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Reasoning∗
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Abstract

We present hypersequent calculi for the strongest logics in Lewis’ fam-
ily of conditional systems, characterized by uniformity and total reflexiv-
ity. We first present a non-standard hypersequent calculus which allows
a syntactic proof of cut elimination. We then introduce standard hyper-
sequent calculi, in which sequents are enriched by additional structures
to encode plausibility formulas and diamond formulas. Proof search us-
ing these calculi is terminating, and the completeness proof shows how a
countermodel can be constructed from a branch of a failed proof search.
We then describe tuCLEVER, a theorem prover which implements the
standard hypersequent calculi. The prover provides a decision procedure
for the logics, and it produces a countermodel in case of proof search fail-

ure. The prover tuCLEVER is inspired by the methodology of leanTAP
and it is implemented in Prolog. Preliminary experimental results show
that the performances of tuCLEVER are promising1.

1 Introduction

Conditional logics are extensions of classical logic by means of a two-places
modal operator, the conditional operator, denoted by >. They have a long
history going back to the works of Stalnaker, Lewis, Nute, Chellas, Burgess
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and Pollock in the 60s-70s [30, 21, 22, 5, 4]. Conditional logics have since found
an interest in several fields of knowledge representation, from reasoning about
prototypical properties and non-monotonic reasoning [16] to modelling belief
change. A successful attempt to relate conditional logics and belief update (as
opposed to belief revision) was carried out by Grahne [12], who established a
precise mapping between belief update operators and the logic VCU, one of
the strongest systems of conditional logics. The relation is expressed by the
so-called Ramsey’s Rule:

(A ◦B)→ C holds if and only if A→ (B > C) holds

where the operator ◦ is any update operator satisfying Katsuno and Mendel-
zon’s postulates [14], that are considered the “core” properties for any concrete
and plausible operator of belief update. Ramsey’s rule means that C is entailed
by “A updated by B” if and only if the conditional B > C is entailed by A. In
this sense it can be said that the conditional B > C expresses an hypothetical
update of the information A.

One of the most important contributions to conditional logics is due to
Lewis. In his seminal work [21], he proposed a formalization of conditional log-
ics to capture hypothetical conditionals. His aim was to represent conditional
sentences that cannot be captured by material implication and, in particu-
lar, counterfactuals, e.g., conditionals of the form “if A were the case, then
B would be the case”, where A is false. In [21] Lewis introduced a family of
conditional logics semantically characterized by sphere models. Sphere models
are possible-worlds models in which each world x is equipped with a system of
spheres, SP(x), which is a a set of nested sets of worlds. Each set in SP(x) is
called a sphere, the intuition being that, according to x, worlds in inner spheres
are more plausible than worlds belonging only to outer spheres.

Lewis takes as primitive the comparative plausibility operator 4, with a
formula A 4 B meaning “A is at least as plausible as B”. A conditional
formula A > B can be defined in terms of the comparative plausibility operator
by saying that “either A is impossible or A∧¬B is less plausible than A∧B”,
where the second disjunct can be simplified to “A ∧ ¬B is less plausible than
A”. Conversely, as we will show in Section 2, 4 can be defined in terms of >.

Here we consider the logics of Lewis’ family satisfying the following two
semantic properties, which are natural to consider when modelling hypothetical
reasoning and belief change:

• Uniformity : all worlds have the same set of accessible worlds, where the
worlds accessible from a world x are those belonging to any sphere in
SP(x);

• Total reflexivity : every world x belongs to some sphere in SP(x).

The basic logic satisfying these properties is VTU. We also consider some of its
extensions, including the above mentioned VCU. All the logics considered in
this paper contain modal logic S5 as a fragment: 2A can be defined as ⊥ 4 ¬A
(or ¬A > ⊥).
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It is worth mentioning that conditional logics with uniformity and total
reflexivity can be related with the logics of Comparative Concept Similarity
studied in the context of ontologies [29]. These logics contain a connective ⇔,
which allows to express, e.g,

PicassoPainting v BraquePainting ⇔ GiottoPainting

asserting that “Picasso’s paintings are more similar to Braque’s paintings than
to Giotto’s ones”. The semantics is provided in terms of distance space models,
defined as a set of worlds equipped with a distance function. It turns out that
the basic logic of Comparative Concept Similarity coincides with Lewis’ logic
VWU, an extension of the basic system VTU with a property known as weak
centering. Similarly, the logic defined by “minspace” distance models is equiv-
alent to VCU. Distance space models thus provide an alternative semantics,
simple and natural, for conditional logics with uniformity.

In this paper we propose different systems of calculi for Lewis’ strongest
logics, that are, VTU and its extensions, and a Prolog theorem prover, tuCLE-
VER, which automates root-first proof-search and countermodel construction
for these logics.

In general, proof systems for a given logic may have several different fea-
tures. In this paper, we aim to develop calculi having the the following prop-
erties:

• the calculi should be internal, where by internal calculus we mean a
calculus where each configuration of a derivation can be translated into
a formula of the corresponding logic. In contrast, external calculi make
use of extra-logical elements, such as labels (terms representing worlds of
a model) and relations on them;

• they should be standard, that is to say, each connective should be handled
by a fixed finite set of rules, each having a finite and fixed set of premises;

• they should be modular, meaning that calculi for stronger logics are ob-
tained by adding independent rules to a basic calculus;

• they should have good proof-theoretical properties, first of all allowing a
syntactic proof of cut admissibility;

• they should provide a decision procedure for the respective logics (when-
ever the logics are decidable);

• they should be constructively complete with respect to the semantics:
from one failed derivation, it should be possible to extract a countermodel
of the input formula.

In general, it cannot be taken for granted that a unique type of calculi satisfies
all these requirements; this motivates the investigation of alternative calculi,
or alternative formulations of them.
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In previous work [27, 9], we defined sequent calculi enjoying the above prop-
erties for several logics of the Lewis’ family, including logics with the semantic
property of absoluteness, which is stronger than uniformity, and states that all
worlds have the same system of spheres. However, we have not treated sys-
tems with uniformity and, to the best of our knowledge, no internal calculi are
known for these logics.

It is easy to see that sequents, even extended as in [9], are not sufficient
to capture logics with uniformity: since modal logic S5 can be embedded into
VTU, a sequent calculus for the latter would also yield a sequent calculus for
S5 and, as it is known, such a calculus does not exist2.

In order to cope with logics with uniformity, we adopt the richer frame-
work of hypersequents [2], where the basic objects are multisets of sequents,
interpreted disjunctively. The additional power of hypersequents consists in
the presence of rules which act on or combine several components (sequents)
of an hypersequent at the same time.

As a starting point, we propose non-standard hypersequent calculi for VTU
and its extensions. We prove that the calculi admit syntactic cut-elimination,
a result which is not obvious, given the non-standard format of some rules. As
a consequence, we obtain completeness of the calculi with respect the axiom
systems of each logic (syntactic completeness). Moreover, the relation with
modal logic S5 can be appreciated at a proof-theoretical level: we show that
by translating 2A as the external modality ⊥ 4 ¬A the calculi - restricted to
such formulas - correspond to the well-known hypersequent calculus for S5. In
other words, the hypersequent calculus for S5 can be embedded in our calculus
for VTU when the latter is restricted to formulas ⊥ 4 ¬A.

We then introduce standard hypersequent calculi for all the logics. In or-
der to define a standard calculus, the sequents composing an hypersequent are
enriched by two types of structural connectives, called “blocks”, to encode re-
spectively disjunctions of plausibility formulas and 3-formulas which, due to
the condition of uniformity, need to be propagated. We also define hyperse-
quent calculi for the logics with both absoluteness and reflexivity, which were
missing in [9]3.

Our aim is to define calculi which provide both a decision procedure for
the respective logics as well as countermodel extraction. Therefore, we intro-
duce an invertible version of the standard hypersequent calculi, in which all
principal formulas (or blocks) are kept on the premiss(es) of the rules, thus ob-
taining “kleened”4 version of the calculi. The invertible calculi allow to prove
termination of root-first proof-search, whence they provide a decision proce-
dure. Moreover, we give a direct proof of semantic completeness for the logics
without absoluteness. The proof is constructive: from one failed saturated hy-
persequent, i.e., a leaf of a failed derivation, we define a countermodel of the
formula/hypersequent at the root of the derivation. By the soundness of the

2We mean here a sequent calculus manipulating arbitrary formulas without pre-processing.
3Logics with absoluteness are included to show the modularity and the extent of the

proposed framework, but given their simplified semantics they would be better handled by
calculi with a tailored (simpler) structure.

4The name “kleened” is due to the introduction of rules copying the principal formulae
into the premisses in Kleene’s classic [15].
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calculi, the semantic completeness provides a constructive proof of the finite
model property of the logic: a satisfiable formula has a finite model.

The proposed calculi are not only meant for theoretical investigation, they
also support automated reasoning. We present a Prolog implementation of the
invertible standard hypersequent calculi. The program, called tuCLEVER (for
Total reflexivity and Uniformity Conditional LEwis logics theorem proVER)
is, to the best of our knowledge, the first and only existing prover for condi-
tional logics with uniformity5. The conception of tuCLEVER is inspired by the

methodology of leanTAP [3]. The idea is that each axiom or rule of the sequent
calculi is implemented by a single Prolog clause. No ad-hoc data structure is
used. The resulting code is therefore simple and compact: the implementation
of tuCLEVER for the basic system VTU consists of only 3 predicates, 21 clauses
and 118 lines of code.

The prover provides a decision procedure for the respective logics: since it
implements the invertible version of the calculi, where the principal formula or
block is kept in the premises of each rule, termination is obtained by simply
avoiding redundant applications of the rules.

The prover implements root-first proof search, and it also provides coun-
termodel construction in case of proof search failure. It implements the coun-
termodel construction defined for the proof of semantic completeness, thus
computing a countermodel of the input formula from the unprovable saturated
sequent occurring in a leaf of the failed proof tree. Intuitively, an unprovable
saturated hypersequent contains enough information to define a countermodel:
each component of the hypersequent determines a world and the sequence of
blocks within each components determines the system of spheres associated to
it. The computation of worlds, sphere and propositional evaluations can be
easily handled in tuCLEVER by inspecting the saturated hypersequent. Once
more, to best of our knowledge, tuCLEVER is the only existing prover which
computes countermodel for conditional logics.

Even if a set of benchmark formulae does not exist, the experimental results
obtained so far show that the performances of tuCLEVER are promising. Being
the unique theorem prover for conditional logics with Uniformity, tuCLEVER is
not directly comparable with any other prover for conditional logics. Nonethe-
less, we show that on sets of formulae provable in other (weaker) conditional
logics and on randomly generated formulas, the performances of tuCLEVER are
surprisingly better than performances of other provers for conditional logics,
notably VINTE [11] which covers weaker logics of the Lewis family. Further
investigation might clarify whether this fact depends on the strength of the
logic implemented by tuCLEVER, or on the features of the calculi, or on the
implementation of tuCLEVER.

The program tuCLEVER, as well as all the Prolog source files, are available
for free usage and download at http://193.51.60.97:8000/tuclever/.

This article is organized as follows. Section 2 introduces the axioms and

5The only possible exception is the theorem prover CSLLean [1] which implements a
calculus for the logic of Comparative Concept Similarity over minspaces, which is equivalent
to logic VCU.
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the models of the logics under scope. In Section 3 we present the non-standard
hypersequent calculi for the logic under investigation, and we prove the fun-
damental property of cut admissibility and syntactic completeness (Sec. 3.1);
moreover we give a proof-theoretical account of the embedding of S5 into the
conditional logics studied in this work (Sec. 3.2). In Section 4 we present the
standard hypersequent calculi, first in a simpler non-invertible version (Sec. 4.1)
and then in their invertible version (Sec. 4.2), for which termination and seman-
tic completeness are proved, the latter providing countermodel construction. In
Section 5 we present the design of tuCLEVER, detailing the proof search proce-
dure (Sec. 5.1) and the countermodel generation (Sec. 5.2) implemented by the
prover. We conclude by analysing the performances of the prover (Sec. 5.3).

2 Lewis’ Conditional Logics

We consider the conditional logics introduced by Lewis [21]. The set of condi-
tional formulae is defined as follows, for p ∈ V is a propositional variable:

A ::= p | ⊥ | A→ A | A 4 A

Intuitively, a formula A 4 B is interpreted as “A is at least as plausible as
B”. The other propositional connectives and constants are standardly defined:
¬A ≡ A → ⊥, A ∧ B ≡ ¬(A → ¬B), A ∨ B ≡ ¬A → B, and > ≡ p ∨ ¬p.
Moreover, Lewis’ conditional operator > is defined by

A > B ≡ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 A)

where a formula ⊥ 4 C can be read as “C is impossible”, and ¬(C 4 D) means
“D is less plausible than C”. Conversely, as mentioned in the Introduction, the
comparative plausibility operator 4 can be defined in terms of the conditional
operator >:

A 4 B ≡ ((A ∨B) > ⊥) ∨ ¬((A ∨B) > ¬A)

The outer modalities 2 and ♦ are defined by 2A ≡ (⊥ 4 ¬A) and ♦A ≡
¬(⊥ 4 A). The logics we consider are semantically defined as follows.

Definition 1 A TU-model is a triple M = 〈W, SP, J. K〉, consisting of a non-

empty set W of elements, called worlds, a mapping SP : W → 22W

, and a
propositional valuation J. K : V → 2W . Elements of SP(x) are called spheres.
We assume the following conditions:

• For every α ∈ SP(w) we have α 6= ∅ (non-emptiness)

• For every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α (sphere nesting)

• For all w ∈W we have w ∈
⋃

SP(w) (total reflexivity)

• For all w, v ∈W we have
⋃
SP(w) =

⋃
SP(v) (uniformity)
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The valuation J. K is extended to all formulae, including the conditional, as
follows:

J⊥K = ∅
JA→ BK = (W − JAK) ∪ JBK
JA 4 BK = {w ∈W | for all α ∈ SP(w), if JBK ∩ α 6= ∅, then JAK ∩ α 6= ∅}
JA > BK = {w ∈W | either

⋃
SP(w) ∩ JAK = ∅ or there exists

α ∈ SP(w) such that α ∩ JAK 6= ∅ and α ∩ JAK ⊆ JBK}.

For a TU-modelM = 〈W, SP, J. K〉, we say that a formula A is satisfiable at
a world w of M, in symbols M, w |= A, if w ∈ JAK. Moreover, we say that A
is satisfiable at M, in symbols M |= A, if for all w ∈ W , M, w |= A. We say
that A is valid in the class of TU-models if A is satisfiable at all TU-models.

The logic VTU is defined as the set of formulae valid in all TU-models [21].

Definition 2 Extensions of TU-models are defined by specifying the following
additional conditions on the class of TU-models:

• For all α ∈ SP(w) we have w ∈ α (weak centering)

• For all w ∈W we have {w} ∈ SP(w) (centering)

• For all w, v ∈W we have SP(w) = SP(v) (absoluteness)

These conditions identify five distinct classes of models, to which the notions
of validity and satisfiability of formulae, defined above, can be immediately
extended. These five classes of models in turn define five systems of logics,
extensions of VTU. The logics are denoted by concatenating letters for the
semantic properties characterizing each class of models: W for weak centering,
C for centering, and A for absoluteness.

VTU VTA: VTU + absoluteness
VWU: VTU + weak centering VWA: VTA + weak centering
VCU: VTU + centering VCA: VTA + centering

Thus, VWU is as defined as the set of formulas valid in all TU-models with
weak centering, VCU is defined to be the set of formulas valid in all TU-models
with centering, and so on [21].

Some of the conditions defined above are incremental: centering implies
weak centering, which in turn implies total reflexivity, and absoluteness implies
uniformity. Moreover, the condition of uniformity states that for any two worlds
w, v ∈W , it holds that the union of the systems of spheres associated to w and
v is the same. Without loss of generality, we can assume that for any w ∈ W ,⋃
SP(w) = W , meaning that if there exists a TU-model where

⋃
SP(w) ⊂ W

for any w, we can construct a (smaller) TU-model in which
⋃

SP(w) = W . As
a consequence, the modal operators 2A ≡ (⊥ 4 ¬A) and ♦A ≡ ¬(⊥ 4 A)
behave over the set

⋃
SP(w) in the same way as the modal operators of S56.

6 Notice that ⊥ 4 A means that A is impossible, since ⊥ is impossible and it is as plausible
as A.
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(CPR)
` B → A
` A 4 B (CPA) (A 4 A ∨B) ∨ (B 4 A ∨B)

(TR) (A 4 B) ∧ (B 4 C)→ (A 4 C) (CO) (A 4 B) ∨ (B 4 A)

(N) ¬(⊥ 4 >) (T) (⊥ 4 ¬A)→ A

(U1) ¬(⊥ 4 A)→ (⊥ 4 (⊥ 4 A)) (U2) (⊥ 4 ¬A)→ (⊥ 4 ¬(⊥ 4 ¬A))

(W) A→ (A 4 >) (C) (A 4 >)→ A

(A1) (A 4 B)→
(
⊥ 4 ¬(A 4 B)

)
(A2) ¬(A 4 B)→

(
⊥ 4 (A 4 B)

)
AVTU := {(CPR), (CPA), (TR), (CO), (N), (T), (U1), (U2)}
AVWU := AVTU ∪ {(W)} AVCU := AVTU ∪ {(W), (C)}

AVTA := AVTU ∪ {(A1), (A2)} AVWA := AVTU ∪ {(W), (A1), (A2)}
AVCA := AVTU ∪ {(W), (C), (A1), (A2)}

Figure 1: Lewis’ logics and axioms.

For instance, a boxed formula is satisfied at any world of a TU-model: if
w |= ⊥ 4 ¬A, then for all α ∈ SP(w), all worlds in α satisfy A and, since⋃

SP(w) = W , we have that all worlds in W satisfy A7.
Figure 1 presents the Hilbert-style axiom system from Lewis [21, Chp. 6]

for all the above logics, with ∨ and ∧ binding stronger than 4. Propositional
axioms and rules are standardly defined.

To end this section, we recall some uses of conditionals, in particular within
the logics considered in this paper.

All Lewis’ logics, there including VTU and all its extensions, and with the
exception of the systems VWA and VCA 8, are non-monotonic, meaning that
adding formulas to the antecedent of a true conditional does not necessarily
result in a true conditional. Let M= “Messi quits Barça”, G = “Griezmann
quits Barça”, and W= “Barça wins the Champions League”. We have that the
following formula is not valid:

(¬M > W )→ ((¬M ∧G) > W )

However, all Lewis’ logics satisfy a form of monotonicity, called rational mono-
tonicity, expressed by the following formula, valid in all the logics9:

(S > T ) ∧ ¬(S > ¬J)→ ((S ∧ J) > T )

7Moreover, using an easy semantic argument it can be shown that VWA collapses to S5,
and that VCA collapses to classical logic. A syntactic proof of both facts can be found in
Proposition 18 of Section 3.2.

8Logics VWA and VCA collapse to classical systems: see previous footnote.
9The formula corresponds to axiom (CV) in axiomatization of conditional logics taking >

as primitive.
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In the above formula, read S as “Simon is a student”, T as “Simon does not
pay taxes” and J as “Simon has a summer job”.

Finally, one may wonder what is the role of the property of uniformity :
according to this property, there is a unique set of accessible words, and this
set is the union of the system of spheres of each world. As mentioned, because
of this property, the inner modality 2A, defined by ⊥ 4 ¬A, or equally by
¬A > ⊥, has the property of the 2 operator defined in S5. The property
of uniformity may be used to enforce the preservation of possible, necessary
or impossible formulas over right-nested conditionals, that can be viewed as
subsequent updates (refer to the Introduction).

Consider the following example. In a very safe system, we have that an
unauthorized access to classified files is (considered as) impossible. However,
there might occur a crash of the system, with a subsequent recovery, and a
password leak due to security failure. Let U stand for “an unauthorized access
to classified files occurs”, R for “recovery from system crash occurs”, and P
for “a password leak occurs”.

In all Lewis’ logics, even without Uniformity, we have that the following
two formulas are valid:

2¬U → (R > ¬U) and 2¬U → (P > ¬U)

That is, from the assumption 2¬U we can conclude both R > ¬U and P > ¬U .
In contrast, the formulas

2¬U → (R > (P > ¬U)) and 2¬U → (R > (P > ¬U))

are valid in VCU, but they are not valid in logic without uniformity. Thus,
without uniformity, from the assumption 2¬U , we cannot conclude neither
R > (P > ¬U), nor P > (R > ¬U).

Intuitively, if we think of a conditional as representing an update operation,
then by uniformity the set of worlds accessible from a given initial world is the
same as the set of worlds accessible from the worlds determined by an update
by R (or by P ). Thus, the formula 2¬U , expressing safety of the system, is
preserved in such worlds and in all the worlds determined by any subsequent
update. On the other hand, without uniformity, we have that ¬U holds in
any world determined by a single update by R (or by P ), but we cannot say
anything about 2¬U , as the accessible worlds may be different. In this sense,
we can say that the property of uniformity ensures that modal formulas are
preserved along a sequence of updates.

3 Hypersequent Calculi for Lewis’ Logics

In this section we present some non-standard calculi for the logic VTU and its
extensions. Our calculi are based on hypersequents, where as usual a sequent
is a pair consisting of two multisets of formulae, written as Γ⇒ ∆.

Definition 3 A hypersequent is a non-empty multiset of sequents, written
Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n, where n ≥ 1 is the cardinality of the multiset.
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The conditional formula interpretation of a hypersequent is

ι4(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) := 2 (
∧

Γ1 →
∨

∆1) ∨ · · · ∨2 (
∧

Γn →
∨

∆n)

where 2 is the outer modality defined by 2A ≡ (⊥ 4 ¬A).

For L any of the considered logics, the rules of the corresponding hyperse-
quent calculus HL are given in Figure 2. We denote by HL ` G derivability of
hypersequent G at HL.

The rules of the calculi HL are based on an extension of the calculi from [19]
to the hypersequent setting. We abbreviate multisets of formulae Ak, . . . , An

to ~[A]
n

k , and Ck 4 Dk, . . . , Cn 4 Dn to ~[C 4 D]
n

k with the convention that
~[A]

n

k is empty if k > n. These calculi are non-standard, meaning that the
rules have an unbounded number of premisses. Note also that they include the
explicit contraction rules ICL, ICR. This is because for these calculi we are only
interested in cut elimination. We will consider calculi in which contraction is
admissible in Section 4.2 below. The crucial rule for uniformity is the rule trfm.
Intuitively, it unpacks a number of comparative plausibility formulae behaving
like boxed formulae on the left hand side of a component in the conclusion into
a different component in the rightmost premiss, most clearly seen in the case of
n = 1. The leftmost set of premisses ensures that the comparative plausibility
formulae indeed behave like boxed formulae. The rule Tm is the local version
of trfm, and essentially captures total reflexivity.

Theorem 4 For L any of the considered logics, the calculus HL is sound for
L.

Proof. We need to show that whenever a hypersequent ⇒ A is derivable in HL,
then the formula A is a theorem of L. To do so we show below that all the rules
preserve soundness with respect to ι4, i.e., whenever the formula translations
of all premisses of a rule are theorems of L, then so is the formula translation
of its conclusion. This yields that whenever ⇒ A is derivable, then 2(> → A)
is a theorem of L. Since 2B → B is valid in all the logics, the formula > → A
is thus a theorem of L, which is equivalent to A.

The fact that the rules preserve soundness with respect to the formula
interpretation ι4 is shown by constructing a countermodel for the formula
interpretation of one of the premisses from a countermodel for the formula
interpretation of the conclusion, using that the sphere system satisfies unifor-
mity. For all the rules other than trf, absL, absR, spl this follows as in [19], using
that 2A → 22A is valid. For absL, absR this follows straightforwardly from
absoluteness, and for spl this follows from the fact that frames for VCA are
degenerate in the sense that SP(w) = {{w}} for every world w.

For the rule trf, let M = 〈W, SP, J. K〉 be a VTU model, let w ∈ W , and
suppose that

M, w |= ¬ι4(G) ∧ ♦ (
∧

Σ ∧
∧m

i=1(Ci 4 Di) ∧ ¬
∨

∆) ∧ ♦ (
∧

Ω ∧ ¬
∨

Θ) . (1)

Then in particular M, w |= ¬ (ι4(G) ∨2 (
∧

Σ→ Π) ∨2 (∧Ω→ Θ)). Further-
more, suppose that for every k ≤ m we have

M, w |= ι(G) ∨2 (
∧

Σ→
∨

Π) ∨2 (
∧

Ω→
∨

Θ) ∨2

(
Ck →

∨k−1
i=1 Di

)
. (2)
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G | Γ, p⇒ p,∆
init G | Γ,⊥ ⇒ ∆

⊥L

G | Γ, A,A⇒ ∆

G | Γ, A⇒ ∆
ICL

G | Γ⇒ A,A,∆

G | Γ⇒ A,∆
ICR

G | Γ, B ⇒ ∆ G | Γ⇒ A,∆

G | Γ, A→ B ⇒ ∆
→L

G | Γ, A⇒ B,∆

G | Γ⇒ A→ B,∆
→R

{G | Σ⇒ Π | Ck ⇒ ~[D]
k−1

1 , ~[A]
n

1 : k ≤ m} ∪ {G | Σ⇒ Π | Bk ⇒ ~[D]
m

1 , ~[A]
n

1 : k ≤ n}

G | Σ, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 ,Π
Rm,n

{ G | Σ⇒ Π | Ω⇒ Θ | Ck ⇒ ~[D]
k−1

1 : k ≤ m } ∪ { G | Σ⇒ Π | Ω⇒ ~[D]
m

1 ,Θ }

G | Σ, ~[C 4 D]
m

1 ⇒ Π | Ω⇒ Θ
trfm

{ G | Σ⇒ Π | Ck ⇒ ~[D]
k−1

1 : k ≤ m } ∪ { G | Σ⇒ ~[D]
m

1 ,Π }

G | Σ, ~[C 4 D]
m

1 ⇒ Π
Tm

{ G | Σ⇒ Π | Ck ⇒ ~[D]
k−1

1 , ~[A]
n

1 : k ≤ m } ∪ { G | Σ⇒ ~[D]
m

1 , ~[A]
n

1 ,Π }

G | Σ, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 ,Π
Wm,n

G | Σ, C ⇒ Π G | Σ⇒ D,Π

G | Σ, C 4 D ⇒ Π
RC

G | Σ⇒ A,Π

G | Σ⇒ A 4 B,Π
RW

G | Σ,Γ⇒ Π,∆ | Ω⇒ Θ

G | Σ⇒ Π | Ω,Γ⇒ Θ,∆
spl

G | Σ⇒ Π | Ω, C 4 D ⇒ Θ

G | Σ, C 4 D ⇒ Π | Ω⇒ Θ
absL

G | Σ⇒ Π | Ω⇒ A 4 B,Θ

G | Σ⇒ A 4 B,Π | Ω⇒ Θ
absR

HVTU : {init,⊥L, ICL, ICR,→L,→R} ∪ {Rm,n : m ≥ 0, n ≥ 1} ∪
{trfm : m ≥ 1} ∪ {Tm : m ≥ 1}

HVWU : HVTU ∪ {Wm,n : m + n ≥ 1} HVCU : HVTU ∪ {RC , RW }

HVTA : HVTU ∪ {absL, absR} HVWA : HVWU ∪ {absL, absR}

HVCA : HVCU ∪ {absL, absR, spl}

Figure 2: The hypersequent calculi for VTU and extensions.

Then from the case k = 1 of (2) we obtain M, w |= 2¬C1. From this together
with (1) and the fact that for every v ∈

⋃
SP(w) we have

⋃
SP(v) =

⋃
SP(w)

we then obtain M, w |= 2¬D1. Similarly, using the case k = 2 of (2) we
get M, w |= 2¬D2 and continuing like this we get M, w |= 2¬D1 ∧ · · · ∧
2¬Dm. Together with (1) this gives M, w |= ¬ι(G) ∧ ♦ (

∧
Σ ∧ ¬

∨
Π) ∧

♦ (∧Ω ∧ ¬ (D1 ∨ · · · ∨Dm ∨
∨

Θ)) and hence we have a countermodel for the
remaining premiss. �
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G | Γ⇒ ∆

G | Γ,Σ⇒ ∆,Π
IW

G
G | ⇒ EW

G | Γ⇒ ∆ | Σ⇒ Π

G | Γ,Σ⇒ ∆,Π
mrg

Figure 3: The structural rules of internal and external weakening and merge.

We further have derivability of generalised initial hypersequents:

Lemma 5 For every formula A we have HL ` G | Γ, A⇒ A,∆.

Proof. By induction on the complexity of the formula A. For the propositional
cases this is standard. If A is of the form B 4 C, we have

G | Γ⇒ ∆ | B ⇒ B G | Γ⇒ ∆ | C ⇒ C,B

G | Γ, B 4 C ⇒ B 4 C,∆
R1,1

where the premisses are derivable using the induction hypothesis. �

As usual, a rule is admissible in HL if whenever the premisses are derivable
in HL, then so is its conclusion. By depth of a derivation we mean the length
of its longest branch. A rule is depth-preserving admissible if the depth of the
derivation of its conclusion is at most the maximal depth of the derivations of
its premisses.

Lemma 6 The rules IW,EW,mrg from Fig. 3 are depth-preserving admissible
in HL.

Proof. By induction on the depth of the derivation in all cases. For mrg, if the
last applied rule was trfm, we might need to replace it with Tm. �

Observe that from admissibility of mrg using the internal contraction rules
we also immediately obtain admissibility of the external contraction rules, i.e.,
contraction on hypersequent components. We first show completeness of the
systems with the cut rule:

G | Γ⇒ ∆, A H | A,Σ⇒ Π

G | H | Γ,Σ⇒ ∆,Π
cut

Cut-free completeness then will follow from cut elimination. In the following
we write HLcut for the system HL with the cut rule.

Remark 7 In order to improve readability, we use the standard rules for nega-
tion and conjunction when writing the derivations. The rules are trivially de-
finable in the calculi, recalling that ¬A ≡ A→ ⊥ and A ∧B ≡ ¬(A→ ¬B).

G | Γ⇒ A,∆

G | Γ,¬A⇒ ∆
¬L

G | Γ, A⇒ ∆

G | Γ⇒ ¬A,∆
¬R

G | Γ, A,B ⇒ ∆

G | Γ, A ∧B ⇒ ∆
∧L

G | Γ⇒ A,∆ G | Γ⇒ B,∆

G | Γ⇒ A ∧B∆
∧R

12



Lemma 8 (Completeness with cut) For L one of the considered logics, the
calculus HLcut is complete for L, i.e., whenever A ∈ L, then HLcut ` ⇒ A.

Proof. By deriving the axioms and using cut to simulate modus ponens and
the rule (CPR). The interesting cases are the axioms (U1), (U2) for uniformity
and (A1), (A2) for absoluteness. The derivation for (U1) is as follows:

⇒ | A⇒ ⊥ | ⇒ ⊥ | ⊥ ⇒ ⊥L ⇒ | A⇒ A,⊥ | ⇒ ⊥ Lem. 5

⇒ | A⇒ ⊥ | ⊥ 4 A⇒ ⊥ trf1

⇒ ⊥ 4 A | ⊥ 4 A⇒ ⊥
R0,1

⇒ ⊥ 4 A,⊥ 4 (⊥ 4 A)
R0,1

⇒ ¬(⊥ 4 A)→ (⊥ 4 (⊥ 4 A))
¬L,→R

The derivation for (U2) is similar. For (A1) we have:

⇒ | A 4 B ⇒ A 4 B,⊥ Lem. 5

A 4 B ⇒ | ⇒ A 4 B,⊥ absL

A 4 B ⇒ | ¬(A 4 B)⇒ ⊥
¬L

A 4 B ⇒ ⊥ 4 ¬(A 4 B)
R0,1

⇒ (A 4 B)→ (⊥ 4 ¬(A 4 B))
→R

The derivation for (A2) is similar. �

3.1 Cut elimination

To obtain cut-free completeness for all systems we now give a syntactic proof
of cut elimination. For this, in the presence of absoluteness we consider slightly
extended calculi containing also versions of the rules Wm,n, RC , RW where ab-
soluteness is built in:

{ G | Σ⇒ Π | Ω⇒ Θ | Ck ⇒ ~[D]
k−1

1 , ~[A]
n

1 : k ≤ m }
∪ { G | Σ⇒ Π | Ω⇒ ~[D]

m

1 , ~[A]
n

1 ,Θ }

G | Σ, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 ,Π | Ω⇒ Θ
W abs

m,n

G | Σ⇒ Π | Ω, C ⇒ Θ G | Σ⇒ Π | Ω⇒ D,Θ

G | Σ, C 4 D ⇒ Π | Ω⇒ Θ
Rabs

C

G | Σ⇒ Π | Ω⇒ A,Θ

G | Σ⇒ A 4 B,Π | Ω⇒ Θ
Rabs

W

Since these are derivable using the original version of the rule followed by
applications of absL, absR, cut elimination in the extended system entails cut
elimination in the original system. As can be expected, due to the presence of
contraction cut elimination in a hypersequent system is rather more involved
than in the sequent case of [19]. Moreover, due to the form of the absoluteness
rules we cannot simply apply the general results of [18], although the strategy
for the cut elimination proof is the same: Intuitively, an application of the cut
rule (shown before Lem. 8) with cut formula of maximal complexity is permuted
up in the derivation of the left premiss, where applications of contraction are
swallowed up in a more general induction hypothesis, until an occurrence of the
cut formula is principal (Lem. 12). Then essentially the fact that contractions
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can be permuted above logical rules is used to obtain a single occurrence of the
cut formula in the left premiss of the cut, and the cut is permuted up in the
right premiss. Again, contractions are swallowed up by a generalised induction
hypothesis, and once the cut formula becomes principal in the last applied rule,
its complexity is reduced (Lem. 11). For technical reasons we also include the
rule mrg in the calculus when proving cut elimination. By Lem. 6 it is clear
that all applications of this rule can then be eliminated in the cut-free system.
In the following we write H∗L for the system HL with cut,mrg and with the rules
W abs

m,n, R
abs
C , Rabs

W where applicable, and abbreviate A, . . . , A︸ ︷︷ ︸
n-times

to An.

Definition 9 The cut rank of a H∗L-derivation D is the maximal complexity
of a cut formula occurring in D, written ρ(D). A rule is cut-rank preserving
admissible in H∗L if whenever its premiss(es) are derivable in H∗L with cut-rank
n, then so is its conclusion.

In order to be able to use the weakening rules in the cut elimination proof,
we need that they are admissible in H∗L without increasing the cut-rank:

Lemma 10 The rules EW, IW are depth- and cut-rank preserving admissible
in H∗L.

Proof. Standard induction on the depth of the derivation. �

Lemma 11 (Shift Right) Suppose that for k > 0 and n1, . . . , nk > 0 there
are H∗L-derivations D1 and D2 of G | Ω ⇒ Θ, A and H | An1 ,Ξ1 ⇒ Υ1 |
. . . | Ank ,Ξk ⇒ Υk with ρ(D1) < |A| > ρ(D2) and such that the displayed
occurrence of A is principal in the last rule application in D1. Then there is a
H∗L-derivation D of hypersequent G | H | Ω,Ξ1 ⇒ Θ,Υ1 | . . . | Ω,Ξk ⇒ Θ,Υk

and ρ(D) < |A|.

Proof. By induction on the depth of D2. If none of the displayed occurrences
of A is principal in the last rule in D2, we apply the induction hypothesis on
the premiss(es) of that rule, followed by the same rule (and possibly structural
rules). If at least one of the displayed occurrences is principal in the last rule in
D2, we distinguish cases according to the last applied rule in D1, with subcases
according to the last rule in D2. In order to not break the flow of the paper, here
we only consider an exemplary case. The full proof is found in the appendix.
Suppose the last rules in D1 and D2 are Rm,n+1 and trfs respectively, that A
is the formula E 4 F and that D1 ends in:{

G | Ω⇒ Θ | Cj ⇒ ~[D]
j−1

1 , ~[A]
n

1 , E : 1 ≤ j ≤ m
}

∪
{
G | Ω⇒ Θ | Bj ⇒ ~[D]

m

1 , ~[A]
n

1 , E : 1 ≤ j ≤ n
}

∪
{
G | Ω⇒ Θ | F ⇒ ~[D]

m

1 , ~[A]
n

1 , E
}

G | Ω, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 , E 4 F,Θ
Rm,n+1

First we apply the induction hypothesis to the conclusion of this and the
premisses of trfs to eliminate all the occurrences of E 4 F from the context.
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Hence we assume that the only occurrences of E 4 F in the conclusion of trfs
are principal and that D2 ends in:{

H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]
j−1

1 : 1 ≤ j ≤ r
}
∪{

H | Ξ⇒ Υ | Σ⇒ Π | E ⇒ ~[H]
r

1

}
∪{

H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]
j−1

1 , F : r < j ≤ s
}
∪{

H | Ξ⇒ Υ | Σ⇒ Π, ~[H]
s

1, F
}

H | Ξ, ~[G 4 H]
r

1, E 4 F, ~[G 4 H]
s

r+1 ⇒ Υ | Σ⇒ Π
trfs

with E 4 F not occurring in ~[G 4 H]
r

1. Cuts on the formulae E and F then
yield:{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Bj ⇒ ~[D]

m

1 , ~[A]
n

1 ,
~[H]

r

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , ~[D]
m

1 , ~[A]
n

1 ,
~[H]

r

1 : r < j ≤ s
}

Admissibility of internal weakening (Lem. 10) and an application of Rm+s,n+t

then gives:

G | H | Ω, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ,
~[G 4 H]

s

r+1 ⇒ ~[A 4 B]
n

1 ,
~[I 4 J ]

t

1,Θ | Ξ⇒ Υ

Iterating this process to eliminate the remaining occurrences of E 4 F from
~[G 4 H]

s

r+1, followed by mrg and applications of contraction then yields the
desired sequent. �

Lemma 12 (Shift Left) Suppose that for k > 0 and n1, . . . , nk > 0 there
are H∗L-derivations D1 and D2 of the hypersequents G | Ω1 ⇒ Θ1, A

n1 | . . . |
Ωk ⇒ Θk, A

nk and H | A,Ξ ⇒ Υ with ρ(D1) < |A| > ρ(D2). Then there
is a H∗L-derivation D of G | H | Ω1,Ξ ⇒ Θ1,Υ | . . . | Ωk,Ξ ⇒ Θk,Υ and
ρ(D) < |A|.

Proof. By induction on the depth of D1. If none of the displayed occurrences
of A is principal in the last rule in D1 or the active formula of absR, we apply
the induction hypothesis on the premiss(es) of the last rule in D1 followed by
the same rule and possibly admissibility of weakening and contraction. If one
of the occurrences of A is active in absR, we use admissibility of EW (Lem. 10)
and absL on D2 to obtain H | Ξ ⇒ Υ | A ⇒ . Then the induction hypothesis
on this and the premiss of absR followed by mrg and IW yields the result.
If an occurrence of A is principal in the last rule in D1, we use the induction
hypothesis to remove all the occurrences of A in the context of that rule. Then,
in case this rule is Rm,n,Wm,n,W

abs
m,n, we apply contraction in the premisses

and apply the same rule, so that only one occurrence of A is principal. Now
Lem. 11 yields the result. �
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Theorem 13 (Cut Elimination) Let L ∈ {VTU,VWU,VCU,VTA,VWA,
VCA}. If a hypersequent is derivable in H∗L, then it is derivable in HL.

Proof. First we eliminate all applications of cut by induction on the tuples
〈ρ(D), ](D)〉 under the lexicographic ordering, where ](D) is the number of
applications of cut in D with cut formula of complexity ρ(D). Then applications
of W abs

m,n, R
abs
C , Rabs

W are replaced with the Wm,n, RC , RW and absL, absR, and
mrg is eliminated using Lem. 6. It is straightforward to check that applications
of W abs

m,n, R
abs
C , Rabs

W are only introduced in systems including the absoluteness
rules. �

As usual, the cut elimination result yields cut-free completeness:

Theorem 14 (Cut-free completeness) If A ∈ L, then HL ` ⇒ A.

Proof. If A ∈ L, then by Lem. 8 we have HLcut ` ⇒ A. Since HLcut is a
subsystem of H∗L we thus have H∗L ` ⇒ A. Now Thm. 13 yields the result. �

3.2 Connections to modal logic

The constructed hypersequent calculi provide purely syntactical proofs of re-
sults from Lewis [21] connecting the conditional logics to, e.g., modal logic S5.
We write L2 for the modal fragment of a conditional logic L, i.e., the fragment
where comparative plausibility formulae are restricted to the shape (⊥ 4 ¬A),
and we write A2 for the result of replacing every subformula ⊥ 4 ¬B of A
with 2B. The proofs use the fact that the hypersequent calculus HS5 with the
propositional rules of Fig. 2, the structural rules and the rules

G | Γ⇒ 2A,∆ | ⇒ A

G | Γ⇒ 2A,∆
2R

G | Γ,2A⇒ ∆ | Σ, A⇒ Π

G | Γ,2A⇒ ∆ | Σ⇒ Π
2L

G | Γ,2A,A⇒ ∆

G | Γ,2A⇒ ∆
T

is cut-free complete for S5 [28], see also [18]. The following derivations make
use of the propositional rules from Remark 7.

Lemma 15 If A2 ∈ S5, then A ∈ L2 for each of the logics L considered here.

Proof. By translating HS5-derivations into HL-derivations. E.g., 2L is trans-
lated into:

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ⇒ Π | ¬ ⇒ ⊥L

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ, A⇒ Π

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ⇒ ¬A,Π
¬L

G | Γ,⊥ 4 ¬A,⊥ 4 ¬A⇒ ∆ | Σ⇒ Π
trf1

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ⇒ Π
ICL

The translations of 2R,T are similar, using R0,1 and T1 respectively. �

The backwards direction is similar, but translates into the calculus HS5

above with a form of Avron’s modal splitting rule from [2]:

G | Γ⇒ ∆ | Σ,2Ω⇒ 2Θ,Π

G | Γ,2Ω⇒ 2Θ,∆ | Σ⇒ Π
MS

It is straightforward to check that the resulting calculus is sound for S5.
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Lemma 16 If L 6= VCA and A ∈ L2, then A2 ∈ S5.

Proof. By translating derivations in HL into derivations in HS5cut and applying
cut elimination. In particular, an application of the rule Rm,n

{G | Γ⇒ ∆ | ⊥ ⇒ ¬D1, . . . ,¬Dj−1,⊥n : 1 ≤ j ≤ m}
∪ {G | Γ⇒ ∆ | ¬Bj ⇒ ¬D1, . . . ,¬Dm,⊥n : 1 ≤ j ≤ n}
G | Γ,⊥ 4 ¬D1, . . . ,⊥ 4 ¬Dm ⇒ ⊥ 4 ¬B1, . . . ,⊥ 4 ¬Bn,∆

Rm,n

is translated into

G | Γ⇒ ∆ | ¬B1 ⇒ ¬D1, . . . ,¬Dm,⊥n

G | Γ,2D1, . . . ,2Dm ⇒ 2B1,∆ | ¬B1 ⇒ ¬D1, . . . ,¬Dm,⊥n IW

G | Γ,2D1, . . . ,2Dm ⇒ 2B1,∆ | D1, . . . , Dm ⇒ B1

prop

G | Γ,2D1, . . . ,2Dm ⇒ 2B1,∆
2L,2R

G | Γ,2D1, . . . ,2Dm ⇒ 2B1, . . . ,2Bn,∆
IW

Here rule prop uses derivability of the inversions of the propositional rules using
cut. Similarly, applications of Tm and trfm are translated using m applications
of 2L and T respectively. Applications of Wm,n and RC are translated by T,
and RW is replaced with weakening, using that whenever G | Γ ⇒ ∆,⊥ is
derivable in the system for S5, then so is G | Γ ⇒ ∆. Finally, absL, absR are
replaced with the modalised splitting rule MS. �

Theorem 17 ([21, Sec. 6.3]) Let L 6= VCA. Then A ∈ L2 iff A2 ∈ S5.

The proof of the previous theorem is immediate from the preceding lem-
mas. It is then also straightforward to derive the known collapses of the coun-
terfactual implication > in VWA and VCA. Recall that A > B ≡ (⊥ 4
A) ∨ ¬((A ∧ ¬B) 4 A).

Proposition 18 1. HVWA ` ⇒ (A > B)↔ 2(A→ B)

2. HVCA ` ⇒ A↔ 2A

3. HVCA ` ⇒ (A > B)↔ (A→ B) and HVCA ` ⇒ (A 4 B)↔ (B → A).

Proof. Statement 1 is proved by deriving formulas

¬((A ∧ ¬B) 4 A)→ ⊥ 4 ¬(A→ B) ⊥ 4 A→ ⊥ 4 ¬(A→ B)

using R0,1, absR,W0,1 and R1,1, respectively. From these using ∨L we derive
the left-to-right direction of the implication. The other direction is derivable
straightforwardly using R2,1.

The derivation for statement 2 is

⊥ ⇒ A
⊥L

A⇒ A
init

⇒ ¬A,A
¬R

⊥ 4 ¬A⇒ A
RC

⇒ (⊥ 4 ¬A)→ A
→R

⇒ | A⇒ A,⊥ init

⇒ | A,¬A⇒ ⊥
¬R

A⇒ | ¬A⇒ ⊥
spl

A⇒ ⊥ 4 ¬A
R1,1

⇒ A→ (⊥ 4 ¬A)
→R

⇒ ((⊥ 4 ¬A)→ A) ∧ (A→ (⊥ 4 ¬A))
∧R
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For the first part of statement 3, since VCA is an extension of VWA from
statement 1 we also obtain HVCA ` ⇒ A > B ↔ 2(A → B) (by replacing
the application of W0,1 with RW ). Hence using the first equivalence and cut
elimination we obtain the equivalence of A > B and A→ B.

The derivation of the last part of statement 3 is

B,A⇒ A | ⇒ init

B ⇒ A | A⇒
spl

B ⇒ A,B
init

A 4 B,B ⇒ A
T1

⇒ ((A 4 B)→ (B → A))
→R

A,B ⇒ A | ⇒ init
B ⇒ A,B | ⇒ init

B → A,B ⇒ A | ⇒
→L

B → A⇒ | B ⇒ A
spl

B → A→ A 4 B
R0,1

⇒ ((B → A)→ (A 4 B))
→R

⇒ ((A 4 B)→ (B → A)) ∧ ((B → A)→ (A 4 B))
∧R

�

4 Standard Calculi for Lewis’ Logics

As mentioned in the Introduction, we call a calculus standard if it has a finite
number of rules and each rule has a finite and fixed number of premisses. Our
goal is to define standard hypersequent calculi for VTU and its extension, and
in this Section we shall do so, by introducing two families of proof systems, one
non-invertible and one invertible.

The non-invertible calculi (Sec. 4.1) have the advantage of being easier to
understand, and are thus introduced first. These calculi can be directly proved
to be equivalent to the non-standard cut-free hypersequents presented in the
previous Section.

The invertible calculi (Sec. 4.2) are defined by “kleeneing” the rules of the
non-invertible calculi, i.e., by repeating in each premiss of a rule the princi-
pal formula and all the other formulas occurring in the conclusion of the rule
(following the ideas of Kleene’s classic [15]). These calculi provide decision pro-
cedures for the corresponding logics and, for the logics without absoluteness,
allow to extract a countermodel from a failed proof search branch. Thanks to
these properties, the invertible calculi are the base of the prover tuCLEVER,
described in Sec. 5.

4.1 Non-invertible calculi

To convert the non-standard calculi HL into standard calculi, we consider an
extended notion of sequent, where the consequent contains additional struc-
tural connectives. These sequents extend those of [9, 27] with a connective 〈.〉
interpreting possible formulae, i.e., ♦-formulae.

Definition 19 A conditional block is a tuple [Σ C C] containing a multiset Σ
of formulae and a single formula C. A transfer block is a multiset of formulae,
written 〈Θ〉. An extended sequent is a tuple Γ ⇒ ∆ consisting of a multiset
Γ of formulae and a multiset ∆ containing formulae, conditional blocks, and
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transfer blocks. An extended hypersequent is a multiset containing extended
sequents, written Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

Recall that ♦A ≡ ¬(⊥ 4 A) and 2A ≡ ⊥ 4 ¬A. The formula interpreta-
tion of an extended sequent is (all blocks shown explicitly):

ιe(Γ⇒ ∆, [Σ1 C C1] , . . . , [Σn C Cn] , 〈Θ1〉 , . . . , 〈Θm〉)
:=
∧

Γ→
∨

∆ ∨
∨n

i=1

∨
B∈Σi

(B 4 Ci) ∨
∨m

j=1 ♦(
∨

Θj)

The formula interpretation of an extended hypersequent is:

ιe(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) := 2 ιe(Γ1 ⇒ ∆1) ∨ · · · ∨2 ιe(Γn ⇒ ∆n)

For L any of the logics considered, we denote by SHL the corresponding non
invertible calculus, whose rules are detailed in Fig. 4. We denote by SHL ` A
derivability of a formula A at SHL.

The following lemma proves admissibility of the weakening rules, including
their structural versions.

Lemma 20 (Admissibility of Weakening) The rules IW,EW,CW,CIW,TW
are depth-preserving admissible in SHi

L.

G | Γ⇒ ∆

G | Γ,Σ⇒ ∆,Π
IW

G
G | ⇒ EW

G | Γ⇒ ∆

G | Γ⇒ ∆, [Σ C C]
CW

G | Γ⇒ ∆, [Σ C C]

G | Γ⇒ ∆, [Σ, A C C]
CIW

G | Γ⇒ ∆

G | Γ⇒ ∆, 〈Θ〉 TW

Proof. As usual by induction on the depth of the derivation we first obtain
depth-preserving admissibility of IW,EW,CW and CIW. We then use depth-
preserving admissibility of IW in the proof for TW for the case where the last
applied rule is ConS . �

Theorem 21 (Soundness) If SHL ` ⇒ A, then A ∈ L.

Proof. As for Thm. 4, by showing that the rules preserve validity under ιe
we obtain the first statement, i.e., whenever the formula translations of all
premisses of a rule are theorems of L, then so is the formula translation of its
conclusion. Then using validity of 2A→ A we obtain the second, i.e., whenever
ιe(⇒ A) is a theorem of L, then so is A. For the rules 4L,4R, com, jump,W,C
the first statement is similar as in [9]. For rule T, if the interpretation of the
conclusion is falsified in M, w, then there is a world v ∈ SP(w) with M, v 
∧

Γ ∧ (A 4 B) ∧ ¬
∨

∆ ∧ 2¬
∨

Θ. If JBK = ∅, then in particular M, v 

2¬(

∨
Θ ∨B), and the formula interpretation of the second premiss is falsified

in M, v and therefore in M, w. Otherwise, from M, v 
 A 4 B we obtain
a world x ∈

⋃
SP(v) =

⋃
SP(w) with M, x 
 A, and from M, v 
 2¬

∨
Θ

we also get that M, x 
 ¬
∨

Θ. Hence the formula interpretation of the first
premiss is falsified at M, x, and therefore at M, w. The remaining cases are
similar. �
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G | Γ,⊥ ⇒ ∆
⊥L G | Γ, p⇒ ∆, p

init
G | Γ, B ⇒ ∆ G | Γ⇒ ∆, A

G | Γ, A→ B ⇒ ∆
→L

G | Γ, A⇒ ∆, B

G | Γ⇒ ∆, A→ B
→R

G | Γ, A,A⇒ ∆

G | Γ, A⇒ ∆
ICL

G | Γ⇒ ∆, A,A

G | Γ⇒ ∆, A
ICR

G | Γ⇒ ∆, [Σ C A] , [Σ C A]

G | Γ⇒ ∆, [Σ C A]
ConS

G | Γ⇒ ∆, [Σ, A,A C B]

G | Γ⇒ ∆, [Σ, A C B]
ConB

G | Γ⇒ ∆, 〈Θ〉 , 〈Θ〉
G | Γ⇒ ∆, 〈Θ〉

ConT

G | Γ⇒ ∆, [A C B]

G | Γ⇒ ∆, A 4 B
4R

G | Γ⇒ ∆, [B,Σ C C] G | Γ⇒ ∆, [Σ C A]

G | Γ, A 4 B ⇒ ∆, [Σ C C]
4L

G | Γ⇒ ∆, [Σ1,Σ2 C A] G | Γ⇒ ∆, [Σ1,Σ2 C B]

G | Γ⇒ ∆, [Σ1 C A] , [Σ2 C B]
com

G | Γ⇒ ∆ | A⇒ Σ

G | Γ⇒ ∆, [Σ C A]
jump

G | Γ⇒ ∆ | A⇒ Θ G | Γ⇒ ∆, 〈Θ, B〉
G | Γ, A 4 B ⇒ ∆, 〈Θ〉 T

G | Γ⇒ ∆, 〈⊥〉
G | Γ⇒ ∆

intrf
G | Γ⇒ ∆ | Σ⇒ Θ,Π

G | Γ⇒ ∆, 〈Θ〉 | Σ⇒ Π
jumpU

G | Γ⇒ ∆,Θ

G | Γ⇒ ∆, 〈Θ〉
jumpT

G | Γ⇒ ∆,Σ

G | Γ⇒ ∆, [Σ C A]
W
G | Γ, A⇒ ∆ G | Γ⇒ B,∆

G | Γ, A 4 B ⇒ ∆
C
G | Σ,Γ⇒ Π,∆ | Ω⇒ Θ

G | Σ⇒ Π | Ω,Γ⇒ Θ,∆
spl

G | Γ⇒ ∆ | Σ, A 4 B ⇒ Π

G | Γ, A 4 B ⇒ ∆ | Σ⇒ Π
absL

G | Γ⇒ ∆ | Σ⇒ A 4 B,Π

G | Γ⇒ A 4 B,∆ | Σ⇒ Π
absR

SHVTU = {⊥L, init,→L,→R, ICL, ICR,ConS ,ConB ,ConT }
∪ {4R,4L, com, jump,T, intrf , jumpU , jumpT }

SHVWU = SHVTU ∪ {W} SHVCU = SHVWU ∪ {C} SHVTA = SHVTU ∪ {absL, absR}
SHVWA = SHVWU ∪ {absL, absR} SHVCA = SHVCU ∪ {absL, absR, spl}

Figure 4: Non-invertible standard hypersequent calculi SHL for VTU and ex-
tensions.

Theorem 22 (Completeness) If A ∈ L then SHL ` ⇒ A.

Proof. By converting a derivation in HL into a derivation in SHL. Completeness
then follows from completeness of HL (Thm. 14). We simulate the derivations
rule by rule, i.e., we show that all rules of HL are derivable in SHL. Most
of the rules are simulated as in [9], except for the rules trfm,Tm. For Tm the
derivation is given in Fig. 5, using admissibility of internal weakening (Lem. 20).
The derivation of trfm only replaces jumpT with jumpU . �
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G | Γ, ~[C 4 D]
m

2 ⇒ ∆ | C1 ⇒

G | Γ, ~[C 4 D]
m

2 ⇒ ∆ | C1 ⇒ ⊥
IW

G | Γ⇒ ∆ | Cm ⇒ ~[D]
m−1

1

G | Γ⇒ ∆ | Cm ⇒ ~[D]
m−1

1 ,⊥
IW

G | Γ⇒ ~[D]
m

1 ,∆

G | Γ⇒ ~[D]
m

1 ,⊥,∆
IW

G | Γ⇒ ∆,
〈
~[D]

m

1 ,⊥
〉 jumpT

G | Γ, Cm 4 Dm ⇒ ∆,
〈
~[D]

m−1

1 ,⊥
〉 T

....

G | Γ, ~[C 4 D]
m

2 ⇒ ∆, 〈D1,⊥〉

G | Γ, ~[C 4 D]
m

1 ⇒ ∆, 〈⊥〉
T

G | Γ, ~[C 4 D]
m

1 ⇒ ∆
intrf

Figure 5: The derivation of Tm in SHVTU.

4.2 Invertible calculi

The invertible, or “kleened”, versions of the calculi SHL from Fig. 4 can be
found in Fig. 6, and are denoted by SHi

L. These calculi are defined by adding
to the premiss(es) of each rule the principal formula, and possibly the principal
blocks, of the rule. The contraction rules, explicit in the calculi SHL, will be
shown to be admissible in the invertible proof systems. The invertible calculi
are better suited for proof search, and are implemented in tuCLEVER. More-
over, for the logics without absoluteness it is possible to give a direct proof of
completeness, by constructing a countermodel from a failed proof search. This
proof, called semantic completeness, does not depend on the cut elimination
proof for the non-standard calculi in Sec. 3. As we will see, the theorem prover
tuCLEVER implements both the decision procedure and the countermodel con-
struction described in this section, respectively in Sec. 5.1 and in Sec. 5.2.

We start by showing equivalence of the invertible calculi with their non-
invertible versions. This follows from admissibility of the structural rules.

Lemma 23 (Admissibility of Weakening) The rules IW, EW, CW, CIW,
TW are depth-preserving admissible in SHi

L.

Proof. By induction on the depth of the derivation. We first show admissibility
of IW,EW,CW,TW as usual. For CIW, in case the last applied rule was jumpi

with the weakened formula in the active block, we first use the induction hy-
pothesis on the premiss, then depth-preserving admissibility of IW, followed by
jumpi. In case the last applied rule was 4i

L or comi, we might need to apply
the induction hypothesis twice before applying the same rule. �

We now show admissibility of contraction. The contraction rules can be
found in Figure 4, and mrg is the following rule:

G | Γ⇒ ∆ | Σ⇒ Π

G | Γ,Σ⇒ ∆,Π
mrg
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G | Γ,⊥ ⇒ ∆
⊥L G | Γ, p⇒ ∆, p

init

G | Γ, A→ B,B ⇒ ∆ G | Γ, A→ B ⇒ ∆, A

G | Γ, A→ B ⇒ ∆
→i

L

G | Γ, A⇒ ∆, A→ B,B

G | Γ⇒ ∆, A→ B
→i

R

G | Γ⇒ ∆, A 4 B, [A C B]

G | Γ⇒ ∆, A 4 B
4i

R

G | Γ⇒ ∆, [Σ C A] | A⇒ Σ

G | Γ⇒ ∆, [Σ C A]
jumpi

G | Γ, C 4 D ⇒ ∆, [D,Σ C A] G | Γ, C 4 D ⇒ ∆, [Σ C A] , [Σ C C]

G | Γ, C 4 D ⇒ ∆, [Σ C A]
4i

L

G | Γ⇒ ∆, [Σ1,Σ2 C A] , [Σ2 C B] G | Γ⇒ ∆, [Σ1 C A] , [Σ1,Σ2 C B]

G | Γ⇒ ∆, [Σ1 C A] , [Σ2 C B]
comi

G | Γ, A 4 B ⇒ ∆, 〈Θ〉 | A⇒ Θ G | Γ, A 4 B ⇒ ∆, 〈Θ, B〉
G | Γ, A 4 B ⇒ ∆, 〈Θ〉 Ti

G | Γ⇒ ∆, 〈⊥〉
G | Γ⇒ ∆

initrf
G | Γ⇒ ∆, 〈Θ〉 | Σ⇒ Θ,Π

G | Γ⇒ ∆, 〈Θ〉 | Σ⇒ Π
jumpiU

G | Γ⇒ ∆, 〈Θ〉 ,Θ
G | Γ⇒ ∆, 〈Θ〉

jumpiT

G | Γ⇒ ∆, [Σ C A] ,Σ

G | Γ⇒ ∆, [Σ C A]
Wi

G | Γ, C 4 D,C ⇒ ∆ G | Γ, C 4 D ⇒ D,∆

G | Γ, C 4 D ⇒ ∆
Ci

G | Γ, A 4 B ⇒ ∆ | Σ, A 4 B ⇒ Π

G | Γ, A 4 B ⇒ ∆ | Σ⇒ Π
absiL

G | Γ⇒ A 4 B,∆ | Σ⇒ A 4 B,Π

G | Γ⇒ A 4 B,∆ | Σ⇒ Π
absiR

SHi
VTU = {⊥L, init,→i

L,→
i
R} ∪ {4

i
R,4i

L, com
i, jumpi,Ti, initrf , jumpiU , jumpiT }

SHi
VWU = SHi

VTU ∪ {W
i} SHi

VCU = SHi
VWU ∪ {C

i} SHi
VTA = SHi

VTU ∪ {abs
i
L, abs

i
R}

SHi
VWA = SHi

VWU ∪ {abs
i
L, abs

i
R} SHi

VCA = SHi
VCU ∪ {abs

i
L, abs

i
R}

Figure 6: Invertible standard hypersequent calculi SHi
L for VTU and extensions.

Lemma 24 (Admissibility of Contraction) The rules ICL, ICR, ConB, ConS,
mrg are depth-preserving admissible in SHi

L.

Proof. Admissibility of ICL and ICR is shown by straightforward induction on
the depth of the derivation. The proofs of admissibility of ConB and ConS
are also by induction on the depth of the derivation, but also making use of
admissibility of ICL and ICR. As an example, let us consider the case of ConB
when G | Ω ⇒ Θ, [Σ, A,A C B] is obtained by an application of jumpi from
G | Ω ⇒ Θ, [Σ, A,A C B] | B ⇒ Σ, A,A. By inductive hypothesis, we have a
derivation of G | Ω⇒ Θ, [Σ, A C B] | B ⇒ Σ, A,A. Admissibility of ICR yields
G | Ω ⇒ Θ, [Σ, A C B] | B ⇒ Σ, A, to which we can apply jumpi to obtain a
derivation of G | Ω ⇒ Θ, [Σ, A C B]. The other cases are similar. The proof
of admissibility of ConS also is by induction on the depth of the derivation,
using admissibility of CIW if the last applied rule was 4i

L or comi. Finally,
admissibility of mrg is also shown by induction on the depth of the derivation,
making use of admissibility of ConB if the last applied rule was comi, and of
admissibility of IW if the last applied rule was Wi. �
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From Lemmas 20, 23 and 24 it follows that:

Proposition 25 The invertible and non-invertible calculi are equivalent.

Proof. The rules of the non-invertible calculi are admissible in the invertible
ones using admissibility of the various weakening rules (Lem. 23) to add the
missing formulae / structures in the premisses and the corresponding invert-
ible rule. Vice versa, the rules of the invertible calculi are admissible in the
non-invertible ones using the corresponding non-invertible rule followed by ap-
plications of contraction on formulae or blocks. E.g., the rule T i is simulated
in the non-invertible calculus as follows:

G | Σ, A 4 B ⇒ Π, 〈Θ〉 | A⇒ Θ

G | Σ, A 4 B ⇒ Π, 〈Θ, B〉
G | Σ, A 4 B ⇒ Π, 〈Θ〉 〈Θ, B〉 TW

G | Σ, A 4 B ⇒ Π, 〈Θ〉 , 〈Θ〉 T

G | Σ, A 4 B ⇒ Π, 〈Θ〉 , 〈Θ〉 ICL

G | Σ, A 4 B ⇒ Π, 〈Θ〉 ConT

where the application of TW is admissible using Lem. 20. �

In light of the completeness result proved for the non-invertible calculi,
the previous result immediately implies completeness of the invertible systems.
However, admissibility of the structural rules in the invertible calculi also means
that in backwards proof search we do not need to consider redundant applica-
tions of rules, i.e., applications of rules where one of the premisses is equivalent
to the conclusion modulo the structural rules. If for an extended hypersequent
every possible rule application is redundant, then intuitively every possible
rule has already been applied to it, and hence the extended hypersequent is
saturated under the rules. To make this formally precise:

Definition 26 An extended hypersequent G is VTU-saturated if it is not an
instance of ⊥L or init and it satisfies all of the following conditions:

1. (4R) if Γ⇒ ∆, A 4 B ∈ G, then [Σ, A C B] ∈ ∆ for some Σ;

2. (4L) if Γ, C 4 D ⇒ ∆, [Σ C A] ∈ G, then D ∈ Σ or [Σ C C] ∈ ∆;

3. (com) if Γ⇒ ∆, [Σ C A] , [Π C B] ∈ G, then Σ ⊆ Π or Π ⊆ Σ;

4. (jump) if Γ⇒ ∆, [Σ C A] ∈ G, then A,Θ⇒ Σ,Π ∈ G for some Θ,Π;

5. (T) if Γ, C 4 D ⇒ ∆, 〈Θ〉 ∈ G, then D ∈ Θ or C,Σ⇒ Θ,Π ∈ G for some
Σ,Π;

6. (intrf) if Γ⇒ ∆ ∈ G, then 〈Θ〉 ∈ ∆ for some Θ;

7. (jumpU , jumpT ) if Γ⇒ ∆, 〈Θ〉 ∈ G and Σ⇒ Π ∈ G, then Θ ⊆ Π;

8. (→L) if Γ, A→ B ⇒ ∆ ∈ G, then B ∈ Γ or A ∈ ∆;

9. (→R) if Γ⇒ A→ B,∆ ∈ G, then A ∈ Γ and B ∈ ∆;
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It is VWU-saturated, resp. VCU-saturated, if it also satisfies (W ), resp. (C),
below:

10. (W) if Γ⇒ ∆, [Σ C A] ∈ G, then Σ ⊆ ∆;

11. (C) if Γ, C 4 D ⇒ ∆ ∈ G, then C ∈ Γ or D ∈ ∆;

We now proceed to prove the semantic completeness of the calculi SHi
L.

We show that from a L-saturated sequent of SHi
L it is possible to define a

countermodel of it in the respective logic L.

Definition 27 Given a L-saturated hypersequent

G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

We define the worlds and the valuation of the structure MG as follows:

• W := {1, . . . , n}

• JpK := {i ≤ n : p ∈ Γi}

To define SP(i), that is, the system of sphere associated to each world, for
logic VTU we proceed as follows. For each i ≤ n, let

∆i = ∆′i, [Σ1 C A1] , . . . , [Σk C Ak]

where ∆′i does not contain any conditional blocks. ∆′i may contain a transfer
block 〈Θ〉, but this is not relevant for the definition. Define:

Blocks(∆i) = {[Σ1 C A1] , . . . , [Σk C Ak]}

Observe that due to saturation condition 3 we may assume without loss of
generality that

Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk. (3)

Moreover, by saturation condition 4 for every j ≤ k there is a component
Γmj ⇒ ∆mj ∈ G with Aj ∈ Γmj and Σj ⊆ ∆mj .

For each [Σj C Aj ] ∈ Blocks(∆i), define

sp([Σj C Aj ]) = {m ∈W | Γm ⇒ ∆m ∈W and Aj ∈ Γm and Σj ⊆ ∆m}

sp(Σj) =
⋃
{sp([Σl C Al]) | [Σl C Al] ∈ Blocks(∆i) and Σl = Σj}

Intuitively, sp(Σj) defines a single sphere in the system of sphere associated
to i. Observe that, trivially, if sp([Σl C Al]), sp([Σj C Aj ]) ∈ Blocks(∆i) and
Σl = Σj, then sp(Σl) = sp(Σj).

Finally, considering the ordering of blocks 3, define for each Γi ⇒ ∆i the
system of spheres associated to i:

SP(i) = {sp(Σk), sp(Σk) ∪ sp(Σk−1), . . . , sp(Σk) ∪ · · · ∪ sp(Σ1), W}

For VWU, the definition of SP(i) is modified as follows:

SP(i)w := {α ∪ {i} | α ∈ SP(i)}.

For VCU, we take SP(i)c = SP(i)w ∪ {i}.
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Lemma 28 For a L-saturated hypersequent G the structure MG is a L-model.

Proof. Nesting of spheres is obvious from the fact that sp(Σk) ⊆ sp(Σk) ∪
sp(Σk−1) ⊆ · · · ⊆ sp(Σk)∪ · · · ∪ sp(Σ1) ⊆W . Reflexivity and uniformity follow
from the fact that W ∈ SP(i).

The conditions of weak centering for VWU and of centering for VCU are
equally obvious. �

Lemma 29 Let G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a L-saturated hypersequent
and let MG be defined as above, for a world i associated to component Γi ⇒ ∆i.
Then:

a) given a formula A, if A ∈ Γi then MG , i 
 A

b) given a formula A, if A ∈ ∆i then MG , i 6
 A

c) given a block [Σ C C], if [Σ C C] ∈ ∆i, then MG , i 6

∨

B∈Σ(B 4 C)

d) given a formula B, if 〈Θ, B〉 ∈ ∆i for some Θ, then MG , i 6
 3B

Proof. We first consider the case of VTU. We then show how to extend the
proof to the cases of weak centering for VWU and of centering for VCU. We
prove statements a) and b) by mutual induction on the complexity of A. The
base case (atomic A) and the propositional cases are straightforward, hence
we consider A = E 4 F . Let i ∈ W be associated to Γi ⇒ ∆i with ∆i =
∆?

i , [Σ1 C D1] , . . . , [Σk C Dk] , 〈Θ〉, where ∆?
i contains no conditional block or

transfer block and Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk.

• Suppose E 4 F ∈ Γi. We have to show that for any α ∈ SP(i),

i) either for all worlds x ∈ α, x 6
 F ,

ii) or there exists a worlds y ∈ α such that y 
 E.

In case α 6= W we have α = sp(Σk) ∪ · · · ∪ sp(Σj), for j ≤ k. By
definition, [Σj C Dj ] ∈ Blocks(∆i) and, saturation condition (4L), that
is, 2 of Def. 26, either F ∈ Σj or [Σj C E] ∈ Blocks(∆i).

Suppose F ∈ Σj , and let m ∈ α. Then m ∈ sp(Σ`), for some j ≤ ` ≤ k
and, by definition, m ∈ sp([Σ` C D`]), for some formula D`. Again by
definition, there is a component Γm ⇒ ∆m ∈ G, with D` ∈ Γm and
Σ` ⊆ ∆m. Since Σj ⊆ Σ` and F ∈ Σj , then F ∈ Σ`. Moreover, by
inductive hypothesis we have that m 6
 F and, since this reasoning holds
for an arbitrary element, we conclude that case i) holds.

Now suppose [Σj C E] ∈ Blocks(∆i), and take m ∈ sp([Σj C E]) ⊆
sp(Σj) ⊆ α. Then there is a component Γm ⇒ ∆m ∈ G such that E ∈ Γm

(and Σj ⊆ ∆m). By inductive hypothesis, m 
 E, and we conclude that
ii) holds.

In case α = W , by saturation condition (T) either F ∈ 〈Θ〉, or E,Λ ⇒
Π,Θ ∈ G for some Λ,Π. In the latter case for the world j associated
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to the component E,Λ ⇒ Π,Θ by induction hypothesis on E we get
MG , j 
 E, whence ii) holds. In the former case we have F ∈ 〈Θ〉. Any
k ∈ W (including k = i) is associated to a component Γk ⇒ ∆k, but by
saturation condition (jumpT ,jumpU ) we have Θ ⊆ ∆k, whence F ∈ ∆k;
by induction hypothesis on F we have MG , k 6
 F , showing that i) holds.

• Suppose E 4 F ∈ ∆i. We have to show that there exists an α ∈ SP(i)
such that

iii) there exist a world x ∈ α such that x 
 F , and

iv) for all worlds y ∈ α, y 6
 E.

By the saturation condition 1 (4R), there is [Σj C F ] ∈ Blocks(∆i) with
E ∈ Σj . Let m ∈ sp([Σj C F ]) ⊆ sp(Σj). By definition, there is some
component Γm ⇒ ∆m ∈ G such that F ∈ Γm and Σj ⊆ ∆m. Let us
consider the sphere α = sp(Σk) ∪ · · · ∪ sp(Σj) ∈ SP(i). By inductive
hypothesis we have that m 
 F and, since m ∈ α, condition iii) holds.
For any ` such that j ≤ ` ≤ k, let any h ∈ sp(Σ`). By definition, to
h is associated a component Γh ⇒ ∆h ∈ G, such that Σl ⊆ ∆h. Since
E ∈ Σj , and Σj ⊆ Σl, we have that E ∈ ∆h, whence by inductive
hypothesis, h 6
 E. Therefore, condition iv) is satisfied.

The proof of c) uses b), recalling that a block is a disjunction of 4-formulas.
The proof of d) uses b) with an argument similar to the one in the proof of a)
for the case of α = W , with B ∈ 〈Θ〉.

We consider now the case of VWU. According to Def. 29, the system of
sphere is defined as:

SP(i)w := {α ∪ {i} | α ∈ SP(i)}.

It suffices to show that the proof of a) and b) still work in this case. As before
have to show that for any α ∈ SP(i),

i) either for all worlds x ∈ α, x 6
 F ,

ii) or there exists a worlds y ∈ α such that y 
 E.

We only have to check the case α 6= W , with α = sp(Σk)∪· · ·∪ sp(Σj)∪{i}, for
j ≤ k. As before, [Σj C Dj ] ∈ Blocks(∆i) and, by saturation condition (4L),
either F ∈ Σj or [Σj C E] ∈ Blocks(∆i). We only have to worry about the
case F ∈ Σj , as the case [Σj C E] ∈ Blocks(∆i) is exactly the same as before.
Let F ∈ Σj , we want to show as in the previous proof that i) holds, that is:
for all x ∈ α, x 6
 F . We only have to check the claim in the additional case
i ∈ α. To this purpose by the saturation condition (W) we have that Σj ⊆ ∆i,
whence F ∈ ∆i. Thus by induction hypothesis we obtain that MG , i 6
 F and
we are done.

We now prove b), that is, E 4 F ∈ ∆i. By saturation, there is [Σj C F ] ∈
Blocks(∆i) with E ∈ Σj . But also by the saturation condition (W), we have
that Σj ⊆ ∆i, whence E ∈ ∆i. By the induction hypothesis, we get that
MG , i 6
 E. Thus by taking α = sp(Σk) ∪ · · · ∪ sp(Σj) ∪ {i} ∈ SP(i), and by
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reasoning as before, we obtain that for all y ∈ α, y 6
 E (claim iv)) and that
there is x ∈ α such that x 
 F (claim iii)).

In the case of VCU the countermodel is defined as follows:

SP(i)c = SP(i)w ∪ {i}.

We only have to check the additional case of a) whenever α = {i} ∈ SP(i)c. If
E 4 F ∈ Γi, then by the saturation condition (C) either E ∈ Γi or F ∈ ∆i. By
induction hypothesis we obtain that either MG , i 
 E, or MG , i 6
 F , whence
we trivially get that either claim ii) or claim i) hold for α = {i}. �

From Lemma 29 we obtain:

Lemma 30 For L ∈ {VTU,VWU,VCU} let G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be
a L-saturated hypersequent and let MG be defined as above, then

• for any i ∈ W associated to sequent Γi ⇒ ∆i we have MG , i 6
 ιe(Γi ⇒
∆i)

• for any i ∈W we have MG , i 6
 ιe(G)

To use these results in a decision procedure, we consider a strategy of local
loop checking : rules are not applied if there is a premiss from which the con-
clusion is derivable using structural rules, that is, a rule is not applied to an
hypersequent if the saturation condition for that rule is satisfied by the hyper-
sequent. Since all the structural rules are admissible in SHi

L, application of the
loop check does not jeopardise completeness.

Proposition 31 Backwards proof search with local loop checking terminates
and every leaf of the resulting derivation is an axiom or a saturated hyperse-
quent.

Proof. By Lemmas 23 and 24, the structural rules are depth-preserving admis-
sible. Hence the local loop checking condition does not influence completeness.
Termination is seen by checking that every rule satisfies the subformula prop-
erty, and hence every rule application which satisfies the local loop checking
condition adds a new formula, block or component to the hypersequent. Since
the number of such new formulae, blocks and components is bounded in the
number of subformulae of the input hypersequent, proof search with local loop
checking terminates. Furthermore, every leaf is either an axiom or a saturated
sequent, since otherwise another rule could be applied. �

Theorem 32 (Completeness) For L ∈ {VTU,VWU,VCU}, it holds that if
ιe(G) ∈ L, then SHL ` G .

Proof. By Prop. 31 backwards proof search with root G terminates and every
leaf of it is an axiom or a saturated sequent. By invertibility of the rules each
sequent G′ occurring as a leaf is valid. But then G′ must an axiom, since
otherwise, by Lem. 30 we can bulid a countermodel MG′ falsifying ιe(G′) and
hence by monotonicity also ιe(G). �
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⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥ |
a→ ¬b⇒ a, b, b, 〈⊥〉,⊥ | ¬a→ b,a⇒ b, 〈⊥〉,⊥

fail

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥ |
a→ ¬b⇒ a, b, b, 〈⊥〉,⊥ | ¬a→ b,a⇒ b

(∗)

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥ |
a→ ¬b⇒ a, b, b | ¬a→ b,a⇒ b

(∗)

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b, ] [b C ¬a→ b] , 〈⊥〉 ,⊥
| a→ ¬b⇒ a, b, b | ¬a→ b⇒ b,¬a

¬iR

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b, ] [b C ¬a→ b] , 〈⊥〉 ,⊥
| a→ ¬b⇒ a, b, b | ¬a→ b⇒ b

→i
L

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥ |
a→ ¬b,¬b⇒ a, b | ¬a→ b⇒ b

¬iL

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥ |
a→ ¬b⇒ a, b | ¬a→ b⇒ b

→i
L

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉,⊥ | a→ ¬b⇒ a, b
jumpi

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉,⊥ jumpi

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b]
(∗)

⇒ a 4 (a→ ¬b), b 4 (¬a→ b), [a C a→ ¬b] , [b C ¬a→ b] ,
comi

⇒ a 4 (a→ ¬b),b 4 (¬a→ b), [a C a→ ¬b]
4i

R

⇒ a 4 (a→ ¬b), b 4 (¬a→ b)
4i

R

¬(a 4 (a→ ¬b))⇒ (b 4 (¬a→ b))
¬iL

⇒ ¬(a 4 (a→ ¬b))→ (b 4 (¬a→ b))
→i

R

∼ ? ∼

1 : a 4 (a→ ¬b), b 4 (¬a→ b), [a, b C a→ ¬b] , [b C ¬a→ b] , 〈⊥〉 ,⊥
2 : a→ ¬b⇒ a, b, b, 〈⊥〉 ,⊥
3 : ¬a→ b, a⇒ b, 〈⊥〉 ,⊥

WH = {1, 2, 3}

SPH(1) = {{2}, {2, 3},W} SPH(2) = SPH(3) = W

JaKH = {3} JbKH = ∅

Figure 7: Above: The derivation branch used to construct a countermodel
for the formula ¬(a 4 (a → ¬b)) → (b 4 (¬a → b)). The grey formulas are
those added to achieve invertibility, and are in grey only to increase readability.
For reasons of space, some propositional formula are not repeated upwards in
the branch. (∗) stands for an application of intrf followed by jumpiT . Below :
The countermodel for the formula extracted from the upper sequent of the
derivation branch.

Example 33 We show how to construct a countermodel for the formula ¬(a 4
(a → ¬b)) → (b 4 (¬a → b)) from a branch of a failed SHVTU proof search.
The failed derivation branch is shown in Fig. 4.2. The Figure only shows one
branch, and thus one premiss of the two-premisses rules comi, →i

L applied in
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the derivation10.
Let us call H the upper hypersequent of the derivation branch. A counter-

model MH = 〈WH,SPH, J·KH〉 for the formula is built from H according to the
strategy described in Def. 27. First observe that H is saturated: it is not an
instance of the initial rules, and no other rule of SHVTU can be applied to it
without breaking one of the saturation conditions listed in Def. 26. The compo-
nents of the model are described in the lower part of the Figure. The worlds of
MH are taken to be the three components of H. The systems of spheres associ-
ated to each world are defined through the blocks occurring in the corresponding
hypersequent component, and the valuation is defined by looking at the atomic
formulas in the antecedent of the component. It is immediate to verify that
1 6|= a 4 (a→ ¬b) and that 1 6|= b 4 (¬a→ b); thus, MH is a countermodel for
the considered formula.

We now analyse the complexity of backwards proof search with a local
loop checking. Prop. 31 ensures termination of proof search which, at a first
glance, could be thought as providing a 2-EXPTIME decision procedure: each
hypersequent might contain an exponential number of components, and each
component might have an exponential size. However, a more accurate termi-
nation argument shows that a lower co-NEXPTIME complexity bound for
the decision procedure can be obtained. This bound is yet not optimal, as
it is known that the logics of this section are EXPTIME-complete [6]. The
remaining of this Section exposes the refined termination argument.

If for a given input sequent ⇒ G there is no L-saturated extended hyperse-
quent containing only subformulae of G and containing a component Γ⇒ ∆, G,
then every leaf encountered in backwards proof search for ⇒ G must be an
axiom, and hence backwards proof search produces a derivation of ⇒ G. But
if there is such a saturated extended hypersequent, then by Lem. 30 it gives
rise to a countermodel for G. Thus to check validity of ⇒ G, it is enough
to verify that there is no such saturated extended hypersequent. We can do
this by nondeterministically choosing a possible candidate for such an extended
hypersequent and then verifying that it is saturated. In order to bound the
size of the candidate hypersequent we make use of the following facts:

1. The conditional blocks occurring in a single component of the saturated
hypersequent are linearly ordered by set inclusion, i.e., If the component
contains the conditional blocks [Σ1 C A1] , . . . , [Σn C An], then w.l.o.g.
we have Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σn (see also Def. 27).

2. W.l.o.g. every component of the saturated hypersequent contains only a
single transfer block.

The first fact follows essentially immediately from the saturation condition
(com). The second fact follows from the following lemmas.

Lemma 34 If G | Γ ⇒ ∆, 〈Θ1〉 , 〈Θ2〉 is L-saturated, then so is G | Γ ⇒
∆, 〈Θ1,Θ2〉.

10The invertible rules for negation applied in the derivation can be immediately defined
from the rules in Fig. 6 and ¬A ≡ A→ ⊥. The rules can be found in Fig. 5.1.
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Proof. Since the only difference between the two hypersequents is in the transfer
blocks, all saturation conditions except for (T), (intrf), (jumpU , jumpT ) carry
over immediately to G | Γ ⇒ ∆, 〈Θ1,Θ2〉. Of these, (intrf) is trivial. For
(jumpU , jumpT ), if Σ ⇒ Π ∈ G | Γ ⇒ ∆, 〈Θ1,Θ2〉, then by saturation of
G | Γ ⇒ ∆, 〈Θ1〉 , 〈Θ2〉 we have Θ1 ⊆ Π and Θ2 ⊂ Π and hence Θ1,Θ2 ⊂ Π.
For (T), if C 4 D ∈ Γ, then by saturation of G | Γ ⇒ ∆, 〈Θ1〉 , 〈Θ2〉 we
have D ∈ Θ1 ⊂ Θ1,Θ2 or there are Σ,Π with C,Σ ⇒ Θ1,Π occurring in
the hypersequent. But by the saturation condition (jumpU , jumpT ) for this
component we then have Θ2 ⊂ Θ1,Π, and hence there is a component C,Σ⇒
Θ1,Θ2,Π (possibly modulo contractions). �

Lemma 35 If G | Γ⇒ ∆, 〈Θ1〉 , 〈Θ2〉 is derivable, then so is G | Γ⇒ ∆, 〈Θ1,Θ2〉.

Proof. By induction on the depth of the derivation, using admissibility of
weakening for the rules jumpiT and jumpiU . �

Thus if n is the number of subformulae of the input ⇒ G, the size of a single
component in such a duplication-free and size-bound saturated hypersequent
is bounded by the following: Each side of the component contains at most n
many formulae; the number of blocks [Σ C A] is bounded by n (the number
of possible Σ) times n (the number of possible A), each block with size at
most n+ 1; the single transfer block contains at most n many formulae. Thus
the size of a component is polynomial in n. Since the number of conditional
blocks is bounded by n2 and there is only one transfer block, there are only
exponentially many possible components. Thus we can non-deterministically
choose such a hypersequent and check that it is saturated in exponential time,
resulting in a co-NEXPTIME complexity bound.

Of course this bound is not optimal, as it is known that the logics of this
section are EXPTIME-complete [6].

5 The Theorem Prover tuCLEVER

In this section we present a Prolog implementation of the invertible standard
hypersequent calculi presented in Sec. 4.2. The program, called tuCLEVER for
Total reflexivity and Uniformity Conditional LEwis logics theorem proVER, is

inspired by the “lean” methodology of leanTAP, and contributes to the recent
literature of theorem proving for conditional logics [24, 23, 25, 26, 11].

We first describe the prover and the proof search procedure it implements
(Sec. 5.1), then we show how tuCLEVER computes a countermodel from failed
proof search (Sec. 5.2). We discuss the performances of the prover in Sec. 5.3.
The system tuCLEVER has also a graphical user interface implemented in the
form of a responsive Web Application. Some pictures of tuCLEVER are shown
in the Appendix. The prover tuCLEVER, as well as all the Prolog source
files, can be downloaded for free or used in a web interface, both available
at http://193.51.60.97:8000/tuclever/.
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5.1 The proof search procedure

The prover is composed of a set of Prolog clauses, each implementing a sequent
rule or an initial rule of the calculi presented in Fig. 6. Moreover, tuCLEVER
contains a clause for > and a clause for each left and right rule for the propo-
sitional connectives defined in our language, i.e., ¬, ∧ and ∨, along with a left
and right rule for the conditional operator, >. These sequent rules are reported
in Fig. 5.1. The proof search is provided for free by the mere depth-first search
mechanism of Prolog, without the need to add ad hoc strategies. Termination
of the proof search procedure is ensured by the fact that tuCLEVER implements
the local loop check strategy described in Proposition 31.

G | Γ⇒ ∆,>
>R

G | Γ,¬A⇒ ∆, A

G | Γ,¬A⇒ ∆
¬iL

G | Γ, A⇒ ∆,¬A
G | Γ⇒ ∆,¬A

¬iR

G | Γ, A ∧B,A,B ⇒ ∆, A

G | Γ, A ∧B ⇒ ∆
∧iL

G | Γ⇒ ∆, A ∧B,A G | Γ⇒ ∆, A ∧B,B

G | Γ⇒ ∆, A ∧B
∧iR

G | Γ, A ∨B,A⇒ ∆ G | Γ, A ∨B,B ⇒ ∆

G | Γ, A ∨B ⇒ ∆
∨iL

G | Γ⇒ ∆, A ∨B,A,B

G | Γ⇒ ∆, A ∨B
∨iR

G | ⊥ 4 A,A > B,Γ⇒ ∆ G | A > B,Γ⇒ ∆, [A ∧ ¬B C A]

G | A > B,Γ⇒ ∆
>i

L

G | (A ∧ ¬B) 4 A,Γ⇒ ∆, A > B, [⊥ C A]

G | Γ⇒ ∆, A > B
>i

R

Figure 8: Additional invertible rules implemented by tuCLEVER.

An extended hypersequent is represented in tuCLEVER as a Prolog list of
extended sequents. In turn, an extended sequent is represented by means of a
pair (that is, a Prolog list with two elements) of Prolog lists:

[Gamma,Delta]

where Gamma and Delta represent the left-hand and the right-hand side of the
extended sequent, respectively. An extended sequent might contain conditional
blocks and transfer blocks. A conditional block [Σ C C] is encoded by a pair
[Sigma,C], where Sigma is a list of formulas. A transfer block 〈Θ〉 is imple-
mented by a term transfer Theta, where Theta is a Prolog list. Symbols
> and ⊥ are represented by constants true and false, respectively, whereas
connectives ¬, ∧, ∨, →, 4, and > are represented by -, and, or, ->, <, and
=>. Propositional variables are represented by Prolog atoms. For example, the
sequent

A,¬B ∨ C ⇒ A ∧ C,D,A→ B, 〈⊥〉, [A 4 C,B C A ∨ C]

is represented by the list:

[[a,−b or c], [a and c, d, a − > b, transfer[false], [[a < c, b], a or c]]].
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The hypersequent calculi are implemented for each logic by the predicate

prove(Hypersequent,ProofTree).

This predicate succeeds if and only if the extended hypersequent represented
by the Prolog list Hypersequent is derivable. When it succeeds, the output
term ProofTree matches with a representation of the derivation found by the
prover. For instance, in order to prove the formula (A 4 A∨B)∨ (B 4 A∨B)
in VTU, one queries tuCLEVER with the goal:

prove([[],[(a < a or b) or (b < a or b)]],ProofTree).

To construct a proof search tree for an extended hypersequent, tuCLEVER
proceeds as follows. If the hypersequent is an instance of either ⊥L or >R or
init, the goal will succeed immediately by using one of the following clauses for
the axioms:

1 prove(Hypersequent,tree(...)) :-

2 member([Gamma,Delta],Hypersequent),member(false,Gamma),!.

3 prove(Hypersequent,tree(...)) :-

4 member([Gamma,Delta],Hypersequent),member(true,Delta),!.

5 prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),

6 member(X,Gamma),member(X,Delta),atom(X),!.

1 prove(Hypersequent,tree(condR,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B, Delta),

4 \+findBlock(Delta,[[A],B]),!,

5 prove([[Gamma,[[[A],B]|Delta]]|Remainder],SubTree1).

1 prove(Hypersequent,tree(jumpU,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(transfer Theta, Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+subset(Theta,Delta2),

7 append(Delta2,Theta,NewDelta2),

8 !,

9 prove([[Gamma,Delta],[Gamma2,NewDelta2]|Remainder2],SubTree1).

1

If the hypersequent is not an instance of the initial rules, then the first applica-
ble rule will be chosen. For instance, if a component Γ⇒ ∆ of the hypersequent
has a formula A 4 B occurring in the ∆, then the clause implementing the 4i

R

rule will be chosen, and tuCLEVER will be recursively invoked on the unique
premise of the rule, which introduces a conditional block [A C B]. tuCLEVER
proceeds in a similar way for the other rules. The ordering of the clauses is such
that the application of the branching rules is postponed as much as possible.

By means of example, we show the clauses implementing the rules 4i
R,

jumpiU and Ti, which are used in the calculus for VTU as well as in all the
calculi for the extensions of the logic.

The clause implementing 4i
R is the following:

1 prove(Hypersequent,tree(...)) :-

2 member([Gamma,Delta],Hypersequent),member(false,Gamma),!.

3 prove(Hypersequent,tree(...)) :-

4 member([Gamma,Delta],Hypersequent),member(true,Delta),!.

5 prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),

6 member(X,Gamma),member(X,Delta),atom(X),!.

1 prove(Hypersequent,tree(condR,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B, Delta),

4 \+findBlock(Delta,[[A],B]),!,

5 prove([[Gamma,[[[A],B]|Delta]]|Remainder],SubTree1).

1 prove(Hypersequent,tree(jumpU,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(transfer Theta, Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+subset(Theta,Delta2),

7 append(Delta2,Theta,NewDelta2),

8 !,

9 prove([[Gamma,Delta],[Gamma2,NewDelta2]|Remainder2],SubTree1).

1

In line 4, the auxiliary predicate findBlock is invoked in order to implement
the local loop checking of Proposition 31. For a conditional formula A 4 B,
the predicate checks whether the block [A C B], represented by the Prolog pair
[[A],B], already occurs in ∆. If this is the case, the predicate is evaluated as
false due to the the negation as failure \+, and application of the rule to the

32



conditional formula A 4 B is blocked. Since the rule is invertible, Prolog cut
! is used in line 4 to block possible backtracking.

The following clause implements the rule jumpiU :

1 prove(Hypersequent,tree(...)) :-

2 member([Gamma,Delta],Hypersequent),member(false,Gamma),!.

3 prove(Hypersequent,tree(...)) :-

4 member([Gamma,Delta],Hypersequent),member(true,Delta),!.

5 prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),

6 member(X,Gamma),member(X,Delta),atom(X),!.

1 prove(Hypersequent,tree(condR,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B, Delta),

4 \+findBlock(Delta,[[A],B]),!,

5 prove([[Gamma,[[[A],B]|Delta]]|Remainder],SubTree1).

1 prove(Hypersequent,tree(jumpU,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(transfer Theta, Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+subset(Theta,Delta2),

7 append(Delta2,Theta,NewDelta2),

8 !,

9 prove([[Gamma,Delta],[Gamma2,NewDelta2]|Remainder2],SubTree1).

1

In line 4, the predicate member checks whether a conditional block 〈Θ〉, repre-

sented by the Prolog term transfer Theta, occurs in the list Delta represent-
ing the consequent of a component [Gamma,Delta]. If this is the case, and if
the formulas in transfer Theta do not already occur in the consequent side
Delta2 of a second component [Gamma2,Delta2] (line 6), then the predicate
prove is recursively invoked on the only premise of the rule (line 9), where the
premiss of the rule is constructed by adding the formulas in Θ to the consequent
Delta2 of the second component (line 7).

The Prolog clause implementing the rule Ti is as follows:

1 prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member([Sigma,_],Delta),

4 \+subset(Sigma,Delta),

5 append(Delta,Sigma,NewDelta),!,

6 prove([[Gamma,NewDelta]|Remainder],SubTree1).

1 prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,SubTree1,SubTree2)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B,Gamma),

4 select(transfer Theta,Delta,Delta2),

5 \+member(B,Theta),

6 \+findSequent(Hypersequent,[[A],Theta]),

7 !,

8 prove([[Gamma,Delta],[[A],Theta]|Remainder],SubTree1),

9 prove([[Gamma,[transfer [B|Theta]|Delta2]]|Remainder],SubTree2).

1 prove(Hypersequent,tree(absL,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Gamma),

5 select([Gamma2,Delta2],Remanider,Remainder2),

6 \+member(A < B,Gamma2),

7 !,

8 prove([[Gamma,Delta],[[A < B|Gamma2],Delta2]!Remainder2],SubTree1).

1 prove(Hypersequent,tree(absR,Hypersequent,[Gamma,Delta],[Gamma,Delta],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+member(A < B,Delta2),

7 !,

8 prove([[Gamma,Delta],[Gamma2,[A < B|Delta2]]|Remainder2],SubTree1).

2

The rule has two premisses, which are implemented by invoking prove twice,
on two different hypersequents representing the premisses of the rule (line 8 and
9). In line 8, an extended sequent A⇒ Θ is added as a new component to the
extended hypersequent, which thus represents the left-hand side premiss of Ti.
In line 9, the formula B is added to the conditional block 〈Θ〉, represented by
transfer Theta, occurring in the consequent of the sequent [Gamma,Delta]

under consideration. The hypersequent in the argument of prove at line 9
represents the right-hand side premiss of Ti. Lines 5 and 6 implement the local
loop checking strategy, by avoiding redundant applications of the rule in case
either B already belongs to Θ or an extended sequent A ⇒ Θ already occurs
in the extended hypersequent.

Implementations of the calculi for extensions of VTU are built on the im-
plementation of VTU, by adding clauses for the rules for the extensions. By
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means of example, we show the clauses implementing the rule Wi, belonging
to the implementations of the systems involving axiom (W), characterising the
logics with the condition of weak centering, and rules absiL and absiR, which
characterize systems with absoluteness.

1 prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member([Sigma,_],Delta),

4 \+subset(Sigma,Delta),

5 append(Delta,Sigma,NewDelta),!,

6 prove([[Gamma,NewDelta]|Remainder],SubTree1).

1 prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,SubTree1,SubTree2)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B,Gamma),

4 select(transfer Theta,Delta,Delta2),

5 \+member(B,Theta),

6 \+findSequent(Hypersequent,[[A],Theta]),

7 !,

8 prove([[Gamma,Delta],[[A],Theta]|Remainder],SubTree1),

9 prove([[Gamma,[transfer [B|Theta]|Delta2]]|Remainder],SubTree2).

1 prove(Hypersequent,tree(absL,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Gamma),

5 select([Gamma2,Delta2],Remanider,Remainder2),

6 \+member(A < B,Gamma2),

7 !,

8 prove([[Gamma,Delta],[[A < B|Gamma2],Delta2]!Remainder2],SubTree1).

1 prove(Hypersequent,tree(absR,Hypersequent,[Gamma,Delta],[Gamma,Delta],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+member(A < B,Delta2),

7 !,

8 prove([[Gamma,Delta],[Gamma2,[A < B|Delta2]]|Remainder2],SubTree1).

2

In line 4 the predicate \+subset(Sigma,Delta) succeeds only if the Prolog list

Sigma is not contained in the list Delta, in order to avoid multiple applications
of the rule to the same Sigma, thus implementing the local loop checking of
Proposition 31.

1 prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member([Sigma,_],Delta),

4 \+subset(Sigma,Delta),

5 append(Delta,Sigma,NewDelta),!,

6 prove([[Gamma,NewDelta]|Remainder],SubTree1).

1 prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,SubTree1,SubTree2)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B,Gamma),

4 select(transfer Theta,Delta,Delta2),

5 \+member(B,Theta),

6 \+findSequent(Hypersequent,[[A],Theta]),

7 !,

8 prove([[Gamma,Delta],[[A],Theta]|Remainder],SubTree1),

9 prove([[Gamma,[transfer [B|Theta]|Delta2]]|Remainder],SubTree2).

1 prove(Hypersequent,tree(absL,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Gamma),

5 select([Gamma2,Delta2],Remanider,Remainder2),

6 \+member(A < B,Gamma2),

7 !,

8 prove([[Gamma,Delta],[[A < B|Gamma2],Delta2]!Remainder2],SubTree1).

1 prove(Hypersequent,tree(absR,Hypersequent,[Gamma,Delta],[Gamma,Delta],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+member(A < B,Delta2),

7 !,

8 prove([[Gamma,Delta],[Gamma2,[A < B|Delta2]]|Remainder2],SubTree1).

2

1 prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member([Sigma,_],Delta),

4 \+subset(Sigma,Delta),

5 append(Delta,Sigma,NewDelta),!,

6 prove([[Gamma,NewDelta]|Remainder],SubTree1).

1 prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,SubTree1,SubTree2)) :-

2 select([Gamma,Delta],Hypersequent,Remainder),

3 member(A < B,Gamma),

4 select(transfer Theta,Delta,Delta2),

5 \+member(B,Theta),

6 \+findSequent(Hypersequent,[[A],Theta]),

7 !,

8 prove([[Gamma,Delta],[[A],Theta]|Remainder],SubTree1),

9 prove([[Gamma,[transfer [B|Theta]|Delta2]]|Remainder],SubTree2).

1 prove(Hypersequent,tree(absL,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Gamma),

5 select([Gamma2,Delta2],Remanider,Remainder2),

6 \+member(A < B,Gamma2),

7 !,

8 prove([[Gamma,Delta],[[A < B|Gamma2],Delta2]!Remainder2],SubTree1).

1 prove(Hypersequent,tree(absR,Hypersequent,[Gamma,Delta],[Gamma,Delta],

2 SubTree1,no)) :-

3 select([Gamma,Delta],Hypersequent,Remainder),

4 member(A < B,Delta),

5 select([Gamma2,Delta2],Remainder,Remainder2),

6 \+member(A < B,Delta2),

7 !,

8 prove([[Gamma,Delta],[Gamma2,[A < B|Delta2]]|Remainder2],SubTree1).

2

These rules are applied to a sequent Γ⇒ ∆ with a formula A 4 B belonging
(member predicate in lines 4) to either Γ (absiL) or ∆ (absiR), by selecting another
sequent Γ2 ⇒ ∆2 in the hypersequent under consideration (line 5 of both
clauses). Again, line 6 of both clauses implements the local loop checking: the
rules can be applied only if A 4 B does not already belong to Γ2 for absiL and
to ∆2 for absiR. In lines 8 the prove predicate is recursively invoked on the
unique premise of the rules, by adding A 4 B to Γ2 in absiL and to ∆2 in absiR.

As already mentioned, the code of tuCLEVER is simple and compact: the
implementation of the basic system VTU consists of only 3 predicates, 21
clauses and 118 lines of code11.

11The countermodel construction for systems VTU, VWU, and VCU described in the next
section requires only further 79 lines of code.
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5.2 Countermodel generation

For the systems VTU, VWU, and VCU, in case the construction of the proof
search described in the previous section fails, the program tuCLEVER builds a
countermodel for the extended hypersequent (and thus: for the formula) oc-
curring at the root of the proof search tree. The countermodel is constructed
from a saturated hypersequent computed by the proof search procedure, im-
plementing the construction of Lemmas 28 and 29.

The very last clause of the prove predicate, which is invoked when all the
other clauses implementing the rules of the invertible calculi are no longer ap-
plicable, makes use of the non standard predicate assert in order to explicitly
add to the Prolog working memory the current hypersequent:

1 prove(Hypersequent,_) :-

2 assert(satHyper(Hypersequent)),

3 fail.

1 prove_wrapper(Formula,...) :-

2 writeln("Not valid. Generating counter-model ... "),

3 retract(satHyper(SaturatedHypersequent)),

4 buildCounterModel(Formula,SaturatedHypersequent,

5 Worlds,SpheresSystems,Valutations),

6 write("Saturated Hypersequent => "),

7 writeln(SaturatedHypersequent),

8 write("W => "),

9 writeln(Worlds),

10 write("SP => "),

11 writeln(SpheresSystems),

12 write("V => "),

13 writeln(Valutations).

3

This predicate adds the extended hypersequent satHyper(Hypersequent) to

the set of tuCLEVER’s clauses, in order to save it across the backtracking mech-
anism before forcing the backtracking itself in line 3 by means of fail: this
is needed in order to allow tuCLEVER to restart the computation with the
construction of the countermodel. The extended hypersequent represented by
satHyper(Hypersequent) is saturated : since it is stored with the very last
clause of the prove predicate, it holds that it is not an instance of the initial
rules and that there are no other rules applicable to it.

A top level predicate, devoted to wrap the whole countermodel construction
procedure and interact with the graphical interface, will then invoke a predi-
cate buildCounterModel, whose aim is to extract a model falsifying the initial
formula from the saturated extended hypersequent satHyper(Hypersequent).

1 prove(Hypersequent,_) :-

2 assert(satHyper(Hypersequent)),

3 fail.

1 prove_wrapper(Formula,...) :-

2 writeln("Not valid. Generating counter-model ... "),

3 retract(satHyper(SaturatedHypersequent)),

4 buildCounterModel(Formula,SaturatedHypersequent,

5 Worlds,SpheresSystems,Valutations),

6 write("Saturated Hypersequent => "),

7 writeln(SaturatedHypersequent),

8 write("W => "),

9 writeln(Worlds),

10 write("SP => "),

11 writeln(SpheresSystems),

12 write("V => "),

13 writeln(Valutations).

3

The predicate buildCounterModel has three output parameters, namely
Worlds, SpheresSystems, and Valutations. They match Prolog representa-
tions of the components of the model after the execution of suitable auxiliary
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predicates extracting such components from satHyper(Hypersequent).

1 prove(Hypersequent,_) :-

2 assert(satHyper(Hypersequent)),

3 fail.

1 prove_wrapper(Formula,...) :-

2 writeln("Not valid. Generating counter-model ... "),

3 retract(satHyper(SaturatedHypersequent)),

4 buildCounterModel(Formula,SaturatedHypersequent,

5 Worlds,SpheresSystems,Valutations),

6 write("Saturated Hypersequent => "),

7 writeln(SaturatedHypersequent),

8 write("W => "),

9 writeln(Worlds),

10 write("SP => "),

11 writeln(SpheresSystems),

12 write("V => "),

13 writeln(Valutations).

1 buildCounterModel(Formula,SaturatedHypersequent,

2 Worlds,SpheresSystems,Valutations) :-

3 length(SaturatedHypersequent,N),

4 generateWorlds(1,N,Worlds),

5 generateSpheresSystems(1,N,SaturatedHypersequent,Worlds,SpheresSystems),

6 getPropVars(Formula,Vars),

7 generateValutations(N,Vars,SaturatedHypersequent,Valutations).

3

More in detail, given a saturated extended hypersequent Γ1 ⇒ ∆1 | . . . |
Γn ⇒ ∆n, the countermodel is computed as follows::

a) the predicate generateWorlds computes the set of worlds of the model
as a Prolog list W = [ 1, 2, ..., n ];

b) the predicate generateSpheresSystems builds the set of spheres by means
of the following Prolog predicate, recursively invoked for each world:

1 generateSphereForAWorld(W,SaturatedHypersequent,

2 [Gamma,Delta],LastSphere,[NewSphere|T]) :-

3 select([Sigma,A],Delta,Remainder),

4 \+checkForInclusiveBlock(Remainder,Sigma),

5 findall(B,member([Sigma,B],Remainder),ListAllBs),

6 generateSphereForABlock(SaturatedHypersequent,Sigma,

7 LastSphere,[A|ListAllBs],Temp),

8 generateCommonSphereForCousinsBlocks(Temp,NewSphere),

9 generateSphereForAWorld(W,SaturatedHypersequent,

10 [Gamma,Remainder],NewSphere,T).

1 generateSphereForABlock(_,_,_,[],[]):-!.

2 generateSphereForABlock(SaturatedHypersequent,Sigma,LastSphere,

3 [A|ListAllBs],[SphereA|OtherBlocks]) :-

4 nth1(Index,SaturatedHypersequent,[Gamma2,Delta2]),

5 member(A,Gamma2),

6 subset(Sigma,Delta2),

7 !,

8 append(LastSphere,[Index],SphereA),

9 generateSphereForABlock(SaturatedHypersequent,Sigma,LastSphere,

10 ListAllBs,OtherBlocks).

5

For a component Γ⇒ ∆ in the saturated hypersequent and a conditional
block [Σ C A] belonging to ∆, tuCLEVER implements the construction
described in Definition 27 in the lines 4–8. The auxiliary predicates
generateSphereForABlock and generateCommonSphereForCousinsBlocks

build a sphere for [Σ C A] by also checking the presence of other condi-
tional blocks of the form [Σ C B] by means of the Prolog bult-in predicate
findall. The returned sphere corresponds to the list of spheres built for
each conditional block by means of the following predicate:
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1 generateSphereForAWorld(W,SaturatedHypersequent,

2 [Gamma,Delta],LastSphere,[NewSphere|T]) :-

3 select([Sigma,A],Delta,Remainder),

4 \+checkForInclusiveBlock(Remainder,Sigma),

5 findall(B,member([Sigma,B],Remainder),ListAllBs),

6 generateSphereForABlock(SaturatedHypersequent,Sigma,

7 LastSphere,[A|ListAllBs],Temp),

8 generateCommonSphereForCousinsBlocks(Temp,NewSphere),

9 generateSphereForAWorld(W,SaturatedHypersequent,

10 [Gamma,Remainder],NewSphere,T).

1 generateSphereForABlock(_,_,_,[],[]):-!.

2 generateSphereForABlock(SaturatedHypersequent,Sigma,LastSphere,

3 [A|ListAllBs],[SphereA|OtherBlocks]) :-

4 nth1(Index,SaturatedHypersequent,[Gamma2,Delta2]),

5 member(A,Gamma2),

6 subset(Sigma,Delta2),

7 !,

8 append(LastSphere,[Index],SphereA),

9 generateSphereForABlock(SaturatedHypersequent,Sigma,LastSphere,

10 ListAllBs,OtherBlocks).

5

where, for a block [Σ C A], the predicate looks for another sequent Γ2 ⇒
∆2 such that A ∈ Γ2 and Σ ⊂ ∆2 (lines 4–6), according to the construc-
tion of Definition 27;

c) the predicate getPropVars extracts atomic formulas from Formula by a
recursive definition on its structure and by exploiting the Prolog predicate
atom/1;

d) the predicate generateValutations builds a Prolog list Valutations

having the form [[p1, L1], [p2, L2], ..., [pk, Lk]], for each propo-
sitional variable pi, where Li is a Prolog list of the worlds of the model
where pi is true.

5.3 Performance of tuCLEVER

The performances of tuCLEVER are promising. We have tested it by run-
ning SWI Prolog 7.6.4 on an Acer Aspire E5-575G, 2.7 GHz Intel Core i7
7500U, 16GB RAM, Ubuntu 19.04 amd64 machine. In absence of theorem
provers specifically tailored for Lewis’ logics with uniformity and total reflex-
ivity, we have compared the performances of tuCLEVER with those of VINTE
[11]. VINTE implements standard and internal calculi for systems of Lewis’
logics weaker than those implemented by tuCLEVER, and the comparison was
made by considering on formulas provable in both systems. We have performed
two kinds of experiments. On the one hand, we have tested tuCLEVER with
randomly generated formulas, therefore including not provable ones. On the
other hand, we have tested the two provers over a set of valid formulas.

We have still to test the performances of the countermodel construction
implemented by tuCLEVER. We plan to do in future work, by defining a set of
unprovable benchmark formulas on which to evaluate the size of the generated
countermodel with respect to the size of the formula.

5.3.1 Tests over randomly generated formulas

We have tested tuCLEVER over randomly generated formulas, fixing two dif-
ferent time limits, namely 1 second and 10 seconds, and varying the depth of a
formula (i.e. the maximum level of nesting of connectives) as well as the num-
ber of different propositional variables. We have considered the system VTU
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as well as all the extensions, obtaining the percentages of timeouts in Figures
9 and 10.

Depth / var 1 s 10 s
5/3 0% 0%
6/3 2% 0%
7/3 4% 2%
8/3 7% 5%
5/5 0% 0%
6/5 2% 1%
7/5 6% 4%
8/5 10% 7%

Depth / var 1 s 10 s
5/3 0% 0%
6/3 1% 0%
7/3 3% 2%
8/3 7% 4%
5/5 0% 0%
6/5 2% 1%
7/5 6% 4%
8/5 10% 6%

Figure 9: Percentage of timeouts in SHi
VTU (left) and SHi

VWU (right).

Depth / var 1 s 10 s
5/3 0% 0%
6/3 2% 1%
7/3 5% 3%
8/3 8% 5%
5/5 0% 0%
6/5 4% 2%
7/5 7% 5%
8/5 11% 9%

Depth / var 1 s 10 s
5/3 6% 3%
6/3 12% 9%
7/3 21% 17%
8/3 25% 22%
5/5 8% 7%
6/5 20% 16%
7/5 27% 20%
8/5 31% 28%

Figure 10: Percentage of timeouts in SHi
VCU (left) and SHi

VTA (right).

In all cases, the quite low percentages of timeouts suggest that the performance
of tuCLEVER are encouraging.

We have also compared the performance of tuCLEVER with those of the the-
orem prover CSLLean [1], which, as already mentioned, implements a labelled
calculus for the logic of Comparative Concept Similarity over minspaces which
is equivalent to logic VCU. We have repeated the above tests over randomly
generated formulas and, in all cases, the percentage of timeouts for CSLLean
is over the 20% with a time limit fixed in 10 seconds.

5.3.2 Tests over valid formulas

First of all, we have tested both tuCLEVER and VINTE over 76 valid formulas in
Lewis’ conditional logic V [21]. Logic V is the weakest system of Lewis’ logics:
its formulas can be tested using VINTE, and formulas valid in it will also be valid
in the stronger system VTU, where the tests are performed using tuCLEVER.
The formulas used for this first comparison are obtained by translating valid
formulas of the basic modal logic K [13] provided by Heuerding in conditional
formulas: 2A is replaced by > > A12, whereas 3A is replaced by ¬(> >
¬A). We have observed the results in Figure 11 concerning the number of

12It is worth noticing that this translation introduces an exponential blowup.
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timeouts, witnessing a significant increase of performances with respect to those
of VINTE.

Theorem prover 1 s 60 s 180 s
VINTE 49 34 31

tuCLEVER 8 3 3

Figure 11: Percentage of timeouts for tuCLEVER and VINTE over valid formu-
las.

This result could be explained by the fact that, even if tuCLEVER ma-
nipulates “heavier” hypersequents, all rules implemented by tuCLEVER are
invertible, avoiding backtracking points that are present in VINTE.

We have then compared the performance of tuCLEVER and VINTE over
valid formulas obtained as instances of three different schemas, by fixing a
time limit of 60 seconds, and by letting a parameter n vary, starting from
n = 1. The first schema is as follows:

(A1 4 A2) ∨ (A2 4 A3) ∨ · · · ∨ (An 4 A1),

We have observed that tuCLEVER is able to answer also with n = 25, whereas
VINTE is able to answer only until n = 9. Similarly, we have compared the
performance of the provers on:

(A1 4 A2) ∧ (A2 4 A3) ∧ · · · ∧ (An−1 4 An)→ (A1 4 An)

obtaining that tuCLEVER is able to answer also with n = 15, whereas VINTE
is able to answer only until n = 5. The prover VINTE has, however, better
performances than those of tuCLEVER over formulas following the following
schema:

(A1 4 (A1 ∨A2 ∨ · · · ∨An)) ∨ (A2 4 (A1 ∨A2 ∨ · · · ∨An)) ∨ . . .
. . . ∨ (An 4 (A1 ∨A2 ∨ · · · ∨An))

where tuCLEVER is able to answer with n = 4, whereas VINTE is able to answer
also for n = 15.

Finally, we have compared the performances of the provers using a set of
valid formulas generated by translating the rules Rn,m of the sequent calculus
for V according to the translation from rules to axioms described in [20]. In
this case, we have fixed a time limit of 120 seconds, obtaining the results in
Figure 12. Each column is labelled by he values adopted for n/m. Higher
values, missing in the table, lead to a timeout in both tuCLEVER and VINTE.

Theorem prover 1/1 1/2 1/3 1/4 2/1 2/2 3/1 4/1
VINTE 3 3 3 3 3 3 3 3

tuCLEVER 3 3 3 3 3 7 7 7

Figure 12: Answers within 120 seconds for translations of the rules Rn,m.
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Here we can observe that VINTE offers better results than tuCLEVER, which
is not able to answer when either m > 1 or n > 2 within the fixed time
limit. This happens because the hypersequents generated by these formulas
have many components, whereas in VINTE only one component is kept. Thus,
tuCLEVER keeps more information its hypersequents than VINTE does in its
sequents and, if this is an advantage in most of the cases, as backtrack is not
needed, on some formulas it might be a disadvantage, as tuCLEVER has to
manipulate more formulas than VINTE does.

6 Conclusions and Future Issues

We have introduced two kinds of calculi for the strongest logics in Lewis’ family,
that is, logics with uniformity and total reflexivity. We have first introduced
non-standard calculi, for which we have proved cut elimination, and standard
calculi, in both a non-invertible and an invertible version. The non-invertible
version is in direct correspondence with the non-standard calculi, while the
invertible calculi provide a decision procedure for all the logics considered, and
a countermodel construction for the logics without uniformity.

Limiting the discussion to Lewis’ family of conditional logics, non-standard
calculi were defined in Lellmann and Pattinson [19] and in Lellman [17]. Stan-
dard calculi for the logics were defined in De Swart [31], in Giordano, Gliozzi,
Olivetti, and Schwind [7], in Olivetti and Pozzato [27] and in Girlando, Lell-
mann, Olivetti and Pozzato [9]. The latter two references present proof theoret-
ical strategies similar to the ones proposed here. However, of all the standard
calculi proposed, only [7] treats logics with uniformity, and in [7] the authors
define a tableau calculus, using modalities indexed with worlds. Thus, their
approach is not comparable with the calculi presented in our paper. To the
best of our knowledge, the calculi presented in this paper are the first internal
and standard sequent calculi for Lewis’ conditional logics.

We have then introduced tuCLEVER, a theorem prover implementing the
proposed standard and invertible hypersequent calculi. When the formula to
be tested is valid in the selected system, tuCLEVER generates and displays
a derivation of it in the proposed calculi; otherwise, for the systems VTU,
VWU, and VCU, tuCLEVER computes a countermodel. We have compared
the performance of tuCLEVER with those of VINTE, a theorem prover for the
weaker Lewis’ logics, as well as with those of CSLLean, a theorem prover for
the logic of Comparative Concept Similarity over minspaces which is equivalent
to the system VCU: in all cases, the performances of tuCLEVER are promising,
with the only exception of a set of valid formulas generated by translating the
rules Rn,m of the sequent calculus for V according to the translation from rules
to axioms in [20], for which the prover VINTE has better results.

In future work, we plan to evaluate the performances of the countermodel
generation procedure. Moreover, it would be interesting to have a sequent
calculus, and a prover, specifically tailored for Lewis’ logics with the condition
of absoluteness.
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APPENDIX

Proof of the Shift Right Lemma 11

For convenience we repeat the statement of the lemma:

Lemma 11 (Shift Right) Suppose that for k > 0 and n1, . . . , nk > 0 there
are H∗L-derivations D1 and D2 of G | Ω ⇒ Θ, A and H | An1 ,Ξ1 ⇒ Υ1 |
. . . | Ank ,Ξk ⇒ Υk with ρ(D1) < |A| > ρ(D2) and such that the displayed
occurrence of A is principal in the last rule application in D1. Then there is a
H∗L-derivation D with endhypersequent G | H | Ω,Ξ1 ⇒ Θ,Υ1 | . . . | Ω,Ξk ⇒
Θ,Υk and ρ(D) < |A|.

Proof. As mentioned in the main text, the proof is by induction on the depth of
the derivation D2. In case none of the displayed occurrences of A are principal
in the last rule application in D2, we apply the induction hypothesis on the
premiss(es) of that rule, followed by the same rule. If that rule was mrg we
might need to apply contractions to eliminate duplicates afterwards. In case at
least one of the displayed occurrences is principal in the last rule application
in D2, we distinguish cases according to the last applied rule in the derivation
D1. Since the displayed occurrence of A is principal in the last applied rule in
D1, that rule must be one of →R, Rm,n,Wm,n,W

abs
m,n, RW , Rabs

W .

(I): The case of→R is dealt with as usual: Assuming that A is the formula
B → C, and assuming w.l.o.g. that the principal occurrence of B → C is in
the first displayed component, we first apply the induction hypothesis to the
premisses of the last applied rule →L in D2 to obtain

G | H | Ω,Ξ1, C ⇒ Θ,Υ1 | Ω,Ξ2 ⇒ Θ,Υ2 | . . . | Ω,Ξk ⇒ Θ,Υk

and

G | H | Ω,Ξ1 ⇒ B,Θ,Υ1 | Ω,Ξ2 ⇒ Θ,Υ2 | . . . | Ω,Ξk ⇒ Θ,Υk

Now applying cut to these sequents and the premiss

G | Ω, B ⇒ C,Θ

of the application of→R in D1 followed by applications of mrg and contraction
yields

G | H | Ω,Ξ1 ⇒ Θ,Υ1 | . . . | Ω,Ξk ⇒ Θ,Υk

and we are done.

(II): Suppose the last applied rule in D1 is one of the rules Rm,n. In the
following we assume that A is the formula E 4 F and that the derivation D1

ends in: {
G | Ω⇒ Θ | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 , E : 1 ≤ j ≤ m
}

∪
{
G | Ω⇒ Θ | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 , E : 1 ≤ j ≤ n
}

∪
{
G | Ω⇒ Θ | F ⇒ ~[D]

m

1 ,
~[A]

n

1 , E
}

G | Ω, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 , E 4 F,Θ
Rm,n+1

(4)
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For the sake of a uniform presentation, in the cases where the absoluteness
rules are present we assume that both Ω and Θ are empty. This can always
be achieved by applying admissibility of external weakening (Lem. 10) to the
premisses of the application of Rm,n+1 and moving the principal formulae to
this new component. This of course means that after applying the transfor-
mation below, we need to apply the rules absL, absR several times to move the

formulae ~[C 4 D]
m

1 ,
~[A 4 B]

n

1 to the correct component.
In a first step, then, we apply the induction hypothesis to the conclusion of

Rm,n+1 and the premiss(es) of the last applied rule in D2 to eliminate all the
occurrences of E 4 F from the context. Following this we apply the same rule
to the so obtained premisses. Hence we may assume that the only occurrences
of E 4 F in the conclusion of the last applied rule in D2 are principal formulae.
We then distinguish cases according to the last applied rule in D2.

(II.1): Suppose that the last applied rule in D2 is Rs+1,t. Then this deriva-
tion ends in{

H | Ξ⇒ Υ | Gj ⇒ ~[H]
j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | E ⇒ ~[H]

r

1,
~[I]

t

1

}
∪

{
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , F, ~[I]
t

1 : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Jj ⇒ ~[H]

s

1, F,
~[I]

t

1 : 1 ≤ j ≤ t
}

H | Ξ, ~[G 4 H]
r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ ~[I 4 J ]
t

1,Υ
Rs+1,t

Here we assume that the displayed principal occurrence of E 4 F is the first

one, i.e., that none of the formulae in ~[G 4 H]
r

1 is E 4 F . However some of

the formulae ~[G 4 H]
s

r+1 might be E 4 F . Now applying cut on formulae of
complexity smaller than |E 4 F | to the premisses of this rule application and
the premisses of (4) yields{
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , ~[I]
i

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , ~[D]
m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1,
~[I]

t

1 : r < j ≤ s
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Jj ⇒ ~[H]

s

1,
~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1,
~[I]

t

1 : 1 ≤ j ≤ t
}

Using admissibility of internal weakening (Lem. 10) followed by an application
of Rm+s,n+t we then obtain

G | H | Ω, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ,
~[G 4 H]

s

r+1 ⇒ ~[A 4 B]
n

1 ,
~[I 4 J ]

t

1,Θ | Ξ⇒ Υ

Iterating this process to eliminate the remaining occurrences of E 4 F from
~[G 4 H]

s

r+1, followed by mrg and applications of contraction then yields the
desired sequent.
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(II.2): Suppose that the last applied rule in D2 is trfs. Then this derivation
ends in {

H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]
j−1

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π | E ⇒ ~[H]

r

1

}
∪

{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , F : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π, ~[H]

s

1, F
}

H | Ξ, ~[G 4 H]
r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ Υ | Σ⇒ Π
trfs

Again we assume that the displayed occurrence of E 4 F is the first one, so

that it doesn’t occur in ~[G 4 H]
r

1. As above using cuts of complexity smaller
than |E 4 F | on the premisses we obtain{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , ~[D]
m

1 ,
~[A]

n

1 ,
~[H]

r

1 : r < j ≤ s
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π, ~[H]

s

1,
~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1

}
Discarding the last premiss of these and applying Weakening gives the set of
premisses for an application of the rule Rm+s,n with conclusion

G | H | Ω, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ,
~[G 4 H]

s

r+1 ⇒ ~[A 4 B]
n

1 ,Θ | Ξ⇒ Υ | Σ⇒ Π

Iterating this process to eliminate all relevant occurrences of E 4 F from
~[G 4 H]

s

r+1 and applying mrg and contractions to eliminate duplicates in the
context yields the desired conclusion.

(II.3): If the last applied rule in D2 is Ts the transformation is the same
as for trfs.

(II.4): In case the last rule in D2 is Ws+1,t, this derivation ends in{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π | E ⇒ ~[H]

r

1,
~[I]

t

1

}
∪

{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , F, ~[I]
t

1 : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π, ~[H]

s

1, F,
~[I]

t

1

}
H | Ξ, ~[G 4 H]

r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ ~[I 4 J ]
t

1,Υ | Σ⇒ Π
Ws+1,t
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Again we assume that the displayed occurrence of E 4 F is the first one, so

that it doesn’t occur in ~[G 4 H]
r

1. As above using cuts of complexity smaller
than |E 4 F | on the premisses we obtain:{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , ~[I]
t

1,
~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1 : r < j ≤ s
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π, ~[H]

s

1,
~[I]

t

1,
~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1

}
Again, discarding superfluous premisses and eliminating duplicates using con-
tractions gives all the premisses of an application of Wm+s,n+t with conclusion

G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ,
~[G 4 H]

s

r+1 ⇒ ~[A 4 B]
n

1 ,
~[I 4 J ]

t

1,Π

and iterating the process produces the desired conclusion.
(II.5): If the last rule in D2 is W abs

s+1,t the transformation is as in the
previous case.

(II.6): If the last rule in D2 is RC , that derivation ends in

H | Ξ, E ⇒ Υ H | Ξ⇒ F,Υ

H | Ξ, E 4 F ⇒ Υ
RC

Applying cuts of complexity smaller than |E 4 F | to the premisses of this rule
application and the premisses of (4) yields{

G | H | Ω⇒ Θ | Ξ, Cj ⇒ ~[D]
j−1

1 , ~[A]
n

1 ,Υ : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ, Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,Υ : 1 ≤ j ≤ n
}

∪
{
G | H | H | Ω⇒ Θ | Ω⇒ Θ | Ξ,Ξ⇒ ~[D]

m

1 ,
~[A]

n

1 ,Υ,Υ
}

Now applying mrg and contractions to eliminate duplicates, followed by an
application or RC yields the hypersequents{

G | H | Ω⇒ Θ | Cm 4 Dm, Cj ⇒ ~[D]
j−1

1 , ~[A]
n

1 ,Υ : 1 ≤ j ≤ m− 1

}
∪

{
G | H | Ω⇒ Θ | Ξ, Cm 4 Dm ⇒ ~[D]

m

1 ,
~[A]

n

1 ,Υ
}

Continuing like this with successive applications of RC produces the hyperse-
quent

G | H | Ω⇒ Θ | Ξ, ~[C 4 D]
m

1 ⇒ ~[A]
n

1 ,Υ

Finally, n applications of RW to this yield the desired result.
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(II.7): If Rabs
C is the last rule in D2, the transformation is similar to the

previous case.
(III): Suppose that the last rule in D1 is the rule Wm,n+1. Again, we

distinguish cases according to the last applied rule in D2 and assume that A is
the formula E 4 F . The derivation D1 then ends in{

G | Ω⇒ Θ | Cj ⇒ ~[D]
j−1

1 , ~[A]
n

1 , E : 1 ≤ j ≤ m
}

∪
{
G | Ω⇒ Θ | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 , E : 1 ≤ j ≤ n
}

∪
{
G | Ω⇒ ~[D]

m

1 ,
~[A]

n

1 , E,Θ
}

G | Ω, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 , E 4 F,Θ
Wm,n+1

(5)

Again, in the first step we apply the induction hypothesis to the conclusion
of this rule and the premisses of the last applied rule in D2 to delete every
occurrence of E 4 F from the context. Then we distinguish cases according
to the last applied rule in D2. Since in this case the system must be HVWU or
HVWA, the only possibilities then are Rm,n, trfm,TM ,Wm,n or W abs

m,n.
(III.1): If the last applied rule in D2 was Rs+1,t, then this derivation ends

in {
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | E ⇒ ~[H]

r

1,
~[I]

t

1

}
∪

{
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , F, ~[I]
t

1 : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Jj ⇒ ~[H]

s

1, F,
~[I]

t

1 : 1 ≤ j ≤ t
}

H | Ξ, ~[G 4 H]
r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ ~[I 4 J ]
t

1,Υ
Rs+1,t

where we again assume that E 4 F does not occur in ~[G 4 H]
r

1. Applying cuts
with smaller complexity to the premisses of (5) and this rule yields{
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , ~[I]
i

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,
~[I]

t

1,Θ | Ξ⇒ Υ
}

Again, using weakening (Lem. 10) followed by an application of Wm+r,n+t we
then obtain

G | H | Ω, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ⇒ ~[A 4 B]
n

1 ,
~[I 4 J ]

t

1,Θ | Ξ⇒ Υ

Now adding the missing formulae from ~[G 4 H]
s

r+1 using weakening, followed
by mrg yields the desired sequent.
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(III.2): Suppose that the last applied rule in D2 is trfs+1. Then this
derivation ends in{

H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]
j−1

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π | E ⇒ ~[H]

r

1

}
∪

{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 , F : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Σ⇒ Π, ~[H]

s

1, F
}

H | Ξ, ~[G 4 H]
r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ Υ | Σ⇒ Π
trfs+1

Again we assume that the displayed occurrence of E 4 F is the first one, so

that it doesn’t occur in ~[G 4 H]
r

1. As above using cuts of complexity smaller
than |E 4 F | on the premisses we obtain{
H | Ξ⇒ Υ | Σ⇒ Π | Gj ⇒ ~[H]

j−1

1 : 1 ≤ j ≤ r
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Cj ⇒ ~[D]

j−1

1 , ~[A]
n

1 ,
~[H]

r

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ⇒ Υ | Σ⇒ Π | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ ~[D]

m

1 ,
~[A]

n

1 ,
~[H]

r

1,Θ | Ξ⇒ Υ | Σ⇒ Π
}

Weakening followed by an application of Wm+r,n then gives

G | H | Ξ, ~[G 4 H]
r

1,
~[C 4 D]

m

1 ⇒ ~[A 4 B]
n

1 ,Θ | Ξ⇒ Υ | Σ⇒ Π

and, again, weakening and mrg yield the desired result.
(III.3): If the last applied rule in D2 is Ts+1, the transformation is as in

the last case.
(III.4): For the last rule being Ws+1,t, the transformation is as for Rs+1,t.
(III.5): If the last rule is W abs

s+1,t, the transformation is as for Rs+1,t.
(III.6): The case where the last applied rule in the derivation D2 is RC

does not occur.
(III.7): The case where the last applied rule in the derivation D2 is Rabs

C

does not occur either.
(IV): Suppose that the last applied rule in D1 was W abs

m,n, and that the
formula A is E 4 F . Then the derivation D1 ends in{

G | Γ⇒ ∆ | Ω⇒ Θ | Cj ⇒ ~[D]
j−1

1 , ~[A]
n

1 , E : 1 ≤ j ≤ m
}

∪
{
G | Γ⇒ ∆ | Ω⇒ Θ | Bj ⇒ ~[D]

m

1 ,
~[A]

n

1 , E : 1 ≤ j ≤ n
}

∪
{
G | Γ⇒ ~[D]

m

1 ,
~[A]

n

1 , E,∆ | Ω⇒ Θ
}

G | Γ⇒ ∆ | Ω, ~[C 4 D]
m

1 ⇒ ~[A 4 B]
n

1 , E 4 F,Θ
W abs

m,n+1

(6)

As above, after applying the induction hypothesis to the conclusion of this rule
and the premisses of the last applied rule in D2 to eliminate occurrences of
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E 4 F from the context, we distinguish cases according to the last applied rule
in D2. The transformations are analogous to those in the previous case (III).

(V): Suppose that the last applied rule in D1 was RW . Then that derivation
ends in

G | Ω⇒ E,Θ

G | Ω⇒ E 4 F,Θ
RW (7)

As above, we first eliminate all occurrences of E 4 F from the context of the last
applied rule in D2 by applying the induction hypothesis on the premiss(es) of
that rule and the conclusion of RW , then distinguish cases according to the last
rule in D2. Since the last applied rule in D1 was RW , the system must be HVCU
or HVCA, and the last applied rule inD2 hence is one ofRm,n, trfm,Tm, RC , R

abs
C .

(V.1): If the last applied rule in D2 was Rs+1,t, then that derivation ends
in {

H | Ξ⇒ Υ | Gj ⇒ ~[H]
j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

∪
{
H | Ξ⇒ Υ | E ⇒ ~[H]

r

1,
~[I]

t

1

}
∪

{
H | Ξ⇒ Υ | Gj ⇒ ~[H]

j−1

1 , F, ~[I]
t

1 : r < j ≤ s
}

∪
{
H | Ξ⇒ Υ | Jj ⇒ ~[H]

s

1, F,
~[I]

t

1 : 1 ≤ j ≤ t
}

H | Ξ, ~[G 4 H]
r

1, E 4 F,
~[G 4 H]

s

r+1 ⇒ ~[I 4 J ]
t

1,Υ
Rs+1,t

Applying cuts of smaller complexity to the premisses of this rule and the premiss
of (7) yields the sequents{

H | Ξ⇒ Υ | Gj ⇒ ~[H]
j−1

1 , ~[I]
t

1 : 1 ≤ j ≤ r
}

{
G | H | Ω⇒ ~[H]

r

1,
~[I]

t

1,Θ | Ξ⇒ Υ
}

Now weakening to assimilate the contexts, followed by an application of RC

yields

G | H | Ξ⇒ Υ | Ω, Gr 4 Hr ⇒ ~[H]
r−1

1 , ~[I]
t

1,Θ

Continuing like this we obtain

G | H | Ξ⇒ Υ | Ω, ~[G 4 H]
r

1 ⇒ ~[I]
t

1,Θ

and t applications of RW followed by weakening and mrg yield the desired
result.

(V.2): In case the last applied rule in D2 is trfs+1, the transformation is
as for Rs+1,t.

(V.3): If the last applied rule in D2 is Ts+1, again the transformation is as
for Rs+1,t.

(V.4): If the last applied rule in D2 is RC , then the derivation ends in

H | Ξ, E ⇒ Υ H | Ξ⇒ F,Υ

H | Ξ, E 4 F ⇒ Υ
RC
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and a cut on E yields the desired

G | H | Ω,Ξ⇒ Θ,Υ .

(V.5): In case the last applied rule in D2 is Rabs
C , that derivation ends in:

H | Ξ⇒ Υ | Σ, E ⇒ Π H | Ξ⇒ Υ | Σ⇒ F,Π

H | Ξ, E 4 F ⇒ Υ | Σ⇒ Π
Rabs

C

In this case a cut on the left premiss of this rule application and the premiss
of (7) with cut formula E yields the hypersequent

G | H | Ω⇒ Θ | Σ,Ξ⇒ Π,Υ

and an application of the split rule spl yields the desired

G | H | Ω,Ξ⇒ Θ,Υ | Σ⇒ Π

Note that this case shows why we need to add the rule spl to the rule set for
VCA.

(VI): Suppose that the last applied rule inD1 was Rabs
W . Then the derivation

ends in
G | Ω⇒ Θ | Γ⇒ E,∆

G | Ω⇒ E 4 F,Θ | Γ⇒ ∆
Rabs

W (8)

Again we eliminate all context occurrences of E 4 F from the premisses of
the last rule application in D2 by applying the induction hypothesis, and then
distinguish cases according to the last applied rule in D2. The possibilities in
this case are Rm,n, trfm,Tm, RC , R

abs
C .

(VI.1): If the last applied rule in D2 was Rs+1,t, the transformation is
analogous to the previous case (V.1).

(VI.2): In case the last applied rule in D2 is trfs+1, the transformation is
as in (V.2).

(VI.3): For the last applied rule in D2 being Ts+1, the transformation is
as in (V.3).

(VI.4): If the last applied rule in D2 is RC , then that derivation ends in

H | Ξ, E ⇒ Υ H | Ξ⇒ F,Υ

H | Ξ, E 4 F ⇒ Υ
RC

A cut on the left premiss of this and the premiss of (8) yields

G | H | Ω⇒ Θ | Γ,Ξ⇒ ∆,Υ

and an application of the split rule spl yields the desired result.
(VI.5): In case the last applied rule in D2 is Rabs

C , that derivation ends in

H | Ξ⇒ Υ | Σ, E ⇒ Π H | Ξ⇒ Υ | Σ⇒ F,Π

H | Ξ, E 4 F ⇒ Υ | Σ⇒ Π
Rabs

C
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A cut on the left premiss of this and the premiss of (8) yields the premiss of
the following derivation:

G | H | Ω⇒ Θ | Γ,Σ⇒ ∆,Π | Ξ⇒ Υ

G | H | Ω,Ξ⇒ Θ,Υ | Γ,Σ⇒ ∆,Π
mrg

G | H | Ω,Ξ⇒ Θ,Υ | Γ,Σ⇒ ∆,Π | ⇒ EW

G | H | Ω,Ξ⇒ Θ,Υ | Γ⇒ ∆ | Σ⇒ Π
spl

The conclusion of this is the desired hypersequent. �
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The Graphical Interface of tuCLEVER

Figure 13: Home page of tuCLEVER. When the users want to check whether
a formula F is valid, then (i) they select the conditional logic to use, (ii) they
type F in the form and (iii) click the button in order to execute the proof
search procedure.

Figure 14: When the formula is valid, tuCLEVER computes both a pdf contain-
ing the derivation found by the prover and its LATEX source file.
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Figure 15: When the submitted formula is valid, then the user can have a look
at the derivation built by tuCLEVER, stored in a pdf file. As an alternative,
the user can download the LATEX source file of the derivation.

Figure 16: For the systems VTU, VWU, and VCU, when the submitted formula
is not valid, tuCLEVER generates a countermodel stored in a txt file. We are
currently working on improving the interface in order to let tuCLEVER show
the generated countermodel in a graphical window.

Figure 17: All Prolog source files, including those for testing the performance
of tuCLEVER, are available on the web page.
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