Bright Electroluminescence from Single Graphene Nanoribbon Junctions - Archive ouverte HAL
Article Dans Une Revue Nano Letters Année : 2017

Bright Electroluminescence from Single Graphene Nanoribbon Junctions

Résumé

Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic optoelectronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with ab initio calculations indicates that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust, and controllable graphene-based light-emitting devices.
Fichier principal
Vignette du fichier
Chong_NAnolett2018_Arxiv1802.10335.pdf (7.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03562724 , version 1 (24-02-2022)

Identifiants

Citer

Michael C Chong, Nasima Afshar-Imani, Fabrice Scheurer, Claudia Cardoso, Andrea Ferretti, et al.. Bright Electroluminescence from Single Graphene Nanoribbon Junctions. Nano Letters, 2017, 18 (1), pp.175 - 181. ⟨10.1021/acs.nanolett.7b03797⟩. ⟨hal-03562724⟩
34 Consultations
23 Téléchargements

Altmetric

Partager

More