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The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with
a strong guide field are analyzed on the basis of a two-field Hamiltonian gyrofluid model.
The model is valid for a low ion temperature and a finite βe. The finite βe effect implies
a magnetic perturbation along the guide field direction and electron finite Larmor radius
effects. A Hamiltonian derivation of the model is presented. A new dispersion relation
of the tearing instability is derived for the case βe = 0 and tested against numerical
simulations. For βe ≪ 1 the equilibrium electron temperature is seen to enhance the
linear growth rate, whereas we observe a stabilizing role when electron finite Larmor
radius effects become more relevant. In the nonlinear phase stall phases and faster than
exponential are observed, similarly to what occurs in the presence of ion finite Larmor
radius effects. Energy transfers are analyzed and the conservation laws associated with
the Casimir invariants of the model are also discussed. Numerical simulations seem to
indicate that finite βe effects do not produce qualitative modifications in the structures
of the Lagrangian invariants associated with Casimirs of the model.

1. Introduction
Magnetic reconnection plays a crucial role in a broad range of plasma environments,

from laboratory plasma experiments to astrophysical plasmas. It is a fundamental energy
conversion process, as a result of which magnetic field energy is converted into kinetic
energy and heat. In a reconnection event, the tearing instability is believed to play an
important role as an onset mechanism of the process. A considerable progress in the
understanding of this mechanism has been achieved through the fluid description of
plasmas. The fluid framework is less costly in terms of computational resources, and
physically more intuitive when compared to the kinetic framework. Fluid models, in
general, are also more suitable for analytical treatment. In the non-collisional case,
some reduced fluid models were designed to retain two-fluid effects (e.g. Aydemir (1992);
Ottaviani & Porcelli (1993); Schep et al. (1994); Cafaro et al. (1998); Grasso et al. (1999);
Del Sarto et al. (2006); Fitzpatrick & Porcelli (2007); Grasso & Tassi (2015)), such as,
for instance, electron inertia (Furth (1962, 1964)) which is known to develop a thin
current layer where modifications of the topology of the magnetic field lines can occur.
These fluid models, on the other hand, neglect the effects of the electron Larmor radius,
which makes it impossible to describe phenomena taking place at a microscopic scale
comparable to that of the electron thermal gyro-radius. Gyrofluid models are the effective
tools to fill this gap. Indeed, although obtained by truncating the infinite hierarchy of
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equations evolving the moments of the gyrokinetic equations, gyrofluid models, unlike
fluid models, retain finite Larmor radius (FLR) effects and are thus valid on thermal
Larmor radius scales. Also, most of the available reduced gyrofluid models, to the best
of our knowledge, neglect the perturbations of the magnetic field along the direction of a
guide field, the latter typically corresponding to the mean magnetic field in astrophysical
plasmas (e.g. Schekochihin et al. (2009)) or to an imposed external field in laboratory
plasmas. However, even in the case of a strong guide field, such perturbations can be
relevant in some nearly collisionless environments such as the solar wind, which motivates
their inclusion in an analysis of collisionless reconnection. The study of reconnection for
a finite βe can be relevant especially for plasmas with relatively large temperatures, such
as in the Earth magnetosheath, where some β > 1 values are observed, in the presence
of a guide field, during reconnection events (Man et al. 2020; Eastwood et al. 2018).

In this work, we make use of a gyrofluid model to study the linear and nonlinear
evolution of the tearing instability in a collisionless plasma with strong guide field. This
study is based on a two-field gyrofluid model that has been derived from gyrokinetic
equations in Tassi et al. (2020), assuming a quasi-static closure. With respect to the
above mentioned reduced fluid models, such gyrofluid model accounts for both finite
electron Larmor radius effects and perturbations parallel to the direction of the guide
field. The model is taken within the asymptotic cold ion limit, although we present a
small set of simulations performed in the limit of hot ions to reflect the differences and
possible consequences of this limit. A more in-depth study of the hot ion limit could
be done in a subsequent work. Our gyrofluid model is valid for finite βe values, where
βe is the ratio between the electron pressure and the magnetic pressure based on the
guide field. We remark that finite βe effects were taken into account also in the model by
Fitzpatrick & Porcelli (2004, 2007). However, in that model, electron FLR effects were
neglected.

We consider magnetic reconnection taking place in a two dimensional (2D) plane,
perpendicular to the guide field. Reconnection is mediated by electron inertia and by
electron FLR, which makes the process non-dissipative, unlike reconnection driven by
electrical collisional resistivity. As many dissipationless fluid and gyrofluid models, also
the gyrofluid model under consideration possesses a Hamiltonian structure, which reveals
the presence of two Lagrangian invariants and gives the expression of the conserved total
energy of the system. With this we can obtain further information about how βe can
influence the distribution of the different components of the total energy.

In the limit βe → 0 (in the following also referred to as the "fluid" limit), the model
corresponds to the two-field fluid model of Schep et al. (1994). This fluid model has
long been used to study the tearing instability, and a relevant dispersion relation for the
collisionless tearing mode, applicable to this model, has been derived in Porcelli (1991)
and is valid for any value of ∆′. We present in this article a new analytical formula, whose
derivation is presented in the Appendix and follows the procedure used by Grasso et al.
(2002), which is carried out in real space and resorts to the constant-ψ approximation
(Furth et al. (1963)). This new formula differs from the small tearing parameter ∆′ limit
of the formula of Porcelli (1991), by the presence of a small corrective term. These two
formulas are tested against numerical simulations and, in its regime of validity, our new
relation shows a better agreement with the numerical growth rate.

We studied numerically the effect of a finite βe in the linear and nonlinear phase
of the tearing instability. For the linear phase, we first isolate the effect of varying βe
by keeping fixed all the other parameters of the system. In this setting we observe a
stabilizing role of the βe parameter. The stabilizing effect is then seen to be reduced
when increasing the normalized electron skin depth de. A partial justification of this
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behavior can be given analytically considering the small FLR limit of the model. We
remark that varying βe with fixed de and ρs amounts to varying the normalized thermal
electron Larmor radius ρe at fixed ρs. Subsequently, we consider the effect of varying
βe while keeping a fixed mass ratio. The previously mentioned stabilizing role of βe is
then concomitant with the destabilizing role of the normalized sonic Larmor radius ρs.
The growth rate is thus evaluated for different values of the parameters de, ρs and ρe.
These parameters are associated with different physical scales and are absent in the usual
reduced magnetohydrodynamics (MHD) description. The stabilizing effect of the tearing
mode when increasing βe and me/mi is in agreement with Numata et al. (2011). We
also obtained the same scaling as the one of Numata & Loureiro (2015) when varying
βe and de. Both these studies were performed with a gyrokinetic model and we refer to
the scaling they obtained within the non/semi-collisional limit. In the nonlinear phase,
we find the explosive growth rate (Aydemir (1992),Ottaviani & Porcelli (1993)) which
has been obtained as well in the gyrofluid study of Biancalani & Scott (2012) that was
considering low βe and ion FLR but no electron FLR effects. We investigate how the
effects of βe affects this faster than exponential growth.

The reconnection process described by Hamiltonian reduced fluid and gyrofluid models
has been analyzed in terms of Lagrangian invariants in several cases in the past (Cafaro
et al. (1998); Grasso et al. (2001, 2010); Comisso et al. (2013); Grasso & Tassi (2015)). The
effect of both electron FLR effects and parallel magnetic perturbations on the structure
of such invariants has not been studied so far, though. In this paper we present the
behavior of the two topological invariants of the system. They extend the Lagrangian
invariants of simpler models that do not account for βe effects and behave similarly.

The paper is organized as follows. In Sec. 2 we derive the gyrofluid model adopted
for the analysis. The procedure we follow for the derivation automatically provides the
Hamiltonian structure of the model. Section 3 contains a review of the linear theory and
a new dispersion relation for the case βe = 0. We also present the results of numerical
simulations in the linear phase, for finite βe. In Sec. 4 the results obtained in the non-
linear phase are presented and the gyrofluid version is compared to the fluid version.
In this Section, we also study the impact of a finite βe on the evolution of the different
energy components. Section 5 presents the conservation laws and the evolution of the
Lagrangian invariants of the model. In the Appendix we present the derivation of the
new dispersion relation, which is based on the asymptotic matching theory.

2. The gyrofluid model
We begin by considering the model given by the evolution equations

∂Ni

∂t
+ [G10iϕ+ τ⊥i

ρ2s⊥2G20iB∥, Ni]− [G10iA∥, Ui] = 0, (2.1)

∂

∂t
(Ui +G10iA∥) + [G10iϕ+ τ⊥i

ρ2s⊥2G20iB∥, Ui +G10iA∥]−
τ⊥iρ

2
s⊥

Θi
[G10iA∥, Ni] = 0,

(2.2)
∂Ne

∂t
+ [G10eϕ− ρ2s⊥2G20eB∥, Ne]− [G10eA∥, Ue] = 0, (2.3)

∂

∂t
(G10eA∥ − d2eUe) + [G10eϕ− ρ2s⊥2G20eB∥, G10eA∥ − d2eUe] +

ρ2s⊥
Θe

[G10eA∥, Ne] = 0,

(2.4)
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complemented by the static relations

G10iNi −G10eNe + (1−Θi)Γ0i
ϕ

τ⊥i
ρ2s⊥

+ (1−Θe)Γ0e
ϕ

ρ2s⊥
+ (ΘiG

2
10i − 1)

ϕ

τ⊥i
ρ2s⊥

+ (ΘeG
2
10e − 1)

ϕ

ρ2s⊥
+ (ΘiG10i2G20i −ΘeG10e2G20e)B∥

+ ((1−Θi)(Γ0i − Γ1i)− (1−Θe)(Γ0e − Γ1e))B∥ = 0, (2.5)

∇2
⊥A∥ =

((
1− 1

Θe

)
(1− Γ0e)

1

d2e
+

(
1− 1

Θi

)
(1− Γ0i)

1

d2i

)
A∥

+G10eUe −G10iUi, (2.6)

B∥ = −β⊥e

2

(
τ⊥i

2G20iNi + 2G20eNe + (1−Θi)(Γ0i − Γ1i)
ϕ

ρ2s⊥

− (1−Θe)(Γ0e − Γ1e)
ϕ

ρ2s⊥
+ΘiG10i2G20i

ϕ

ρ2s⊥
−ΘeG10e2G20e

ϕ

ρ2s⊥
+Θiτ⊥i

4G2
20iB∥

+Θe4G
2
20eB∥ + τ⊥i

2(1−Θi)(Γ0i − Γ1i)B∥ + 2(1−Θe)(Γ0e − Γ1e)B∥
)

(2.7)

Equations (2.1) and (2.3) correspond to the ion and electron gyrocenter continuity equa-
tions, respectively, whereas Eqs. (2.2) and (2.4) refer to the ion and electron momentum
conservation laws, along the guide field direction.

The static relations (2.5), (2.6) and (2.7) descend from quasi-neutrality and from the
projections of Ampère’s law along directions parallel and perpendicular to the guide field,
respectively.

The system (2.1)-(2.7), although written with a different normalization, constitutes
the Hamiltonian four-field model derived by Tassi et al. (2020), taken in the 2D limit
(assuming that all the independent variables do not vary along the direction of the guide
field).

The model is formulated in a slab geometry adopting a Cartesian coordinate system
(x, y, z). We indicate with Ns and Us the fluctuations of the gyrocenter densities and
velocities parallel to the guide field, respectively, for the species s, with s = e for electrons
and s = i for ions. The symbols A∥, B∥ and ϕ, on the other hand, correspond to the
fluctuations of the z component of the magnetic vector potential, to the parallel magnetic
perturbations and to the fluctuations of the electrostatic potential, respectively. The fields
Ne,i, Ue,i, A∥, B∥ and ϕ depend on the time variable t and on the spatial coordinates x and
y, which belong to the domain D = {−Lx ⩽ x ⩽ Lx , −Ly ⩽ y ⩽ Ly}, with Lx and Ly

being positive constants. Periodic boundary conditions are imposed on the domain D. The
operator [ , ] is the canonical Poisson bracket and is defined by [f, g] = ∂xf∂yg−∂yf∂xg,
for two functions f and g.

We write the normalized magnetic field in the form

B(x, y, z, t) ≈ ẑ +
d̂i
L
B∥(x, y, z, t)ẑ +∇A∥(x, y, z, t)× ẑ, (2.8)

with ẑ indicating the unit vector along the z direction, with L a characteristic equilibrium
scale length, and with d̂i = c

√
mi/(4πe2n0) the ion skin depth. We denote by mi the

ion mass, by e the proton charge, by c the speed of light and n0 the equilibrium density
(equal for ions and electrons). The first term on the right-hand side of (2.8) accounts for
the strong guide field. In Eq. (2.8) only up to the first order terms in the fluctuations
are shown, and the higher-order contributions, which guarantee ∇·B = 0, are neglected.
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The normalization of the variables used in Eqs. (2.1)-(2.7) is the following:

t =
vA
L
t̂, x =

x̂

L
, y =

ŷ

L
, (2.9)

Ne,i =
L

d̂i

N̂e,i

n0
, Ue,i =

L

d̂i

Ûe,i

vA
, (2.10)

A∥ =
Â∥

LB0
, B∥ =

L

d̂i

B̂∥

B0
, ϕ =

c

vA

ϕ̂

LB0
, (2.11)

where the hat indicates dimensional quantities, B0 is the amplitude of the guide field
and vA = B0/

√
4πmin0 is the Alfvén speed.

Independent parameters in the model are β⊥e , τ⊥i , ρs⊥ , Θe, Θi and de, corresponding
to the ratio between equilibrium electron pressure and magnetic guide field pressure,
to the ratio between equilibrium perpendicular ion and electron temperatures, to the
normalized sonic Larmor radius, to the ratio between the equilibrium perpendicular and
parallel temperature for electrons and ions and to the normalized perpendicular electron
skin depth, respectively. These parameters are defined as

β⊥e
= 8π

n0T0⊥e

B2
0

, τ⊥i
=
T0⊥i

T0⊥e

, ρs⊥ =
1

L

√
T0⊥e

mi

mic

eB0
, (2.12)

Θe =
T0⊥e

T0∥e
, Θi =

T0⊥i

T0∥i
, de =

1

L
c

√
me

4πe2n0
, (2.13)

where T0⊥s
and T0∥s are the perpendicular and parallel equilibrium temperatures for the

species s, respectively, and me is the electron mass. Note that ρs⊥/
√
β⊥e

/2 = di, where
di = d̂i/L is the normalized ion skin depth.

Electron and ion gyroaverage operators are associated with corresponding Fourier
multipliers in the following way:

G10e = 2G20e → e−k2
⊥

β⊥e
4 d2

e , (2.14)

G10i = 2G20i → e−k2
⊥

τ⊥i
2 ρ2

s⊥ . (2.15)

and

Γ0e → I0

(
k2⊥

β⊥e

2
d2e

)
e−k2

⊥
β⊥e

2 d2
e , Γ1e → I1

(
k2⊥

β⊥e

2
d2e

)
e−k2

⊥
β⊥e

2 d2
e , (2.16)

Γ0i → I0
(
k2⊥τ⊥iρ

2
s⊥

)
e−k2

⊥τ⊥i
ρ2
s⊥ , Γ1i → I1

(
k2⊥τ⊥iρ

2
s⊥

)
e−k2

⊥τ⊥i
ρ2
s⊥ , (2.17)

where In are the modified Bessel functions of order n and k2⊥ =
√
k2x + k2y is the

perpendicular wave number.
For the range of parameters adopted in our analysis, the gyroaverage operators G10e

and G10i, corresponding to those introduced by Brizard (1992), are shown to be ade-
quate. Nevertheless, different gyroaverage operators, described in the papers Dorland &
Hammett (1993), Mandell et al. (2018), have proven to provide a very good agreement
with the linear kinetic theory for a wider range of scales and are widespread in gyrofluid
numerical codes.
We define the dynamical variables

Ai = G10iA∥ + d2iUi, Ae = G10eA∥ − d2eUe. (2.18)
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The fields Ai and Ae are proportional to the parallel canonical fluid momenta, based on
gyroaveraged magnetic potentials.

The two static relations (2.5) and (2.7) can be seen, in Fourier space, as an inhomo-
geneous linear system with the Fourier coefficients of ϕ and B∥ as unknowns, for given
Ni,e. From the solution of this system, one can express the fields ϕ and B∥ in terms of
Ni and Ne, by means of relations of the form

B∥ = LB(Ni, Ne), ϕ = Lϕ(Ni, Ne), (2.19)

where LB and Lϕ are operators, the explicit form of which can easily be provided in
Fourier space. Similarly, using the relations (2.6) and (2.18), one can express Ue and Ui

in the form
Ue = LUe

(Ai, Ae), Ui = LUi
(Ai, Ae), (2.20)

where LUe and LUi are also operators, the explicit expression of which can be given in
Fourier space.

The model (2.1)-(2.7) can be formulated as an infinite dimensional Hamiltonian system,
adopting the four fields Ni, Ne, Ai and Ae as dynamical variables (Tassi et al. 2020).

The corresponding Hamiltonian structure consists of the Hamiltonian functional

H(Ni, Ne, Ai, Ae) =
1

2

∫
d2x

(
τ⊥i

ρ2s⊥
Θi

N2
i +

ρ2s⊥
Θe

N2
e +AiLUi

(Ai, Ae)

−AeLUe
(Ai, Ae) +Ni(G10iLϕ(Ni, Ne) + τ⊥i

ρ2s⊥2G20iLB(Ni, Ne))

−Ne(G10eLϕ(Ni, Ne)− ρ2s⊥2G20eLB(Ni, Ne))
)
, (2.21)

and of the Poisson bracket

{F,G} = −
∫
d2x

(
Ni

(
[FNi , GNi ] + τ⊥i

2

β⊥e

ρ4s⊥
Θi

[FAi , GAi ]

)

+Ai ([FAi
, GNi

] + [FNi
, GAi

])−Ne([FNe
, GNe

] + d2e
ρ2s⊥
Θe

[FAe
, GAe

])

−Ae([FAe
, GNe

] + [FNe
, GAe

])) , (2.22)

where subscripts on functionals indicate functional derivatives, so that, for instance,
FNi

= δF/δNi. Using the Hamiltonian (2.21) and the Poisson bracket (2.22), the four
equations (2.1)-(2.4) can be obtained from the Hamiltonian form (Morrison 1998)

∂χ

∂t
= {χ,H}, (2.23)

replacing χ withNi,Ne,Ai andAe. This Hamiltonian four-field gyrofluid model, although
greatly simplified with respect to the original gyrokinetic system, is still amenable to a
further reduction, concerning in particular the ion dynamics which, for the analysis of
reconnection of interest here, was shown not to be crucially relevant (Comisso et al.
(2013), Numata et al. (2011)). Also, we carry out most of the analysis in the isotropic
cold-ion limit, a simplifying assumption which is also helpful for the comparison with
previous works. Nevertheless, some comments will be provided also with regard to the
opposite limit of equilibrium ion temperature much larger than the electron one. On the
other hand, in carrying out the reduction procedure, we find it important to preserve a
Hamiltonian structure, which avoids the introduction of uncontrolled dissipation in the
system and also allows for a more direct comparison with previous Hamiltonian models
for reconnection, in particular with the two-field model considered by Cafaro et al. (1998),
Grasso et al. (2001), Del Sarto et al. (2006), Del Sarto et al. (2003). In particular, we
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intend to obtain a Hamiltonian reduced version of the four-field model (2.1)-(2.7), in
which the gyrocenter ion density fluctuations Ni and ion gyrocenter parallel velocity
fluctuations Ui are neglected, the ion equilibrium temperature is isotropic, and ions are
taken to be cold. The latter four conditions amount to impose

Ni = 0, Ui = 0, Θi = 1, (2.24)

and take the limit
τ⊥i

→ 0. (2.25)
Further insight about the assumptions Ni = Ui = 0 can be obtained expressing these
assumptions in terms of particle moments, instead of gyrocenter moments. We can write
the assumption Ni = 0 in terms of the normalized particle density fluctuation ni as

ni = Ni +∇2
⊥ϕ+B∥, (2.26)

valid in the limit τ⊥i
→ 0 and Θi = 1 (Brizard 1992). Neglecting Ni in Eq. (2.26) thus

amounts to assuming that the ion density response is due only to the ion polarization
(second term on the right-hand side of Eq. (2.26)) and to the parallel magnetic perturba-
tion B∥. In the low-β limit, the influence of B∥ becomes negligible and (2.26) corresponds
to a solution for the ion response derived by the kinetic theory of Schep et al. (1994).
With regard to the assumption that neglects the evolution of the ion gyrocenter parallel
velocity, Ui = 0, the relation with the normalized parallel ion velocity ui is simply given
by Ui = ui = 0 and ions are assumed to be immobile along the guide field direction which
is reasonable by virtue of the larger ion inertia. Such assumptions can also be justified by
the fact that the evolution of ion gyrocenter density and parallel velocity, at least when
their initial conditions are Ni = Ui = 0, have been shown to have a negligible role in
simulations of reconnection in Comisso et al. (2012).

Because we want to perform this reduction while preserving a Hamiltonian structure,
we apply the conditions (2.24) and (2.25) at the level of the Hamiltonian structure,
instead of applying them directly to the equations of motion. The latter procedure would
indeed produce no information about the Hamiltonian structure of the resulting model.

As first step, we impose the conditions (2.24)-(2.25) in the static relations (2.5)-(2.7),
which leads to

(
(1−Θe)

ρ2s⊥
Γ0e +

(ΘeG
2
10e − 1)

ρ2s⊥
+∇2

⊥

)
ϕ

− (ΘeG10e2G20e − 1 + (1−Θe)(Γ0e − Γ1e))B∥ = G10eNe, (2.27)
((

1− 1

Θe

)
(Γ0e − 1)

d2e
+∇2

⊥

)
A∥ = G10eUe, (2.28)

(ΘeG10e2G20e + (1−Θe)(Γ0e − Γ1e)− 1)
ϕ

ρ2s⊥

−
(

2

β⊥e

+ 2(1−Θe)(Γ0e − Γ1e) + 4ΘeG
2
20e

)
B∥ = 2G20eNe. (2.29)

The three relations (2.27)-(2.29), together with the definition of Ae in Eq. (2.18), make
it possible to express B∥, ϕ and Ue, in terms of the two dynamical variables Ne and Ae,
according to

B∥ = LB0Ne, ϕ = Lϕ0Ne, Ue = LUe0Ae, (2.30)
where LB0, Lϕ0 and LUe0 are symmetric operators, i.e. operators L such that

∫
d2x fLg =∫

d2x gLf , for two functions f and g. As next step, we impose the conditions (2.24)-(2.25)
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on the Hamiltonian (2.21), which reduces the Hamiltonian to the following functional of
the only two dynamical variables Ne and Ae:

H(Ne, Ae) =
1

2

∫
d2x

(
ρ2s⊥
Θe

N2
e −AeLUe0Ae −Ne(G10eLϕ0Ne − ρ2s⊥2G20eLB0Ne)

)
.

(2.31)

With regard to the Poisson bracket (2.22), we can consider its limit as τ⊥i
→ 0, given

that the bilinear form (2.22) is a valid Poisson bracket for any value of τ⊥i
. On the other

hand, in general, we cannot impose directly the conditions (2.24) in the bracket, as this
operation does not guarantee that the resulting bilinear form satisfies the Jacobi identity.
However, we remark that the set of functionals of the two dynamical variables Ne and
Ae, which the reduced Hamiltonian (2.31) belongs to, forms a sub-algebra of the algebra
of functionals of Ni, Ne, Ai and Ae, with respect to the Poisson bracket (2.22). Indeed,
if F and G are two functionals of Ne and Ae only, {F,G} is again a functional of Ne

and Ae only. One can in particular restrict to the part of the bracket (2.22) involving
functional derivatives only with respect to Ne and Ae, the other terms yielding vanishing
contributions when evaluated on functionals of Ne and Ae only. The resulting Poisson
bracket therefore reads

{F,G} =

∫
d2x

(
Ne([FNe

, GNe
] + d2e

ρ2s⊥
Θe

[FAe
, GAe

]) +Ae([FAe
, GNe

] + [FNe
, GAe

])

)
.

(2.32)

We remark that the Poisson bracket (2.32) has the same form as that of the model
investigated by Cafaro et al. (1998) and by Grasso et al. (2001).

The resulting reduced two-field model, accounting for the conditions (2.24)-(2.25),
can then be obtained from the Hamiltonian (2.31) and the Poisson bracket (2.32). The
corresponding evolution equations read

∂Ne

∂t
+ [G10eϕ− ρ2s⊥2G20eB∥, Ne]− [G10eA∥, Ue] = 0, (2.33)

∂Ae

∂t
+ [G10eϕ− ρ2s⊥2G20eB∥, Ae] +

ρ2s⊥
Θe

[G10eA∥, Ne] = 0, (2.34)

where B∥, ϕ and Ue are related to Ne and Ae by means of Eqs. (2.18) and (2.27)-(2.29).
We impose now electron temperature isotropy (i.e. setting T0⊥e = T0∥e = T0e,

corresponding to Θe = 1) and the evolution equations are reduced to

∂Ne

∂t
+ [G10eϕ− ρ2s2G20eB∥, Ne]− [G10eA∥, Ue] = 0, (2.35)

∂Ae

∂t
+ [G10eϕ− ρ2s2G20eB∥, Ae] + ρ2s[G10eA∥, Ne] = 0, (2.36)

complemented by the equations
(
G2

10e − 1

ρ2s
+∇2

⊥

)
ϕ− (G10e2G20e − 1)B∥ = G10eNe, (2.37)

∇2
⊥A∥ = G10eUe, (2.38)

(G10e2G20e − 1)
ϕ

ρ2s
−
(

2

βe
+ 4G2

20e

)
B∥ = 2G20eNe. (2.39)

Eqs. (2.35), (2.36) and (2.37)-(2.39) correspond to the gyrofluid model adopted for the
subsequent analysis of magnetic reconnection.
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3. Linear phase
3.1. Linear theory for βe → 0

In this Subsection we focus on the regime for which the electron FLR effects and the
parallel magnetic perturbations are negligible. The limit of vanishing thermal electron
Larmor radius, i.e. ρe = de

√
βe/2 → 0, is adopted by considering βe → 0 andme/mi → 0.

This limit enables to reduce the gyrofluid model (2.35)-(2.39) to the fluid model of Schep
et al. (1994); Cafaro et al. (1998), for which the tearing instability has been extensively
studied in the past (Porcelli (1991); Grasso et al. (2001, 1999)).
When assuming βe → 0 for a fixed de, the gyroaverage operators can be approximated
in the Fourier space in the following way

G10ef(x, y) =
(
1 + ρ2e∇2

⊥
)
f(x, y) +O(ρ4e),

G20ef(x, y) =
1

2

(
1 + ρ2e∇2

⊥
)
f(x, y) +O(ρ4e).

(3.1)

Using this development in Eqs. (2.35)-(2.39) and neglecting the first order correction, we
obtain the evolution equations (Schep et al. (1994))

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ]− [A∥,∇2
⊥A∥] = 0, (3.2)

∂

∂t

(
A∥ − d2e∇2

⊥A∥
)
+
[
ϕ,A∥ − d2e∇2

⊥A∥
]
− ρ2s[∇2

⊥ϕ,A∥] = 0. (3.3)

We assume an equilibrium given by

ϕ(0)(x) = 0, A
(0)
∥ (x) =

λ

cosh2
(
x
λ

) , (3.4)

where λ is a parameter that stretches the equilibrium scale length and modifies the
equilibrium amplitude. We consider the perturbations

A
(1)
∥ (x, y, t) = Ã(x)eγt+ikyy + ¯̃A(x)eγt−ikyy, ϕ(1)(x, y, t) = ϕ̃(x)eγt+ikyy +

¯̃
ϕ(x)eγt−ikyy,

(3.5)
where γ is the growth rate of the instability, ky = πm/Ly is the wave number, withm ∈ N
and the overbar refers to the complex conjugate. We look for even solutions for Ã(x) and
odd solutions for ϕ̃(x) as in the standard tearing problem for purely growing, marginally
stable or decaying perturbations. This is guaranteed if γ is a real quantity. Therefore
we discard solutions yielding γ with an imaginary part. The collisionless tearing mode
has been studied in Porcelli (1991) for the m = 1 mode in toroidal geometry and the
results can be adapted to the model (3.2)-(3.3). In particular, a dispersion relation has
been obtained analytically and is valid for small and large values of the tearing stability
parameter ∆′, with

∆′ = lim
x→0+

Ã′
out

Ãout

− lim
x→0−

Ã′
out

Ãout

, (3.6)

where Ãout is the solution for Ã of the linearized system in the outer region (see also
the Appendix). The tearing index, ∆′, is a common measure of the discontinuity of the
logarithmic derivative of Ãout at the resonant surface. The dispersion relation is given
by (Porcelli (1991), Fitzpatrick (2010))

π

2

(
λγ

2ky

)2

= −ρs
π

∆′ + ρ2sde
2ky
γλ

. (3.7)
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Table 1. Table summarizing the various assumptions

No. Assumptions used

1 Time variation of the perturbation is slow γ
ky

≪ 1

2 Smallness of the inner scales γde
kyρs

≪ ρs ≪ 1

3 Use of the constant ψ approximation γde
kyρs

∆′ ≪ ρs∆
′ ≪ 1

4 Neglecting FLR effects in the inner regions ρe ≪ γde
kyρs

,

In the limit d2/3e ρ
1/3
s ∆′ ≪ 1, the relation (3.7) is reduced to

γ = 2ky
deρs
πλ

∆′. (3.8)

In the Appendix of this paper, we present the derivation of a new dispersion relation valid
in the limit (γde/(kyρs))∆′ ≪ 1. In the appropriate regime of validity, the new dispersion
relation includes a corrective term to Eq. (3.8). We derived this dispersion relation using
an asymptotic matching method and various assumptions, slightly different from those
adopted by Porcelli (1991). Table 1 gives a review of the assumptions that were adopted
on the parameters during our the analysis. The assumption No. 1 indicates a slow time
variation of the perturbation. The No. 2 is the assumption on the scales of the inner
region, where electron inertia becomes important and allows the break of the frozen flux
condition. The assumption No. 3 allows the use of the so-called constant ψ approximation,
implying that the dispersion relation is valid for large wave numbers (Furth et al. (1963)).
The condition 4, imposed to neglect electron FLR, can be verified for a low-βe plasma.
From a technical point of view, our new dispersion relation is obtained by solving the
equations in the inner layer in real space, unlike in Porcelli (1991) where the corresponding
equations are transformed and solved in Fourier space. The result of our linear theory,
which is described in more detail in the Appendix, is given by the dispersion relation,

γ = 2ky
deρs
πλ

∆′ +
γ2deπλ

4kyρ2s
. (3.9)

The first term in the right hand side of (3.9) is exactly that of the formula (3.8), for
λ = 1. In the parameter regime indicated by Table 1, the second term in (3.9) is a small
term that provides a correction to the formula (3.8).
A solution of the dispersion relation (3.9), considered in the regime identified by the
assumptions of Table 1, is

γu = 2ky

(
ρ2s
πdeλ

− ρ
3/2
s

√
ρs − 2d2e∆

′

πdeλ

)
, (3.10)

and is real for ρs > 2d2e∆
′. This new dispersion relation is tested against numerical

simulations and compared to the expression (3.8). The numerical solver is pseudo-spectral
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·10−2

γ given by Eq. (3.8)
γu
γN

ρs

γ

Equilibrium A
(0)
‖ = λ/ cosh2(x/λ)

1

Figure 1. Comparison between the analytical growth rate γu obtained from the new formula
(3.10) (dashed line), the analytical growth rate obtained from the formula (3.8) (solid line) and
the numerical growth rate γN defined in Eq. (3.12) (circles). The parameters are de = 0.1, λ = 1,
∆′ = 0.72, m = 1. The box size is given by −10π < x < 10π, −0.48π < y < 0.48π. The values
of the parameters lie in the regime of validity of the new formula (3.10). One can see that, for
different values of ρs, the correction present in Eq. (3.10) yields a better agreement with the
numerical values.

and is based on a third order Adam-Bashforth scheme. The scheme uses numerical filters
acting on typical length scales much smaller than the physical scales of the system (Lele
(1992)). The instability is triggered by perturbing the equilibrium with a disturbance
of the parallel electron gyrocenter velocity field. Because of the requirement of periodic
boundary conditions, the equilibrium (3.4) is approximated by

A
(0)
∥ (x) =

30∑

n=−30

ane
inx, (3.11)

where an are the Fourier coefficients of the function f(x) = λ/ cosh
(
x
λ

)2 (Grasso et al.
(2006)). The numerical growth rate is determined by the formula

γN =
d

dt
log
∣∣∣A(1)

∥

(π
2
, 0, t

)∣∣∣ , (3.12)

so that A(1)
∥ is evaluated at the X-point, where reconnection takes place.

As shown on Figures 1 and 2, the agreement between the theoretical and the numerical
values appears to be improved by this new formula, when the latter is applied in its
regime of validity. We also performed additional tests on a different equilibrium (the
Harris sheet), as shown on Fig. 2. Also in this case, we observe that our new dispersion
relation provides a better agreement with the numerical values. Consequently, (3.10) can
be seen as an upgrade of the formula (3.8) in the regime of parameters indicated by the
Table 1.
Figure 3 gives a comparison between the theoretical growth rate predicted by Eqs. (3.7),
(3.8) and (3.10), and the numerical growth rate γN as a function of the wave number
ky. According to these tests, γu seems to give a very good prediction for wave numbers
ky > 1.1. The discrepancy observed for lower values of ky comes from the fact that the
condition allowing the use of the constant ψ approximation, (γde/(kyρs))∆′ ≪ ρs∆

′ ≪ 1,
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8.5 · 10−2 9 · 10−2 9.5 · 10−2 0.1 0.11 0.11 0.12

1.8

2

2.2

2.4

·10−4

γ given by Eq. (3.8)
γu
γN

ρs

γ

Equilibrium A
(0)
‖ = −λ ln cosh (x/λ)

1

Figure 2. This plot is showing additional tests, analogous to those of Fig. 1, but with
the Harris sheet equilibrium A

(0)

∥ (x) = −λ ln cosh(x/λ), and ϕ(0)(x) = 0, for which

∆
′
H = (2/λ) (1/(kyλ)− kyλ) and using the modem = 1. The parameters are de = 0.2 and λ = 3.

The box size is −10π < x < 10π, −4π < y < 4π. For this case, ∆′
H = 0.38. For this equilibrium

the dispersion relation corresponds to γu = ky
(
ρ2s/(πdeλ)− ρ

3/2
s (ρs − 2d2e∆

′
H)1/2/(πdeλ)

)
and

differs from (3.10) by a factor 2 coming from the evaluation of dBy0/dx at the X point. Symbols
are the same as on Fig. 1 . Also in this case, the new formula yields a better agreement with
the numerical values.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

·10−2

γu

γ given by Eq. (3.7)
γ given by Eq. (3.8)

γN

ky

γ

1

Figure 3. Comparison between the theoretical growth rate predicted by Eqs. (3.7), (3.8) and
(3.10), and the numerical growth rate γN as a function of the wavenumber, ky = πm/Ly. The
parameters are de = 0.03, ρs = 0.03, λ = 1. The runs were done with the modes 1 ⩽ m ⩽ 4
and Ly = 1.789π. The corresponding values of the tearing stability parameter lie in the interval
0.005 ⩽ ∆′ ⩽ 47.86.

is no longer satisfied for a small wave number. The breakdown of γu for ky ≪ 0.95 is due
to the fact that for ∆′ > ρs/(2d

2
e), the solution (3.10) is no longer real.

3.2. Numerical results for βe ̸= 0

We now proceed to a numerical study of the model (2.35) and (2.36), complemented
by (2.37), (2.38) and (2.39). This will allow to take into account the effects of finite βe.
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√
βe/2

me/mi = (ρe/ρs)
2
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γ
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Figure 4. Numerical growth rates of the collisionless tearing mode as a function of βe, for three
different values of de. The box length along y is such that −0.45π < y < 0.45π, yielding a value
of the tearing instability parameter of ∆′ = 0.067 for the largest mode in the system. We stand
in a very small ∆′ regime, close to a marginal stability when βe < 0.1. One sees that for higher
values of βe, and depending on the value of de, the mode is stabilized.

The numerical set-ups are the same as those presented in the previous Section, relative
to the equilibrium (3.4), but the code accounts now for finite βe effects. The gyroaverage
operators are introduced as they are defined in the Fourier space by Eqs. (2.14) and
(2.15). For the linear tests we focus on a weakly unstable regime for which 0 < ∆′ < 1.
The strongly unstable case shows interesting behaviors in the non-linear phase and will
be studied in the next Section. For all the tests, we will use λ = 1. In order to isolate
the contribution coming from purely varying βe, we first scan βe from 10−3 to 1 while
ρs and de remain fixed, which is equivalent to considering a different mass ratio for each
βe value. We recall that the parameters are indeed linked by the relations

ρe = ρs

√
me

mi
= de

√
βe
2
. (3.13)

We repeat this scan for three different values of de. The results are presented on Fig.
4 and show that the effect of increasing βe and me/mi is stabilizing the tearing mode.
This is consistent with the results obtained in the gyrokinetic and collisional study of
Numata et al. (2011), where βe and the mass ratio are also varied. Figure 4 also shows
the competition between the destabilizing effect of the electron inertia and the stabilizing
effect of βe. For this set of parameter, the influence of βe on the weakly unstable regimes
is almost negligible until βe = 1. For relatively low values of βe, the highest growth
rate corresponds to that for which the parameter de is the largest. We recall in fact,
from Section 3.1, that, for βe ≪ 1, the formulas (3.8) and (3.10) hold. Such formulas,
for de ≪ 1, predict that the growth rate increases linearly with de. Conversely, when
βe becomes large enough, as appears for βe > 0.15, the growth rate for which de is the
largest, decreases drastically under the effect of the finite ρe and of the parallel magnetic
perturbations induced by βe.

Some information about the stabilizing role of βe can be inferred by taking the small
FLR limit of the equation (2.36), which consists in considering the regime of parameters

de ≪ 1, ρs ≪ 1,
de
ρs

≪ 1, βe = O(1), (3.14)
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and assuming,
∇2

⊥ = O(1). (3.15)
If we retain the first-order FLR corrections as de, ρs → 0, the resulting Ohm’s law reads

∂

∂t

(
A∥ +

(
βe
4

− 1

)
d2e∇2

⊥A∥

)
+

[
ϕ,A∥ +

(
βe
4

− 1

)
d2e∇2

⊥A∥

]

+ ρ2s

(
βe

2 + βe
− 1

)
[∇2

⊥ϕ,A∥] = 0. (3.16)

The new contributions in Eq. (3.16) are those due to finite βe and are not present in
the usual two-field model by Schep et al. (1994). In particular, the contributions propor-
tional to (βe/4)d

2
e come from electron FLR effects and the contribution proportional to

βeρ
2
s/(2 + βe) is due to the presence of the finite B∥. In Eq. (3.16), comparing with Eqs.

(3.2)-(3.3), it is possible to identify an effective electron skin depth d′e and an effective
sonic Larmor radius ρ′s, given by,

d′e
de

=

√
1− βe

4
, (3.17)

and
ρ′s
ρs

=

√
2

βe + 2
, (3.18)

respectively. This argument holds for d′e purely real and consequently for βe < 4. Because
d′e < de, one can infer that the contribution of βe, at the leading order in the expansion
(3.14)-(3.15), reduces the amplitude of the term that breaks the frozen-in condition.
For this reason, one could indeed expect a stabilizing role of βe. Deriving rigorously a
dispersion relation for tearing modes from the model (2.35)-(2.39), in the general case
with finite βe, is a very challenging task. In the absence of a rigorous dispersion relation
for finite βe, a rough but readily available approximation can be obtained from the βe = 0
dispersion relation (3.10) (or (3.8)), replacing de and ρs with the effective parameters d′e
and ρ′s, respectively. This amounts to taking into account the leading order electron FLR
corrections, according to the ordering (3.14)-(3.15), in Ohm’s law, while neglecting all
the βe effects in the electron continuity equation. In particular, higher-order derivative
terms (coming from the gyroaverage operators, assuming it is possible to identify the
multiplication operator for kx with ∂x) are neglected, although these can become relevant
around the resonant surface and thus influence the growth rate. Using this approximation,
it follows immediately that the inclusion of finite βe corrections, reduces the growth rate,
given that γ ∝ d′eρ

′
s (if one considers the leading order relation given by Eq. (3.8)) and

that d′e < de and ρ′s < ρs. However, the error made with this approximation needs to
be checked numerically. We carried out this check by first determining the approximated
growth rate in the following way. When replacing de and ρs by the effective d′e and ρ′s in
our formula (3.10), valid for small ∆′, we obtain the dispersion relation

γappr =

ky

(
8ρ2s − (βe + 2)

(
8ρ2

s

βe+2

)3/4√√
8ρ2

s

βe+2 + (βe − 4)∆′d2e

)

π
√
4− βe(βe + 2)deλ

. (3.19)

We tested the dispersion relation (3.19) against small ∆′ simulations and the results are
shown on Fig. (5). By comparing the analytical formula (3.19) (solid black curve) and
the numerical results obtained by the gyrofluid code (black circles), we can see that γappr
gives a reasonably good approximation for low βe values, as expected. The red circles on
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Figure 5. Numerical growth rates of the collisionless tearing mode as a function of βe. The
parameters are de = 0.1, ρs = 0.3, ∆′ = 0.59, m = 1, ky = 2.12, λ = 1. The solid black curve is
showing the approximate-βe dispersion relation (3.19). The black circles are showing the results
obtained with the gyrofluid code. The red circles are showing the results obtained with the fluid
code, using, instead of de and ρs, d′e and ρ′s, given by (3.17)-(3.18).

Fig. (5) show the growth rate obtained using, as input in the fluid code, the effective d′e
and ρ′s, that were calculated on the basis of the values de = 0.1 and ρs = 0.3 that we used
in the gyrofluid code. The numerical and analytical growth rates obtained from the fluid
model replacing de and ρs with the effective parameters, exhibit a behavior qualitatively
similar to that of the gyrofluid growth rate. However, a significant quantitative difference
emerges as βe increases. This is due to the electron FLR contributions that are absent
in the approximation. From Fig. 5 it emerges that the net effect of such contributions is
that of further reducing the growth rate, as the curve obtained from the gyrofluid model
always lies below those obtained from the effective fluid model.

A further analysis we carried out consists of investigating the effect of βe on the
linear growth rate, but at a fixed mass ratio. Physically, this might be interpreted as
investigating the effect of the variation of the equilibrium electron temperature T0e,
supposing that n0, B0, mi, L (and thus the Alfvén frequency, which is the unit of
measure of the dimensional growth rate) are fixed. In order to keep a constant mass
ratio during the scan in βe, we carried out a study with βe ranging from 10−3 to 2 with
ρs varying simultaneously. We fix the relation de =

√
me/mi (implying ρs =

√
βe/2) and

we evaluate the cases de = 0.07, de = 0.15, de = 0.1. Figure 6 shows that when βe and ρs
are increased simultaneously there seems to be a competition between the destabilizing
effect of ρs and the stabilizing effect of βe. Also in this case, the behavior at small βe, can
be interpreted on the basis of the formulas (3.8) and (3.10), predicting an increase of the
growth rate with increasing ρs. When electron FLR effects come into play at larger βe,
the growth rates decreases. The values chosen for the mass ratio in Fig. 6 are not realistic.
Such values were chosen to show the dependence on the βe parameter more clearly. On
the other hand, the mass ratio is not taken as a small parameter in the derivation of
the model, so these values are respecting the validity conditions of the model. In the
case of the artificial value of de =

√
me/mi = 0.15, the stabilizing effect takes over the

destabilizing effect of ρs even for βe < 1. However, for the case
√
me/mi = 0.07, much

closer to a real mass ratio, the effect of ρs appears to be dominant. Indeed, decreasing de
at a fixed βe amounts to decreasing ρe. Thus, for de = 0.07 the stabilizing effect of the
electron FLR terms gets weakened, with respect to the other values of de, even at large
βe.

Figure 7 shows the variation of the growth rate of the tearing instability as a function of
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Figure 6. Numerical growth rates of the collisionless tearing mode as a function of βe and ρs,
for different values of de =

√
me/mi. The box size is −π < x < π, −0.47π < y < 0.47π, which

leads to ∆′ = 0.59.
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Figure 7. The value of de for each run increases as de =
√

2me/(βemi)ρs. The box size is
−π < x < π, −0.47π < y < 0.47π. The numerical values (triangles) are compared with the
curve γ = β

−1/2
e (dotted line), which is the scaling predicted by Fitzpatrick & Porcelli (2007) on

the basis of a fluid model, and confirmed by gyrokinetic simulations by Numata et al. (2011).
The comparison shows that also our gyrofluid model confirms such scaling.

βe, for a fixed value of ρs = 10ρe = 0.3. The obtained results are confirming the scaling of
the growth rate as β−1/2

e (or, equivalently, as de) has been determined with the gyrokinetic
study of Numata & Loureiro (2015). This shows the capability of the gyrofluid model
to reasonably reproduce gyrokinetic results (Numata et al. (2011); Numata & Loureiro
(2015)) and the fluid theory of Fitzpatrick & Porcelli (2007), in a quantitative way.

3.2.1. Hot ion limit, τi → +∞
In this article we have focused, so far, on the cold ion limit, but in this Subsection

we temporarily deviate from the cold-ion case, to consider the opposite limit, in which
τi = τ⊥i → +∞. The sole purpose of this Subsection is to have a consistent and concise
comparison of these two regimes, therefore we will only study the linear behavior of the
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Figure 8. Comparison between the linear growth rate obtained in the cold-ion regime and the

hot-ion regime. The box size is −π < x < π, −0.47π < y < 0.47π, which leads to ∆′ = 0.59.

hot ion limit and leave the study of its non-linear evolution for a future work. The hot-ion
limit can actually be of greater interest for space plasmas such as the solar wind. The ion
gyrocenter density fluctuation and the ion gyrocenter parallel velocity are still neglected,
and therefore the evolution equations remain unchanged. Only the assumption (2.25) is
taken in the opposed limit, which has an impact on the development of ion gyroaverage
operators. The static relations (2.37) and (2.39) are thus changed to

ϕ =
ρ2sNe(

1− βe

2

)
G10e −G−1

10e

, (3.20)

B∥ =
βe
2ρ2s

ϕ. (3.21)

The linear results obtained in the hot-ion limit are compared to the results obtained in
the cold-ion regime on Figure 8. The parameters are de = 0.1, ρs = 0.1. Our results seem
to indicate that, for βe > 0.5, the growth rate is very insensitive to the temperature of the
ions, which is in agreement with the results obtained by Numata et al. (2011). Studies
have been carried out with arbitrary ratio between the equilibrium ion and electron
temperature in the low-β limit, by Porcelli (1991); Grasso et al. (1999), and predict
that the growth rate is significantly higher when the temperature of the ion background
temperature is higher than that of the electrons. This is indeed what we observe for
βe < 10−2.

4. Nonlinear phase
To study the impact of a finite βe on the non-linear evolution of the magnetic island,

we focus on the strongly unstable case, ∆′ = 14.31 (m = 1), resulting from a box length
along y given by −π < y < π. In this case, the mode m = 2 has a positive tearing
parameter ∆′

2 = 1.23. The higher harmonics are linearly stable. The box along x is
chosen to be −1.5π < x < 1.5π and allows to reach a large island without incurring in
boundary effects. We make use of a resolution up to 2880× 2880 grid points. The mass
ratio will be taken as me/mi = 0.01 for the following tests.

The first tests are carried out by making a scan in βe from βe = 0.1 to βe = 1.5 while
keeping de = 0.08 and varying ρs as ρs = 0.8

√
βe/

√
2. Increasing βe and ρs simultaneously

in this way, as stated in Sec. 3.2, amounts to varying the electron background temperature
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Figure 9. Plot of the effective growth rate d
dt

log
∣∣∣A(1)

∥
(
π
2
, 0, t

)∣∣∣, as a function of time. The
corresponding values of βe are shown in the table. The value of the electron skin depth is kept
fixed to de = 0.08, whereas ρs is varied (and ranges from 0.17 to 0.69) so to keep the mass
ratio fixed to me/mi = 0.01. All the growth rates, except for the case βe = 1.5 exhibit the
same behavior, characterized by linear, faster than exponential and saturation phase. The case
βe = 1.5 exhibits also a slowdown phase.

T0e. Figure 9 shows the evolution in time of the effective growth rate, given by Eq. (3.12),
for each simulation. In all these cases, with the exception of βe = 1.5, we identify three
phases; (1) a linear phase during which the perturbation evolution scales as exp(γt), (2) a
faster than exponential phase, which is delayed in the case βe = 0.1, given that the linear
growth rate is smaller, with respect to the case βe = 0.8 for which the instability reaches
the nonlinear phase faster (3) a saturation during which the growth rate drops to 0. We
point out that, the fact that the linear growth rate increases with increasing βe is related
to the fact that ρs is also increased for each run. As discussed in the previous Section, the
isolated effect of an increasing βe in the equations actually implies a stabilization of the
linear growth rate. In the case βe = 0.8, the nonlinear growth shows a slightly different
behavior from the cases βe ⩽ 0.5 and exhibits a stall phase, during which the growth
rate slows down. This stall phase seems to separate two faster than exponential phases.
Similar stall phase have been studied in (Comisso et al. 2013), where a finite ion Larmor
radius is considered, and appear to be obtained when considering a large ion Larmor
radius. For the case βe = 1.5, that we will focus on later, this slowdown is enhanced.
We focus now on the case βe = 0.8. We scan the values of de from 0.06 to 0.1, and
ρs = 10ρe = 10

√
0.4de ≈ 6.32de. The results are shown on Fig. 10. These curves are

compared for a fixed time unit (fixed vA), while keeping βe and the mass ratio constant,
which corresponds to varying B0 ∼ n

1/2
0 while keeping the electron temperature T0e fixed.

For the case of de = 0.06, which corresponds to ρs ∼ 0.37, we observe the slowdown at
the end of the linear phase and it is followed by the faster than exponential phase. On the
other hand, in the case of de = 0.1, for which ρs ∼ 0.63, the slowdown appears at a later
stage of the evolution process and seems to interrupt the faster than exponential phase
by introducing a stall phase. We conclude that, the effects of βe, and consequently the
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Figure 10. On the left: plot of the effective growth rate d
dt

log
∣∣∣A(1)

∥
(
π
2
, 0, t

)∣∣∣, as a function of

time. The parameters are βe = 0.8, implying ρe =
√
0.4de and ρs = 10

√
0.4de. On the right:

Evolution of half-width of the magnetic island until saturation. The simulations correspond to
those in the left panel.

effects of electron gyrations, causes the appearance of a slowing down phase of the growth
of the island during the nonlinear evolution. The larger βe, the more distinguishable this
slowing phase will be. For a fixed values of βe and me/mi, the fact of increasing de and
ρs, and consequently increasing the radius of gyration of the electrons, will delay the
appearance of this slowing phase.
The evolution of the width of the magnetic island for these five runs is shown on the plot
on the right-hand side of Fig. 10. The last point for each run corresponds to the half of
the width of the island when the growth rate falls down to zero and enters the saturation
phase. In conclusion, the reconnection time simply seems to be longer for smaller de,
but the maximum width before saturation is identical for each case since the amount of
initial magnetic energy is the same for each simulation. The last test consists in studying
an extreme case for which the slowing down phase is accentuated, which corresponds to
the case of de = 0.06, ρs = 0.519, βe = 1.5. We also perform the simulation for βe = 0,
using a code that solves the fluid equations (3.2) - (3.3). Figure 11 shows the overplot of
the evolution of the growth rate for both simulation as a function of time. The slowing
down phase is followed by an oscillation of the non-linear growth rate. This oscillation
was obtained in other tests for which βe = 1.5.

In order to understand in detail what causes this slowing down and these oscillations
of the island growth that we observe between t = 43 and t = 65, we compared all the
fields for the cases βe = 0 and βe = 1.5 of Fig. 11. A remarkable difference between this
two regimes concerns the evolution of the inflow and outflow perpendicular velocities,
given by U⊥ = ẑ×∇ϕ and U⊥ = ẑ×∇(G10eϕ− ρ2s2G20eB∥) respectively. Fig. 12 shows
the contour of the components Ux and Uy of the advecting perpendicular velocity for
βe = 0. These contours do not show the entire box so that we focus on the island region
drawn by the dotted lines. As expected, the contour of Uy shows an outflow leaving the
X point and Ux shows an inflow in the direction of the X point.
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Figure 12. Contour plot of the perpendicular velocity component for βe = 0. On the left: Uy.
On the right: Ux. The parameters are the same as those on Fig. 11. The magnetic island edges
are shown by the dotted lines. Not the entire domain is shown.

Figure 13 shows Ux and Uy, for βe = 1.5, at two different times. For a better comparison
we also show the part of the perpendicular velocity only induced by the electrostatic
potential ẑ×∇G10eϕ on Fig. 14 to identify the role of G10eϕ and show that its behavior
in the case βe = 1.5 is similar to that of the case βe = 0. The first time shown in Fig. 13
corresponds to the beginning of the slow down of the island growth. We observe that, close
to the reconnection region, there is a small region where the velocity changes sign, with
respect to the standard βe = 0 case. This inversion is more visible for Uy, where, inside the
island, the fluid velocity is dominated by B∥. We can conclude that G10eϕ ⩽ ρ2s2G20eB∥
in the reconnected region. Consequently, the slowing down of the island growth can be
explained by the fact that the advection velocity contains an additional drift due to the
presence of the magnetic perturbation along the guide field. This effect decelerates the
convergence of the field lines towards the reconnection region, where their evolution will



Guidelines for authors 21
Uy = ∂x(G10eϕ − ρ

2
s2G20eB∥)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−1.92×10
−3

1.92×10
−3

t=45

1
1

Uy = ∂x(G10eϕ − ρ
2
s2G20eB∥)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−0.0124 0.0124

t=66

1
1

1

Ux = −∂y(G10eϕ − ρ
2
s2G20eB∥)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−4.3×10
−4

4.3×10
−4

t=45

1
1

Ux = −∂y(G10eϕ − ρ
2
s2G20eB∥)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

X

−2

−1

0

1

2

Y

−0.0072 0.0072

t=66

1
1

1

Figure 13. On the top left and right panels: Uy. On the bottom left and right panels: Ux. For
all these contours we used βe = 1.5 and the other parameters are the same as those on the Fig.
11. The magnetic island edges are shown by the dotted lines. Not the entire domain is shown.
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Figure 14. Contour plot of the velocity components of ẑ×∇G10eϕ, at t=45. This corresponds
to the case βe = 1.5 and the other parameters are the same as those on the Fig. 11. The magnetic
island edges are shown by the dotted lines. Not the entire domain is shown.

be decoupled from that of the fluid. At the time t = 66, when the island begins to grow
faster than exponentially, the region where G10eϕ ⩽ ρ2s2G20eB∥ shrinks and the advection
towards the X point becomes much more effective, allowing the explosive growth.
We now focus on the behavior of Uy during the small oscillations of the growth rate,

visible on Fig. 11. Figure 15 shows a contour of Uy in the upper part of the domain,
between t = 46 and t = 55. The cell structures indicate two negative peaks. We recall
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Figure 15. Contour plot of Uy showing the upper part of the domain for βe = 1.5. The
parameters are the same as those on Fig. 11. The magnetic island edges are shown by the
dotted lines. Uy is negative inside the island and the cell structures indicate the regions where
the flow amplitude is greater. The situations where the highest (in absolute value) peak is closer
to the X-point (t = 46 and t = 52) correspond to maxima of the growth rate. Minima of the
growth rate occur when the highest peak is far from the X-point (t = 48 and t = 55).

that, in the case of βe = 0, we would observe a single positive peak. These peaks are
growing at the center of the island and will follow each other while moving toward the X
point. The acceleration or deceleration of the island growth depends on the position (in
absolute value) of the highest peak. When the highest peak is closer to the X point, the
reconnection rate reaches a maximum (t = 46 or t = 52). This peak will then decrease
while the other one, farther from the X point, will grow (t = 48 or t = 55). During this
part of the cycle, the growth rate reaches a minimum. We interpret this intermittent
flow, generated by the presence of B∥, as the mechanism responsible for the accelerations
and decelerations of the island growth.

4.1. Energy considerations
The time variations of the different components of the energy for the cases βe = 0 and

βe = 1.5, whose rate of growth is shown on Fig. 11, are shown on Fig. 16. The variations
are defined as (1/2)

∫
dx2(ξ(x, y, t)−ξ(x, y, 0))/H(0) where the function ξ can be replaced

by the different contributions of the Hamiltonian (2.31). In terms of the gyrofluid variables
and in the presence of FLR effects, it is not obvious to identify the physical meaning of all
the contributions to the energy. Therefore we use the terminology adopted in Tassi et al.
(2018) and which refers to the fluid limit βe = 0. The different contributions are, the
magnetic energy, Emag, for which ξ = −UeG10eA∥ (reduced to |∇⊥A∥|2 in the fluid case),
the parallel electron kinetic energy, Eke, for which ξ = d2eU

2
e (reduced to d2e(∇2

⊥A∥)
2 in

the fluid case), the energy due to the fluctuation of the electron density, Epe, for which
ξ = ρ2sN

2
e (reduced to ρ2s(∇2

⊥ϕ)
2 in the fluid case) and the perpendicular electrostatic
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Figure 16. Time evolution of the energy variations for the cases βe = 0 (plot at the top) and
βe = 1.5 (plot at the bottom). The parameters are de = 0.06, ρs = 0.519 and their corresponding
growth rate is shown on Fig. 11.

energy of the electrons combined with the energy of the parallel magnetic perturbations,
Ekp, for which ξ = −(G10eϕ− ρ2s2G20eB∥)Ne (reduced to |∇⊥ϕ|2 in the fluid case). We
consider the simulation as being reliable until the time at which the percentage of the
total energy that gets dissipated numerically (black curve) reaches 1%.
By comparing the two simulations, one can see that there appears to be a comparable
amount of magnetic energy being converted. The remarkable difference is the evolution
of the component that combines the electrostatic energy and the energy of the parallel
magnetic perturbations, Ekp, which, in the case βe = 1.5, also seems to be converted into
electron thermal energy (Epe), resulting in an increase in this component. This decrease
of the electrostatic energy has been observed only in the case βe = 1.5. In the case of
βe = 0.8, it appears that this component stays rather close to its initial value.
We also carried out the test with βe = 1.5 by artificially removing the parallel magnetic
perturbation B∥ from the code, and consequently it was not appearing in the expression
of Ekp. It appeared first that the presence of B∥ has a stabilizing effect on the tearing
mode (which is consistent with the linear results discussed in Sec. 3.2), and secondly,
the energy component Ekp was slightly increasing instead of decreasing. This allows us
to conclude that the energy related to the parallel magnetic perturbations is in fact the
decreasing component that seems to be converted into electron thermal energy Epe.

5. Conservation laws of the model
In this Section we discuss the conservation laws of the gyrofluid model and its La-

grangian invariants. Equations (2.35)-(2.36) can be recast in the form

∂A±

∂t
+ v± · ∇A± = 0, (5.1)
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where

A± = G10eA∥ − d2eUe ± deρsNe, (5.2)

v± = ẑ ×∇
(
G10eϕ− ρ2s2G20eB∥ ±

ρs
de
G10eA∥

)
. (5.3)

We define by

ϕ± = G10eϕ− ρ2s2G20eB∥ ±
ρs
de
G10eA∥, (5.4)

the stream functions of the velocity fields v± = ẑ ×∇ϕ±. The formulation (5.1) makes
it evident the presence of Lagrangian invariants, corresponding to the fields A±, in the
model. Such Lagrangian invariants are advected by the incompressible velocity fields
v±. The presence of such Lagrangian invariants is a feature common to many 2D
Hamiltonian reduced gyrofluid models (Waelbroeck et al. 2009; Waelbroeck & Tassi
2012; Keramidas Charidakos et al. 2015; Tassi 2019, 2017; Passot et al. 2018; Grasso
et al. 2010; Grasso & Tassi 2015) and is related to the existence of infinite families of
Casimir invariants of the Poisson bracket.

For Eqs. (2.35)-(2.36) , such invariants correspond to the two families

C+ =

∫
d2x C+(A+), C− =

∫
d2x C−(A−), (5.5)

where C± are arbitrary functions. Equations (5.1) imply that contour lines of the fields
A± cannot reconnect, as the corresponding vector fields B± = ∇A± × ẑ are frozen in
the velocity fields v±. On the other hand, the same model allows magnetic field lines to
reconnect. In particular, it is useful to illustrate the mechanisms breaking the frozen-in
condition in this model. This can be done by inspection of Eq. (2.36), governing the
evolution of A∥, and consequently, of the magnetic field in the plane perpendicular to
the guide field, which is given by B⊥ = ∇A∥ × ẑ. Equation (2.4) can be rewritten in the
following way:

∂A∥

∂t
+ u · ∇A∥

= − D
Dt

((
βe
4

− 1

)
d2e∇2

⊥A∥ +

+∞∑

n=2

(
βe
4n

− (−1)n−1

)(
βe
4

)n−1
(d2e∇2

⊥)
n

(n− 1)!
A∥

)
(5.6)

− ρ2s

+∞∑

n=1

1

n!

(
βe
4
d2e

)n

[(∇2
⊥)

n
A∥, Ne],

where
u = ẑ ×∇(G10eϕ− ρ2s2G20eB∥ − ρ2sNe), (5.7)

and where the operator D/Dt is defined by

Df
Dt =

∂f

∂t
+ [G10eϕ− ρ2s2G20eB∥, f ] (5.8)

for a function f . In Eq. (5.6) we also used the formal expansions

G10e =

+∞∑

n=0

1

n!

(
βe
4
d2e∇2

⊥

)n

, G−1
10e =

+∞∑

n=0

(−1)n

n!

(
βe
4
d2e∇2

⊥

)n

. (5.9)

The right-hand side of Eq. (5.6) contains all the terms that break the frozen-in condition.
Indeed, if the right-hand side of Eq. (5.6) vanishes, the perpendicular magnetic field is
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Figure 17. Contour plot of the Lagrangian invariant A−. Left panel: βe = 0, right panel:
βe = 1.5. The parameters are de = 0.06, ρs = 0.519. The dashed lines are the separatrices. The
contour plots refer to the normalized time γt = 5.18

frozen in the velocity field u. From Eq. (5.6) one thus sees that the frozen-in condition can
be violated by electron inertia (associated with the parameter de) and by electron FLR
effects (associated with the combination (βe/4)d

2
e). In the limit βe = 0 only electron

inertia remains to break the frozen-in condition. On the other hand, because electron
FLR terms are associated with the product between βe/4 and d2e, in the limit de = 0
both electron inertia and electron FLR terms disappear and the right-hand side of Eq.
(5.6) vanishes, thus restoring the frozen-in condition. We remark that the presence of a
finite βe is also responsible for finite parallel magnetic perturbations B∥. However, these
do not violate the frozen-in condition for the perpendicular magnetic field, as they only
contribute to modify the advecting velocity field u (the parallel magnetic field lines, on
the other hand, might undergo reconnection).

We consider here the qualitative structures of the contour plots of the Lagrangian
invariants A± referring to the choice of parameters already adopted for Fig. 11. From
comparing the contour plots of A−, in the case βe = 0 (left panel of Fig. 17) and βe = 1.5
(middle panel of Fig. 17), the structures look qualitatively similar. The contour lines of
A− are induced by the velocity fields ϕ− and undergo a phase mixing (the field A+ is
winding up identically in the opposite direction, induced by ϕ+). The duration of the
transient and linear phases are not identical, consequently we compared the fields at the
normalized time γt = 5.18, which makes it possible to compare the fields when the islands
are of comparable size so that they reached the same stage of evolution. The separatrices
are displayed on each plot by dashed lines. We observe a different shape of the island
in the two cases, which reflects the different distribution of the spectral power of the
magnetic field. The effect of βe gives a more elongated island along y and thinner along
x. If we take a βe > 1 and keep a low enough mass ratio, then we are forced to stand
in a regime with ρs/de much greater than 1. The ratio considered in this simulation is
ρs/de = 8.65. In this case A± is advected by a velocity field which can be approximated
by v± = ±ẑ ×∇

(
ρs

de
G10eA∥

)
, since ϕ± tends to coincide with ±ρs

de
G10eA∥. Performing

other tests (whose results are not shown here) with de ∼ ρs, βe ∈ {0, 0.5} and a mass
ratio 20 times higher, did not show any obvious difference in the mixing phase either.



26 C. Granier, D. Borgogno, D. Grasso, E. Tassi

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y
Ne, t= 26

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

Ne, t= 37

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.10 −0.05 0.00 0.05 0.10
X

−3

−2

−1

0

1

2

3

Y

−0.2 −0.1 0.0 0.1 0.2

−0.04

−0.02

0.00

0.02

0.04

−0.2 −0.1 0.0 0.1 0.2
x

−0.04

−0.02

0.00

0.02

0.04

N
e

profile at y=π/4

−0.2 −0.1 0.0 0.1 0.2
x

−0.04

−0.02

0.00

0.02

0.04

N
e

Figure 18. Contour plot of the electron density. Left panel: βe = 0, middle panel: βe = 1.5.
On the right panel are the profiles of Ne at y = π/3 in the cases βe = 0 (purple) and βe = 1.5
(blue). The parameters are de = 0.06, ρs = 0.519. The dashed lines are the separatrices. The
contour plots and profiles refer to the normalized time γt = 5.18

The electron density Ne can be obtained by a linear combination of the invariants A±

Ne =
A+ −A−

2deρs
. (5.10)

The contour plot of the electron density is displayed on Fig. 18 and shows the fine
structures produced by the mixing of the Lagrangian invariants A±. The case βe = 1.5
shows nested quadripolar structures. From the difference between the profiles of Ne on
Fig. 18 it is visible that increasing βe will smooth the gradients in the inner region of the
electron density.

6. Conclusion
In this article, we have attempted to provide an overview of the impact of finite electron

plasma beta effects on the tearing instability in non-collisional plasma with cold ions and
a strong guide field. Adopting a gyrofluid model, we have studied the effects of electron
gyration and of a parallel magnetic perturbation. There is a wide variety of systems for
which this study can be useful, such as magnetosheath plasmas, where current sheets
form in the presence of a guide field and a large βe value. Recently, for instance, studies
of observations of the MMS space mission in the magnetotail have revealed electron-only
reconnecting current sheet, where ions do not participate and where βe values can be
observed to be greater than 1 (Man et al. (2020)).

Our main results are the following. First, increasing βe and ρs while keeping de and the
mass ratio fixed, the evolution of the reconnection growth rate seems to be dominated
by the destabilizing effect of ρs, up to a certain threshold where the effects of ρe become
important and the growth rate diminishes (Fig. 6). This can also be interpreted as fixing
the background density, n0, the ion mass (so that de is fixed) and the guide field amplitude
B0, while increasing the electron temperature T0e. In the case of a small ∆′ regime, a high
βe can eventually stabilize the tearing mode and prevents reconnection from occurring.

Secondly, in the nonlinear regime of the case ρs ≫ de with βe ∼ me/mi ≪ 1, (which is
referred to as being the fluid regime in this article), we retrieved the well-know collisionless
faster than exponential growth which leads to an explosive growth of the magnetic island.
However, when we increase βe, this explosive paradigm is modified with the appearance
of a slowdown phase preceding the explosive growth. This slowing down is induced by
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the inclusion of a perpendicular drift that becomes important for finite βe and is due to
the presence of a magnetic perturbation along the guide field direction. This drift creates
an intermittent velocity opposed to the velocity induced by the electrostatic potential
and prevent the convergence of the field lines towards the X point.

A further conclusion is that the effect of βe on the Lagrangian invariants of the gyrofluid
model does not seem to reduce the filamentary structure, produced by a "phase mixing",
characteristic of these invariants.

The results obtained with our gyrofluid model are in agreement with results obtained
by gyrokinetic studies (Numata et al. (2011); Numata & Loureiro (2015)). They also
complement some two-fluid studies where a consistent accounting for βe effects, including
both electron FLR and parallel magnetic perturbations were neglected (Schep et al.
(1994); Grasso et al. (1999); Del Sarto et al. (2006); Fitzpatrick & Porcelli (2007)).

Acknowledgements
The authors acknowledge helpful discussions with Dimitri Laveder. This work benefits

from the support of the Ignitor project under the CNR contract DFM.AD003.261
(IGNITOR)-Del. CIPE n.79 del 07/08/2017. The numerical simulations were performed
using the EUROfusion high performance computer Marconi Fusion hosted at CINECA
(project FUA35-FKMR) and the computing facilities provided by Mesocentre SIGAMME
hosted by Observatoire de la Côte d’Azur.

Declaration of interests
The authors report no conflict of interest.

Data availability statement
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Appendix: Calculation of γu
We start from the linearized Eqs. (3.2)-(3.3), using the equilibrium (3.4) and the

perturbations (3.5). The perturbations are subject to the boundary conditions Ã, ϕ̃→ 0,
as x → ±∞. We look for even solutions of Ã(x) and odd solutions for ϕ̃(x), which are
standard parities for the classical tearing problem.
We consider the time variation of the perturbation being slow,

g =
γ

ky
≪ 1, (6.1)

and the normalized electron skin depth as a small parameter, i.e.

de ≪ 1. (6.2)

In order to simplify several expressions in this derivation, we normalize out λ by consid-
ering the new characteristic length in (2.9)-(2.11) as given by

L̄ = λL. (6.3)

We will reintroduce the original normalization (2.9)-(2.11) at the end of the derivation,
in Eq. (6.34).
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The linearized equations are given by

γ(ϕ̃′′ − k2yϕ̃)− ikyA∥B
′′
y0 + ikyBy0(Ã

′′ − k2yÃ) = 0, (6.4)

γ(Ã− d2e(Ã
′′ − k2yÃ)) + ikyϕ̃(By0 − d2eB

′′
y0)− ikyρ

2
sBy0(ϕ̃

′′ − k2yϕ̃) = 0, (6.5)

where By0 = −∂A(0)
∥ /∂x is the equilibrium magnetic field. In order to solve (6.4) and

(6.5) we have to adopt an asymptotic matching method because the vanishing of the
two small parameters g and de leads to a boundary layer at the resonant surface x = 0.
We will consider two spatial regions involving two spatial scales. Far from the resonant
surface, located at x = 0, the plasma can be assumed to be ideal and electron inertia
can be neglected. This region is commonly called the outer region. Close to the resonant
surface, we will proceed to a spatial rescaling and get to a scale at which electron inertia
becomes important and drives the reconnection process. This second region is called the
inner region. We anticipate that we will find a second boundary layer inside the inner
region and will need the use of a second asymptotic matching.

6.1. Outer region
As mentioned before, we assume de ≪ 1 and g ≪ 1. We then neglect terms of order

d2e and g2 in Eqs. (6.4) and (6.5). The outer equations are given by

Ã′′
out −

(
k2y +

B
′′

y0

By0

)
Ãout = 0 (6.6)

ϕ̃out(x) =
igÃout(x)

By0
, (6.7)

where we indicate with the prime symbol, the derivative with respect to the argument
of the function. The solution for Ãout is given by

Ãout(x) = e−|x|
√

k2
y+4


15 tanh3 (|x|)

k2y

√
k2y + 4

+
15 tanh2 (|x|)

k2y

+

(
6
(
k2y + 4

)
− 9
)
tanh (|x|)

k2y

√
k2y + 4

+ 1


 (6.8)

From Eq. (6.7), on the other hand, one sees that the solution for ϕ̃out is not defined at
the resonant surface x = 0, where By0 vanishes. This indicates the presence of the above
mentioned boundary layer at x = 0. We measure the logarithmic derivative of the of the
discontinuity of the outer solutions (6.8) at x = 0 with the formula (3.6) of the standard
tearing parameter and we obtain the expression

∆′ =
2
(
5− k2y

) (
k2y + 3

)

k2y

√
k2y + 4

. (6.9)

In the limit |x| → 0 the solution for Ãout can be developed using its Taylor expansion

Ãout = 1 +
∆′

2
|x|+O(x2). (6.10)
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If ∆′ is small enough, the solution Ã can be approximated to be equal to 1 in the region
where x ≪ 1. This is standard procedure called the constant ψ approximation (Furth
et al. (1963)).

6.2. Inner region: first boundary layer
In the inner region, we proceed to a first spatial rescaling using an inner variable, x̂,

such that
x = ϵx̂, (6.11)

where ϵ≪ 1 is a stretching parameter. The rescaling (6.11) implies ky ≪ ∂x̂, and allows
to use a Taylor expansion of the equilibria (3.4)

By0(ϵx̂) = 2x̂ϵ+O(ϵ2). (6.12)

We obtain the two inner equations

Ã′′
in =

ig

2ϵx̂
ϕ̃′′in, (6.13)

g

(
Ãin − d2e

ϵ2
Ã′′

in

)
+ i2ϵx̂ϕ̃in − iρ2s

2x̂

ϵ
ϕ̃′′in = 0. (6.14)

We introduce the real-valued displacement function

ξin = − i

g
ϕ̃in, (6.15)

and injecting (6.13) in (6.14), we obtain the layer equation

ξ′′in
ϵ2

− 2ϵx̂

ρ2s

(
g2d2

e

ρ2
s

+ 4ϵ2x̂2
) (2ϵx̂ξin − 1) = 0, (6.16)

where we used the constant ψ approximation, which, we recall, consists in approximating
Ãin ∼ 1 close to x = 0. In order to solve (6.16) we will assume

gde ≪ ρ2s ≪ 1, (6.17)

and will make use of a second asymptotic matching inside the inner region. We will have
indeed two boundary layers at x = 0, defining two spatial regions in which the equations
can be solved. A boundary layer exists at the scale ϵ1 = ρs and a second one at a smaller
scale, for ϵ2 = gde

ρs
.

In the first layer we use

ϵ = ϵ1 = ρs, ξin =
ξ̂

ϵ1
, (6.18)

where ξ̂ is the rescaled displacement function. This choice for ϵ yields a distinguished limit
allowing to retain the maximum number of terms in Eq. (6.16), as ϵ → 0, accounting
for the condition (6.17), which allows to neglect the term g2d2e/ρ

2
s in the denominator

of Eq. (6.16). We restrict our study to the case of negligible FLR effects in the inner
region, which implies that ρe ≪ ϵ1. This condition ensures that the terms responsible for
the electron FLR effects remain smaller than those responsible for the effects of electron
inertia.
The rescaling leads to the layer equation

ξ̂′′ − ξ̂ = − 1

2x̂
. (6.19)
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The solution of Eq. (6.19) is

ξ̂ =
ex̂

4
E1(x̂) +

e−x̂

4

(
Ei(x̂)− gde

ρ2s

π

2

)
. (6.20)

Where we already fixed the constants of integration in order to ensure limx→+∞ ξ̃ = 0
and to ensure the matching with the solution in the second layer. In (6.20) we used the
expression of the exponential integral functions

E1(x) =

∫ +∞

x

e−t

t
dt, and Ei(x) =

∫ x

−∞

et

t
dt. for x > 0, (6.21)

6.3. Inner region : second boundary layer
In the second layer, where x̂ ∼ gde/ρ

2
s, the solution (6.20) is no longer valid. Therefore,

in the second layer, we perform the following rescaling

ϵ = ϵ2 =
gde
ρs

, ξin =
gde
ρ3s

ξ̄, (6.22)

and introduce the second inner variable x̄ = x/ϵ2 (so that x̂ = (gde/ρ
2
s)x̄). Since we

are at an even smaller spatial scale than that of the previous layer, we emphasize the
condition of neglecting the FLR effects also in this second inner layer, i.e. ρe ≪ ϵ2.
Considering our assumption (6.17), the equation (6.16) becomes,

ξ̄′′ +
2x̄

(1 + 4x̄2)
= 0. (6.23)

The solution of Eq. (6.23), written bellow, in terms of the variables x̂ and ξ̂ reads

ξ̂(x̂) =

(
1− γE +

gde
2ρ2s

π

2
+ log

(
ρ2s
gde

))
x̂− gde

ρ2s
arctan

(
ρ2sx̂

gde

)

− 1

4
log

((
ρ2sx̂

gde

)2

+
1

4

)
x̂.

(6.24)

This solution satisfies the boundary condition ξ̂(0) = 0, descending from the requirement
of ϕ̃ being an odd function. In Eq. (6.24) γE is the Euler constant.

6.4. ∆′ matching
We add the following matching condition concerning the derivatives of the solutions:

∆′ =
1

ϵ1

∫ ∞

−∞
Ã′′

indx̂. (6.25)

Using the relations (6.13) and (6.16) and using the variables x̂ and ξ̂ we write

∆′ =
2g2

ρ3s

∫ +∞

0

(
1− 2x̂ξ̂

)

(
g2d2

e

ρ4
s

+ 4x̂2
)dx̂. (6.26)

We separate the integral referring to the second term on the right-hand side of Eq. (6.26)
in two parts, one from 0 to σ and one from σ to +∞, with σ a parameter constrained in
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the overlap region such that

gde
ρ2s

≪ σ ≪ 1

log
(

gde

ρ2
s

) . (6.27)

We also recall that gde

ρ2
s

≪ 1 is our assumption (6.17). Equation (6.26) can then be
rewritten as

∆′ =
2g2

ρ3s

∫ +∞

0

1(
g2d2

e

ρ4
s

+ 4x̂2
)dx̂− 4g2

ρ3s

∫ σ

0

x̂ξ̂(
g2d2

e

ρ4
s

+ 4x̂2
)dx̂− 4g2

ρ3s

∫ ∞

σ

x̂ξ̂(
g2d2

e

ρ4
s

+ 4x̂2
)dx̂.

=
gπ

2deρs
+W2 +W1.

(6.28)

We calculate the expression (6.28) accurate to g2/ρ3s so smaller terms are neglected (the
next higher term is of order g2

ρ3
s
σ log gde

ρ2
s

and thanks to the constraint (6.27) we have

σ log gde

ρ2
s

≪ 1). In the interval between σ and +∞, we use the hypothesis (6.17), given
by gde ≪ ρ2s ≪ 1 to simplify the denominator.

W1 = −4g2

ρ3s

∫ ∞

σ

x̂ξ̂(
g2d2

e

ρ4
s

+ 4x̂2
)dx̂.

= −g
2

ρ3s

∫ ∞

σ

x̂(
g2d2

e

ρ4
s

+ 4x̂2
)
(
ex̂E1(x̂) + e−x̂

(
Ei(x̂)− gde

ρ2s

π

2

))
dx̂.

= − g2

4ρ3s

∫ ∞

σ

1

x̂

(
ex̂E1(x̂) + e−x̂Ei(x̂)

)
dx̂+

g3de
4ρ5s

π

2

∫ ∞

σ

e−x̂

x̂
dx̂.

(6.29)

Using the identity euE1(u) + e−uEi(u) = 2
∫∞
0

u
u2+t2 sin(t)dt (from Geller & Ng (1969)

(id. 22 Tab. 3.3)) and knowing that Γ (0, σ) =
∫∞
σ

e−x̂

x̂ dx̂ is the incomplete gamma
function whose dominant contribution, as σ → 0+, is log(σ), we obtain

W1 = − g2

4ρ3s

(∫ ∞

0

∫ ∞

σ

sin(t)

x̂2 + t2
dx̂ dt+O

(
gde
ρ2s

log(σ)

))
dx̂, (6.30)

when σ → 0+ and gde/(ρ2sσ) → 0+. Focusing now on the remaining double integral,
∫ ∞

0

∫ ∞

σ

sin(t)

x̂2 + t2
dx̂ dt =

∫ ∞

0

sin(t)
arctan(x̂/t)

t

∣∣∣
∞

σ
dt

=
π

2

∫ ∞

0

sin(t)

t
dt−

∫ ∞

0

sin(t)

t
arctan(σ/t) dt.

(6.31)

We can prove that the second term is negligible when σ → 0+ by introducing a new
small parameter κ such as σ ≪ κ ≪ 1, splitting the integral into the sum of an integral
from 0 to κ with an integral from κ to +∞, and using that in the region 0 < t < κ,
arctan(σ/t) < π

2 and sin(t) ∼ t and in the region κ < t, one has arctan(σ/t) ∼ (σ/t). We
thus obtain

W1 = − g2

4ρ3s

(
π2

2
+O

(
gde
ρ2s

log(σ)

))
, (6.32)
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when σ → 0+ and gde/(ρ2sσ) → 0+.
It is then possible to show, using (6.27) and (6.17) that

W2 = O

(
gde
ρ2s

log

(
gde
ρ2s

))
+O

(
gde
ρ2s

log (σ)

)
+O (σ log (σ)) +O

(
σ log

(
gde
ρ2s

))
,

(6.33)

when σ → 0+ and gde/(ρ2sσ) → 0+.
Summing all the leading order terms and neglecting the higher order contributions, we
obtain the dispersion relation, written using the normalizing length scale L,

∆′ =
gλπ

2deρs
− g2λ2

4ρ3s

π2

2
. (6.34)

It is possible, in virtue of (6.17), to verify that the second term on the right-hand side of
Eq. (6.34) is smaller than the first one (g/(deρs) ≫ g2/ρ3s).
Retaining only the first term in Eq. (6.34) gives the growth rate predicted by Porcelli
(1991) and corresponding to the dispersion relation (3.8). When taking into account the
corrective term, we obtain the expression for the growth rate

γu = 2ky

(
ρ2s
πdeλ

− ρ
3/2
s

√
ρs − 2d2e∆

′

πdeλ

)
, (6.35)

corresponding to Eq. (3.10). We remark that, because of the parity properties we required
on ϕ̃ and Ã, the growth rate γu has to be real, which enforces a further condition of
validity, corresponding to

ρs ⩾ 2d2e∆
′. (6.36)

We performed high precision tests to verify the corrective term of the dispersion relation
(6.35).
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