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Introduction

Research in magnetic confinement fusion plasmas explores the possibility of pro-18 ducing carbon-free electric power by using fusion in deuterium-tritium plasmas heated [START_REF] Soler | A new conservative finite-difference scheme for anisotropic elliptic problems 377 in bounded domain[END_REF] to temperatures up to 10 7 -10 8 K, and confined by magnetic field in machines of toroidal 20 shape known as tokamaks. With ITER and the promise of burning plasmas, the control 21 of heat exhaust in high energy confinement configurations has become a topic of critical 22 importance for the operation [START_REF] Loarte | Chapter 4: Power and particle control[END_REF]. The difficulty to get global experimental measure-23 ments in tokamak makes complementary numerical simulations in realistic tokamak 24 conditions a valuable asset to design optimised plasma scenarios, allowing to control the 25 heat outfluxes and to prevent material damages. However, such numerical simulation 26 remains a very challenging issue. This problem is multi-physics and multi-scales due to 27 plasma wall interactions and turbulence. The geometry adds also a complexity in realis-28 tic configurations due to the shape of the tokamak wall and of the magnetic equilibrium.

29

In addition, the strong anisotropy of the magnetic field components leads to a preferred 30 orientation denoted as the parallel direction, with reference to the direction along the 31 magnetic field lines. This leads to specific numerical issues as ill-conditioned algebraic 32 operators to invert, and significant spurious numerical diffusion in the direction or-33 thogonal to the anisotropy direction. Routine simulations able to provide information 34 in acceptable timings in a tokamak of the size of ITER are still today restricted to 2D The mathematical model relies on 2D fluid conservation equations based on Braginskii simplified closures [START_REF] Braginskii | Transport processes in a plasma[END_REF]. Under some hypothesis and ordering detailed in Ref. [START_REF] Stangeby | The Plasma Boundary of Magnetic Fusion Devices[END_REF], it corresponds to a standard model in the fusion community of advection diffusion equation that governs the transport of the mean plasma quantities as the density n the parallel momentum nu, and the ion and electron total energy E i = 3 2 k b T i + 1 2 m i u 2 and E e = 3 2 k b T e , respectively, with m i is the mass of the ion and T i and T e are the ion and electron temperatures, respectively. The conservation equations below correspond to a compressible adiabatic gas in the parallel direction and to an incompressible fluid in the perpendicular direction where turbulence process dominates. The system writes:

∂ t n + ∇ • (nub) -∇ • (D∇ ⊥ n) = S n (1) 
∂ t (m i nu) + ∇ • (m i nu 2 b) + ∇ ∥ (k b n(T e + T i )) -∇ • (µ∇ ⊥ (m i nu)) = S Γ ( 2 
)
∂ t 3 2 k b nT i + 1 2 m i nu 2 + ∇ • 5 2 k b nT i + 1 2 m i nu 2 ub -nueE ∥ -∇ • 3 2 k b (T i D∇ ⊥ n + nχ i ∇ ⊥ T i ) -∇ • - 1 2 m i u 2 D∇ ⊥ n + 1 2 m i µn∇ ⊥ u 2 -∇ • (k ∥i T 5 2 i ∇ ∥ T i b) + 3 2 k b n τie (T e -T i ) = S E i (3) ∂ t 3 2 k b nT e + ∇ • 5 2 k b nT e ub + nueE ∥ -∇ • 3 2 k b (T e D∇ ⊥ n + nχ e ∇ ⊥ T e ) -∇ • (k ∥e T 5 2 e ∇ ∥ T e b) - 3 2 k b n τie (T e -T i ) = S E e (4) 
where p i and p e are the diagonal part of the ion and electron pressure stress tensor and they are equal to p i = nk b T i and p e = nk b T e [m -1 s -2 ], respectively. The constant diffusion coefficients that take into account the collisions transport and turbulent effects in the cross field direction are denoted D, µ, χ i and χ e for n, nu, E i and E e , respectively. Their values are chosen as a compromise between estimations provided by theory or experimental measurements and numerical stability constraints. They are usually less or equal to 1 m 2 s -1 . The terms (k

||,i T 5/2 i
) and (k ||,e T 5/2 e ) correspond to nonlinear parallel diffusions for ion and electron, respectively. The parallel diffusion coefficients depend on the mass of the species, and are equal for the deuterium to k ||,i = 60 [Wm -1 eV -7/2 ] and k ∥,e = 2000 [Wm -1 eV -7/2 ]. The parameter τie is the relaxation time for the collisions coupling term between electrons and ions, W = 3 In the direction parallel to the magnetic field lines, the boundary conditions for the plasma are specific and correspond to the Bohm boundary conditions modelling plasma wall interactions [START_REF] Stangeby | The plasma boundary of magnetic fusion devices[END_REF]. They assume a parallel velocity of the plasma equal or larger than the sound speed c s = k b (T e +T i ) m i and leave free the density value at the wall that corresponds to ( [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF]):

2 k b n τie (T e -T i ). It is defined as: τie = 3 √ 2 e 4 ε 2 0 Λ π 3 2 m i m e √ m e e 3 
u ≥ c s i f b • n > 0 u ≤ -c s i f b • n < 0 ( 5 
)
where n is the outer normal of the surface. For the electrons and ions energy equations, the Bohm conditions impose the parallel fluxes to the sheath transmission values, leading to:

(nE i + p i )u - k ∥i m i T 5/2 i ∇ ∥ T i = γ i up i + 1 2 nu 3 (nE e + p e )u - k ∥e m i T 5/2 e ∇ ∥ T e = γ e up e (6) 
where γ i = 2.5 and γ e = 4.5. In the perpendicular direction to the magnetic field lines, 

The hybrid discontinuous Galerkin method
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A specific hybrid discontinuous Galerkin (HDG) algorithm has been developed for many years [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF][START_REF] Giorgiani | A high-order non field-aligned approach for the discretization of strongly 358 anisotropic diffusion operators in magnetic fusion[END_REF][START_REF] Giorgiani | A new high-order fluid solver for tokamak edge plasma transport simula-360 tions based on a magnetic-field independent discretization[END_REF][START_REF] Giorgiani | A magnetic-field independent approach for strongly anisotropic equations 362 arising plasma-edge transport simulations[END_REF], and implemented in the family of codes SOLEDGE3X [START_REF] Bufferand | Numerical modelling for divertor design of the WEST device with a 347 focus on plasma-wall interactions[END_REF], wellknown in the international fusion community to efficiently address turbulent transport in different machines all around Europe. A complete description of the method is provided in Appendix A as well as in former papers [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF][START_REF] Giorgiani | A high-order non field-aligned approach for the discretization of strongly 358 anisotropic diffusion operators in magnetic fusion[END_REF][START_REF] Giorgiani | A new high-order fluid solver for tokamak edge plasma transport simula-360 tions based on a magnetic-field independent discretization[END_REF][START_REF] Giorgiani | A magnetic-field independent approach for strongly anisotropic equations 362 arising plasma-edge transport simulations[END_REF]. In HDG, the system of equations 1-4 is written in terms of conservative variables considering the vector:

U = {U 1 , U 2 , U 3 , U 4 } T = {n, nu, nE i , nE e } T
where the superscript ⊙ T stands for transpose. The discontinuous partition induces a 92 two-steps problem. In a first step, the set of conservative equations written in a weak 93 formulation is solved element by element to express the discrete unknowns U(x, t) at 94 the element nodes in terms of another approximation of the solution, called the trace 95 solution Û, which is defined on the borders of the element. In a second step, a global 96 equation is set by imposing in a weak form the continuity of the fluxes across the borders 97 of the elements to obtain Û in the whole mesh skeleton. Once Û is obtained, it is possible 98 to recover the elementary solution U on each element using a local post processing.

99

The introduction of this trace solution restricted to the skeleton of the mesh leads to a In the model introduced in section 2, the cross-field transport coefficients for n, u, T i , T e play a fundamental role in the reliability of the solutions by modelling the perpendicular anomalous transport of particles and energy. Thus, their values directly impact the balance between the parallel and perpendicular transport which governs the plasma flow in the tokamak. With the implicit time integration scheme, the implementation of diffusion coefficients non equal for each flow variable is not straightforward. In this case indeed, the expression of the coefficients in function of conservatives variables introduce additional nonlinear coupling between the equations as described thereafter. When assuming D = µ = χ i = χ e , the terms of the perpendicular dynamics in equation A2 depend only linearly of the unknown Q as follows:

-∇ •        D∇ ⊥ (n) µ∇ ⊥ (nu) χ i ∇ ⊥ (nE i ) χ e ∇ ⊥ (nE e )        = -D f Q + D f Qb ⊗ b (7) 
which represents the gradient of the conservative variable U. When these coefficients are chosen non-equal, a nonlinear dependency occurs in the equations system written in conservative variables that writes as:

h Γ = Q t,⊥ • W Γ = Q t,⊥ •     (D -µ) U 2 U 1 0 0 0     + µQ 2,⊥ h E i = χ i ∇ ⊥ (nE i ) = Q t,⊥ • W E i = Q t,⊥ •       (D -χ i ) U 3 U 1 (D -µ) U 2 2 U 2 1 -(D -µ) U 2 U 1 0 0       + χ i Q 3,⊥ h E e = Q t,⊥ • W E e = Q t,⊥ •     (D -χ e ) U 4 U 1 0 0 0     + χ e Q 4,⊥ (8) 
Notice here that for D = µ = χ i = χ e , equation 8 writes as equation 7. The linearization 105 and integration of these nonlinear additional terms is detailed thereafter. The nonlinear terms of equation 8 are written as:

h(U, Q) = Q t W(U) (9) 
that linearize according to the formula A15 as:

h(U k , Q k ) = h(U k-1 , Q k-1 ) + d dϵ h(U k-1 + ϵdU, Q k-1 + ϵdQ)| ϵ=0 + + O(dU 2 , dQ 2 ) = = Q k-1 W(U k-1 ) + d dϵ ((Q k-1 + ϵdQ)W(U k-1 + ϵdU))| ϵ=0 + + O(dU 2 , dQ 2 ) = = Q k-1 W(U k-1 ) + dQW(U k-1 ) + Q k-1 dW dU k-1 dU+ + O(dU 2 , dQ 2 ) = = Q k-1 W(U k-1 ) + Q k W(U k-1 ) -Q k-1 W(U k-1 )+ + Q k-1 dW dU k-1 U k -Q k-1 dW dU k-1 U k-1 + O(dU 2 , dQ 2 ) = = Q k W(U k-1 ) + Q k-1 dW dU k-1 U k + O(dU 2 , dQ 2 ) ( 10 
)
where dU and dQ have been replaced by dU

= U k -U k-1 and dQ = Q k -Q k-1 . Then, h Γ (U k , Q k ), h E i (U k , Q k ) and h E e (U k , Q k ) linearize as: h Γ (U k , Q k ) = Q k W Γ (U k-1 ) + Q k-1 dW Γ dU k-1 U k + O(dU 2 , dQ 2 ) h E i (U k , Q k ) = Q k W E i (U k-1 ) + Q k-1 dW E i dU k-1 U k + O(dU 2 , dQ 2 ) h E e (U k , Q k ) = Q k W E e (U k-1 ) + Q k-1 dW E e dU k-1 U k + O(dU 2 , dQ 2 ) (11) 
where:

dW Γ dU =      -(D -µ) U 2 U 2 1 (D -µ) 1 U 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0      dW E i dU =       -(D -χ i ) U 3 U 2 1 + 2(D -µ) U 2 2 U 3 1 2(D -µ) U 2 U 2 1 (D -χ i ) 1 U 1 0 (D -µ) U 2 U 2 1 -(D -µ) 1 U 1 0 0 0 0 0 0 0 0 0 0       dW E e dU =      -(D -χ e ) U 4 U 2 1 0 0 (D -χ e ) 1 U 1 0 0 0 0 0 0 0 0 0 0 0 0      (12) 
Defining now:

h U Γ = Q k-1 dW Γ dU k-1 U k ; h Q Γ = Q k W Γ (U k-1 ) h U E i = Q k-1 dW E i dU k-1 U k ; h Q E i = Q k W E i (U k-1 ) h U E e = Q k-1 dW E e dU k-1 U k ; h Q E e = Q k W E e (U k-1 ) (13) 
the split momentum diffusion terms write as:

h Γ = h U Γ + h Q Γ h E i = h U E i + h Q E i h E e = h U E e + h Q E e (14) 
The superscripts U and Q stand for the terms whose unknown are U k and Q k , respec-108 tively. These terms must be now incorporated into the matrices of the discrete linear 109 system. From equation 8, the diffusion terms can be actually written as the sum of two terms as

S d + D f Q with S d = 0 for D = µ = χ i = χ e .
To incorporate the new term S d into the linear system, S d is first written in the matrix form as:

S d = S U + S Q =     0 h U Γ h U E i h U E e     +      0 h Q Γ h Q E i h Q E e      (15)
Focusing on the second equation of the system A12, the local problem writes as:

(v, ∂ t U) Ω i -∇v, F -D f Q + D f Qb ⊗ b -F t Ω i + + v, F -D f Q + D f Qb ⊗ b -Ft n ∂Ω i + v, f E || Ω i + v, f E EX Ω i - -(v, g) Ω i -(∇v, -S U + S U b ⊗ b) Ω i -(∇v, -S Q + S Q b ⊗ b) Ω i + v, -S Û + S Û b ⊗ b • n ∂Ω i + v, -S Q + S Qb ⊗ b • n ∂Ω i = (v, s) Ω i (16) 
Using the convention introduced in B.3 the terms with the unknown U are inserted in the matrix of the local problem A uu while the terms with the unknown Q are inserted in A uq . Then, in the discrete local problem the new matrices write as:

A uu =⇒ A uu -(∇v, -S U + S U b ⊗ b) Ω i + v, -S Û + S Û b ⊗ b • n ∂Ω i A uq =⇒ A uq -(∇v, -S Q + S Q b ⊗ b) Ω i + v, -S Q + S Qb ⊗ b • n ∂Ω i (17) 
Let's notice that the new matrices are just related to the second equation of the system 

Code verification 121

The Method of the Manufactured Solution (MMS) [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF] is used to verify the code with the new formulation (Eq. 16). The transport coefficients are specially set all different from each other: D = 0.1, µ = 0.2, χ i = 0.3, χ e = 0.4 m 2 /s. The following analytical solution is used with ω x = ω y = 1:

n = 2 + sin (2πω x x) sin (2πω y y); E i = 20 + cos (2πω x x) sin (2πω y y) u = cos (2πω x x) cos (2πω y y); E e = 10 -sin (2πω x x) cos (2πω y y) (18) 
Results of convergence plotted on Figure 2 show the expected theoretical rate of con- particular at the X-point and the density is higher in the core, of about a factor 1.6, since 139 less matter is allowed to diffuse from it. On the parallel Mach number, the tongue of positive velocity extends towards the top to the same extent while slightly decreasing 141 its width, as to be expected for a lower density diffusion. Moreover, the parallel Mach 142 number is higher at the X-points. Regarding now, the ion and electron temperatures, 143 they are globally lower for D = 0.6, meaning that for this value of density diffusion, the 144 plasma in the core has a higher density but lower temperatures. The whole process can be thus summarised as: The mesh refinement is performed using the open-source software Mmg [START_REF] Dobrzynski | Anisotropic Delaunay mesh adaptation for unsteady simulations[END_REF][START_REF] Dapogny | Three-dimensional adaptive domain remeshing, implicit domain meshing, 351 and applications to free and moving boundary problems[END_REF]. It uses a map of elemental size in which the desired element size on each vertex must be precised. This current elemental size can be defined on each vertex of an existing mesh [START_REF] Knupp | Algebraic mesh quality metrics for unstructured initial meshes[END_REF] using the elemental areas {|Ω k |} as follows:

h j = ∑ i∈S j |Ω i | hi ∑ i∈S j |Ω i | (19) 
in which S j denotes the set of element indices having node j as a vertex. At the iteration n of the refinement process, a basic and straightforward formula provides a guess of the desired mesh size at the next iteration, on the element j where oscillations are detected, using the expression:

h (n+1) target,j = (h (n) j ) α ( 20 
)
where α (α > 1) is a control parameter to tune in order to perform the refinement. After Adaptive mesh refinement is usually considered to converge to a numerical solution with a desired accuracy whilst using a minimal number of degrees of freedom. Adaptive mesh refinement is especially appealing in DG and HDG discretizations using hp-refinement as it warrants exponential convergence with the number of degrees of freedom [START_REF] Babuška | Approximation properties of the h-p version of the finite element method[END_REF]. The present refinement strategy is not drived by an accuracy criterion, but by a stability criterion to ensure the convergence of Newton-Raphson iterations towards the steady solution of equations 1, 2, 3 and 4. This strategy is based upon the observation that lack of convergence mostly stems from locally insufficient spatial resolution leading to aliasing errors. These errors deteriorate the convergence of the implicit solver and the global accuracy of the solution, and even more may lead to the divergence of the computations. This problem can be overcome by increasing the resolution locally to enhance the precision of the interpolation and to damp spurious oscillations. Usually, the estimators are based on the output data of the simulation [START_REF] Oden | Toward a universal h-p adaptive finite element strategy, Part 2. A posteriori error 381 estimation[END_REF] to detect oscillations. The technique is inspired from shock-capturing techniques [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF], although here the quantity evaluated is an oscillation rather than a discontinuity in the solution. We use a simple sensor S k , defined on each element with index k defined as a function of the parallel velocity u. For a computation with a polynomial approximation of order p, this sensor consists in the norm of the local contribution of order p, normalized by the norm of the full solution on the element. It is thus defined as

S k = (u -û, u -û) Ω k (u, u) Ω k ( 21 
)
where u is the solution of order p, and û is the projection of the modal expansion on the 192 space of polynomials of order p -1. is not aligned along the magnetic field lines [START_REF] Giorgiani | A high-order non field-aligned approach for the discretization of strongly 358 anisotropic diffusion operators in magnetic fusion[END_REF]. Thus, the mesh has to be successively 204 refined when decreasing D to converge toward a plasma equilibrium as already shown 205 in [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF] for uniform meshes. In addition, there is also a geometrical complexity with a 206 magnetic equilibrium with two X-points as well as a tokamak wall with sharp edges and 207 corners as well as small cavities around, Figure 1. This is thus an attractive configuration To show the adaptive h-refinement process, Figure 5 shows the grid refinement at with an optimal design. This is shown on Figure 6 where the diffusion coefficient is 236 progressively lowered of a factor 100, and the mesh automatically refined accordingly.

237

As soon as the mesh is fine enough, we can clearly expect to save on the time 238 needed to converge. However, it is not straightforward to quantify precisely this sav-239 ing. We have first compared the simulation times to convergence when lowering the 240 diffusion coefficients (Figure 6) between simulations using the automative adaptive 241 refinement procedure and simulations performed with an unique mesh for each value of As an additional information, we have compared times to converge at D = 2.63 m 2 •s -1 250 using the adaptive procedure described above (Figure 5) and an uniform mesh with 

D = 26, 31 m 2 •s -1 D = 8, 32 m 2 •s -1 D = 2, 63 m 2 •s -1 D = 0.83 m 2 •s -1 D = 0.26 m 2 •s -1 Figure 6.
Five meshes and locations of the solution oscillations (colored areas) when lowering the cross-field diffusion coefficient. The corresponding numbers of elements and degree of freedom are given in Table 1.

Conclusions

261

This paper presents a high-order solver based on the Hybrid Discontinuous Galerkin 262 method to perform plasma simulations in tokamak. It solves a 2D fluid transport model for the density, parallel momentum, and the total energy for a deuterium plasma. This 264 model is relevant with those currently implemented in fluid codes used in the fusion 265 community. The main features of this solver are the use of unstructured meshes together 266 with a high-order spatial approximation which allows to disalign the discretization from 267 the magnetic field, unlike what is required in lower-order numerical schemes in order to 268 control the spurious numerical diffusion due to the strong anisotropy of the flow. Thus, 269 realistic tokamak wall geometries as well as magnetic equilibrium of complex shape and 270 eventually unsteady can be accurately treated.

271

The code development is still in progress. In this paper, we have generalised the Let's consider a computational domain Ω with closed boundary ∂Ω over a range of time ]0, T f [. The domain of computation Ω is divided in N el disjoint elements Ω i with boundaries ∂Ω i such that:

Ω = N el i=1 Ω i , Ω i ∩ Ω j = ∅ f or i ̸ = j, and T = N el i=1 ∂Ω i
Equations 1-4 must be written in conservative variables. Let's introduce U = {U 1 , U 2 , U 3 , U 4 } T = {n, nu, nE i , nE e } T where the superscript ⊙ T stands for transpose. The plasma physical quantities u, p i , p e , T i and T e write in conservative variables as:

u = U 2 U 1 , p i = 2 3M re f U 3 - 1 2 U 2 2 U 1 p e = 2 3M re f U 4 , T i = 2 3M re f U 3 U 1 - 1 2 U 2 2 U 2 1 
,

T e = 2 3M re f U 4 U 1 . (A1)
where M re f is a dimensionless parameter that appears by making the equations dimen- 305

Equations 1-4 recast as:

             Q -∇U = 0 in Ω×]0, T f [ ∂ t U + ∇ • (F -D f Q + D f Qb ⊗ b -F t )+ + f E || + f EX -g = s in Ω×]0, T f [ U(x, 0) = U 0 in Ω (A2)
where the new unknown Q is:

Q = ∇U =     ∇U 1 T ∇U 2 T ∇U 3 T ∇U 4 T     =     U 1,x U 1,y U 2,x U 2,y U 3,x U 3,y U 4,x U 4,y     =     Q 11 Q 12 Q 21 Q 22 Q 31 Q 32 Q 41 Q 42    
D f is the diffusion tensor. It is diagonal only when the perpendicular transport coefficient are assumed equals to each other, i.e. D = µ = χ i = χ e . The convective flux tensor F(U) is written as:

F =        nu nu 2 + M re f (p i + p e ) (nE i + M re f p i )u (nE e + M re f p e )u        ⊗ b T =                U 2 U 2 2 U 1 + 2 3 U 3 + U 4 -1 2 U 2 2 U 1 U 3 + 2 3 U 3 -1 2 U 2 2 U 1 U 2 U 1 U 4 + 2 3 U 4 U 2 U 1                ⊗ b T
The ion and electron temperature gradients have to be written in terms of conservative variables. For the ion, the gradient writes as:

∇T i = 2 3M re f ∇ U 3 U 1 - 1 2 U 2 2 U 2 1 = 2 3M re f ∇U 1 ( U 2 2 U 3 1 - U 3 U 2 1 ) + ∇U 2 (- U 2 U 2 1 ) + ∇U 3 ( 1 U 1 ) ,
and using the following definition:

V i (U) =            U 2 2 U 3 1 -U 3 U 2 1 -U 2 U 2 1 1 U 1 0           
it can be simplified as:

∇T i = 2 3M re f Q t V i (U), ( A3 
)
where the transpose of the variable gradient has been introduced Q t = Q T . For the electron, the gradient writes as:

∇T e = 2 3M re f ∇ U 4 U 1 = 2 3M re f ∇U 1 (- U 4 U 2 1 ) + ∇U 4 ( 1 U 1 ) ,
and can be simplified using the following definition:

V e (U) =          -U 4 U 2 1 0 0 1 U 1          as: ∇T e = 2 3M re f Q t V e (U). (A4)
Hence, using the definition of the parallel gradient, we have

∇ ∥ T i = ∇T i • b = 2 3M re f Q t V i (U), ∇ ∥ T e = ∇T e • b = 2 3M re f Q t V e (U), (A5) 
From the expressions of these parallel gradients we derive the energy flux F t related to the parallel diffusion of the temperature as:

F t =          0 0 k ∥,i T 5/2 i ∇ ∥ T i k ∥,e T 5/2 e ∇ ∥ T e          ⊗ b T =                    0 0 k ||i 2 3M re f 7/2   U 3 U 1 -1 2 U 2 2 U 1 2   5/2 Q T V i (U) • b k ||e 2 3M re f 7/2 U 4 U 1 5/2 Q T V e (U) • b                    ⊗ b T . (A6)
The vector related to the contribution of the parallel electric field f E ∥ is

f E ∥ = M re f u∇ ∥ p e        0 0 1 -1        = 2 3 U 2 U 1 ∇U 4 • b        0 0 1 -1        = 2 3 Q t W(U) • b        0 0 1 -1        (A7)
having defined the vector

W(U) =        0 0 0 U 2 U 1       
.

The vector of temperature exchange between ions and electrons f EX is

f EX = n 2 τ ie T e -T i T 3/2        0 0 1 -1        = 1 τ ie 2 3M re f -1/2 U 5/2 1 U 3/2 4 U 3 -U 4 + 1 2 U 2 2 U 1        0 0 1 -1        . (A8)
Finally the curvature term g is

g =        0 (p i + p e )∇ • b 0 0        =          0 2 3 U 3 + U 4 -1 2 U 2 2 U 1 ∇ • b 0 0          . ( A9 
)
and

306 s = {S n , S Γ , S E i , S E e } T (A10)
is the vector of source terms. When the latter are chosen with an analytical form 307 they constitute the right hand side RHS of the conservative system of equations A2.

308

Otherwise, if they depend by the plasma quantities, they are made explicit function of 309 the conservative variables U and treated in the same manner of the vectors above.

The continuity of the unknowns is guaranteed due to the fact that the Dirichlet condition imposed on the left and on the right element of a given face is the same, for the given values of Û on the element boundary. The approximated solution is then obtained after the discretization of the system of equation A11 on a finite two-dimensional space defined in this way:

V h = {v ∈ L 2 (Ω) : v| Ω i ∈ P p (Ω i ) f or i = 1, ..., N el } Λ h = { v ∈ L 2 (T ) : v| Γ i ∈ P p (Γ i ) f or i = 1, ..., N f },
where Γ i is one face of the element border and P p is the space of the polynomials of In order to derive the weak formulation of the system A11 we use the same procedure explained in [START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF] obtaining:

                   (G, Q) Ω i + (∇G, U) Ω i -Gn, Û ∂Ω i = 0 (v, ∂ t U) Ω i -∇v, F -D f Q + D f Qb ⊗ b -F t Ω i + v, F -D f Q + D f Qb ⊗ b -Ft n ∂Ω i + v, f E || Ω i + v, f E EX Ω i -(v, g) Ω i = (v, s) Ω i (A12)
The local problem results ends up in the search for an approximation (Q,

U) ∈ [V h ] d×d × [V h ] d , with a given Û ∈ [Λ h ] d , for all (G, U) ∈ [V h ] 4×2 × [V h ] 4 
that satisfies the system of equations A12 for i = 1, ..., N el . In A12, ., . Ω i denotes the L 2 scalar product in the element Ω i , while ., . stands for the scalar product of the traces in ∂Ω i . Eventually, the traces of F and Q on the element boundary have been replaced by numerical traces in this way:

F( Û) = F( Û) + τ U -Û ⊗ n Q = Q Ft ( Û) = F t ( Û) (A13)
where n is the outer normal to the element face and τ is the local stabilization matrix.
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It is important to underline that τ plays a fundamental role on both the stability and 323 the accuracy of the numerical scheme, and in the literature its role has been already 324 investigated for a large number of problems by Cockburn et al. [START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for 369 nonlinear convection-diffusion equations[END_REF]. In this work, we consider its expression in a diagonal form: τ = τ I, with I the identity matrix, and 326 depends by the parameters of the simulation (perpendicular and parallel diffusion 327 coefficients, sound speed, size of mesh elements etc.).

rearranging the terms with reference to the three variables of the local problem U, Q, Û, the resulting weak problem can be written:

                                         ∇v, D f Q -D f b ⊗ Qb + F Q t Ω i + v, (-D f Q + D f b ⊗ Qb -F Q t ) • n ∂Ω i + + v, f Q E ∥ Ω i + v, δ ∆t U Ω i -∇v, A (U) k-1 U -F U t Ω i + v, øU ∂Ω i + + v, f Q E ∥ + f U E ∥ Ω i + v, f U EX Ω i -v, dg dU k-1 U Ω i + + v, (A k-1 U Û -F Û t ) • n ∂Ω i -v, ø Û ∂Ω i = v, f 0 Ω i + v, s Ω i - -∇v, F 0 t Ω i + v, F 0 t • n ∂Ω i -v, f 0 EX Ω i G, Q Ω i + ∇ • G, U Ω i -Gn, Û ∂Ω i = 0. (A16)
for each element i = 1, ..., N el . In order to develop a high-order finite-element scheme, an high-order polynomial interpolation is considered in each element to represent the unknowns. Defining a set of basis functions, the vector of nodal values for the vector unknown U, Û and similarly for the tensor unknown Q in the element Ω i can be represented as:

U = N p ∑ j=1 N j I 4 U j Q = N p ∑ j=1 N j I 8 Q j Û = N f p ∑ j=1 Nj I 4 Û j (A17)
where N p is the number of nodes in each element and N j , Nj is the j-th basis belonging to V h and Λ h respectively, and U j , Q j , Û j are the nodal value of the unknowns U, Q, Û in the j-th node. The test functions are chosen in the same space of the basis functions, so we can define v, G and v as follows: where the vector v is the correspondent column of the identity matrix for each equation, respectively. The vectors G and v are constructed in a similar way. Using the nodal decomposition introduced in A17-A18, the system of equations for the local problem A16 can be rewritten:

A uq Q + A uu U + A ul Û = S A qq Q + A qu U + A ql Û = 0 (A19)
where we define the vectors U = [U 1 , ..., U N p ], Q = [Q 1 , ..., Q 2N p ] and Û = [ Û1 , ..., ÛN f p ] and the following bilinear form is introduced:

A uq = ∇v, D f Q Ω i -v, D f Q ∂Ω i -v, D f Qb ⊗ b Ω i + + ∇v, D f Qb ⊗ b ∂Ω i + ∇v, F Q t Ω i -v, F Q t • n ∂Ω i + v, f Q E ∥ Ω i , A uu = v, δ ∆t U Ω i + v, øU ∂Ω i -∇v, A k-1 U Ω i + ∇v, F U t Ω i + + v, f U E ∥ Ω i + v, f U EX Ω i -v, dg dU k-1 U Ω i , A ul = v, (A k-1 Û) • n ∂Ω i -v, F Û t • n ∂Ω i -v, ø Û ∂Ω i , S = v, f 0 Ω i + v, s Ω i -∇v, F 0 t Ω i + v, F 0 t • b ∂Ω i -v, f 0 EX • b ∂Ω i , A qq = G, Q Ω i , A qu = ∇ • G, U Ω i , A qu = Gn, Û ∂Ω i . ( A20 
)
The problem in A19 coincide with solving N p + 2N p equations, so, clearly, it is not sufficient to compute the (N p + 2N p + N e f × N f p ) coefficients U , Q, Û where N e f is the number of faces in each element. Nevertheless it is possible to find a relation between them using the Newton-Raphson procedure for the computation of the residuals. Thus, for each iteration k this procedure allow us to solve the local linear system A19 for the variable U and Q in function of the variable Û on the faces of the element. Writing in a more compact form for each element i = 1, ..., N el we have:

U n,k i = U k,n i Û n,k i + F n,k i , Q n,k i = Q k,n i Û n,k i + H n,k i (A21)
where U n,k i , Q n,k i , Û n,k i are respectively the nodal solutions of the unknown U, Q for the element Ω i and the nodal solution of the trace Û for the faces of the element ∂Ω i , at the time step n and NR iteration k. The terms U k,n i and Q k,n i are the elemental matrices at the time step n and NR iteration k, while F n,k i and H n,k i are the right-hand side vectors for the two systems. At this point the nodal values U , Q can be replaced by the solution of the local problem A21 and it is possible to write a set of equations involving only the nodal values Û in the whole mesh:

K k,n Û k,n = R k,n , (A22) 
where K k,n is the global matrix and R k,n i is the global right hand side at each iteration of 

Figure 1 .

 1 Figure 1. WEST tokamak poloidal cross-section. Example of typical triangular meshes restricted at the plasma edge (left) or in the whole section (center). On the right, sketch of the computational domain with boundary conditions for plasma edge simulations (Sec.2.2). The lines correspond to the magnetic flux surface as assigned in the code.The magnetic field B is assigned including both closed flux surfaces in the center
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 21 Equations of the model83

  logarithm Λ = 12, the ionic mass m i = 3.35 • 10 -27 [kg], the elec-84 tronic mass m e = 9.11 • 10 -31 [kg], the vacuum permeability ε 0 = 8.85 • 10 -12 [C N -1 m -1 ] 85 and the electron charge e = 1.60

89homogeneous

  Neumann conditions are considered for all variables.

  90

100

  linear system of smaller size than in a classical discontinuous Galerkin method. The time 101 discretization is fully implicit, and the non-linear terms are linearized using a classic 102 iterative Newton-Raphson method.

103 4 .

 4 Implementation of independent nonlinear diffusive cross-field terms104
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 41 Linearization 107

110 4 . 2 .

 42 The new discrete linear system 111

112A12,

  and the changes are limited to the local element by element problem. It is worthy to 113 observe that in the formulation of the global problem, the perpendicular gradient term is 114 included in the imposition of the normal fluxes at the element boundary in equation A14. 115 Moreover, it is also present in the flux vector that defines the Bohm boundary condition 116 where the normal gradient is imposed equal to 0. Also in this case the contribution of 117 the split diffusion term has to be considered, and the matrices for the assembling of 118 the global problem A ll , A lq are modified in the same way by the additional terms of 119 equation 17.

Figure 2 .

 2 Figure 2. Convergence plots in L 2 -norm of all variables for different values of the polynomial interpolation p. D = 0.1, µ = 0.2, χ i = 0.3, χ e = 0.4 m 2 /s.

122 vergence in p + 1 ,

 1 and thus the correct implementation of the non-equal diffusion 123 coefficients in the solver.

124 4 . 4 .

 44 Example of simulation in the WEST tokamak 125In order to show the new capability of the code to run with different cross-field 126 coefficients, equations 1-4 are resolved in the WEST geometry (Figure1). We assume 127 χ i = χ e as it is usual in current computations of the literature, in agreement with 128 experimental measurements carried out at the tokamak cross-section midplane[START_REF] Horton | Characterization of the H-mode edge barrier at ASDEX Upgrade[END_REF]. For 129 simplicity here we choose ν = χ i = χ e = 1, and only D the particles diffusion is varied 130 in a short range between 1 and 0.6 to avoid the use of too fine meshes. A mesh of 15591 131 elements with p = 6-elements is used. These steady state simulations require a run-time 132 of about 40 minutes each on 32 cpu. 133 On Figure 3, the 2D contours for all flow variables are compared to ones obtained 134 with a former version of the algorithm where all cross-field coefficients had to be equal 135 to 1. The two solutions globally agree showing that the new version of the solver is 136 able to provide 2D plasma equilibrium in realistic geometry. As expected, the solution 137 at D = 0.6 however shows some differences. The contours are sharper contours in 138

145 5 .

 5 Spatial adaptivity 146 Plasma solutions of interest for tokamak operation may exhibit large gradients 147 both in the radial and parallel flow directions when targeting realistic conditions for 148 the simulations, corresponding generally to small values of the cross-field diffusion 149 coefficients [4]. This routinely lead to demanding requirements on the local spatial 150 resolution of the mesh. In practice, failure to design a mesh that accommodates these 151 resolution requirements result in aliasing errors in some elements of the mesh, that may 152 lead to divergence of the Newton-Raphson iterations during the convergence toward 153 the steady state solution. With the objective of enabling a robust numerical modelling 154 of plasma transport in the edge, an adaptive h-refinement has been implemented. The 155 h-refinement method is based here on an oscillation indicator to target flow regions with 156 steep gradients or discontinuities inside the domain of computation. The element size157is then optimised by imposing iterative, local mesh refinements in these flow regions 158 while keeping a coarse mesh elsewhere[START_REF] Piraccini | Spatial adaptivity in SOLEDGE3X-HDG for edge plasma simulations in 375 versatile magnetic and reactor geometries[END_REF].

159 5 . 1 .

 51 Refinement process strategy 160 Experience in the computation of steady-state solutions of plasma transport in the 161 edge has led to the emergence of a strategy combining Newton-Raphson iterations, 162 with progressive lowering of cross-field diffusion coefficients in equations 1-4 in order 163 to reach the desired value imposed by the simulation of tokamak operation (around 164 1 m 2 •s -1 or lower). The Newton-Raphson iterative process is led to convergence for 165 each value of the diffusion, and the obtained solution is used as initial condition of the 166 Newton-Raphson iterations for the next smaller value of diffusion. The h-refinement is 167 adopted for optimizing the mesh design, refining each element on which oscillations 168 are detected. The procedure is stopped when the iterations reach the desired level of 169 accuracy for the targeted diffusion coefficients values.

Figure 3 .

 3 Figure 3. Large scale flows in the WEST tokamak poloidal cross-section. Isolines of density, parallel Mach number, ion and electron temperature at ν = χ i = χ e = 1 and D = 1 on the conlumn on the left and D = 0.6 on the column on the right.
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  several tests, the optimal value α = 2 has been found. In this process, it is obvious that 181 the mesh size is decreased locally and in an isotropic way. The possibility to coarsen 182 the mesh has not been taken into account here because in the present configurations the 183 initial meshes are already very coarse. 184 The efficiency of such a refinement strategy is mainly based on the choice of a 185 suitable mesh refinement estimator. This estimator must be well-calibrated to avoid 186 unnecessary costly over-refinements or, on the contrary, to keep spurious undetected 187 oscillations in the solution. Here, the estimator can be more considered as an indicator 188 uniquely able to identify spurious oscillations in the solution, related to unresolved steep 189 gradients or discontinuities.190 5.2. Oscillation-based error indicator 191

194

  For simplicity, a reduced 2D fluid isothermal model is derived from equations 1-195 2 to solve the density n and the parallel momentum nu in a realistic WEST geometry 196 (see in Ref.[START_REF] Giorgiani | An hybrid discontinuous galerkin method for tokamak edge plasma 341 simulations in global realistic geometry[END_REF]). As in the complete model, Bohm boundary conditions are prescribed in 197 the parallel direction to the magnetic field lines. Although simpler, this reduced model 198 allows to evaluate most of the numerical issues. It takes into account the anisotropy in 199 the flow dynamics between the parallel and perpendicular directions and the balance 200 between the transport in the two flow directions is simply modulated by varying the 201 diffusion D (D = µ). Lowering D makes the parallel transport dominant that can be 202 very demanding for the solver, particularly in the present configuration where the mesh 203

208Fig. 4

 4 Fig. 4 in the WEST poloidal cross-section for D = 0, 83 m 2 •s -1 . The large scales flows 213
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Figure 4 .

 4 Figure 4. Large scale flows in the WEST tokamak poloidal cross-section. Isolines of density n (left) and parallel Mach number u/C S (right). Computations are carried out for D = µ = 0.83(m 2 s 1 ). Solutions are shown at the last iteration of the adaptive process.

221Figure 5 .

 5 Figure 5. Meshes and solution oscillations at three steps during the adaptive h-refinement process for D = 2.63 m 2 •s -1 . Meshes distribution with coloured elements corresponding to solution oscillations (top line). 2D maps of oscillations amplitude calculated on the nodes (bottom line).The colorbar shows the oscillations amplitude from Eq. 21 and averaged over neighbouring elements at every node.As mentioned above, lowering the diffusion coefficient toward realistic values chal-
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  the diffusion, corresponding to the most refined mesh designed during the automative 243 procedure. Results are reported on

251

  elements size equal to the size of the smallest element provided by the adaptive pro-252 cedure. Doing that, the respective meshes are composed by 3219 and 98372 elements, 253 respectively. The corresponding times to converge are respectively equal to 126,51s 254 and 5488s, that corresponds to an increase of a factor 43 when using an uniform mesh. 255 Naturally, this is only informative since uniform meshes are rarely used, but the the time 256 to design accurately a mesh for each value of the diffusion coefficient when lowering 257 it can be long and impossible to estimate because depending on the user's skills. The 258 automatic design of the mesh, which does not required any adjustment by hand, during 259 the iterative process is clearly a great advantage of this procedure.

  260

272

  treatment of the cross-field diffusion terms. The possibility to handle diffusion coeffi-273 cients chosen independently for each variable is a real improvement in the modelling of 274 the cross-field turbulent transport. To progress toward better numerical performance, 275 the first steps of a h-refinement technique have been introduced to optimise the mesh 276 design and save cpu time and memory. Involving an error indicator based on spurious 277 oscillations related to aliasing error, the mesh is refined locally and automatically around 278 steep gradients of the solution that allows to damp efficiently the oscillations. This 279 technique allows to save cpu time, and clearly improves the stability and the robustness 280 of the algorithm. 281 This work is thus a step forward in the development of a very efficient and ac-282 curate numerical solver able to solve 2D transport fluid model in realistic tokamak 283 configurations relevant for the operation.

302 sionless, its value is M re f = T 0 e m i u 2 0≈ 12 . 5 ,

 2125 where e is the electron charge (1.6e -19 C), m i is 303 the ion mass (3.35e -27 kg), T 0 and u 0 are the reference temperature and velocity (50 eV 304 and 1.3839 ms -1 respectively).

314Figure A1 .

 A1 Figure A1 is represented the node distribution in the space V h and Λ h for a triangular 320

337the

  Newton-Raphson method used and at each time step. It is straightforward that the 338 inversion of the problem A22 represents the solution of the HDG problem.

•

  Initialize the calculation with a rather coarse mesh and large values of cross-field

	172		
	173		diffusion coefficients
	174	•	Convergence to the steady solution using Newton-Raphson iterations
	175		-	if convergence, computations are going on, lowering diffusion
	176		-	if non convergence, the refinement procedure is started
	177			*	Interpolation of the solution on the new mesh locally refined
	178			*	Convergence to the steady solution using Newton-Raphson iterations
	179	•	Stop when diffusion coefficients reach the target values

Table 1

 1 

	D	N e	nDOF h-refinement No h-refinement Time saving
	(m 2 • s -1 )			(time (s))	(time (s))	(%)
	26.31	388	5 820	13.96	14.20	+2%
	8.32	1 192	17 880	30.84	35.57	+13%
	2.63	3 219	49 590	126.51	131.67	+4%
	0.83	6 066 114 120	203.75	280.78	+28%
	0.26	10 032 150 480	285.61	366.41	+23%

below, and show a saving of time up to 28% as 244 D is strictly smaller than D = 0.83 m 2 • s -1 . Let's remind that target values for tokamak 245 operation simulations are smaller than D = 1 m 2 • s -1 . As expected when the number of 246 elements in the mesh is not high enough there is no saving, and even an additional cost 247 due the time needed by the algorithm to design the mesh which is naturally not taken 248 into account in the second set of simulations.

Table 1 .

 1 Cpu times in second to convergence depending on the diffusion coefficients and the corresponding meshes for simulations with and without h-refinement technique. N e is the number of elements, nDOF is the number of degrees of freedom for p = 4-polynomials. Without hrefinement an unique mesh is used for each value of the diffusion, corresponding to the most refined mesh designed during the automative procedure.
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The local problem coincides with the system A2 presented above and solved in each element Ω i . A Dirichlet condition is imposed in each element boundary ∂Ω i , which constrains U to be equal to Û(x, t) for x ∈ T . The local problem now consists into determine Q and U in function of the imposed values Û(x, t) on the mesh skeleton T . Thus, for i = 1, ..., N el the local system of equation to solve in the HDG formulation can be written as follows:

The global problem

329

The system A12 allows to compute the solution U and Q in the whole domain of computation in function of the trace of the unknowns on the element border Û. By setting up the global problem it is possible to determine this variable, which allows to solve for Û in the entire mesh skeleton. Imposing the continuity of the fluxes across the element border we can obtain the equation for Û, which, in weak form, it determines the global problem. Substituting the definition of the fluxes, it can be written as follows:

where T represents the skeleton of the triangulation, and B BC is a flux vector that In the previous appendix sections we have introduced all the necessary ingredients to build up the discrete form of the weak problem A12 that is worthwhile and complementary in order to explain the results showed in section 4. Thus, just by assembling everything together it is possible to obtain the final form of linear system to be solved. In the code is used a totally implicit approach, so the time derivative is discretized with a scheme of the form:

where δ is a constant parameter that depends of the time integration scheme, and f 0 is a vector that takes into account the previous time steps. Now we need to use a linearization technique exploited also for the non-linear terms inside the model. Considering a set of variables {w 1 , w 2 , ...} these non-linear terms have been solved using a Newton-Raphson iterative procedure. In a Newton-Raphson framework, the bilinear forms are linearized using a second-order approximation. The linearization used for a generic term f is the following: where k is the NR iteration and dw i = w k iw k-1 i . Now, proceeding with our problem, substituting the definition of the numerical traces introduced in equation A13 and