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Abstract

We investigate the application of a stochastic dynamical model in en-
semble Kalman filter methods. Ensemble Kalman filters are very pop-
ular in data assimilation because of their ability to handle the filtering
of high-dimensional systems with reasonably small ensembles (especially
when they are accompanied with so called localization techniques). The
stochastic framework presented here relies on Location Uncertainty (LU)
principles which model the effects of the model errors on the large-scale
flow components. The experiments carried out on the Surface Quasi
Geostrophic (SQG) model with the localized square root filter demon-
strate two significant improvements compared to the deterministic frame-
work. Firstly, as the uncertainty is a priori built into the model through
the stochastic parametrization, there is no need for ad-hoc variance in-
flation or perturbation of the initial condition. Secondly, it yields better
MSE results than the deterministic ones.

1 Introduction

Data assimilation uses observational data to correct the predictions of a nu-
merical model, to get closer to the “true” state of the system. It has been
applied for a long time in weather forecasting and other geophysical dynamical
systems. Numerous approches from different methodological settings have been
proposed to that end. They rely on optimal control methodology, functional
approximation theory, stochastic processes and filtering, or geostatistics to cite
only a few of them (see [15] for an overview of the techniques and recent trends
in data assimilation). Among the different techniques proposed, a very popular
data assimilation method is the ensemble Kalman filter (EnKF), initially de-
vised by [23], and since then explored in many different variations (see the books
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[5, 24, 46] and references therein for a precise description of all these different
variations).

Ensemble methods, formulated either in variational or Bayesian forms are
based on constructing an ensemble of possible realizations of a given dynami-
cal system, with no need to explicitly compute its tangent linear model as it
is required in optimal control methods [37]. This ability is very convenient in
high-dimensional and complex models, as it enables in some way to free the data
assimilation technique from the very likely evolution of the code with time, in
terms of update, additional modules or features, requiring a new computation
of the tangent linear model at each update. On the contrary, adjoint based
optimization is fully attached to a given version of the numerical code of the
model. For a routine use in meteorological centers, the separation between
data assimilation and the numerical codes of the dynamics constitutes an un-
deniable advantage. As such these methods can cope, through an extension
of the linear superposition principle, with non-linear models, even if in itself,
the Kalman equations are theoretically set in linear and Gaussian hypothesis.
Among the different versions of the proposed ensemble Kalman filter, the so
called square-root filters (SRF) consist in formulating the square root of the
forecast and analysis covariance matrices in terms of the ensemble members’
anomaly matrix, obtained from the residual of each member with the empirical
mean [2, 9, 43, 54, 55]. The non uniqueness of the square-root covariance has
lead to several variations of the method. The ensemble transform Kalman fil-
ter (ETKF) proposed in [9] is a popular and efficient technique based on this
principle. It aims at describing the posterior ensemble members as linear com-
binations of the prior ones in an optimal way. Indeed, square root schemes
written in terms of the anomaly matrix are particular cases of ETKF.

Applying these methods to very high-dimensional geophysical systems (see
[30, 31, 33, 32] in routine weather forecast applications) requires modest size
ensembles (from tens to 100-200 at best). This is a true limitation of such
ensemble Kalman filters as they might lead to strong sampling errors of the
empirical covariance matrices involved in the filtering. These covariances have
indeed a rank of at most p−1, with p denoting the number of ensemble members.
In order to tackle this limitation and to extend their rank, so called localiza-
tion approaches have been introduced [3, 4, 27, 52]. These techniques filter out
spurious correlations between two far away points and are implemented either
through a Schur product of the empirical covariance matrices with a finite sup-
port positive definite kernel or by localizing explicitly the area of influence of a
set of observation on a given site of the spatial domain. Both methods, although
formally very different, have been shown to lead in practice to equivalent results
[52]. The latter techniques are computationally efficient as they lead to local
Kalman filters, with the risk of producing a global solution that is not a solu-
tion of the partial differential equations driving the system. The Schur product
conditioning of the empirical covariance is more secured from a formal point of
view but cannot be used in conjunction with squared-root filtering techniques
[52].

Ensemble Kalman filters are, by nature, stochastic filtering techniques. They
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rely in one way or another on randomness as a third ingredient. The randomness
considered is, in the vast majority of cases, related to the initial condition of the
deterministic dynamics, with possibly another additive random variable repre-
sentative of the error carried by the model itself. Such perturbations correspond
to the errors attached to the physical or numerical approximation performed in
the constitution steps of the system’s dynamics. One of the main difficulty faced
by the random dynamics built from perturbations of the initial condition is that
they usually exhibit an insufficient spread of the ensemble members. This flaw
leads to serious problems for data assimilation as all the ensemble members may
quickly drift far away from the current observation. In high dimensional spaces,
it cannot correct sufficiently the ensemble toward the current observation and
therefore can yield to filter divergence. The introduction of additive random
variables or inflating the ensemble variance by some factor is called variance
inflation and is commonly used to tackle deficient variance representation. The
problem associated with such a correction is that variance is gradually added
to the system across time without being explicitly dissipated. This injection
of energy leads eventually to a blowup of the dynamics simulation if it is not
controlled. As a result, only very low (relatively to a given dynamics) factors
of inflation can be considered in practice. Another problem, more specifically
related to additive inflation, is that it corresponds to a model error variable
that is blindly added to the system through an increase of variance. No partic-
ular spatial structure for the error is indeed injected. The last potential pitfall
associated with such a technique is that the injection of an additive random
forcing may completely change the attractor or the probability distribution of
the underlying system’s dynamics even for a noise of small amplitude [17], lead-
ing consequently to a quite different system from the one of interest. Still this is
different from the multiplicative inflation mentioned before, which is the most
commonly used in practice.

In this work, we explore an alternative to the randomization of the dynamics
described above. Compared to the techniques mentioned previously, the error
term in the dynamics is not added as an additional forcing but is, instead, part
of the model. In a similar way to the Reynolds decomposition principle used
in large eddies simulation setting, the stochastic formalism on which we rely,
referred to as modeling under location uncertainty (LU) [40] in the following,
consists in decomposing the dynamics in terms of a smooth in time component
and a highly oscillating random component that is assumed uncorrelated at
the characteristic time scale of the smooth component. A large-scale dynamics
which takes into account the random components is then inferred from this
decomposition and usual conservation laws shall hold for the stochastic model.
This setting offers a stochastic parametrization, representing the impact of the
small-scale flow on the global dynamics by a random small-scale velocity. This
way to represent the small scales independently, and not only subordinate to
the large scales, can be put in the broad context of stochastic physics. Still we
only aim at addressing the subgrid scale effects, which only constitute a subset
of all the “hidden physics” considered in techniques such as the stochastically
perturbed parametrized tendency (SPPT) (see [14, 41, 42, 53] for general insight
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on this). Uncertainty attached to hidden physics include among others deep
convection in ocean, ocean-atmosphere interaction, cloud convection scheme,
boundary layer turbulence etc. For a broad view of the different stochastic
frameworks proposed in climate sciences, the reader may refer to several recent
reviews on the subject [8, 25, 26, 41]

The LU framework entails deep changes in the classical formalism. Among
them, ensemble members are now semi-martingales and the material derivative
is replaced by its stochastic equivalent when it comes to deal with transport
equations. LU has the advantage to be flow-driven and physically relevant as
it truly encodes transport through the stochastic flow and relies on physical
conservation laws. This stochastic parametrization has been shown to produce
a higher spread than perturbation of the initial condition while keeping a good
trade-off with the error representation [6, 7, 48, 51]. A similar random decom-
position is also at the center of the variational stochastic framework of [29]. As
our setting, this latter approach constitutes a general formal framework to de-
rive stochastic representation of fluid flow dynamics. Both frameworks rely on
a stochastic transport principle. In [29], it is dedicated to Hamiltonian dynam-
ical systems and defined from a circulation preserving constrained variational
formulation, while the one in [40] is based on Newtonian principles and built
upon classical physical conservation laws. This latter scheme has been used as
a fundamental tool to derive stochastic representations of large-scale geophysi-
cal dynamics [6, 7, 13, 49, 50, 51] or to define large eddy simulation models of
turbulent flows [16, 34]

In this study, we would like to answer the following question: Does a stochas-
tic parameterization enable us to replace in a more secure and efficient way the
classical (multiplicative) inflation techniques? A general answer is obviously
difficult to provide. However the experiments carried out here on the Surface
Quasi-Geostrophic (SQG) model indicate that this effort seems worth being
done. The SQG model is simple as it is a 2D model, yet it captures highly non
linear realistic features of ocean surface dynamics [10, 18, 19, 20, 28, 36]. This
model combines a buoyancy transport equation with a kinematic relation be-
tween buoyancy and velocity. For this example, we present numerical evidence
that LU brings many improvements to classical ensemble simulation strategy
[48, 50]. We show that this parametrization is also useful in a data assimilation
context, again, by comparing to variance inflation. We present numerical evi-
dence that the Mean Square Error performances are systematically better than
all the deterministic inflation parameters tested here. We will also highlight the
flaws of both inflation and localization parameter tuning when comparing them
to a flow-driven stochastic model and point out that the latter seems to stabilize
the localization drawbacks we observe in deterministic settings.

The outline of the paper is as follows. We first briefly present the Location
Uncertainty principles and its mathematical implications. 1 Section 3 explains
the numerical setup and details the results mentioned just above. The ensemble

1For interested reader, thorough descriptions with detailed derivation of the stochastic
representation of geophysical flow dynamics can be found in [6, 13, 50].
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methods used in our experiments are recaped in appendix. The following is a
summary of the numerical experiments carried out in this article :

• Numerical validation that the deterministic inflation parameter is difficult
to tune , we show divergence of the filter in finite time (Figures 3 and 4).

• Performance comparison between LU and deterministic settings both in
terms of MSE (Figures 5 and 6) and spread quality (Figure 7).

A conclusion with some perspectives closes the paper.

2 Transport under Location Uncertainty (LU)

Location Uncertainty models the impact of the small scales on the global flow
dynamics. It is a stochastic framework that relies on the following decomposition
of the Lagrangian velocity of a fluid particle positioned at xt in a spatial domain
Ω ⊂ Rd :

dxt = v(xt, t)dt+ σ(xt, t)dBt, (1)

where v is a smooth-in-time component (referred to as the large-scale component
in the following) and σdBt is a highly oscillating random component, built from
a (cylindrical) Wiener process Bt (ie a well-defined Brownian motion taking
values in a functional space) [44]. This latter component is uncorrelated in
time. Let us point out that the above relation is rigorously understood in its
integral form and corresponds thus only to a practical shortcut notation. The
correlation operator σ is defined through a bounded matrix kernel σ̂, for any
function f ∈ (L2(Ω))d, by

σ(x, t)f =

∫
Ω

σ̂(x, y, t)f(y)dy. (2)

From this correlation operator, the covariance matrix kernel q̂ reads

q̂(x, y, t) =

∫
Ω

σ̂(x, x′, t)σ̂(y, x′, t)Tdx′, (3)

and the associated covariance operator Q is given by

Q(x, t)f =

∫
Ω

q̂(x, y, t)f(y)dy. (4)

The random velocity is Gaussian and distributed as

σdBt ∼ N (0, Qdt). (5)

Moreover, at each time t, the covariance operator Q(., t) is self-adjoint, non-
negative definite and compact. Thus it admits an orthonormal eigenfunction



6

basis {φn(·, t)}n∈N with non-negative eigenvalues (λn(t))n∈N. This entails an
alternative convenient spectral definition of the noise as

σ(x, t)dBt =
∑
n∈N

√
λn(t)φn(x, t)dβnt , (6)

where the βn are i.i.d standard Brownian motions. From (6), the noise variance
tensor a is then defined by

a(x, t) =
∑
n∈N

λn(t)φn(x, t)φn(x, t)T . (7)

It can be noticed the variance tensor has the physical dimension of a viscosity
(ie m2/s). The properties and structure of the noise will of course depend
on the procedure used to generate the orthonormal basis functions. The one
used in our experiments will be presented later. In the deterministic case, a
transported tracer Θ has zero material derivative :DtΘ = ∂tΘ + v · ∇Θ = 0. In
the LU framework, the material derivative is replaced by the stochastic transport
operator

DtΘ = dtΘ + (v∗dt+ σdBt) ·∇Θ− 1

2
∇ · (a∇Θ)dt, (8)

where

• dtΘ = Θ(x, t+ δt)−Θ(x, t) is the forward time increment of the tracer.

• The effective advection velocity is defined by

v∗ = v − 1

2
∇ · a. (9)

• The term σdBt ·∇Θ is a non-Gaussian multiplicative noise corresponding
to the tracer’s transport by the small-scale flow.

• The last term is a diffusion term, as the variance tensor a is definite
positive.

Note that the expression of the transport operator is given here for a divergence-
free noise. In the case of a compressible random field, the modified advection
incorporates an additional term related to the noise divergence [49]. One key
property of LU (for an incompressible random term) is that under the same
ideal boundary conditions as in the deterministic case, it conserves the energy
of the transported random tracer Θ:

d

∫
Ω

Θ2(x)dx = 0, (10)

and, very importantly, this energy conservation property holds pathwise (i.e
for any realization of the Brownian noise) [6, 49]. A few general remarks on
the stochastic transport operator can be done at this point. Compared to the
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usual material derivative, it encompasses additional new terms. The viscosity
is now described by the variance tensor a. It is no longer a scalar variable
but a (positive definite) diffusion matrix. It is thus richer than the classical
eddy viscosity models [12] derived from an analogy with the molecular friction
(the so called Boussinesq’s assumption). The multiplicative noise corresponds
to a backscattering of energy that is exactly compensated by the loss of energy
brought by the stochastic diffusion (meaning the second order differential term
associated to the stochastic transport operator in equation (8), which is indeed
diffusive, in the sense that it dissipates energy). This balance is the reason why
we have the energy conservation property and can be seen as a redistribution of
the tracer (in the same way as a deterministic advection equation). Finally, the
modified advection corresponds to the statistical effect induced by the small-
scale inhomogeneity on the large scale component structuration [6]. With this
term, the particles are statistically encouraged to migrate from regions with high
variance (ie of high kinetic turbulent energy) to regions with low variance. This
modification of advection, the backscattering carried by the advection noise and
the balanced diffusion matrix are the three marked ingredients of the modeling
under location uncertainty. It is important to point out that this balance only
holds globally. Locally, these three terms may play their own role without any
balance. This scheme has been used for the modeling of large scale flow dynamics
for numerous flow configurations. From a data assimilation point of view, it has
been used in an optimal control setting for 3D flow reconstruction and for joint
parameter estimation in a 1D shallow water model [16, 56], where it was shown
to provide an interesting trade-off with the so called weak constraint variational
assimilation.

The LU scheme obviously depends on the noise parametrization chosen. For
instance, for a homogeneous noise associated to Fourier basis functions, the
variance tensor is homogeneous and constant (even diagonal for a divergence
free flow). Hence, there is no modified advection. For a stationary noise, the
variance field is constant in time and thus not related to the evolving large-scale
components. The ability to build a flow-dependent noise enables us to im-
prove probabilistic forecasting skills [13]. For the SQG dynamics several noise
parametrizations have been compared and assessed through different statistical
proper scores [48]. One of the main findings of this work is that a time-varying
inhomogeneous parametrization, termed as SVD (Singular Value Decomposi-
tion) noise, provides the best quantification results.

SVD noise : In this paragraph, we describe the generation of the noise
used in the experiments. It relies on the creation of pseudo-observations at each
point of the simulation grid, and then on the diagonalization of the associated
empirical matrix to extract a proper basis to support the noise. Here the domain
Ω is a two-dimensional regular grid of size nx × ny. The pseudo observations
are constructed from the running velocity fluctuations around a sample mean,
more precisely around a velocity field composed of local spatial means computed
at each grid point. At each time t and each grid point xi,j , a spatial window
Wi,j of size nw × nw (with nw odd), much smaller than the whole simulation
grid, is built around the point, together with the model boundary conditions
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(periodicity, replication,...) if the current point is on the border. Then a pseudo-
observation is given by a draw of the velocity in the following set :

I(xi,j , t) = {v(xk,l, t) |k, l ∈Wi,j} . (11)

Proceeding to no draws within the window, and iterating over all the grid points,
a global pseudo-observation matrix V is built :

V =

 v1
1 · · · vno

1
... · · ·

...
v1
nxny

· · · vno
nxny

 , (12)

whose size is (2× nx × ny)× no (the 2 comes from the two components of the
velocity v).
Then the mean over the no pseudo-observations 〈V 〉 is retrieved

V ′ = V − 〈V 〉 (13)

and Singular Value Decomposition is applied to the fluctuation matrix V ′ to
diagonalize the corresponding second order empirical moment. This way, the
matrix Φ of the left eigenvectors on which we can decompose the noise as in (6)
is obtained.
Let us denote ` the simulation grid scale and L = nw` the spatial scale of
the sliding window used to compute the noise. The procedure described above
provides a noise σLdBt at scale L, which is artificial and it must be downscaled
to the true simulation scale `. [34] proposed a rescaling of the variance tensors
based on 2D turbulent cascade assumption :

a` =

(
`

L

) 2
3

aL,

which relies on an estimation of the velocity fluctuations at the simulation scale
`. Then the effective noise for the simulation grid is

σdBt = n
− 1

3
w σLdBt. (14)

[48] also show that the Uncertainty Quantification (UQ) results for the SVD
noise forecast reliability are good for all the metrics presented, in particular
much better than the Perturbation on Initial Conditions (PIC), often used in
ensemble data assimilation techniques. Some other procedures exist to generate
the noise (6), relying for example on off-line learning on high-resolution datasets,
or energy-budget based method (again see [48] for further details). This one has
the advantage to be flow-driven and quite simple. As the basis depends both on
time and on the ensemble member at hand, some adaptations should probably
be devised for realistic models. One can envisage, for instance, a combination
with wavelet basis or flow-based criterion to decide across time when the noise
basis should be updated.
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3 Experiments on both deterministic and stochas-
tic models

This section details the numerical experiments carried out in this study. The
main aim is to study the benefits brought by a stochastic dynamics in an up-to-
date version of ensemble Kalman filter with localization and inflation (details in
appendix). In particular we wish to observe whether or not the stochastic dy-
namics brings by itself an efficient and practical inflation procedure for ensemble
Kalman filtering.

In this work we apply the LU procedure to the 2D Surface Quasi-Geostrophic
(SQG) model. This model constitutes an idealized dynamics for surface oceanic
currents. Yet, it involves many realistic features of real world phenomena such
as front, strong multiscale eddies, driven by a 3D like turbulent energy cascade,
see [20, 36] for details.

The SQG model relies on a (deterministic or stochastic) transport equation
of the buoyancy field b

Dtb = 0, (15)

coupled with a kinematic equation

b =
Nstrat
f0

(−∆)
1
2ψ (16)

and the incompressibility constraints

v = ∇⊥ψ; ∇ · σdBt = 0, (17)

linking the buoyancy field to the velocity field v, where ψ is the stream function,
Nstrat is the stratification, f0 is the Coriolis frequency and ∇f = (∂xf, ∂yf)T ,
∇⊥f = (−∂yf, ∂xf) respectively stand for the classical and orthogonal gradi-
ents, while ∆ denotes the Laplace operator. The stochastic dynamics simply
consist in replacing the material derivative Dt by the stochastic transport oper-
ator Dt given by (8). We show in Figure 1 several realizations of the stochastic
dynamics.

It can be noticed that the large-scale component of the different particles
remain quite close after 17 days. They mainly differ by their small-scale features
and vortices (subfigures (a,b,c,d)). We also added the states of these realizations
at day 72 as an example to point out that the system is chaotic and may lead
to significant large scale differences (subfigures (e,f,g,h)), at least on the time
range studied in this work. This system is unforced and involves in its numerical
implementation a small hyperviscosity term. It is hence decaying in the long
run. However, as shown in Figure 1, the system remains turbulent at the end of
the time period on which we will focus in this study. Mesoscale eddies as well
as submesoscale eddies, filaments and fronts can be observed for the different
realizations at day 72 of Figure 1. The stochastic and deterministic simulation
is run on a simulation grid, Gs, of size 64×64, meaning that each realization xn
is a 64× 64 matrix, or equivalently a vector of size 4096 (because here only the



10

(a) Realization 1 (b) Realization 2

(c) Realization 3 (d) Realization 4

(e) Realization 1 (f) Realization 2

(g) Realization 3 (h) Realization 4

Figure 1: Four different realizations for the stochastic dynamics at day 17 and
day 72.
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buoyancy field is observed and simulated, the velocity being obtained through
the inversion of a fractional Laplacian). The actual physical size of the domain
being 1000km × 1000km, two neighbor grid points are distant of about 15km.
An observation yobs on a coarser observation grid, Go, of size 16×16, is assumed
to be available every day (i.e. every 600 time steps of the dynamics). It is is
generated as follows:

• A trajectory (zt)t is run from the deterministic model (PDE) at a very
fine resolution grid Gf , of size 512× 512

• Then a convolution-decimation procedure [39] is applied, which is the com-
position of a Gaussian filter Gσ and a decimation operator D subsampling
one pixel out of two. The Gaussian filtering writes

Gσ(zt)(x) = (gσ ∗ zt)(x),

where gσ is a two-dimensional Gaussian function. For any observable f
defined on a grid (x11, ..., x2n,2n), we define Dg on a decimated subgrid
(x′11, ..., x

′
n,n) by

Df(x′ij) = f(x2i,2j).

This convolution-decimation operator D◦Gσ is then performed three times
in order to fit to the targeted simulation grid.

• Finally, a projection operator P is applied from Gs to Go, the latter being
a subset of the first, and the observation is defined, for all t, by

yobst = P ◦ (D ◦Gσ)3(zt) + ηt,

where
ηt ∼ N (0, R) and R = diag(r2

1, ..., r
2
M ) (18)

is the diagonal observation covariance matrix. It will often be considered
that R = r2IM , where M is the number of points on the observation
grid. As a consequence, the operator P plays the role of the observation
operator H in the Kalman equations.

Numerical setup : The simulations have been performed with a pseudo-
spectral code in space [48]. The time-scheme is a fourth-order Runge-Kutta
scheme for the deterministic PDE, and an Euler-Maruyama scheme for the
SPDEs [35]. Regardless of the resolution and stochasticity, we use a standard
hyperviscosity model to dissipate the energy at the resolution cut-off. The re-
sulting implemented dynamics is :

Dtb = α∆2bdt, (19)

with a hyperviscosity coefficient α = (5 × 1029m8.s−1)M−8
x , where Mx is the

grid resolution (here 512 for the fine-resolution PDE used to generate the ob-
servations, and 64 for the ensemble members). The boundary conditions are
double-periodic. As mentioned before, the equations are mostly handled in the
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Fourier space, where the following SQG relation between velocity and buoyancy
Fourier transforms can be used :

v̂ = ik⊥
b̂

Nstrat||k||
, (20)

with k is the horizontal wave-vector, k⊥ the orthogonal horizontal wave-vector
and Nstrat is the stratification. The test case considered in this study is the
following : an ensemble of N = 100 particles is started from the very same
initial condition at day 0, which consists in two cold vortices to the north and
two warm vortices to the south (figure 2) :

Figure 2: Initial condition of the buoyancy field for all particles.

The initial field is mathematically defined on each grid point r =

(
x
y

)
by

the following formula :

b0(r) = F (r − r1)− F (r − r2)− F (r − r3)− F (r − r4), (21)

where the vortices initial cores are

r1 =

(
250km
250km

)
; r2 =

(
750km
250km

)
; r3 =

(
250km
750km

)
; r4 =

(
750km
750km

)
and the function F is defined by

F (r) = B0 exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
(22)

with B0 = 10−3m.s−1, σx = 67 km and σy = 133 km. We also set the Coriolis
frequency to f0 = 1.028× 10−4s−1 and the stratification to Nstrat = 3f0.
In this experiment, we study the differences of efficiency of the localized Ensem-
ble Square Root Filter (cf appendix) with inflated deterministic forecast and non
inflated stochastic simulations. In both cases, the initial ensemble is generated
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as follows. Starting from the initial condition, the stochastic dynamics is simu-
lated using the SVD noise for 3 days (meaning 1800 time steps for the (S)PDE),
without data assimilation. This way, a random ensemble is generated, and the
performances of the SVD noise indicate that this ensemble is well-spread around
the truth, which will be confirmed in Figure 7. An observation is provided each
day (i.e. every 600 time steps of the SPDE (or PDE)), with an observation error
covariance set to ri = 10−5 for i = 1, ...,M in equation (18), which corresponds
to a weak (but not negligible) noise on the observation. For the remaining of
the simulation (100 days), this ensemble is used for two experiments :

• Experiment 1 (deterministic dynamics with inflation): The stochas-
ticity is shut down after day 3, the forecast is then generated by the de-
terministic PDE, and prior inflation is used to artificially increase the
ensemble spread. Namely, before the assimilation step, given a forecast
ensemble xf , the inflated ensemble xf,inf is defined by

xf,infj = xf + α(xfj − x
f ), (23)

where α > 1 is the inflation parameter. Then the localized ESRF is
applied to xf,inf and the same procedure is done each day at each new
observation.

• Experiment 2 (stochastic dynamics without inflation): The same
SPDE drives the particles for the whole simulation, and the localized
ESRF is applied with an observation each day.

The localization radius was set to lobs here, where lobs ' 60km denotes the
distance between two neighboring observational sites, as it provided the best
results for both cases. The inflation procedure is very sensitive to the parameter
α. It must be finely tuned to have the best results. If it is too small, then the
spread is not large enough. If it is too large, then it could give rise to a divergence
of the filter (cf figure 3). For our SQG configuration, it turns out that the range
of validity of α is between 1 and 1.08 approximately. Starting from α = 1.09, the
filter starts diverging in the long term. In the context of our model, this small
range for the inflation parameter and the tuning procedure is in itself a drawback
of the inflation method. Still this tuning can be very different depending on
the model at hand, so we do not claim that this range is small in general.
Moreover, when α is badly chosen, it brings in the additional problem of strong
divergence of particles of localized ESRF, as shown in Figure 4. In this example
(rloc = 3lobs and α = 1.15), starting from day 50 or so, strong gradients between
neighboring grid points can be observed, and progressively lead to non physical
predictions. Obviously the same kind of behaviour also occurs in our setting with
a smaller value of rloc. This was theoretically expected as, in the localization
procedure, the posterior ensemble members are combinations by block of linear
combinations of the prior ensemble members (cf equation (35) in appendix).
This formula relies on the strong assumption that such a block recombination
remains a solution of the underlying PDE (or SPDE), which suggests that the
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Figure 3: Mean Square Error curves for different values of the inflation param-
eter α in the deterministic case (case 1): magenta (α = 1.10), cyan (α = 1.09),
green (α = 1.08), blue (α = 1.05) and black (no inflation: α = 1.0). Inflation
is overall very beneficial compared to the black line (no inflation), but too big
values of α lead to a long-term divergence of the filter (magenta and cyan).
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global equation is equivalent to a combination of local ones. Let us note that for
instance for fluid dynamics equations, the presence of a pressure term, solution
of an elliptic problem, is intrinsically global and theoretically prevents such a
local modeling. A careless application of localization may lead to the appearance
of some discontinuities or gradients due to very different decisions taken by the
filter at neighboring points. This may entail, after subsequent iterations of
the underlying dynamics, major errors, numerical divergence of some ensemble
members, leading eventually to unphysical realizations.

Figure 4: Examples of diverging realizations resulting from LESRF with rloc =
3lobs ' 180km and α = 1.15.

The long-term instability of inflation is not a good sign, especially consider-
ing we deal here with a coarse-scale diffusive simulation. For finer resolutions
with less diffusion and much more pronounced non-linear features, divergence
is likely to occur sooner for the same inflation value. This instability is the-
oretically expected, as the artificial variance injection entailed by inflation is
never counterbalanced in any way in the model. At a coarse resolution, even
for low inflation parameters, the typical slow growth of error at the end of the
simulation seems to indicate that long-time divergence as in figures 5 and 4
should be observed extending the simulation time (Figure 6 equivalently shows
that increasing the inflation parameter makes the divergence occur earlier). The
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divergence caused by variance inflation can be attenuated by temporal adaptive
schemes with introduction of diagnostic criteria [38, 45]. Another alternative
consists in changing the hypothesis on the prior distribution accounting for the
sampling errors in the ensemble, which was shown in [11] to make multiplicative
inflation optional on Lorenz models.

An increase of variance without controlling the global energy by a balanced
dissipation raises the question of the mathematical well-posedness of the nu-
merical scheme but also on the modified physics undergone by this forcing.
These two questions are far from cosmetic. The first one is related to the gen-
erality of the numerical scheme (ie it must be valid for any noise and at any
resolution, etc.). The second point is about the error terms, they should not
change dramatically the targeted underlying physical system [17]. These two
points can hardly be met by an artificial increase of variance or by non physical
multiplicative noise (see [17] for an example on the Lorenz63 model).

On the opposite, the LU setting brings a natural balance between the energy
brought by the noise and the amount dissipated by the stochastic diffusion. In
addition, as shown in Figure 5, the simulation is stable while bringing an equiva-
lent spread as a relatively strongly inflated deterministic simulation value (with
respect to the SQG dynamics studied here). It leads also to better MSE results
than the deterministic setting for the different values of inflation experimented
here.

Figure 5: The LU framework (in red) performs better than the deterministic
cases for all the reasonable inflation parameters tested and plotted in cyan
(α = 1.09), green (α = 1.08), blue (α = 1.05) and black (no inflation: α = 1.0)
color.
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Figure 6 shows the same comparison with a greater inflation parameter set
to α = 1.20. The time window is reduced to 50 days because, as expected,
increasing the inflation parameter leads to an earlier divergence, here starting
from days 40-50. Still it has comparable results with LU in the first 30-35 days.
This means that LU has short-term MSE performances comparable with a very
strong deterministic inflation parameter, and avoids long-term divergence as
well.

Figure 6: Same figure as 5 with additional inflation parameters α = 1.10 (in
magenta) and α = 1.20 (in orange). The time window is reduced to 50 days as
the orange curve diverges much sooner than the others.

Additionally, we examine the spread of the ensemble members around the
truth and observation points. We chose three characteristic grid points, corre-
sponding to the center, north and southwest of the southwest warm vortex of the
initial condition (Figure 2). In the following figure (Figure 7), we compare the
behavior of the spread of LU ensemble members (in red) and deterministically
inflated ones with parameter α = 1.10 (in magenta) and α = 1.20 (in orange)
around the truth (blue dots) and observation points (black dots). Note that the
two chosen inflation parameters are quite strong and lead both to divergence
of the filter, with the second one exhibiting a divergence much sooner than the
first one.

Figure 7 shows this comparison for the first 17 days of simulation. Although
both spreads of subfigures (a) and (b) seem very similar for the figures of left
and right columns, we observe on the center column figure that deterministic
inflation does not provide enough spread to contain the truth, while LU does
(see for instance time window 8,000-10,000). It can also be noticed that the
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Figure 7: Comparison of spread between LU and deterministic inflation on
the first 17 days of the dynamics for three points located at the center, top
and bottom left of the bottom left warm vortex of the initial condition. The
upper row shows in red the buoyancy values at these points for the stochastic
ensemble. The two lower ones show the buoyancy values at the same points for
the deterministically inflated ensembles for α = 1.10 (in magenta) and α = 1.20
(in orange). The black dots are the observations; the blue line stand for the
truth.

truth at time step 8400 is completely skipped by magenta and orange spreads,
while LU manages to reach it.
We see that increasing the inflation parameter does not counteract the flaws of
the smaller inflation parameter α = 1.10 (magenta spread, Figure 7), meaning
that increasing α does not entail a richer ensemble. To that extent, we can also
notice that when the stochasticity is shut down at day 3, the deterministic sets of
trajectories immediately become less dense than the stochastic one. This means
that the neighborhood of the truth/observation is visited much more often (in
time) by stochastic trajectories. This improved ”density” of the stochastic en-
semble in the state space is an interesting feature, not exploited yet but it could
be relevant in a particle filter framework.

Deterministic inflation sometimes offers more spread than LU. We observe
this situation for example at the time window 9,000-10,000 on the right column
figure. But this spread seems bigger than necessary, as LU has a smaller spread,
but already well-centered around the truth. This supports the idea that deter-
ministic inflation is blind, in the sense that it is decorrelated from the dynamics
and the current state of the ensemble. LU does not only provide a spread of
the ensemble equivalent to a strong inflation parameter, it brings an ensemble
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of better quality. This ensemble is constructed from the large-scale fluctuation
and, in a way, fits the physics encoded by the original dynamics.

Another indicator of this is the following spread-error consistency in Figure
8. We compared the ensemble bias absolute value with the error estimated from
the ensemble spread. We did this for LU and for the deterministic setting with
inflation parameters α = 1.10 and α = 1.20 at day 17, when the three models
are very close in terms of global MSE (see Figure 6). The results clearly point
out that the LU framework provides much more spread and a better estimation
of the error. The spread induced by inflation has much less physical structure
and relevance.

Let us outline that the noise experimented here is free from any parameter.

4 Conclusion

We have shown in this study that the introduction of a stochastic parameteri-
zation of the flow dynamics within the location uncertainty setting enables to
improve localized ESRF results when compared to an ensemble simulation of
the original deterministic dynamics. Our main findings are as follows :

• The LU framework provides good spread, good MSE performances, and
does not require variance inflation contrary to the deterministic ensemble
simulations. This constitutes a first clear advantage of such a stochastic
parametrization over an artificial increase of the ensemble spread. The
parameter of such inflation is known to be difficult to fix and requires a
fine tuning to get good performances.

• In addition, even for low values of the inflation parameter, we have shown
that such a steady increase of variance leads to filter divergence at finite
time. For finer resolutions with less diffusion and much more non-linear
features, this time is likely to be much shorter for the same inflation value.
Augmentation of variance through inflation corresponds to an error model
with no particular spatial patterns. On the contrary, the stochastic dy-
namics consider a more subtle transport noise directly set from the large-
scale on-going simulation. The fact that the injection of variance is natu-
rally counterbalanced by a diffusion term prevents long-term divergence.
It creates also a more physical and useful spread, whereas the spread en-
tailed by deterministic inflation is sometimes too small and sometimes
bigger than necessary.

• We also point out the potential drawbacks of localization techniques when
accompanied with localization in the observation space, due to the block
recombination of the solution. An augmentation of spread in a blind and
constant way leads the local filter to take many different decisions, yielding
a strong local augmentation of the gradients. When the dynamics involves
an elliptic equation, as it is the case in the surface quasi-geostrophic model,
this leads to dramatic divergence in finite time.
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(a) LU

(b) Deterministic inflation α = 1.10

(c) Deterministic inflation α = 1.20

Figure 8: Comparison between the ensemble bias absolute value e(x) = |b(x)−
btruth(x)| (left maps) compared to the estimate error (1.96× the standard de-
viation of the ensemble) evaluated at each grid point (right maps) at day 17.
The upper row shows this comparison for LU, the other two show the same
comparison with the deterministic setting respectively for inflation parameters
of α = 1.10 (central row) and α = 1.20 (bottom row).
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• The localized Ensemble Square Root Filter with a stochastic dynamics
seems to be able to handle sparse observations in time – in the experimen-
tal context used here only one observation field per day was available –
meaning every 600 time steps of the stochastic partial differential equation.
This ability could be very helpful in the context of realistic forecasting of
sea surface state. This study provides encouraging results and constitutes
a first step toward this goal. Time interval of 3 to 10 days together with
higher resolution observation will have to be investigated.

The stochastic SQG model experimented here constitutes an interesting
model with highly non-linear features and a global elliptic equation. The reso-
lution grid considered here is relatively small (ie 64× 64) but yet of dimension
larger than usual benchmarks elaborated from the different Lorenz models. We
are confident the techniques could be extended to higher dimension.

As for the intrinsic nonlinear features of the dynamics, we intend to explore
other data assimilation techniques like particle filtering for the stochastic SQG
forecast. The particle filtering framework is promising as it constitutes a flexible
data assimilation technique in terms of prior assumptions on both the linearity
(or not) of the model and the Gaussianity of the errors. Even if it is known to
struggle with high-dimensional systems, we expect the additional sophisticated
methods devised in [21, 22] to counteract the curse of dimensionality.
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A Appendix: Ensemble methods

In this section we recall briefly the ensemble methods on which we focus in this
study. We start by introducing the notations used here. Ensembles denoted
x will contain N members. Each member lives in the state space Rd. The
empirical mean will be denoted by x and the (unbiased) ensemble covariance
matrix is defined by

P =
1

N − 1

N∑
n=1

(xn − x)(xn − x)T . (24)

We are given an observation yobs living in RM with R its observation covariance
matrix.
The observation operator H maps the state space Rd to the observation space
RM .
Let us do a recap on different ensemble methods, including the classical EnKF
and the localized square root filter used in the experiments.
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Classical EnKF (with perturbed observations) Starting from a forecast
ensemble denoted xf , in the classical EnKF the ensemble is updated as follows
:

• The so called Kalman gain matrix is defined by

K = P fHT (HP fHT +R)−1. (25)

• The members of the ensemble are updated by :

xan = xfn −K(Hxfn − yobs − ξn), (26)

with ξn ∼ N (0, R), which corresponds to random draws of the observation
error.

Ensemble Square Root Filter (ESRF) The square root scheme, developed
in [55], provides a deterministic way to generate the posterior ensemble, without
sampling of the ξns. The method is the following:

• The innovation term Hxf −yobs is multiplied by K in order to update the
mean of the ensemble :

xa = xf −K(Hxf − yobs). (27)

• The ensemble covariance matrix is updated as well :

P a = P f −KHP f . (28)

• Each member of the ensemble is given by

xan = xa + (P a)
1
2 (P f )−

1
2 (xfn − xf ). (29)

Since the ensemble covariance matrices are, in practice, of very high dimension,
they cannot be neither stored nor manipulated (remember that for a state of
dimension 1011, which is usual in weather forecasting, then this gives a covari-
ance matrix of size 1022, that is to say of 107 peta (storage unit of the state
variable)). An alternative is to rewrite the filtering equations only in terms of
the ensemble anomaly matrix

Af = [(xf1 − xf ), (xf2 − xf ), . . . , (xfN − x
f )],

which is a d × N matrix, so a more convenient one to store. In the following,
we provide the expression of the different covariance matrices involved in this
setting. An exhaustive presentation of the full computational details may be
found in [47].
The ensemble covariance matrix is linked to the anomaly matrix by

P f =
1

N − 1
Af (Af )T ,
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and the same relation holds for the posterior (or analysis) matrices. Injecting
this relation in equation (28) of the update of P a, one can find, after some
algebraic manipulations, that

Aa(Aa)T = Af
(
I − 1

N − 1
(HAf )T (HP fH +R)−1HAf

)
(Af )T .

So, if S is such that

SST = I − 1

N − 1
(HAf )T (HP fH +R)−1HAf ,

then
Aa = AfS.

Using the Sherman-Morrison-Woodbury formula [1], we deduce that

S =

(
I +

1

N − 1
(HAf )TR−1HAf

)− 1
2

. (30)

Let us remark that this matrix has size N ×N , and Singular Value Decompo-
sition can be used in order to compute the inverse square root. By definition of
Aa, the posterior forecast is given by

xa = xa +Aa = xa +AfS. (31)

It can be shown that the mean xa can be written as a linear combination of the
members of the forecast ensemble, namely

xa =

N∑
i=1

ωix
f
i ,

where ωi is the i-th coordinate of the column vector

ω =
1

N
1− 1

N − 1
S2(Af )THTR−1(Hxf − yobs).

Finally, combining this with equation (31), the members of the posterior ensem-
ble can be computed, for n = 1, . . . , N ,

xan =

N∑
i=1

ωix
f
i +

N∑
i=1

(xfi − x
f )Sin. (32)

This filter is part of what is generally called Ensemble Transform Kalman Filter
(ETKF), because members of the posterior ensemble are linear combinations of
the forecast ones. Here

xan =

N∑
i=1

di,nx
f
i ,
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with

di,n = ωi + Si,n −
1

N

N∑
j=1

Sj,n.

Let us mention that such superposition principle (stability of solutions by
linear combinations) is in theory only valid for linear dynamics. In the context
of nonlinear dynamics, this setting has to be understood as constraining the
solution to live in a particular Hilbert space of Gaussian processes spanned by
the ensemble members and associated to a norm defined by the inverse ensemble
covariance matrix.

Localized version of the ESRF There exist two main ways to localize the
filter. The R-localization (or local analysis) works on the observation error
covariance matrix R. Another way to achieve localization is to work on the
ensemble covariance matrix P (B-localization or covariance localization). As
equations (30-32) are only based on the use of the anomaly matrices instead
of the whole covariance matrices P , R-localization is the only one compatible
with our equations. [52] give details on both localization techniques and give
numerical insights showing that both methods are likely to produce similar
results.
The basic idea of R-localization is to update the ensemble members, not in one
step and using all the grid points, but coordinate by coordinate, using for each
one a local neighborhood of ”relevance”. By doing so, the dimension of the state
space is dramatically reduced for each local update.
More precisely, for each grid point k = 1, . . . , d, let us denote pk the projection
on the k-th coordinate (or grid point). For each k, the aim is to compute the
local coefficients dki,n such that

pk(xan) =

N∑
i=1

dki,npk(xfi ). (33)

In order to do this, R-localization is applied, meaning that the observation error
covariance matrix will be modified for each coordinate, and then we will apply
the previous formulas (30-32) for this new matrix.
For each k = 1, . . . , d, a diagonal localization matrix Ck of size p× p is defined,
where p is the number of points on which you have observations (possibly less
than d if the observation grid is coarser), and the diagonal coefficients are given,
for l = 1, . . . , p, by

(Ck)ll = ρ

(
d(l, k)

rloc

)
,

where :

• d(l, k) denotes the distance between the grid point k and the observation
site l.

• rloc is the localization radius.
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• ρ is the Gaspari-Cohn function, defined for any z ≥ 0 by

ρ(z) =

 −
1
4z

5 + 1
2z

4 + 5
8z

3 − 5
3z

2 + 1 if z < 1
1
12z

5 − 1
2z

4 + 5
8z

3 + 5
3z

2 − 5z + 4− 2
3z if 1 ≤ z ≤ 2

0 if z ≥ 2
.

It basically behaves like a Gaussian, but has compact support [0, 2], so
that the coefficients are set to zero as soon as d(l, k) is twice as big as the
localization radius.

Then the inverse observation error covariance matrix is modified by the Schur
product

R−1
k = Ck ◦R−1. (34)

By doing so, the grid points outside this area are no longer taken into account,
as the observation error is set to infinity at these points (due to the cancellation
of spurious correlations). Finally, R is replaced by Rk in formula (30), which
gives a localized version Sk of S, and so a localized version of equation (32).
In order to sum everything up, in this localized version, the update formula is
given by

xan =

d∑
k=1

pk(xan) =

d∑
k=1

N∑
i=1

dki,n pk(xfi ). (35)
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Sciences, 23 (1): 1–680, 1877.

[13] R. Brecht, L. Li, W. Bauer, and E. Mémin. Rotating shallow water flow un-
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[40] E. Mémin. Fluid flow dynamics under location uncertainty. Geophysical &
Astrophysical Fluid Dynamics, 108(2):119–146, 2014.

[41] T. N. Palmer. Stochastic weather and climate models. Nature Reviews
Physics, 2019.

[42] T. N. Palmer and P. Williams Stochastic physics and climate modelling.
Cambridge Univ. Press, 2017.

[43] D.T. Pham. Stochastic methods for sequential data assimilation in strongly
nonlinear systems. Monthly Weather Review, 129(5):1194 – 1207, 2001.

[44] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions.
Cambridge University Press, 1992.

[45] P. N. Raanes, M. Bocquet, and A. Carrassi. Adaptive covariance inflation
in the ensemble kalman filter by gaussian scale mixtures. Quarterly Journal
of the Royal Meteorological Society, 145(718):53–75, 2019.

[46] S. Reich and C. Cotter. Probabilistic Forecasting and Bayesian Data As-
similation. Cambridge University Press, 2015.

[47] M. Reinhardt. Hybrid filters and multi-scale models. doctoralthesis, Uni-
versität Potsdam, 2020.

[48] V. Resseguier, L. Li, G. Jouan, P. Derian, E. Mémin, and B. Chapron. New
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[50] V. Resseguier, E. Mémin, and B. Chapron. Geophysical flows under loca-
tion uncertainty, Part II Quasi-geostrophy and efficient ensemble spreading.
Geophys. & Astro. Fluid Dyn., 111(3):177–208, 2017b.
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