 1, the
effective degree will in fact be equal to 0. To ensure
the second constraint, each row

−→
Ct

i is normalized by
the factor min(1, Dmax[i]

Ct
i
+). When the effective matrix

Ct = (ct
i j) is computed, the agents receive the payoffs

determined by the formulation 3.
In this game, we assume that all players can observe
the full effective choice matrix of the previous step
Ct−1, that they have the knowledge of Cmax and Dmax,
but Tmax is unknown to them. This formalism of so-
cial dilemma allows to model the classic prisoner’s
dilemma (Figure 1a) as well as what we call circu-
lar dilemmas i.e. the presence of a cyclic flow in the
weighted directed graph of maximal cooperation Gmax
(e.g. Figures 2c or 2d). For better intuition, we pro-
vide in Figure 2 some real examples related to the
cooperation graphs represented in Figure 1.

4.3 Examples

Although applications of this formalism are out of
scope of the paper, we nevertheless provide below
(Figure 2) some didactic examples of dilemmas related
to the GIPD presented in Figure 1. The edge weights
of the maximal cooperation graphs can be roughly
viewed in this case as proportional to the payoffs sum
of the helper and the ”receiver”.

The above example of dilemmas represents the
numerous situations where multiple actors can share
some items (or services) to homogenize their resources
(or energy) by mutually giving their surplus to others.

5 GRAPH-BASED TIT-FOR-TAT

In this section, we update the classic Tit-for-Tat algo-
rithm to adapt it to the GIPD (defined in 4.3). We start
by recalling the principle of the classic Tit-for-Tat al-
gorithm, in particular in a continuous version, and then
we detail the novel Graph-based Tit-for-Tat algorithm
we propose.

5.1 Definition of Tit-for-Tat

We assume that a TFT function f k
T FT with k steps of

memory is a function indicating at each time step t
what a player A (facing a player B) should choose
as cooperation degree at ∈ [0,1] according to the k
previous cooperation degrees:

1

2

1.0 1.0

∞

∞ 1 2

34

1.0

1.0

1.0

1.0

0.5
0.5

0.5
0.5

1.0

1.0

1.0

1.0

1.0
1.0

3 2
1.0

1.0

1

1.0
1.0

∞

∞ ∞

1.0

3 21.0

1

1.0

1.0

1.0 1.0

(a)

1

2

1.0 1.0

∞

∞ 1 2

34

1.0

1.0

1.0

1.0

0.5
0.5

0.5
0.5

1.0

1.0

1.0

1.0

1.0
1.0

3 2
1.0

1.0

1

1.0
1.0

∞

∞ ∞

1.0

3 21.0

1

1.0

1.0

1.0 1.0

(b)

1

2

1.0 1.0

∞

∞ 1 2

34

1.0

1.0

1.0

1.0

0.5
0.5

0.5
0.5

1.0

1.0

1.0

1.0

1.0
1.0

3 2
1.0

1.0

1

1.0
1.0

∞

∞ ∞

1.0

3 21.0

1

1.0

1.0

1.0 1.0

(c)

1

2

1.0 1.0

∞

∞ 1 2

34

1.0

1.0

1.0

1.0

0.5
0.5

0.5
0.5

1.0

1.0

1.0

1.0

1.0
1.0

3 2
1.0

1.0

1

1.0
1.0

∞

∞ ∞

1.0

3 21.0

1

1.0

1.0

1.0 1.0

(d)
Figure 1: Some examples of Graph-based Prisoner’s Dilemmas: (1a) is the classic 2-player PD. (1b) is a 3-player full version of
PD. (1c) is a 3-player circular PD and (1d) is a 4-player circular PD with an alternative with four 3-player cycles of cooperation
(less optimal : flow of 0.5 instead of 1.0). The values of maximal cooperation effort of Dmax are indicated in gray.

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

4
3
2
1

4

3
2
1

4
3
2
1

4

2
1

2
1

(a)

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

4
3
2
1

4

3
2
1

4
3
2
1

4

2
1

2
1

(b)

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

4
3
2
1

4

3
2
1

4
3
2
1

4

2
1

2
1

(c)

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2
1

4
3
2
1

4

3
2
1

4
3
2
1

4

2
1

2
1

(d)
Figure 2: A game where N players can decide to cooperate by sharing their items or defect by keeping them. The items have a
decreasing marginal utility (e.g. N− k+1 for the kth same item) thereby conferring the game a dilemma property: the optimal
outcome is the mutual cooperation which is exchanging equitably items, but greed and fear lead to the non-optimal mutual
defection. According to the topology of resources of agents, circular situations can emerge (2c and 2d).

f k
T FT : N× [0,1]2k→ [0,1]

f k
T FT (t,at−1,bt−1, ...,at−k,bt−k) = at

(4)

The majority of TFT algorithms needs only the
previous step (k = 1) but some approaches needs more
steps, like the gradual behavior with memory proposed
by [Beaufils et al., 2001] and we can theoretically
envisage the case k = +∞ with the use of models
learning the history (Recurrent Neural Networks).

For example, the original Tit-for-Tat with discrete
choice (cooperation/defection i.e. a cooperation de-
gree in {0,1}) is defined by cooperating on the first
move (cooperation equal to 1) then doing whatever the
other player did on the previous move. For better un-
derstanding of our notations, we detail the formalism
of the classic TFT:

TFT : N×{0,1}→ {0,1}

TFT(t,bt−1) =

{
1, if t = 0,
bt−1, if t > 0.

(5)

5.2 Continuous Tit-for-Tat

To address the continuous version of an IPD (defined in
2.2), some continuous versions of Tit-for-Tat exist. We
gather propositions of [Verhoeff, 1998] and [Le Gléau

et al., 2020] as well as a contribution (the stochastic
incentive) in the following expression:

TFTα,β,γ,r0,c0 : N× [0,1]2→ [0,1]

TFTα,β,γ,r0,c0(t,at−1,bt−1),rt =
c0,r0 if t = 0
αat−1 +(1−α)(rt−1 +(1− rt−1)bt−1),

[rt−1 +β(bt−1−at−1)]
++ r0Xγ if t > 0

(6)
In this expression, α is an inertia coefficient to

smooth reaction. rt is a coefficient to incentivize co-
operation (r0 is the initial value of rt). β is the adap-
tive coefficient to make rt dynamic: it increases (resp.
decreases) when partner cooperation increases (resp.
decreases). The objective of that adaptive coefficient
is to gain safety. At last, Xγ is a Bernoulli variable
of probability γ, it means that r0Xγ is equal to r0 with
probability γ and 0 otherwise. This stochastic parame-
ter allows to stimulate incentive in case of null value of
rt for all players. At last, for our simulations, we use
an null initial degree c0 = 0.0. To sum up the notations,
we consider three kinds of TFT functions:

• TFT alpha: we omit adaptive and stochastic pa-
rameters (β = γ = 0), i.e. the incentive coefficient
is constant rt = r0

• TFT beta: we omit stochastic parameter (γ = 0)

• TFT gamma: we use all parameters

5.3 Graph-based Tit-for-Tat

We introduce the Graph-based Tit-for-Tat1. The goal
of this algorithm is to extend the classic TFT in par-
ticular to cope with asymmetry and the existence of
cycles of cooperation. Our idea relies on viewing the
cooperation graph as a flow network [Ford Jr, 1956]
and finding the maximum flow which makes a cycle.
We detail our algorithm denoted GRAPHTFT for the
point of view of player k. The principle is that
GRAPHTFT(k) has inner variables that it updates at
each step: a cooperation graph Ck, a graph which al-
lows to penalize defectors and a source flow Dk, an
amount of cooperation that it is ready to provide. In
the following, we consider that the algorithm uses a
TFT function fT FT : [0,1]× [0,1]→ [0,1] such that
at+1 = fT FT (at ,bt). This function allows to update
over time a coefficient a according to an observed
coefficient b fulfilling the objectives of TFT spirit.
GRAPHTFT(k) is divided into several phases, at each
step:
1. For each other player j, update Ck[k, j] with fT FT

according to the difference between what j ”re-
ceived” and what he ”gave” at previous step.

2. Update the source flow Dk with fT FT according
to the difference between what k (oneself) ”has
received” and what k (oneself) ”had given” at pre-
vious step.

3. Create a flow network F , whose capacities are
given by Ck with a source vertex directed towards
the vertex of k (oneself) with capacity Dk and all
edges of Ck initially directed towards vertex k ar-
tificially redirected towards a sink vertex. Thus,
we have a flow network allowing to find the max-
imum cyclic flow (i.e. from k to k). For better
understanding, see Figure 3.

4. Compute the maximum flow R on F , i.e. a sub-
graph in F and extract the next choice of coopera-
tion
−→
Ck ← R [k, :]

5.3.1 Max flow problem

To find the maximum cyclic flow of cooperation, our
algorithm converts its inner cooperation graph into a
flow network (Figure 3), and finds the maximal flow.
We use two kinds of algorithms with polynomial com-
plexity (O(∆N2) where ∆ is the discretization num-
ber):

• Ford-Fulkerson algorithm [Ford and Fulkerson,
1956]: find the maximal flow (but with shortest
path)

1For reproducibility, the code has been made available:
https://github.com/tlgleo/graph based TFT

Algorithm 1: GRAPHTFT (for agent k)
Input: Max cooperation graph Cmax and max
source flow Dmax given by the game and a
TFT function fT FT

Initialize: Ck← Cmax, Dk← Dmax[k]
First step: Choose
∀ j ̸= k, C⃗k[j]← fT FT (t = 0)

for t ∈ [1,Tmax] do
for each other agent j do

From Ct−1, compute outgoing flow of
cooperation of j : (Ct−1

j)+

Execute a TFT on j :
ct

k j = fT FT (ct−1
k j ,(Ct−1

j)+)

Modify the inner cooperation graph:
Ck[k, j]← ct

k jCmax

end
From Ct−1, compute the incoming flow of

cooperation for k : (Ct−1
k)−

Update by TFT the next source flow:
Dk← fT FT (Dk,(Ct−1

k)−)
Generate a new flow network F from k to

k with a source of capacity Dk and
capacities given by Ck (see Figure 3)

From F , extract the sub-graph R of
maximum flow of cooperation

Choose cooperation degrees from max
flow:

−→
Ct

k ← R [k, :]
end

• Min-cost max flow [Orlin, 1997]: a variant of Ford-
Fulkerson, with a minimization of a certain cost per
chosen edge (for the cost, we choose the inverse of
cooperation so that the flow search prefers longest
cycles.)

6 METHODS

In this section, we define and detail some methodolog-
ical points such as our designed metrics as well as the
agents and tournaments we use in our simulations.

6.1 Metrics

Let N agents denoted π⃗ = (πi) acting for the N play-
ers of a tournament T during Tmax steps. We denote
Vi(T ,⃗π)(t) the Tmax payoffs received by the player i
and Vi(T ,⃗π) the sum of its Tmax payoffs. Moreover,
we define the social welfare SW (T ,⃗π, t) as the sum of
payoffs of the N agents at time t. In the following, we
succinctly define the five metrics we design (adapted
from [Lerer and Peysakhovich, 2017]).

https://github.com/tlgleo/graph_based_TFT

0.5

1 2

4

s

t

1 2

3

1.0

1.0

1.0

0.6

0.5
0.5

0.5
0.5

1.0

1.0

1.0

0.6

0.5
0.5

0.5

𝐷! 1 2

34

1.0

1.0

0.6

0.6

0.4
0.0

0.0
0.0

𝐶"# = 0.6

𝐶$# = 1.0𝐶%# = 1.0

𝐶!# = 1.0

s
1.0

4 3

(a) Step 1:
Tit-for-Tat

0.5

1 2

4

s

t

1 2

3

1.0

1.0

1.0

0.6

0.5
0.5

0.5
0.5

1.0

1.0

1.0

0.6

0.5
0.5

0.5

𝐷! 1 2

34

1.0

1.0

0.6

0.6

0.4
0.0

0.0
0.0

𝐶"# = 0.6

𝐶$# = 1.0𝐶%# = 1.0

𝐶!# = 1.0

s
1.0

4 3

(b) Step 2: Transformation of the graph 3a into a
flow network

0.5

1 2

4

s

t

1 2

3

1.0

1.0

1.0

0.6

0.5
0.5

0.5
0.5

1.0

1.0

1.0

0.6

0.5
0.5

0.5

𝐷! 1 2

34

1.0

1.0

0.6

0.6

0.4
0.0

0.0
0.0

𝐶"# = 0.6

𝐶$# = 1.0𝐶%# = 1.0

𝐶!# = 1.0

s
1.0

4 3

(c) Step 3: Finding the max flow
sub-graph

Figure 3: Steps to find a cyclic sub-graph of max flow from player 1 in the graph (3a). The graph is transformed into a flow
network regarding player 1 with a source s and a sink t in step (3b) and the max flow is extracted in (3c).

First, the Utilitarian metric U measures how close
the social welfare is from the optimum which is mutual
cooperation (C) compared to the mutual defection (D),
and the speed Sp measures how fast the Utilitarian
metric reaches its maximal value. Then the incentive-
compatibility IC is destined to measure the capacity
to incentivize cooperation within other players. We
define the incentive-compatibility of the agent π by the
difference between what one agent (i = 0) receives by
cooperating with all other agents π compared to what

it would have received by defecting. The safety S f
measures the risk an agent takes by preferring π rather
than defection face to defectors ; let us note that since
defection is dominant (by definition of dilemma), this
metric is always non positive: the higher it is, the more
the agent is safe. At last, the forgiveness Fg measures
how the social welfare is impacted when a ”repentant
defector” R begins to cooperate only after τ0 steps. For
the sake of clarity, we denote x⃗1 = (x)i the constant
joint policy of N or N−1 agents choosing x.

U(T ,π, t) =
SW (T , π⃗1, t)−SW (T , D⃗1,0)

SW (T ,C⃗1,0)−SW (T , D⃗1,0)
, Sp(T ,π) =

1
τUmax

∫
τ

0
U(T ,π, t)dt

IC(T ,π) =
V0(T ,(C, π⃗1))−V0(T ,(D, π⃗1))

V0(T ,C⃗1)−V0(T , D⃗1)
, S f (T ,π) =

V0(T ,(π, D⃗1))−V0(T , D⃗1)

V0(T , D⃗1)−V0(T ,(C, D⃗1))

Fg(T ,π) =
1

Tmax− τ0

Tmax−1

∑
t=τ0

[
SW (T ,(R,π, ...,π), t)−SW (T , D⃗1,τ0)

SW (T ,C⃗1,τ0)−SW (T , D⃗1,τ0)

]

6.2 Agents and tournaments

In our simulations, we compare several agents of TFT.
We use as baseline the vanilla continuous TFT and we
compare the different graph algorithms of our novel
GRAPHTFT. Moreover, we also compare the choice
of the TFT function in our algorithm and evaluate the
addition of our improvements (Alpha, Beta, Gamma).
For our simulations, we created two kinds of tourna-
ments of N > 2 players with some patterns of circu-
larity. One is purely circular that we denote CIRC(N):
the weight of edge (i, j) is equal to 1.0 if j = (i+1)
mod N and 0.0 otherwise. The other one is double
circular DOUBLE(N), the same with an alternative co-

operation edge (to study the case when one defector
breaks the cooperation cycle): the weight of edge (i, j)
is equal to 1.0 if j = (i+ 1) mod N or j = (i+ 2)
mod N and 0.0 otherwise.

7 RESULTS AND DISCUSSION

In this section, we present the results of some simula-
tions where we compare our extension of TFT suited
for the GIPD compared to the classic TFT. We first
study the relevance of the graph structure of our GTFT
and then the impact of the choice of the TFT function.

(a) Double Circular
3 players1

(b) Double Circular
4 players2

(c) Double Circular
6 players3

Figure 4: Impact of the choice of graph processing in the double circular tournament with 3, 4 and 6 players. The Tit-for-Tat
algorithm used for all agents of that simulation is the algorithm TFT beta with parameters (α = 0.6, β = 0.6, r0 = 0.7)

(a) Impact of type (b) Impact of incentive r0 (c) Impact of adaptive β

Figure 5: Impact of the choice of TFT function on DOUBLECIRC(6) with GRAPHTFT (with min cost approach). We compare
the three kinds of TFT (Figure 5a), then the impact of the initial incentive r0 (Figure 5b) and the adaptive coefficient β (Figure
5c) on the TFT beta algorithm.

7.1 Impact of the graph-processing
algorithm

First, we focus on the necessity of adding a graph-
processing algorithm and study the impact of the cho-
sen algorithm. The three cases we study are:

• noGraphTFT: classic continuous TFT with no
graph processing.

• grTFT Fulkerson: our GRAPHTFT (algo 1) with
a Ford-Fulkerson algorithm to find the maximum
flow.

• grTFT minCost: our GRAPHTFT (algo 1) with
a min-cost max flow approach: it searches the
max flow but with constraint of maximal circulated
flow (cooperation through maximum number of
players).
We simulate these three kinds of agents in the

games DOUBLECIRC with 3, 4 or 6 players and com-
pare the results of the metrics in Figure 4.

1A simulation of the cycle issue with 3 players: https:
//youtu.be/VHhEZ8Wu XQ or with 5 players: https://youtu.
be/J-weuvOkkBc

2A simulation with 4 players: https://youtu.be/
s08j24LMr0U

3A simulation with 6 players: https://youtu.be/
AL29LFbh3n8

The observations confirm the intuition that the lack
of graph processing in circular situations totally de-
feats the classic TFT in the 6-player game since there
is no possibility of symmetrical cooperation. In the
4-player game, the classic TFT can find a less optimal
solution since it exists two less optimal 2-player cy-
cles. At last, the classic TFT can address the 3 players
DOUBLECIRC because a symmetrical alternative is
possible but a bit less optimal. Regarding the choice
of graph processing, the best one is the approach with
min cost because it allows to select the most pro-social
cycles of cooperation (unlike the Ford-Fulkerson al-
gorithm). It is therefore more suited to incentivize
cooperation and is safer to defection. However, when
it exists several equivalent optimal cycles (e.g. with
3 or 5 players), both GTFT agents naturally hardly
synchronize themselves.

7.2 Impact of choice of Tit-for-Tat
function

We study here the choice of Tit-for-Tat function fT FT
used in our GRAPHTFT (algo 1). We first evalu-
ate the impact of the choice of TFT among the de-
scribed algorithms in section 5.2 (TFT alpha with iner-
tia, TFT beta with adaptive incentive and TFT gamma
with stochastic incentive). We then study the impact of

https://youtu.be/VHhEZ8Wu_XQ
https://youtu.be/VHhEZ8Wu_XQ
https://youtu.be/J-weuvOkkBc
https://youtu.be/J-weuvOkkBc
https://youtu.be/s08j24LMr0U
https://youtu.be/s08j24LMr0U
https://youtu.be/AL29LFbh3n8
https://youtu.be/AL29LFbh3n8

initial incentive coefficient r0 and adaptive coefficient
β with the TFT beta.

In Figure 5a, we can observe that the adaptive
coefficient β is interesting since it makes TFT beta
and TFT gamma safer and more incentive compatible.
TFT gamma seems to be a bit more efficient in a sense
that the outcome is more optimal. Regarding the im-
pact of parameters of the TFT beta, we can remark
that a higher initial incentive coefficient r0 allows to
reach a more optimal outcome more rapidly without re-
ducing safety and incentive-compatibility. Regarding
the impact of adaptive coefficient β, we can observe
that a tiny non-null coefficient is sufficient to make the
agent safer and more incentive compatible.

7.3 Results Summary

Although our GTFT is not perfectly optimal in am-
biguous situations (with multiple optimal cycles), we
can conclude that the key point of our experiments is
the importance of a graph-processing algorithm. The
min-cost max flow is the best approach since it is
more incentive-compatible. Regarding the choice of
TFT function, the TFT beta function is clearly safer
than TFT alpha while TFT gamma is slightly more
efficient.

8 CONCLUSION

In this paper, we introduced a novel paradigm for the
N-player Prisoner’s Dilemma where maximal coopera-
tion between agents is induced by a weighted directed
graph. This new model is particularly suited to address
the asymmetry of cooperation and in particular the cir-
cular social dilemmas: a specific situation of dilemma
where players can form a cycle of cooperation in which
no player can cooperate with its ”helper”. We showed
that classic solutions like Tit-for-Tat strategies can-
not solve properly this specific issue, we therefore
also proposed in the paper a Graph-based Tit-for-Tat
which generalizes the classic TFT with a flow network
approach. We evaluated this new algorithm in some
scenarios and compare it to some baselines. As ma-
jor conclusions, we can observe that adding a graph
processing in the TFT is relevant since our GTFT out-
performs the original TFT in most of situations. As
further works, it could be very interesting to address
the ambiguous cases with multiple equivalent optimal
cycles.
We recall our main contributions:

• We introduced and formalized a novel Graph-
based Iterated Prisoner’s Dilemma: a formalism

able to generalize the N-player IPD involving
asymmetrical or circular cooperation.

• We designed and formalized several social metrics
adapted to this GIPD.

• We constructed a novel Graph-based Tit-for-Tat
able to cope with circular cooperation, it is based
on continuous TFT and max-flow algorithms.

We are convinced that this new GTFT paradigm
which solves circular dilemmas should offer a lot of
perspectives particularly in addition to the recent tech-
niques mixing RL and TFT. Finally, in view of the
expectations regarding the digital sobriety and the eth-
ical stakes of artificial intelligence, we reiterated the
importance of focusing urgently on non-cooperative
games, and striving to include this kind of paradigm
in the design of our future intelligent systems.

REFERENCES

Agudo, J. E. and Fyfe, C. (2011). Reinforcement learning
for the n-persons iterated prisoners’ dilemma. In 2011
Seventh International Conference on Computational
Intelligence and Security, pages 472–476. IEEE.

Ashlock, D. A. (2007). Cooperation in prisoner’s dilemma
on graphs. In 2007 IEEE Symposium on Computational
Intelligence and Games, pages 48–55. IEEE.

Axelrod, R. and Hamilton, W. D. (1981). The evolution of
cooperation. science, 211(4489):1390–1396.

Beaufils, B., Delahaye, J.-P., Mathieu, P., et al. (2001).
Adaptive behaviour in the classical iterated prisoner’s
dilemma. In Proc. Artificial Intelligence & Simul. Be-
haviour Symp. on Adaptive Agents & Multi-Agent Sys-
tems. Citeseer.

Flood, M. M. (1958). Some experimental games. Manage-
ment Science, 5(1):5–26.

Ford, L. R. and Fulkerson, D. R. (1956). Maximal flow
through a network. Canadian journal of Mathematics,
8:399–404.

Ford Jr, L. R. (1956). Network flow theory. Technical report,
Rand Corp Santa Monica Ca.

Hager, G. D., Drobnis, A., Fang, F., Ghani, R., Greenwald,
A., Lyons, T., Parkes, D. C., Schultz, J., Saria, S.,
Smith, S. F., et al. (2019). Artificial intelligence for
social good. arXiv preprint arXiv:1901.05406.

Hamburger, H. (1973). N-person prisoner’s dilemma. Jour-
nal of Mathematical Sociology, 3(1):27–48.

Izquierdo, S. S., Izquierdo, L. R., and Gotts, N. M. (2008).
Reinforcement learning dynamics in social dilemmas.
Journal of Artificial Societies and Social Simulation,
11(2):1.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega,
P., Strouse, D., Leibo, J. Z., and De Freitas, N. (2019).
Social influence as intrinsic motivation for multi-agent
deep reinforcement learning. In International Confer-
ence on Machine Learning, pages 3040–3049. PMLR.

Le Gléau, T., Marjou, X., Lemlouma, T., and Radier, B.
(2020). Game theory approach in multi-agent resources
sharing. In 25th IEEE Symposium on Computers and
Communications (ISCC).

Leibo, J. Z., Zambaldi, V., Lanctot, M., et al. (2017). Multi-
agent reinforcement learning in sequential social dilem-
mas. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, pages 464–
473.

Lerer, A. and Peysakhovich, A. (2017). Maintaining cooper-
ation in complex social dilemmas using deep reinforce-
ment learning. arXiv preprint arXiv:1707.01068.

Lin, B., Bouneffouf, D., and Cecchi, G. (2020). Online
learning in iterated prisoner’s dilemma to mimic human
behavior. arXiv preprint arXiv:2006.06580.

Luo, L., Chakraborty, N., and Sycara, K. (2010). Prisoner’s
dilemma in graphs with heterogeneous agents. In 2010
IEEE Second International Conference on Social Com-
puting, pages 145–152. IEEE.

Macy, M. W. and Flache, A. (2002). Learning dynamics in
social dilemmas. Proceedings of the National Academy
of Sciences, 99(suppl 3):7229–7236.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2007).
Hysteretic q-learning: an algorithm for decentral-
ized reinforcement learning in cooperative multi-agent
teams. In 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 64–69. IEEE.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2012).
Independent reinforcement learners in cooperative
markov games: a survey regarding coordination prob-
lems. Knowledge Engineering Review, 27(1):1–31.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. nature,
518(7540):529–533.

Nash, J. (1951). Non-cooperative games. Annals of mathe-
matics, pages 286–295.

Nowak, M. and Sigmund, K. (1993). A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the prisoner’s
dilemma game. Nature, 364(6432):56–58.

Orlin, J. B. (1997). A polynomial time primal network sim-
plex algorithm for minimum cost flows. Mathematical
Programming, 78(2):109–129.

Rapoport, A., Chammah, A. M., and Orwant, C. J. (1965).
Prisoner’s dilemma: A study in conflict and coopera-
tion, volume 165. University of Michigan press.

Soroos, M. S. (1994). Global change, environmental security,
and the prisoner’s dilemma. Journal of Peace Research,
31(3):317–332.

Verhoeff, T. (1998). The trader’s dilemma: A continuous
version of the prisoner’s dilemma. Computing Science
Notes, 93(02).

Wu, J. and Axelrod, R. (1995). How to cope with noise in
the iterated prisoner’s dilemma. Journal of Conflict
resolution, 39(1):183–189.

Yao, X. (1996). Evolutionary stability in the n-person iter-
ated prisoner’s dilemma. BioSystems, 37(3):189–197.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M.,
Parkes, D. C., and Socher, R. (2020). The ai economist:

Improving equality and productivity with ai-driven tax
policies. arXiv preprint arXiv:2004.13332.

A Theoretical approach

Our conclusions were mainly experimental. In this
section, we propose to study some properties of our
policy TFT in a cycle of players (CIRC(K)).
Proposition 1. (Efficiency) Let a cycle of K
players (CIRC(K)) who all follow the policy
TFTα,β,0,r0,c0 . Then, ∀i ∈ [0,K − 1], with j =
i + 1 mod K, we have ∀t, ct

i j = ct
→ where ct

→ is
defined by :

ct
→ = 1−Qt(1− c0)

avec Q = α+(1−α)(1− r0)
(7)

Proof. For the K players, the policy of the incom-
ing flow of cooperation is the same as its outgoing
flow, so we have the same function of cooperation
degree for all players : ∀i ∈ [0,K− 1], with j = i+
1 mod K, we have ∀t, ct

i j = ct
→. First, let us focus

on rt . Since β(ct−1
(i−1)i)− ct−1

i(i+1)) = β(ct−1
→ − ct−1

→) = 0
and γ = 0.0, we have ∀t, rt = r0. We can rewrite the
expression of the sequence ct

→:

ct
→ = TFTα,β,0,r0,c0(t,c

t−1
→ ,ct−1

→)

= αct−1
→ +(1−α)(r0 +(1− r0)ct−1

→)

= [α+(1−α)(1− r0)]ct−1
→ +(1−α)r0

= Qat−1 +R

with Q = α+(1−α)(1− r0) and R = (1−α)r0
(8)

It is an arithmetico–geometric sequence of com-
mon ratio Q and common difference R. If we note
W = R

1−Q , the solution of ct
→ is given by:

ct
→ = Qt(c0−W)+W (9)

Let us compute the value of W :

W =
R

1−Q

=
(1−α)r0

1− (α+(1−α)(1− r0))

=
(1−α)r0

(1−α)(1− (1− r0))

= 1

(10)

Therefore, the final expression of ct
→ is given by:

ct
→ = 1−Qt(1− c0)

with Q = α+(1−α)(1− r0)
(11)

Proposition 2. (Safety) Let a player A, using the TFT
function TFTα,β,0,r0,c0 to choose at , he is facing a pure
defector B (∀t, bt = 0.0).
If β≥ r0(1−α)

a0
, then it exists τ such that ∀t ≥ τ, rt = 0.0

and therefore lim
t→+∞

at = 0

Proof. First, we have :

at = αat−1 +(1−α)(rt +(1− rt)bt−1)

= αat−1 +(1−α)rt

≥ αat−1

(12)

With this geometric sequence, we can find a lower
bound for at :

∀t, at ≥ a0α
t (13)

Let us find an upper bound for rt :

rt = rt−1 +β(bt−1−at−1)

= rt−1−βat−1

≤ rt−1−βa0α
t−1

(14)

Hence,

∀u≥ 1, ru− ru−1 ≤−βa0α
u−1 (15)

We can add up the terms:

∀t ≥ 1,
t

∑
u=1

ru− ru−1 ≤−βa0

t

∑
u=1

α
u−1

⇐⇒ rt − r0 ≤−βa0
1−αt

1−α

⇐⇒ rt ≤ r0−βa0
1−αt

1−α

(16)

Then, the condition β ≥ r0(1−α)
a0

is a sufficient
condition such that it exists τ for which ∀t ≥ τ, rt = 0.

Finally, ∀t ≥ τ, at = aτα(t−τ) and therefore
lim

t→+∞
at = 0

