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ABSTRACT

Context. Relativistic jets are ubiquitous in astrophysics. High-mass microquasars (HMMQs) are useful laboratories for studying
these jets because they are relatively close and evolve over observable timescales. The ambient medium into which the jet propagates,
however, is far from homogeneous. Corresponding simulation studies to date consider various forms of a wind-shaped ambient
medium, but typically neglect radiative cooling and relativistic effects.
Aims. We investigate the dynamical and structural effects of radiative losses and system parameters on relativistic jets in HMMQs,
from the jet launch to its propagation over several tens of orbital separations.
Methods. We used 3D relativistic hydrodynamical simulations including parameterized radiative cooling derived from relativistic
thermal plasma distribution to carry out parameter studies around two fiducial cases inspired by Cygnus X-1 and Cygnus X-3.
Results. Radiative losses are found to be more relevant in Cygnus X-3 than Cygnus X-1. Varying jet power, jet temperature, or the
wind of the donor star tends to have a larger impact at early times, when the jet forms and instabilities initially develop, than at later
times when the jet has reached a turbulent state.
Conclusions. Radiative losses may be dynamically and structurally relevant at least for Cygnus X-3 and thus should be examined in
more detail.
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1. Introduction

Jets are an ubiquitous manifestation of the activity of compact
objects that are at the origin of the microquasar phenomenon
(Romero et al. 2017). High-mass microquasars (HMMQ) are a
subclass of high-mass X-ray binaries (HMXRB) and are com-
posed of a black hole (BH) and a massive star companion. HMMQ
launch powerful collimated jets (e.g., Mirabel & Rodriguez 1999;
Gallo et al. 2005) at relativistic speeds either from the accre-
tion disk of the compact object through the Blandford-Payne
magneto-centrifugal ejection mechanism (Blandford & Payne
1982), or the BH magnetosphere through the Blandford-Znajek
mechanism (Blandford & Znajek 1977). Jets are of interest as
integral parts of the astrophysical objects harboring them, but
also because their impressive stability due to collimation allows
them to extend orders of magnitude farther than their injection
scale (Migliori et al. 2017; Gourgouliatos & Komissarov 2018a),
offering a very powerful way to study their environment or their
contribution to observed thermal (radio), but also (nonthermal)
emissions (Malzac 2014; Zdziarski et al. 2014; Rodriguez et al.
2015; Molina et al. 2019; Albert et al. 2021; Motta et al. 2021).

The HMMQ jets closely resemble to scaled-down jets
from active galactic nuclei (AGN) in regard of the overall
energy released by accretion. However, in HMMQs, the ambient
medium is dominated by the powerful winds of the stellar com-
panion, which are often the source of accretion for the compact

object. This stellar wind dominates the environment in which the
jet will be launched and evolve, which makes the jet propagation
in HMMQ fundamentally different from jets in AGNs and low-
mass microquasars.

The effects of stellar wind on jets were studied by
Perucho et al. (2010a), who performed 3D simulations of rel-
ativistic hydrodynamical jets with a simulation box scale shorter
than the orbital separation. They suggested that jets with a power
of a few 1036 erg s−1 can be disrupted by the wind through the
effect of the Kelvin-Helmholtz instability (KHI). A companion
paper (Perucho et al. 2010b) highlighted the formation and evo-
lution of the recollimation shock and its potential role in parti-
cle acceleration in HMMQs. A larger-scale nonrelativistic study
was performed by Yoon & Heinz (2015) with a simulation box
scale of ∼15 orbital distance, focusing on jet bending at larger
scales and obtaining a simple analytical formula for the asymp-
totic bending angle. A follow-up study by Yoon et al. (2016)
reconsidered the formation of a recollimation shock, emphasiz-
ing that such a shock is likely present in Cygnus X-1, while the
situation in Cygnus X-3 is less clear. Several papers pointed to
the fact that stellar winds are more clumpy than homogeneous
and explored associated consequences for the jets (Perucho &
Bosch-Ramon 2012; de la Cita et al. 2017).

This paper adds to this picture with a set of 3D hydrody-
namical simulations that distinguish themselves from existing
work in that they are relativistic, include radiative cooling, and
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follow the jet evolution over comparatively large spatial dis-
tances of about 20 to 75 orbital separations. The comparatively
large spatial domain allows us to follow jet evolution from an ini-
tial smooth phase through the nonlinear growth of instabilities to
a turbulent, autosimilar state, thereby creating a larger-scale per-
spective for some of the results cited above. The parameter study
we perform with this general setup is anchored at system param-
eters inspired by Cygnus X-1 (Orosz et al. 2011), where cooling
is moderate, and Cygnus X-3 (Zdziarski et al. 2013), where a
strong cooling effect occurs due to the combination of a stronger
stellar wind, magnetic field, and luminosity with an orbital sep-
aration that is one order of magnitude smaller than in Cygnus
X-1.

We obtain typical timescales for the initial instability growth
depending on the various parameters and the presence of cool-
ing, highlighting the importance of the beam internal shocks in
the growth of the KHI and therefore jet structure and dynam-
ics. Cooling is found to play a role only in Cygnus X-3 on the
scales covered by our simulations. Once cooling becomes dom-
inant, the jet cocoon is immediately blown away by the stellar
wind. Our simulations further suggest that the parameter sensi-
tivities we explored somewhat diminish or are more difficult to
clearly diagnose later on, when the jet has become fully turbu-
lent. We confirm earlier findings that the jet is broken when the
wind power is too strong. We find a strong instability developing
at the jet beam – cocoon interface that destroys the beam. A tur-
bulent expanding region develops subsequently that eventually
expands away from the orbital plane, and the jet is recovered.

The layout of the article is as follows: in Sect. 2 we present
the physics of hydrodynamical relativistic jets, our models for
radiative losses, and the numerical setup and methods we used in
our parameter study of jet outbreak. In Sect. 3 we discuss the jet
propagation, destabilization, and structure with the cooling and
parameters. In Sect. 4 we discuss the validity and limitations of
our results before we summarize and conclude in Sect. 5.

2. Physical scenario and numerical methods

2.1. Relativistic equations

The equations for special relativistic hydrodynamics (SRHD)
can be written in the form

∂tU + ∂iF
i = 0, (1)

whereU contains the “conservative” variables and F i the corre-
sponding fluxes in the i direction, which are given by

U =

D
S j

τ

 , F i =

 Dvi

S jvi + pδi j

S i

 . (2)

D = γρ, S i = γ2ρhvi, and τ = γ2ρh − p are the conservatives
variable, with γ the Lorentz factor and h the specific enthalphy.
ρ, vi, and p are the rest-mass density, velocity, and thermal pres-
sure, respectively. They are called the “primitive” variables. The
derivation of these equations can be found in textbooks such as
Landau & Lifshitz (1959) and Mihalas & Mihalas (2013). Addi-
tionally, a passive tracer J distinguishing the jet material (J = 1)
from the ambient medium (J = 0) is advected independently,
following

∂t(DJ) + ∂i(DJvi) = 0. (3)

The system is closed by an adiabatic equation of state (EoS) with
constant adiabatic index Γ taken equal to 5/3 for both wind and

injected material. A value of Γ = 4/3 is better suited to model
flows with high Lorentz factor. We chose the classical value of
5/3 for our mildly relativistic jets. A 1D comparison between
these two values is given in Appendix C.5. We find that chang-
ing the adiabatic index has an almost negligible impact on the
jet head propagation speed, but jets with Γ = 5/3 value present
a more advanced front shock than jets with Γ = 4/3. This may
translate into a more extended cocoon in 2D and 3D jets. The
adapted inversion method to recover the primitive from the con-
servative variables is taken from Del Zanna & Bucciantini (2002)
and is detailed in Appendix C.2. In the rest of this paper, quanti-
ties with subscript b, ic, and oc refer to the beam, inner cocoon,
and outer cocoon, respectively. They are defined properly in
Sect. 3.1. Values with subscript j refer to injection parameters,
and w refers to the stellar wind.

2.2. Jet propagation

We generalize the model for the propagation of a relativistic jet
as derived by Martí et al. (1997) and Mizuta et al. (2004), for
example, where multidimensional effects are neglected and 1D
momentum balance between the beam with velocity vb and the
ambient gas is assumed in the rest frame of the contact discon-
tinuity at the head of the jet, to the case of an ambient medium
with its own (nonrelativistic) flow speed vw. We obtain the fol-
lowing expression for the jet head velocity (details are given in
Appendix A.1):

vh =
η∗vb − vw −

√
η∗(vb − vw)

η∗ − 1
, (4)

with η∗ the injected-to-ambient ratio of inertial density γ2ρh =
γ2(ρ+Γ1 p/c2), Γ1 ≡ Γ/(Γ−1). Parameters η and η∗ are therefore
linked by the relation

η∗ = γ2
bη

hb

hw
· (5)

Equation (4) recovers the equation derived in Martí et al. (1997)
and Mizuta et al. (2004), for instance, by taking vw = 0. This
model is useful to describe the early jet evolution, but several
effects such as the growth of instabilities limit its applicabil-
ity to longer-term dynamics. We can also cite jet propagation
models that take deceleration into account, such as the extended
Begelman-Cioffi model from Scheck et al. (2002) and the decel-
erated momentum balance from Mukherjee et al. (2020), but
these models are not adapted to fit the dynamics of our HMMQ
jets as they were developed in the context of AGN jets.

2.3. Linear growth of the Kelvin-Helmholtz instability

During the jet propagation, various hydrodynamical instabilities
can be triggered and in time perturb the beam, reducing the effec-
tive beam speed at the front shock and decelerating the jet. An
overview is given in Appendix A.2. Here we only mention the
KHI at a relativistic flow interface. For the relativistic case we
are interested in, we derive this dispersion equation from the res-
onance condition in Hanasz & Sol (1996) (for details, see again
Appendix A.2.1),(R − 1) − nπ

 ω2

ηcΓ
+ (Mc − 1)k2

x + 2ωkx
Mc√
ηcΓ

1/2
×

 ω√
ηcΓ
− Mckx

 = 0, (6)
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with ηc ≡ ρb/ρic the ratio of rest mass densities of the beam
and inner cocoon, R ≡ ric/rb the radius ratio of the sheet and
the core, kx the wave number in the jet propagation direction,
and n an integer number. To derive growth time from our sim-
ulations, densities are measured as a volume-averaged value
over each jet zone, while beam and inner cocoon radius are
derived from the respective measured volume and length in
the propagating direction of the zone by approximating both
as coaxial cylinders. This equation is solved using a Newton-
Raphson method and leads to the calculation of the wavenum-
ber kx, maximizing ω with the densities and radii as parame-
ters for the first four modes (n ≤ 4). We then use the maxi-
mum corresponding ω to derive the linear growth time for the
KHI. These timescales correspond to the linear growth times,
whereas the observed growth rate in our simulations will be sig-
nificantly higher due to nonlinear effects. They are still of inter-
est when we compare them for different runs, as the relation
between different linear growth time is the same as the observed
runs.

2.4. Radiative processes

Following Bodo & Tavecchio (2018), radiative losses can be
added in SRHD equations by introducing a source term in
Eq. (1),

∂tU + ∂iF
i = Ψ. (7)

Radiative losses occur by means of four main phenomena:
inverse Compton (IC) scattering, free-free (or Bremsstrahlung)
emission, synchrotron emission, and line and recombination
cooling.

When an external photon field acts as seeds for IC scatter-
ing, the emission pattern is anisotropic in the comoving frame
of the emitting region, causing the jet to recoil. According to
Ghisellini & Tavecchio (2010), however, this recoil can be
neglected in the case of an ion-electron plasma because the
majority of the jet momentum is transported by the ions. Both
free-free emission and line cooling are dominated by the colli-
sions between electrons and ions, which are isotropic in the fluid
rest frame. This logic also applies to synchrotron losses because
the pitch angle (between electron speed and magnetic field direc-
tion) distribution is isotropic, which results in no global momen-
tum loss due to these radiative processes. We can then model
the effect of the various radiative losses as a single energy-loss
term,

Ψ =

 0
0

Prad

 ,
where Prad = PIC + Psyn + Pff + Pline is the volumic power
losses due to inverse Compton scattering, synchrotron emission,
Bremsstrahlung emission, and line and recombination cooling.
Detailed expressions for each individual loss term including
the derivation of the first two from a Maxwell-Jüttner dis-
tribution of the electrons and the necessary adaptations we
made for them to be compatible with SRHD are given in
Appendix B. The power-law exponents of each process are
compiled in Table B.1. The evolution of the different loss
terms with temperature for both types of runs is illustrated
Fig. 1.

The corresponding cooling time can be written as

tc = γ
(
t−1
c,p + t−1

c,ρ

)−1
, (8)

with tc,p = γρ/ρ̇ the isobaric (ṗ = 0) cooling time and tc,ρ =
γp/ṗ the isochoric (ρ̇ = 0) cooling time, see Appendix B.6
for the related derivation. Taking γ ≈ 1 as a first approxima-
tion, tc,p ≈ 1021ρ/Prad and tc,ρ ≈ 1.5p/Prad. In the range of
density and pressure observed in our simulations, the isochoric
cooling time is consistently the shortest by about two orders of
magnitude.

This work is limited to the case of thermal optically thin
plasmas: photons produced in these processes can freely escape
without interacting with the gas and thus carry all the energy
away from the jet. This approximation is true for X-rays, but
does not hold at every frequency. Verifying this hypothesis
would require more specific investigations. We also applied our
cooling model to the ambient medium, even though it is opti-
cally thick for optical and UV lines in Cygnus X-1 due to the
properties of O-type star winds, and to optical and UV contin-
uum in Cygnus X-3 because the companion star is a Wolf-Rayet
(WR) star. We modeled this effect by setting up a temperature
floor slightly lower than the surface temperature of the star to
ensure that the medium did not cool to nonphysical values. This
value is arbitrary and has no impact on the jet dynamics as it
has close to no effect on the ambient inertial density, and the jet
overpressure is such that modifying the ambient pressure has no
effects.

The radiative processes have different scalings with rest mass
density, temperature, and distance to the star in the orbital frame.
Therefore the dominance of one or two processes over the others
may vary with time and space. The power-law exponents of each
process detailed Appendix B are compiled in Table B.1. The evo-
lution of the different loss terms with temperature for both types
of runs is shown Fig. 1.

2.5. A-MaZe simulation toolkit

We performed 3D simulations using the hydrodynamical mod-
ule from the A-MaZe simulation toolkit (Walder & Folini 2000;
Folini et al. 2003; Melzani et al. 2013). It uses the method of
lines, a semidiscretized finite-volume method: after discretizing
in space, the resulting system of ordinary differential equations
is solved with a forward Euler scheme. Fluxes are computed by
the (stabilized) Lax-Friedrichs approximation using a second-
order reconstruction based on min-mod limiters. The equations,
the solution method, and a benchmark for the accuracy of this
method are all reported in Appendix C. A relativistic solver was
implemented by adding the recovery of primitive variables using
the inversion method detailed Appendix C.2.

Our simulations were set in a static grid made of five refine-
ment levels centered on the jet injection nozzle, as shown in
Fig. 2. Cells from the coarse grid had a 4 × 1011 cm edge, and
the edge of the highest-level cells was 64 times lower for a max-
imum resolution of 6.25 × 109 cm. The number of coarse level
grid cells was 250×200×200 and 250×150×150 for Cygnus X-1
and Cygnus X-3, respectively. The associated physical domain
sizes are given in Table 1. The cfl number was set to 0.15. The
time step was refined along with the spatial grid. On the coarse
grid, it was about 2s for Cygnus X-1 and 5s for Cygnus X-3. The
jet was injected perpendicular to the orbital plane (y−z plane) by
fixing (ρj, uj,Tj) on a few cells at x = 0, always imposing at least
20 cells of the finest grid to fix the diameter of the beam. The
environment was set by fixing the wind velocity and density at
the stellar surface, resulting in an isotropic wind with constant
speed modulus and density in r−2. The boundary condition the
at x = 0 plane was reflective, while the other boundaries of the
simulation grid had outflow conditions.
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Fig. 1. Evolution of the loss processes with rest frame temperature in Cygnus X-1 (left) and Cygnus X-3 (right). The thin black lines shows the
various temperature scalings detailed Table B.1. Line recombination losses (“line”) are not drawn for T > 107.7 as they are disabled above this
temperature. Colored shading shows synchrotron losses (“syn”) when the stellar magnetic field B? is either multiplied or divided by 5, and the
shading around inverse Compton losses (“ic”) illustrates a ±10% uncertainty on T?. The values for the physical quantities have been chosen
in the outer cocoon leeward side in fiducial runs. They allow for a clear showcasing of the loss scaling, but are not representative of the losses
over the simulation. We refer to Fig. 7 to compare them over the whole jet. For Cygnus X-1: ρ = 10−15 g cm−3, B? = 10 G, T? = 3 × 104 K,
(x, y, z) = (1.5×1012, 4.05×1013, 4×1013) cm, (vx, vy, vz) = (108, 108, 108) cm s−1. For Cygnus X-3: ρ = 10−14 g cm−3, B? = 100 G, T? = 8×104 K,
(x, y, z) = (1.5 × 1012, 3.05 × 1013, 3 × 1013) cm, (vx, vy, vz) = (108, 5 × 108,−103) cm s−1.

2.6. Covered parameter space

We defined runs CygX1 and CygX3 as our fiducial runs for
Cygnus X-1 and Cygnus X-3, respectively. The main parame-
ter values for these two runs are given in Table 1. The choice
of physical values was inspired by Orosz et al. (2011) and Yoon
& Heinz (2015) for Cygnus X-1 and by Orosz et al. (2011) and
Dubus et al. (2010) for Cygnus X-3. The parameter choices for
the various sensitivity studies are listed in Tables D.1 and D.3.

Table 1 shows the value of the environment parameters rel-
evant for jet radiative losses as well as the parameters of the
respective fiducial runs. The characteristics of the Cygnus X-3
system mean the radiative losses will be stronger overall. We
chose a stronger magnetic field base value for Cygnus X-3 to
compensate for the addition of the distance scaling detailed in
Appendix B.5. The luminosity of the two companion stars are
similar because the companion star in Cygnus X-3 is hotter but
smaller. Thus the smaller orbital distance implies stronger syn-
chrotron and inverse Compton losses by a factor 100. The beam
density ρb was chosen to be ten times greater than in the Cygnus
X-1 runs, implying stronger line and free-free losses by a fac-
tor 100 also. Both beams roughly have the same internal energy
density, but will cool a ∼100 times faster in Cygnus X-3 case.

2.7. Post-processing

To perform a quantitative analysis of our simulations, we identi-
fied each computational cell according to the following rules for
the various interfaces of the jet: the separation between ambi-
ent material and outer cocoon was made at p = .01 Ba and
T = 107 K, the working surface between inner and outer cocoon
was defined where J = 0.05, following the definition for the
mixing layer in Perucho et al. (2004a), and cells were consid-
ered part of the beam if ζ ≡ (vx/vj)J > 0.8. This criterion was
defined in Yoon & Heinz (2015). We found that choosing 0.8 as
the threshold value identified the beam up to the reverse shock

Fig. 2. Structure of the computational grid over the whole domain, illus-
trated for a rest mass density slice along the plane containing the star
and jet center. The density scale extends from 10−19 (deep blue) to
10−12 g cm−3 (red), same as Fig. 3. The grid contains five refinement
levels: the whole domain is refined twice (green and blue interfaces) by
a factor of 4 and then twice more (cyan and magenta interfaces) by a
factor of 2 to attain a factor of 64 in the finest levels, which are better
shown in the zoom into the jet injection at the orbital scale in the bottom
right corner of the image.

with more success than a criterion that was purely based on J,
especially in the later phases of the jet outbreak when beam and
inner cocoon mix. The value J = 0.05 was found to correctly
separate the low-density high-temperature inner cocoon from the
outer cocoon. These criteria are deemed correct in the sense that
their limits correspond to the jumps in the various physical quan-
tities between jet zones. Redundant cells between the different
refinement levels were ignored to avoid errors.
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Table 1. Main parameters of fiducial runs.

Cygnus X-1 Cygnus X-3 Unit

ρj 1.3 × 10−15 1.4 × 10−14 g cm−3

vj 1010 2.25 × 1010 cm s−1

Tj 108 108 K
dorb 3 × 1012 2.6 × 1011 cm
R? 16.2 2.3 R�
T? 3 × 104 8 × 104 K
B? 10 100 G
Ṁ? 3 × 10−6 10−5 M� yr−1

v∞ 1000 1500 km s−1

xmax 1014 1014 cm
ymax, zmax 8 × 1013 6 × 1013 cm

After identifying each computational cell as part of a zone,
we measured various quantities relative to each zone in post-
processing, such as the length, the volume, the volume-averaged
quantities, and the probability density functions over the jet. We
also defined a proxy for the jet aspect ratio as (πl3/V)1/2, where
l and V are the total length and volume of the jet, respectively.
This is equivalent to the ratio l/Rj,eff , where Rj,eff is the radius of
a cylindrical jet of length l and volume V .

3. Results

The results we present below are, to the best of our knowledge,
the first 3D simulations of jets in HMMQs that are relativistic
and include radiative cooling in parameterized form. They cover
the evolution of the jet from its launch over the onset of insta-
bilities and radiative cooling to the turbulent phase at the end of
our simulations.

More specifically, we discuss the propagation of the jet
through the stellar wind from its outburst close to the BH up
to scales of about 6× 1013 cm for Cygnus X-1. This corresponds
to about 20 times the separation between the two stellar compo-
nents dorb, and 2 × 1013 cm ≈75 dorb for Cygnus X-3 (the values
for dorb are consigned in Table 1). A brief overview of previous
studies is given in Sect. 3.1. Details about our fiducial simula-
tions are given in Sect. 3.2, with particular focus on the develop-
ment of the KHI and its role in different phases of jet propagation
(Sect. 3.2.1), as well as cocoon evolution (Sect. 3.2.2). Then,
the impact of radiative losses on jet structure and dynamics
(Sect. 3.3) is investigated, before we perform a short parame-
ter study (Sect. 3.4) of the jet temperature (Sect. 3.4.1), kinetic
power (Sect. 3.4.2), and stellar wind (Sect. 3.4.3).

3.1. Previous studies

The interaction of a jet with its ambient medium typically results
in a richly structured flow field. For any discussion of this com-
plex flow field, it is useful to resort to its basic idealized mor-
phology, which is characterized by three surfaces that separate
the flow into four zones. The innermost zone, the jet beam or
spine, consists of unprocessed jet material. A combination of
discontinuities (including a reverse or terminal shock and poten-
tially shear layers, or also reconfinement shocks) separates the
jet beam from the inner cocoon, which is composed of shocked
jet material (also called “shear layer”, “jet sheath”, or simply

“cocoon”). A contact discontinuity or working surface marks
the transition from inner to outer cocoon (or “cavity”), the lat-
ter containing shocked ambient medium. A third discontinuity, a
bow or forward shock at the jet head, marks the transition to the
ambient medium (good sketches of this structure can be found
in other works, e.g., Matsumoto & Masada 2019, for a recent
example).

Martí et al. (1997) identified five parameters to completely
specify a relativistic jet propagating into a homogeneous medium:
the density ratio η ≡ ρj/ρw, the pressure ratio K ≡ pj/pw, the
beam flow velocity vj (or its associated Lorentz number γb), the
beam Mach number Mj,and the polytropic index Γ.

Quantities with subscript j are relative to the values at injec-
tion, while the subscript w denotes quantities of the (in our case,
wind-dominated) ambient medium. As pointed out by Martí et al.
(1997), the propagation efficiency of a relativistic jet is mostly
determined by the inertial mass density ξ = γ2ρh introduced in
Sect. 2.1, and especially by the ratio η∗ between beam and ambi-
ent medium inertial mass densities because the latter determine
the momentum balance at the contact discontinuity in the jet head.

Sufficiently light (η < 0.1) supersonic jets, as considered in
this work, display extended cocoons as the high pressure of the
shocked gas drives a backflow toward the source. These jets also
display a series of internal oblique shocks in the beam, whose
strength and spacing are determined by the Mach number and the
gradient in the pressure external to the beam (see, e.g., Gómez
et al. 1995, 1997, and references therein): the higher these num-
bers, the stronger and closer to each other these oblique shocks.
Increasing the Mach number also intensifies the expansion of the
cocoon.

The structure of this cocoon is determined by the adiabatic
index Γ: for models with Γ = 5/3, the cocoon is stable at first,
but eventually evolves into vortices, producing turbulent struc-
tures and generating perturbations at the beam boundary. This
enriches the internal structure of the beam. For models with
Γ = 4/3, the first internal conical shock is strong enough for
the resulting beam collimation to accelerate the flow. During
this acceleration phase, the beam gas is less efficiently redi-
rected to the cocoon downstream, accumulating at jet head.
Once this acceleration is over, the continuous flow reestab-
lishes itself, forming small turbulent vortices in the cocoon.
The cocoon structure reflects this history, the parts of it formed
before and after this beam acceleration phase presenting differ-
ent morphologies. See Martí et al. (1997) for a more in-depth
discussion.

Bodo et al. (1994) observed that during its propagation, a jet
will present different structures tightly linked to the evolution of
the KHI modes, identifying three phases: in a first “linear phase”
the various modes grow following the linear behaviour, and no
shock is present in the beam. The apparition of biconical shocks
centred on the beam axis marks the beginning of the “expansion
phase”, during which the strength of these shocks grow and the
jet radius expands in the post-shock region. Finally, the evolution
of the shocks leads to mixing between the jet and the external
material, marking the start of the “mixing phase”.

The stellar wind can influence the propagation of a relativis-
tic jet greatly: jet disruption by a constant and perpendicular
wind were observed in Perucho & Bosch-Ramon (2008) and
Perucho et al. (2010a) even for moderate jet kinetic luminosi-
ties. In particular, the presence of a wind strengthens the initial
recollimation shock in the beam which can also strengthen jet
asymmetric KHI produced at the wind/jet contact discontinuity.
These may in turn disrupt the jet.
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Fig. 3. Rest-mass density slices of run CygX1 at times (top to bottom)
t = 2000, 6000, and 12 000 s, showing the three evolutionary phases
detailed in the text in Sect. 3.2.

3.2. Cygnus X-1 and Cygnus X-3 fiducial cases

We start with a description of the fiducial cases for Cygnus X-1
and Cygnus X-3, respectively, against which all other sensitiv-
ity studies will be compared later on. Converting the numerical
values of the parameters to the dimensionless quantities intro-
duced in Sect. 3.1 (Tables D.2 and D.4) places our jets in the
supersonic case with extended, turbulent cocoons and a beam
with rich internal structure. Our fiducial runs indeed follow these
expectations: the evolution of the jet is shown Figs. 3 and 4 for
the CygX1 run, Figs. 5 and 6 for CygX3. Several features catch
the eye, which we further elaborate on below. First, there is qual-
itative change in the appearance of the jet, from an early ‘well
ordered’ state to a turbulent state later on. This change is also
reflected in the propagation of the jet head and three phases of
the jet evolution can be identified. Second, the aspect ratio of the
jet is different for Cygnus X-1 and Cygnus X-3. Third, jet bend-
ing due to the lateral wind impact is observed in all simulations.
Fourth, the jet is asymmetric due to the wind of the companion
star.

3.2.1. Instability growth and phases of jet propagation

The structure of our jets goes through three phases, common to
both Cygnus X-1 and Cygnus X-3 runs. We refer to these three
evolution stages as the “smooth”, “instability growth” and “tur-
bulent” phases respectively according to their inner structure. An
illustration via rest-mass density slices is given in Figs. 3 and 5.
The three phases also leave an imprint on the time-series data
shown in Figs. 4 and 6.

During the first phase, the beam flow is surrounded by a
smooth cocoon that is symmetrical at its head. A few internal
shocks are present in the beam, starting with a strong recollima-
tion shock situated at a few ∼1012 cm downstream of the injec-
tion. Its existence and position are coherent with the criterion and
analytical prediction from Yoon et al. (2016) obtained by equat-
ing wind ram pressure and lateral ram pressure in the beam. The
aspect ratio of the jet defined in Sect. 2.7 increases gradually.
It roughly follows a power law in time in the early propagation
phase with an exponent of ∼0.6. For Cygnus X-3, the aspect ratio
in the same phase first decreases before it increases with what

could be a power law with a similar exponent as for CygX1. This
may be explained by the strong asymmetry of the cocoon dur-
ing this phase due to the strong stellar winds. A small deviation
of the CygX3 beam can already be observed at this point. The
jet head position and velocity follow the theoretical 1D result
from Appendix A.1. Deviations indicative of the transition from
phase one (smooth) to phase two (instability growth) occur after
roughly 2000 s in the case of CygX1 and much earlier, after a few
hundred seconds, in the case of CygX3. In particular, the speed
diagram for CygX3 breaks almost immediately from the theoret-
ical profile. This may be a consequence of the already existing
bending of the beam.

In the second phase, instabilities grow in the jet, which per-
turb the flow in both inner cocoon and beam head. While the
jet volume tends to grow faster now than during the first phase,
the growth of the aspect ratio slows down with a ∼0.4 expo-
nent for CygX1 case, and the jet head velocity overall decreases
while the position breaks from the theoretical values. In CygX1,
the number of over- and underpressure regions in the beam (see
Figs. E.1 and E.2) stays approximately constant before increas-
ing after about 5000 s. Ultimately, the growing instabilities cause
oscillations of the beam head perpendicular to its propagation
direction. For CygX3, these oscillations induce speed fluctua-
tions even though the beam still retains its structure.

In the last phase, after about 6000 s in CygX1 and 2000 s
in CygX3, the perturbations have reached the beam core. They
modify the beam structure at the jet head severely, while the
inner cocoon has become turbulent. This also marks a change
in shape of both the cocoon and the jet head. The modification
of the jet head shape can be linked to oscillations of the beam
region that end in the reverse shock, as a beam head that is mis-
aligned with the general jet propagation direction causes beam
material to flow at higher speed and in same direction as the
cocoon expansion, which deforming the jet. The jet head posi-
tion evolves with an approximately constant mean velocity. Fluc-
tuations up to roughly 30% are visible in the speed plots, which
is in line with the persisting motion of the jet head position
perpendicular to the jet axis. The volume of the outer cocoon
evolves roughly as a power law in time with an exponent of
about three for CygX3 and half as much for CygX1. The vol-
ume of the beam features a similar time dependence in the case
of CygX1, but a shallower dependence for CygX3, with a powe-
law exponent of about two instead of three. The aspect ratio
decreases somewhat before becoming constant, at least in the
case of CygX1.

This classification can be compared to the classification from
Bodo et al. (1994) given in Sect. 3.1, but their “linear” phase
escapes our data analysis because we dump data frames only
every 100 s and 25 s for CygX1 and CygX3, respectively, while
the estimated KHI linear growth timescale is typically on the
order of a few tens of seconds for Cygnus X-1 and a few sec-
onds for Cygnus X-3 (see Table 2). No value was found with
this method for run CygX1_mP, where the beam is heavily dis-
rupted by the stellar wind and the approximations made are
no longer valid. Our first two phases (smooth and instability
growth) appear to be subdivisions of their “expansion” phase,
while our turbulent and their “mixing” phase match.

These phases are also visible in the speed diagram of the jet
head that display the same trend for the Cygnus X-1 and Cygnus
X-3 fiducial runs in Figs. 4 and 6: we can link the smooth phase
with the initial acceleration, the deceleration and the concave
part with the instability growth, followed by the turbulent phase.
The first two of these three phases are of interest in the context
of dedicated studies on instability onset and growth. Although a
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large body of associated literature exists, we are not aware of any
such studies for relativistic jets in HMMQs including radiative
cooling.

The link between the internal structure and the dynamic was
discussed in Martí et al. (2016), suggesting that the growth of
the KHI is related to the strength of these oblique internal shocks
inside the beam: the KHI grows as the sound wave travels back
and forth between the beam surface and the contact discontinu-
ity, therefore more and stronger internal shocks produce a greater
number of reflections within a given time or distance. This ulti-
mately accelerates the growth of the KHI. The ripple-like struc-
tures observed in the cocoon, similar to pressure perturbations
in Perucho et al. (2004b), could be viewed as markers of such
sound waves.

Returning to the density in Figs. 3 and 5, although the beam
and cocoon mix together at the jet head, the flow is not slowed
down until the very end of the jet. The jets are bent away from
the star almost as soon as the jet is established for the Cygnus
X-3 runs, but also in Cygnus X-1 runs after enough lifetime of
the jet. This bending angle ψ, defined in Yoon & Heinz (2015)
as the angle between the local and the initial velocity vector, can
be compared to the analytical value derived in the same paper.
For run CygX1, we find ψ = 0.1 rad for a beam end at x =
6.8 × 1013 cm, which is close to ψ = 0.09 found analytically.
For CygX3, we find ψ = 0.04 rad for a beam end at x = 1.52 ×
1013 cm and 0.03 analytically, showing good agreement of our
runs with the analytical estimate.

3.2.2. Cocoon evolution and radiative losses

Over the course of the initial jet outburst, the outer cocoon
expands in the directions perpendicular to the jet propagation
due to its overpressure compared to the ambient medium. On
the windward side closest to injection, the interface between
cocoon and wind is a bow shock and its dynamic are deter-
mined at first order by the balance between wind ram pressure
and internal thermal pressure of the cocoon: depending on this
balance, the interface will move either away from or closer to the
beam. Farther away from the plane of orbit, the wind ram pres-
sure becomes negligible and the interface dynamics is driven by
the balance between internal and external thermal pressure. On

the leeward side, the cocoon expands in the same direction as the
wind speed. The resulting asymmetry of the cocoon is apparent
at early times in both CygX1 and CygX3. At later times, the dif-
ference between windward and leeward side diminishes as the
wind speed is increasingly aligned with the propagation direc-
tion of the jet (Figs. 3 and 5).

As the cocoon cools down with time either adiabatically due
to expansion and/or from radiative cooling, the thermal pres-
sure of the cocoon diminishes, which increases the influence of
the wind on its dynamics. Figure 7 displays the volumic power
losses per jet zone per process for the fiducial runs CygX1 and
CygX3, measured over all the jet cells for two data points per
evolutionary phase. In both cases, free-free losses dominate the
cooling in the beam and inner cocoon, with a stronger cooling
in the beam than in the inner cocoon. The colder outer cocoon is
dominated by the very efficient line recombination cooling. This
result holds true for all our simulated runs.

Moreover, the gas in the cocoon has a velocity component
in the positive x-direction. Thus the cocoon moves outward of
the system with the beam, but at a slower pace. Ultimately, no
trace of the original cocoon is left in the innermost parts of the
jet. A thin interface of shocked stellar wind only a few rb wide
has instead formed between the wind and the beam (late times in
Figs. 3 and 5). This “naked beam” is of interest because it repre-
sents a (quasi-) stationary state structure studied in the literature
(e.g., Wilson 1987; Komissarov et al. 2015 for hydrodynamical
jets, Martí et al. 2016; Bodo & Tavecchio 2018 for MHD jets)
and can be related to direct observations.

3.3. Effects of losses on jet structure and dynamics

Cooling times in our two fiducial cases are such that over
the time covered by our simulations, radiative losses have
no significant impact on CygX1, and a clear influence on
CygX3. The comparison of the position and speed diagrams
of Figs. 8 and 9 shows that the first cooling effects are seen
after 7600 s for Cygnus X-1, and the first cooling effects
are visible after 100 s for Cygnus X-3. The jet head velocity
evolves remarkably similarly with and without radiative losses
during the first two phases of jet evolution (Fig. 8, bottom).
In the case of CygX3, by contrast, radiative losses lead to
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Fig. 5. Rest-mass density slices of run CygX3 at times (top to bot-
tom) t = 400, 1200, and 2500 s, showing the three evolutionary phases
detailed in the text in Sect. 3.2.

a loss of much of the outer cocoon at distances of a few
1012 cm (Fig. 9, top) and slow the jet head dwon (Fig. 9, bot-
tom). Therefore, we restrict the following discussion mostly to
CygX3.

3.3.1. Beam destabilizing effect through cocoon pressure

The addition of the loss terms has a destabilizing effect on the
beam through its interaction with the inner cocoon: free-free
cooling, shown in Fig. 7 to be the dominant process in both the
beam and the inner cocoon, diminishes pressure in the jet with
a different intensity depending on the jet zone: the beam cools
faster than the inner cocoon, causing a stronger pressure gradient
between inner cocoon and beam. This strengthens the oblique
internal shocks (Fig. 10, left panels), which in turn accelerates
the growth of KHI, as detailed Appendix A.2. Thus KHI grows
faster in the cooled case, changing the dynamical behavior of the
cooled jet, as shown in Fig. 9. Pressure in each zone is derived
from the mean rest mass density and temperature measured over
the corresponding marked cells defined in Sect. 2.7.

The cocoon-to-beam pressure ratio for runs CygX3 and
CygX3_noLoss is shown top panel of Fig. 10. It is to be noted
that this ratio is greater than 1 at all time, ensuring a pressure
collimation of the beam. In the non-cooled case, after the ini-

tial decrease that is caused by the settling in of the jet structure,
the overpressure grows in two phases with a transition around
∼2000 s. In the cooled case, the growth rate seems constant
from the start with the exception of a strong increase starting
at t = 650 s, peaking at ∼1000 s, and joining the overall trend
at 1350 s. This occurs as the jet transitions from the instability
growth to the turbulent phase: t = 600 s indeed marks the appari-
tion of strong oblique shocks in the cooled case. This stronger
overpressure explains the difference in beam structure that is
shown in the bottom panel of Fig. 10, displaying a longitudi-
nal slice of the jet material tracer at t = 750 s including the plane
containing the stellar center: a higher gradient of inner cocoon
to beam pressure causes the stronger oblique shocks in CygX3
runs.

3.3.2. Effects on the outer cocoon expansion

Volumes of individual jet zones are affected by radiative cool-
ing in different ways (Fig. 11). As explained in Sect. 3.2.2, the
dynamics of the wind-cocoon interface near injection zone is
mostly controlled by the inner thermal pressure of the outer
cocoon. Therefore, the more efficient the cooling, the smaller
the outer cocoon and the faster the evolution of the cocoon up
to the “naked beam” situation. In Cygnus X-3 case, the effect on
the cocoon is shown in the volume diagram in Fig. 11: the outer
cocoon very quickly evolves to be consistently of greater volume
in the non-cooled case. In contrast, the volumes of the two inner
cocoons are similar in the smooth and turbulent phases: in the
first phase, the cooling effects on the inner cocoon are negligi-
ble because it is both the hottest and least dense part of the jet,
while in the second phase, the instability-induced turbulences
dominate the cocoon flow. The period during which the volume
of the inner cocoon differs is likely due to the different starting
time of the mixing phase between these runs, as explained in
Sect. 3.3.1.

When the turbulent phase is reached, the inner and outer
cocoon volumes show a similar power law dependence on time
of roughly t3, regardless of whether radiative losses are included.
By contrast, the beam volume displays a different power-law
dependence in the cooling and non-cooling case. The relative
volume of outer to inner cocoon is much larger in the no-loss
case than in the loss case. This may be an issue if radiative losses
are diagnosed only during postprocessing from adiabatic solu-
tions.

The cocoon form is also affected: The comparison of runs
CygX3 and CygX3_noLoss in the top panel of Fig. 9 shows that
the expansion is strong enough in the non-cooled case to cause
the cocoon to almost wrap around the star before it is blown back
as the cocoon pressure diminishes, while in the cooled case, the
cocoon is almost immediately blown back to a thin shell by the
strong stellar winds.

3.4. Parameter sensitivities

We start with sensitivities to the assumed beam temperature
(Sect. 3.4.1), which has been covered comparatively little in
the literature and is thus somewhat more extensively dealt with
here. Sensitivities to beam power and wind parameters follow
(Sects. 3.4.2 and 3.4.3).

3.4.1. Effects of the jet temperature on instabilities growth

An increase in the jet injection temperature Tj lowers the beam
Mach number. We expect the jet to display a smaller cocoon and
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Table 2. Linear growth time of the KHI.

Run name tKHI (s) Run name tKHI (s)

CygX1 71.4 CygX3 0.80
CygX1_noLoss 68.0 CygX3_noLoss 18.4
CygX1_wind 60.8 CygX3_mW 2.7
CygX1_mP / CygX3_mP 0.12
CygX1_T7 207.0 CygX3_mPmW 7.1
CygX1_T9 26.8 CygX3_mPmmW 10.0

Notes. The slash indicates no value could be found.

to be less stable as the distance between internal shocks in the
beam diminishes with it. This is true for the step from 108 to
109 K, but not for the step from 107 to 108 K. We ascribe this dif-
ference to the action of the first recollimation shock, which heats
the beam of CygX1_T7 to similar values as are found in CygX1.
Increasing Tj also results in a higher overpressure between the
inner cocoon and the beam, which further strengthens the effects
of oblique shocks we described above and leads to a faster desta-
bilization of the beam, as explained in Sect. 3.2.1.

This destabilization is visible in the speed diagrams in
Fig. 12, showing colder jets to be more stable than hot jets:
CygX1_T7 shows similar dynamics as the fiducial run with a
longer instability growth phase. In contrast, the run CygX1_T9
displays different dynamics in this phase from the other two:
the jet propagation speed slows down to a plateau instead of
exhibiting a progressive acceleration. This difference in dynam-
ical regime can be linked to the mean beam temperature in the
top panel of Fig. 13: beams associated with runs with Tj = 107

and 108 K display almost the same temperature as a result of the
heating at the initial recollimation shock, which raises them to a
few 109 K with very little differences. They begin to deviate from
each other around the same time as the jet propagation speed
does. With Tj = 109 K, the temperature upstream of the shock is
about the same as the downstream temperature, resulting in an
higher effective beam temperature. This in turn means that the
internal shocks that are closer to each other. This observation is
confirmed by drawing the probability density function (PDF) of
the temperature in Fig. 14. At t = 4000 s (full lines, during the
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Fig. 7. Time evolution of radiative losses for the fiducial runs CygX1
(top) and CygX3 (bottom), derived at each cell and summed per zone,
at time steps t = (500, 2000, 4000, 6000, 10 000, 15 000) s for CygX1
and t = (250, 500, 750, 1500, 3000, 6000) s for CygX3 (two data points
per evolutionary phase). In both cases, free-free losses dominate cooling
in the inner cocoon and beam, while line cooling dominates the outer
cocoon.
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Fig. 8. Effects of losses on run CygX1 structure and dynamics. Top:
temperature slices of runs CygX1 and CygX1_noLoss at time t =
15 000 s. Both jets display similar structures, with the exception of a
slightly larger outer cocoon at the head of the non-cooled jet. Bot-
tom: jet head propagation and speed of the same runs, CygX1 in
red and CygX1_noLoss in blue. The theoretical 1D propagation from
Appendix A.1 is drawn as dotted lines following the same color-coding.
The propagation is identical in both runs until the start of the turbulent
phase, after which speed fluctuations differ, but the average propagation
speed is identical in the two runs with almost no difference in the jet
head position plot.

instability growth phase), the PDFs for CygX1 and CygX1_T7
are identical, while CygX1_T9 differs for temperatures higher
than ∼4 × 109 K. At t = 10 000 s, the PDFs of the three runs dif-
fer by roughly the same amount, especially at the peak around
2 × 1010 K. This can be interpreted as showing that the turbu-
lence in the cocoon distributes the available thermal energy and
therefore makes the difference in injected temperature visible.

The bottom panel of Fig. 13 shows the pressure ratio between
inner cocoon and beam for the same three runs, where the pres-
sure is derived from the mean temperature and from the rest mass
density obtained by averaging over the marked cells. The pres-
sure ratio in run CygX1_T9 displays a different behavior from
the other two runs, showing higher values as soon as t = 1000 s.
This results in stronger internal shocks in the beam. The values
for runs CygX1_T8 and T7 are similar up to time t ∼ 6000 s,
however, meaning that the internal structure of these two jets are
similar during this period. These two effects both accelerate the
growth of KHI modes, which is confirmed by the derived val-
ues of tKHI of 207, 71.4 and 26.8 s found in Table 2 for runs
CygX1_T7, CygX1, and CygX1_T9, respectively.
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Fig. 9. Effects of losses on run CygX3 structure and dynamics. Top:
temperature slices of runs CygX3 and CygX3_noLoss at time t =
9000 s. Two main differences appear: (1) The cooled beam is thinner.
Its envelope closely follows the internal shocks structure in contrast to
the non-cooled case. (2) The cocoon of the non-cooled jet expands far-
ther at its basis, almost wrapping around the star, whereas in the cooled
case, the cocoon has almost disappeared because ambient material has
cooled enough to be blown back by the wind. Bottom: same as Fig. 8.
The cooled jet (in red) is initially faster, but leaves the smooth phase ear-
lier, after which point it is slower on average, as seen in the propagation
plot.

For the turbulent phase, the effect of the different beam tem-
peratures is weaker. The velocity of the jet head is compara-
ble to within its fluctuation range, except possibly for the very
late time that is still covered by our simulations when the jet
head velocity for the hottest jet seems to slow down slightly as
compared to the two simulations with cooler jets. This would
suggest that as soon as a more generic turbulent behavior takes
over the dynamics, the beam injection temperature becomes less
important.
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Fig. 10. Effect of radiative losses on the CygX3 beam structure. Top:
ratio of volume-averaged pressure of the inner cocoon and beam for
runs CygX3 (red) and CygX3_noLoss (blue). The overpressure is
always higher in the cooled case. Bottom: tracer density at t = 750 s
for runs CygX3 and CygX3_noLoss. The cooled jet features stronger
oblique shocks.

3.4.2. Effects of the injected power

A decrease in the jet kinetic power decreases its propagation effi-
ciency as well as its stability. Starting from our fiducial test cases
CygX1 and CygX3, we reduced the jet power by a factor of 10
(CygX1_mP) and 2 (CygX3_mP) via reducing the jet density at
constant beam speed, as detailed in Tables D.2 and D.4. In these
modified settings, the jets are expected to propagate more slowly
and to be more prone to instabilities because the inertial mass
density is lower as long as the jet is not disrupted by the stellar
wind, as pointed out in Perucho et al. (2010a). This occurs for
run CygX1_mP, as shown in Fig. 16. At constant beam speed vb,
the amplitude of the speed variations along the trend defined in
the beginning of this section and the timescales at which they
occur are controlled by the injected kinetic power, but the trend
itself is not affected.

Figure 15 shows propagation plots for runs CygX1 (red)
and CygX1_mP (blue), with the same parameters except for
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0

2

4

6

x h
 [c

m
]

1e13

0 2000 4000 6000 8000 10000 12000 14000 16000
t [s]

2

4

6

v h
 [c

m
/s

]

1e9
CygX1_T7
CygX1
CygX1_T9

CygX1_T7
CygX1
CygX1_T9

data
momentum bal.

Fig. 12. Jet head propagation and speed for runs CygX1_T7 (red),
CygX1 (blue) and CygX1_T9. Run CygX1 slows down to the turbu-
lent phase earlier than CygX1_T7, but display the same average speed
during the turbulent phase, as shown by the almost parallel propagation
curves. Run CygX1_T9 displays a different behaviour, decelerating to a
plateau in the instability growth phase and with a lower average speed
than the other two runs, which appears to decelerate after t = 12 000 s.

ρb, which is ten times smaller in the second case. The weak
jet displays a different behavior as the beam is strongly bent
away by the wind and is then broken down by instabilities after
t = 8000 s, as shown in red in Fig. 16, drawn at t = 10 000 s. The
beam mixes with the cocoon farther away from the contact dis-
continuity, and the momentum flowing from the reverse shock at
beam head is partly dissipated in the cocoon. This smoothes the
effects of beam head oscillations on the jet head dynamics and
also slows the jet propagation down.

The propagation of runs CygX3 and CygX3_mP is shown
in the left panel of Fig. 17. ρb is here divided by 2 between
the two runs. In this case, the remark about the shape of the
speed plot holds also: weaker jets show a similar evolution with
smaller amplitudes in the global variations of the jet velocity. In
contrast to the Cygnus X-1 case, however, a decrease in density
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Fig. 13. Comparison of temperature and overpressure of runs
CygX1_T7, CygX1 and CygX1_T9, the color-coding is the same as
in Fig. 12. Top: evolution of the zone-averaged temperature with simu-
lation time. CygX1 and CygX1_T7 differ only slightly at first, but then
start to evolve differently after the 5000 s mark. CygX1_T9 shows an
overall higher temperature, with a small peak in inner cocoon temper-
ature around t = 6000 s. Bottom: evolution of the ratio of the inner
cocoon to beam pressure, as defined Sect. 3.3.1. CygX1 and CygX1_T7
present similar values up to t ∼ 5000 s, while CygX1_T9 presents a
stronger overpressure.

destabilizes the jet: the first speed peak that occurs when the jet
propagation breaks from the momentum balance model occurs
earlier in the weak case, and the speed fluctuations begin earlier.

3.4.3. Wind effects on the jet propagation

An increase in the wind ram pressure shortens the instability
growth phase. This shows that this deceleration and the wind
impact on the beam are linked. In the Cygnus X-1 runs, the
impact of a stellar wind speed that is 50% higher and therefore
causes an increase of 50% in the wind ram pressure at a constant
mass-loss rate is shown in Fig. 15 by comparing the CygX1 (red)
and CygX1_wind (green) runs: the stronger the wind speed,
the shorter the instability growth phase. The beginning of this
phase also starts slightly earlier: at 1800 s for CygX1_wind ver-
sus 2200 s in the fiducial case. The ambient density, moreover,
drops slightly from CygX1 to CygX1_wind because Ṁ? is con-
stant between the two runs. This means a higher η and therefore
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Fig. 14. Comparison between runs CygX1 (red), CygX1_T7 (blue) and
CygX1_T9 (magenta). Probability density function of the temperature
at t = 4000 s (full lines) and t = 10 000 s (dash-dotted lines). In the early
stages, CygX1 and CygX1_T7 are indistinguishable from each other,
while CygX1_T9 is slightly hotter and more of its volume is hotter than
∼5 × 109 K. In the mixing phase, the temperature repartition is more in
line with the injected temperature.
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Fig. 15. Sensitivity of the jet head position and speed to kinetic power
and wind ram pressure for Cygnus X-1. The jet kinetic power is divided
by 10 from CygX1 (red) to CygX1_mP (blue). In the weak case, the jet
is slower, but the position fits the theoretical evaluation for a longer
time. The speed diagram shows no oscillations. The wind speed is
increased by 50% for run CygX1_wind (green), which results in a
higher starting speed, a shorter reacceleration phase, and a weaker bump
in the second deceleration phase. The average speed in the turbulent
phase is weaker. The speed and position plots differ faster from the the-
oretical 1D values in the strong wind case.

an easier jet propagation through the medium, and it explains
the difference in starting propagation speed between the two
runs. The theoretical 1D estimates for position and speed deviate
from the measured values earlier in the strong wind case because
the multidimensional effects are stronger. A higher wind speed
induces a small plateau in jet speed at the very beginning of
its propagation, which cannot be modeled by our 1D theoreti-
cal estimate.

For the Cygnus X-3 runs, the right panel of Fig. 17 com-
pares the fiducial run CygX3 (red) with run CygX3_mW (blue),
in which the wind is slower. All other parameters were kept
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Fig. 16. vx/vj slice for run CygX1_mP at time t = 10 000 s. The jet is
heavily bent from the wind effects, and its velocity breaks down before
it arrives at the head.

constant, with the exception of mass-loss rate, to ensure same
η value between the runs and halving the wind ram pressure
on the jet. The right panel shows the same modification using
the weaker jet setup (runs CygX3_mP and CygX3_mPmW).
In the first case, the initial accelerating phase is twice as long
for run CygX3_mW than run CygX3, and the second phase in
run CygX3_mW consists only of a global deceleration because
no reacceleration is observable. After this deceleration, run
CygX3_mW shows a slightly higher median propagation speed.

When we compare runs CygX3_mP and CygX3_mPmW
in the bottom right panel of Fig. 17, a new effect arises:
instead of a deceleration, the initial acceleration phase of run
CygX3_mPmW is followed by a plateau. The velocity fluctua-
tions around the trend also appear later, but with a greater ampli-
tude when the wind is weaker. After this speed plateau, the jet
decelerates to a median value similar to the strong wind case,
while the speed fluctuation timescale also decreases to a similar
value as the strong wind case. This occurs after t ∼ 3000 s, when
the jet has propagated to a distance of ∼5×1012 cm (=20 dorb). At
this point, the wind is almost colinear with the jet propagation,
and its lateral ram pressure on the jet is negligible.

4. Discussion

We have simulated jet outbreak and propagation in a large spatial
and temporal frame based on the physical model developed in
Sects. 2.1 and 2.4. The simulation particularly included radiative
cooling by different processes. We now critically discuss some
underlying points of this model and the limitations of the results,
and we describe the directions in which future work should be
oriented. This point is of peculiar importance if we wish to com-
pare simulation results to observations.

4.1. Assumption of a hydrodynamical framework

High-energy nonthermal photons are a prominent feature of
microquasar observations. They are present in the low and high
state, but in different forms. They are thought to be produced
by nonthermal processes that occur in the jet (Molina & Bosch-
Ramon 2018; Poutanen & Veledina 2014; Malzac et al. 2018), in
which high-energy particles are accelerated to relativistic speeds
and adopt a power-law spectrum. The mechanisms invoked to
accelerate particles are stochastic acceleration (Fermi mecha-
nism) at shocks, magnetic reconnection, or wave turbulence; see

the recent reviews by Marcowith et al. (2020), Matthews et al.
(2020). All these acceleration mechanisms imperatively demand
the plasma to be collisionless to a high degree. The Coulomb-
logarithm of a typical jet beam in microquasars is approximately
15 and even higher in large regions of the cocoon. Consequently,
kinetic timescales and kinetic inertial length scales are more than
10 orders of magnitude smaller than hydrodynamical scales. In
short, the mean free path of thermal particles of a jet may easily
be as long as the dynamical length scale of the jet and its cocoon.
This poses the question to which degree jets can be understood
on the basis of a hydrodynamical model.

Attempts to develop kinetical models of jets have been pur-
sued; see Nishikawa et al. (2021) for a recent review. These
models provide good insight into the various microphysical pro-
cesses, and show how instabilities such as the Kelvin-Helmholtz,
Rayleigh-Taylor, and kink instabilities translate into the col-
lisionless regime. They also show that jet-like structures can
develop on kinetic scales. However, it remains an open ques-
tion whether the results found on kinetic scales can be scaled
up to hydrodynamical scales and thus to scales on which the
objects are seen in the skies. Some first steps toward the connec-
tion between kinetic and macroscopic scales have recently been
made: Dieckmann et al. (2019) showed that for even weak mag-
netic guide fields, kinetic jets can develop a structure resembling
the hydrodynamical structure of a jet over scales much larger
than the kinetic scales. An electromagnetic piston-like struc-
ture is coherently formed, acting like the contact discontinuity
between jet and ambient material in a hydrodynamical jet (see
also Dieckmann et al. 2017). We note that in the same context,
Dieckmann et al. (2019) also showed that a leptonic jet propagat-
ing into an ambient ion-electron plasma can accelerate positrons
to speeds of several hundred MeV. In this way, microquasars can-
didate sources can explain the positron population in the cosmic
ray spectrum.

4.2. Electron temperature and the single-fluid assumption

In single-fluid simulations, the dynamics is dominated by the
ions, while the electrons are responsible for most of the radiative
losses. Studies such as Vink et al. (2015), Zhdankin et al. (2021)
have shown that processes such as shocks and radiative relativis-
tic turbulences may create and/or maintain a difference between
ion and electron temperature. This temperature difference has
been observed in supernova remnants (Vink et al. 2003). In par-
ticular, Vink et al. (2015) suggested from thermodynamical con-
sideration at shocks that the sonic Mach number of the upstream
flow is the main parameter governing this temperature differ-
ence: at low Mach numbers (M ≤ 2), the shock will not induce
a temperature difference, while at a high Mach number above
M ∼ 60, the ratio of the electron and ion temperature will be
equal to the mass ratio Te/Ti = me/〈mi〉. Between these extremal
values, this ratio will roughly vary with M−2.

In relativistic jets, at least two strong shocks present an
upstream Mach number strong enough to induce a difference
between ion and electron temperature downstream of it: the rec-
ollimation shock after injection, and the reverse shock at the
beam end. To ensure that the calculated energy losses are valid,
we need to determine the time taken by the electrons to ther-
malize to the flow temperature. Using formulas from Trubnikov
(1965) found in Huba (2016), we obtained an estimate for the
thermalization timescale considering the extremal case for a high
Mach number. Table 3 presents the rest mass density and tem-
perature values after the recollimation shock and reverse shock
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Fig. 17. Sensitivity of the jet head position and speed to kinetic power (left) and wind momentum (right) for the Cygnus X-3 runs. Top left: a
division of the jet power by 2 decreases all dynamical values, starting from the mean propagation speed. In particular, the acceleration is far less
efficient: it shows a gain of ∼40% in speed between the starting point and the peak against a gain of ∼120% in the CygX3 run. Top right: a
reduction of Ṁ? by 25% and vw by 33% (keeping η constant) lengthens the smooth phase and strengthens the speed fluctuations in the following
phases. The jets settle to the same median speed in the turbulent phase. Bottom right: same reduction as in the top right panel, with half the jet
power. In the CygX3_mPmW case (right, blue), the initial acceleration phase is followed by a speed plateau.

in CygX1 at t = 5000 s and CygX3 at t = 1000 s, the derived
thermalization timescale, and the associated characteristic length
using the local flow speed value. In all cases except downstream
of the CygX3 reverse shock, the associated length scale is shorter
than the grid resolution, meaning that the electrons would have
thermalized to the flow temperature after a single simulation grid
downstream of the shock. In the last case, we can estimate the
volume within which an error is made using the flow tempera-
ture to derive losses as Vtherm = vhc2

s t3
therm, where cs is the local

sound speed. With vh = 3 × 109 cm s−1 at t = 1000 s, we obtain
Vtherm = 3.3 × 1033 cm3, which accounts for 0.37% of the inner
cocoon volume at that time. We then consider our Te = Ti = T
approximation to be valid in our hydrodynamical framework. In
a more realistic framework in which the plasma is collisionless
(see the discussion in Sect. 4.1), Coulomb interactions cannot
equilibrate the electron and ion temperatures, but other processes
such as plasma instabilities may fill that role.

4.3. Thermal diffusion

Another important process that in not included in our numerical
model is thermal diffusion by relativistic thermal and nonther-
mal electrons or X-ray photons. This process is likely important

Table 3. Thermalization of electrons downstream of a shock.

Shock ρ (g cm)−3 T (K) ttherm (s) ltherm (cm)

X1 recoll. 5 × 10−15 5 × 108 4.2 × 10−4 4 × 106

X1 reverse 10−15 3 × 1010 0.6 2 × 109

X3 recoll. 10−14 4 × 1010 0.1 2.25 × 109

X3 reverse 5 × 10−15 1012 19 2 × 1011

as it creates hot shock-precursors, decreases peak temperatures,
smoothes out contact interfaces, and enhances cooling. These
features are suggested when looking at work which includes the
process in the context of supernova remnants (Chevalier 1975;
Tilley et al. 2006) and colliding winds in binary systems (Myas-
nikov & Zhekov 1998; Motamen et al. 1999). Including heat
transfer in a simulation is numerically demanding as it demands
(semi-) implicite solvers due to the very stiffness of the pro-
cess. Nevertheless, a few attempts have been made to develop
performing solvers (Balsara et al. 2008; Palenzuela et al. 2009;
Viallet et al. 2011; Kupka et al. 2012; Commerçon et al. 2014;
Bucciantini & Del Zanna 2013; Dubois & Commerçon 2016;
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Viallet et al. 2016). Future work may expand these attempts to
jet simulations.

4.4. Wind structure and jet bending

In high-mass microquasars, jets are launched into winds
originating from orbiting and rotating stars. This causes a
circumbinary environment structured in Archimedean spirals in
colliding-wind binaries (Walder 1995) and accreting binaries
(Walder et al. 2008, 2014). These spirals, also called corotat-
ing interaction regions (CIRs), are bound by shocks that confine
high-density, high-temperature regions. These structures will
likely have an impact on the jet propagation and its stability, but
will also likely lead to flashing outbursts in emission.

The bending of the jet away from the mass-shedding donor
star, investigated, for example, by Perucho & Bosch-Ramon
(2008) and subsequent papers, Yoon & Heinz (2015), Bosch-
Ramon & Barkov (2016), and again confirmed in this paper,
will lead to helical jet trajectories. In the most extreme cases,
an observer will see the jet under different angles during an orbit
of the system (see, e.g., Horton et al. 2020). Future works will
lead to a more quantitative statement of this prediction. As a side
note, we showed in Appendix C.4 that jets performed with a rel-
ativistic scheme display a higher propagation speed, even in the
mildly relativistic case. Because the jet bending depends on the
transverse momentum accumulated by the jet during its propa-
gation, we would expect a weaker bending in relativistic simula-
tions than in Newtonian simulations that are performed with the
same parameters.

Another unknown is wind clumping. We know that winds
from hot massive stars are clumped (e.g., Oskinova et al. 2012),
with density contrasts 〈ρ2〉/〈ρ〉2 ≈ 2. Poutanen et al. (2008)
suggested that this is likely the case for Cygnus X-1 based on
dips in the X-ray light curve (Bałucińska-Church et al. 2000;
Miskovicová et al. 2016; Hirsch et al. 2019). It is unknown,
however, where these clumps are formed: in the stellar atmo-
sphere, or farther away from the star, for instance, by super-
sonic turbulence in the wind. Whether these clumps are small
and dense, an intermittent density fluctuation of compressible
turbulence, or a mix of both is unknown as well; see the discus-
sion in Walder & Folini (2003). Perucho & Bosch-Ramon (2012)
suggested that even moderate wind clumping has strong effects
on jet disruption, mass loading, bending, and likely energy dissi-
pation. de la Cita et al. (2017) suggested that the standing shocks
introduced in the jet flow by its interaction with a clumpy wind
would generate a higher apparent gamma-ray luminosity through
inverse Compton scattering of the stellar photons, as well as
efficient synchrotron cooling. In light of these results, we may
expect that introducing clumpiness in the wind might signifi-
cantly enhance the radiative cooling of the jet and modify its
dynamics even more strongly.

4.5. Wind driving and dynamics

Velocity and density profiles in winds shed from hot massive
stars in binaries are prone to a large uncertainty. This uncertainty
pushed us to choose a grid of fixed wind parameters for the study
presented in this paper and to make no attempts to model the
acceleration of the wind. Winds from massive stars are driven
by the radiative pressure on free electrons (to about one-third of
the driving force) as well as the scattering of stellar photons in
millions of UV and optical lines. This wind driving is expected
to be vastly different in supergiants (as in Cygnus X-1) and WR

stars (as in Cygnus X-3), in that the winds from WR stars are
optically thick in the subsonic acceleration phase, whereas they
are relatively optically thin in supergiant winds.

These winds are well understood for single stars, with the
exception of the subsonic phase of WR winds; see the review
by Kudritzki & Puls (2000). In binaries, the situation is more
complex. Hainich et al. (2020) presented an observation-based
study of winds in HMXRBs and basically confirmed that the
wind driving from stars in those binaries is the same as for sin-
gle stars of the same type. However, the situation is more com-
plicated by the secondary radiation source, either another star or
a compact object and its environment. This second source leads
to an ionization structure within the wind that in contrast to the
single-star situation does not fit the frequencies of the photons
emitted by the star that produces the wind.

This in particular affects the region between the wind-
shedding star and its companion. There, the driving by photon
scattering in spectral lines can be suppressed and the wind accel-
eration may be weaker or even inhibited compared to the winds
of a single star (Stevens & Kallman 1990; Stevens 1991; Blondin
1994). Models that take this inhibition into account can be fit to
observations (Gies et al. 2008). The case of Cygnus X-1 was
investigated through complex radiation hydrodynamics simula-
tions by Hadrava & Čechura (2012) and Krtička et al. (2015),
who suggested that strong inhibition of the wind speed might
occur at the BH location. In this region, wind density and veloc-
ity profiles in binaries are very difficult to access observationally
and are largely unknown. For Cygnus X-3, the situation is even
more unknown because the wind is still optically thick at the
BH location. Studies such as those by Vilhu et al. (2021) find a
strong wind-suppressing effect in particular in the extreme-UV
region. However, we can firmly state that a wind is present in
both systems, based on the modulation of the X-ray light curve
over the binary orbit, for instance. This modulation is due to the
different optical paths that X-ray photons have to travel through
the wind and thus to the different attenuation of the X-ray light
through absorption in the wind (Bonnet-Bidaud & van der Klis
1981; Poutanen et al. 2008; Grinberg et al. 2015). Finally, the
effect of the BH gravitational field must be considered, which
may focus the stellar wind and modify the density and veloc-
ity profile that are encountered by the propagating jet, but might
also modify the evolution of the jet cocoon at its base.

Another important open problem is the influence of mag-
netic fields on the wind because strong fields could substantially
influence the mass-shedding process, for example, by a strong
enhancement of the mass loss in the equatorial plane (ud-Doula
et al. 2006; Ud-Doula et al. 2008; Bard & Townsend 2016). A
general discussion of magnetic fields of massive stars and how
they influence their environment can be found in Walder et al.
(2012).

4.6. Nonthermal components and radiative processes
emission

Our losses are modeled as optically thin at every frequencies.
This may not be the case, especially in UV, optical, and radio
ranges at which our thermal electrons radiates. Reheating due
to photon absorption (Belmont et al. 2008) or synchrotron self-
absorption as well as effects such as synchrotron self-Compton
were not investigated and may have a strong impact on the jet
temperature and therefore structure and dynamics. This may
not hold for Cygnus X-1, for which cooling and its effects are
moderate but it might play a strong role in Cygnus X-3 case,
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especially because winds from WR stars are optically thick over
higher frequency bands than winds from O-type stars. Moreover,
the temperatures attained in our simulations exceed the electron
pair-production threshold and reach a regime in which proton
distribution becomes relativistic, which will impact the radiative
losses.

Another point we did not consider is the particle accelera-
tion and the nonthermal processes: particles can be accelerated
at magnetic reconnections (Giannios 2010; Giannios et al. 2009;
McKinney & Uzdensky 2012; Melzani et al. 2014) and shocks
(Araudo et al. 2009; Bordas et al. 2009; de la Cita et al. 2017) or
by stochastic interaction with magnetized turbulence. Shearing
flow acceleration as also been invoked as potential injection pro-
cess of relativistic particles (Rieger & Duffy 2019). An extensive
review of these processes is given in Marcowith et al. (2020).
As all processes will significantly contribute to the nonthermal
emission, they can inject a substantial fraction of the kinetic jet
energy into nonthermal components and probably change the
dynamics because part of the gas energy will be dissipated by
the accelerated particles. Alternatively, the pressure imparted to
these particles can directly modify the flow dynamics.

4.7. Jet outburst dynamics and emerging structures

The dynamics of the second (instability) phase is not well under-
stood, and neither is the physical phenomenon that sets the fluc-
tuation speeds. The physics of instability growth is deep and
rich, and we may have overlooked some effects, in particu-
lar, concerning the nonlinear phase. Another limitation of this
study is our grid resolution, which may not accurately capture
all the shocks that form in such a system or the growth of
small-amplitude modes, for which the impact was highlighted
here. Furthermore, the adiabatic index Γ was chosen to be con-
stant and equal to 5/3, where a variable index such as the
method suggested in Mignone et al. (2005) and Mignone &
McKinney (2007) would more accurately reflect the relativistic
gas EoS (Synge 1957) and lead to more realistic jet structures.

We included thermal radiative losses in our study of jets
structure and dynamics. These effects were not included in sim-
ilar works. No focus was placed on jet bending, but it is observ-
able in the jets of Cygnus X-1 and Cygnus X-3, in agreement
with similar studies such as Yoon & Heinz (2015). Moreover, the
jets are injected with no inclination relative to the orbital plane,
in contrast to works such as Dubus et al. (2010), who suggested
that the inclination angle for Cygnus X-3 lies between 20 and
80◦. Another strong point of this study is the simulation box size
of 1014 cm, which is 33 times the orbital separation of Cygnus
X-1 and close to 400 times that of Cygnus X-3. This allowed
us to observe the outbreak and early dynamics details as well
as the emergence of a steady “naked beam” structure for later
timesteps that may be compared to similar works and translated
into synthetic observational datas.

Last, our study is purely hydrodynamical and does not cover
the potential stabilizing effects of the magnetic field as well as
the development of MHD instabilities. The study of MHD jets
is recent (e.g. Mizuno et al. 2015; Martí et al. 2016; Mukherjee
et al. 2020) and the field will continue to grow as time passes.
The influence of the stellar magnetic field may also lead to fur-
ther modifications on the structure and dynamics of the jet.

5. Summary and conclusions

We performed large-scale 3D relativistic hydrodynamical sim-
ulations of jet outbreak and early propagation in HMMQs. We
added radiative cooling effects in the energy equation using

a Maxwell-Jüttner distribution for the electrons. Two fiducial
cases inspired by the HMMQs Cygnus X-1 and Cygnus X-3
were considered, along with parameter sensitivity studies. The
jets of the two systems are in the same domain of dimension-
less parameters, but with different instability growth and cooling
timescales (about ∼102 shorter in the latter case), enabling us to
better highlight the importance of these processes in jet structure
and dynamics. In particular, on the timescales covered by our
simulations, radiative losses, mainly free-free mechanism, play
a relevant role for Cygnus X-3, but not for Cygnus X-1.

We investigated the impact of radiative losses on jet struc-
tures and dynamics and showed their strengthening effect on
KHI growth, which was a focal point of our analysis. We identi-
fied three main dynamical phases: (1) an initial self-similar prop-
agation in line with 1D momentum balance arguments, followed
by (2) a modification of the inner jet structure and a phase of
instability growth, and finally, (3) a turbulent cocoon and desta-
bilized beam. We explored the effects of losses on the dynamics
in the second phase through their modification of the KHI growth
rate as well as the impact on the jet structure, and we examined
the impact of the various parameters.

In Cygnus X-3, where radiative losses are observed on the
timescales covered by our simulations, these losses are found to
affect the volume ratio of the outer to inner cocoon. This means
that simple postprocessing of simulations that do not take radia-
tive cooling into account to study emissions from HMMQ jets
must be met with caution. Likewise, the beam volume is found
to obey a different power law in time depending on whether or
not cooling is active.

We find the sensitivities to jet power and wind parameters to
be in line with the literature. We add to this picture by demon-
strating that an increasing beam temperature results in a faster
instability growth and a slower jet head velocity. In view of the
wide variety of known HMMQs, but also given the difficult esti-
mation of their system parameters, further and more extended
parameter studies are clearly desirable in the future. Based on
the results presented here, we would advocate that such studies
not be limited to adiabatic simulations.
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Krtička, J., Kubát, J., & Krtičková, I. 2015, A&A, 579, A111
Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613
Kupka, F., Happenhofer, N., Higueras, I., & Koch, O. 2012, J. Comput. Phys.,

231, 3561
Landau, L., & Lifshitz, E. 1959, Fluid Mechanics, Course of Theoretical Physics

(London: Pergamon Press)
LeVeque, R., Ablowitz, M., Davis, S., et al. 2002, Finite Volume Methods for

Hyperbolic Problems, Cambridge Texts in Applied Mathematics (Cambridge:
Cambridge University Press)

Malzac, J. 2014, MNRAS, 443, 299
Malzac, J., Kalamkar, M., Vincentelli, F., et al. 2018, MNRAS, 480, 2054
Marcowith, A., Ferrand, G., Grech, M., et al. 2020, Liv. Rev. Comput.

Astrophys., 6, 1
Martí, J. M., Müller, E., Font, J., Ibáñez, J. M. Z., & Marquina, A. 1997, ApJ,

479, 151
Martí, J. M., Perucho, M., & Gómez, J. L. 2016, ApJ, 831, 163
Matsumoto, J., & Masada, Y. 2013, ApJ, 772, L1
Matsumoto, J., & Masada, Y. 2019, MNRAS, 490, 4271
Matsumoto, J., Aloy, M. A., & Perucho, M. 2017, MNRAS, 472, 1421
Matthews, J. H., Bell, A. R., & Blundell, K. M. 2020, New Astron. Rev., 89,

101543

McKinney, J. C., & Uzdensky, D. A. 2012, MNRAS, 419, 573
Meliani, Z., & Keppens, R. 2007, A&A, 475, 785
Meliani, Z., & Keppens, R. 2009, ApJ, 705, 1594
Melzani, M., Winisdoerffer, C., Walder, R., et al. 2013, A&A, 558, A133
Melzani, M., Walder, R., Folini, D., Winisdoerffer, C., & Favre, J. M. 2014,

A&A, 570, A112
Migliori, G., Corbel, S., Tomsick, J. A., et al. 2017, MNRAS, 472, 141
Mignone, A., & McKinney, J. C. 2007, MNRAS, 378, 1118
Mignone, A., Plewa, T., & Bodo, G. 2005, ApJS, 160, 199
Mihalas, D., & Mihalas, B. W. 2013, Foundations of Radiation Hydrodynamics

(Courier Corporation)
Millas, D., Keppens, R., & Meliani, Z. 2017, MNRAS, 470, 592
Mirabel, I. F., & Rodriguez, L. F. 1999, ARA&A, 37, 409
Miskovicová, I., Hell, N., Hanke, M., et al. 2016, A&A, 590, A114
Mizuno, Y., Hardee, P., & Nishikawa, K.-I. 2007, ApJ, 662, 835
Mizuno, Y., Gomez, J. L., Nishikawa, K.-I., et al. 2015, ApJ, 809, 38
Mizuta, A., Yamada, S., & Takabe, H. 2004, ApJ, 606, 804
Molina, E., & Bosch-Ramon, V. 2018, A&A, 618, A146
Molina, E., del Palacio, S., & Bosch-Ramon, V. 2019, A&A, 629, A129
Moreau, J. P. 2005, Numerical Analysis by Jean-Pierre Moreau, http://
jean-pierre.moreau.pagesperso-orange.fr

Motamen, S. M., Walder, R., & Folini, D. 1999, in Wolf-Rayet Phenomena
in Massive Stars and Starburst Galaxies, eds. K. A. van der Hucht,
G. Koenigsberger, & P. R. J. Eenens, 193, 378

Motta, S. E., Rodriguez, J., Jourdain, E., et al. 2021, New Astron. Rev., 93,
101618

Mukherjee, D., Bodo, G., Mignone, A., Rossi, P., & Vaidya, B. 2020, MNRAS,
499, 681

Myasnikov, A. V., & Zhekov, S. A. 1998, MNRAS, 300, 686
Nishihara, K., Wouchuk, J., Matsuoka, C., Ishizaki, R., & Zhakhovsky, V. 2010,

Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 368, 1769
Nishikawa, K., Dutan, I., Koehn, C., & Mizuno, Y. 2021, Liv. Rev. Comput.

Astrophys., 7, 1
Norman, M. L., Winkler, K.-H., Smarr, L., & Smith, M. 1982, A&A, 113,

285
Orosz, J. A., McClintock, J. E., Aufdenberg, J. P., et al. 2011, ApJ, 742, 84
Oskinova, L. M., Feldmeier, A., & Kretschmar, P. 2012, MNRAS, 421, 2820
Palenzuela, C., Lehner, L., Reula, O., & Rezzolla, L. 2009, MNRAS, 394,

1727
Perucho, M. 2019, High Energy Phenomena in Relativistic Outflows VII, 99
Perucho, M., & Bosch-Ramon, V. 2008, A&A, 482, 917
Perucho, M., & Bosch-Ramon, V. 2012, A&A, 539, A57
Perucho, M., Marti, J.-M., & Hanasz, M. 2004a, A&A, 427, 431
Perucho, M., Hanasz, M., Marti, J.-M., & Sol, H. 2004b, A&A, 427, 415
Perucho, M., Marti, J.-M., & Hanasz, M. 2005, A&A, 443, 863
Perucho, M., Bosch-Ramon, V., & Khangulyan, D. 2010a, A&A, 512, L4
Perucho, M., Bosch-Ramon, V., & Khangulyan, D. 2010b, Int. J. Mod. Phys. D,

19, 791
Perucho, M., Marti, J.-M., Cela, J., et al. 2010c, A&A, 519, A41
Popov, M. V., Walder, R., Folini, D., et al. 2019, A&A, 630, A129
Porter, D. H., & Woodward, P. R. 1994, ApJS, 93, 309
Porter, D. H., Pouquet, A., & Woodward, P. R. 1992, Theor. Comput. Fluid Dyn.,

4, 13
Poutanen, J., & Veledina, A. 2014, Space Sci. Rev., 183, 61
Poutanen, J., Zdziarski, A. A., & Ibragimov, A. 2008, MNRAS, 389, 1427
Rieger, F. M., & Duffy, P. 2019, ApJ, 886, L26
Rodriguez, J., Grinberg, V., Laurent, P., et al. 2015, ApJ, 807, 17
Romero, G. E., Boettcher, M., Markoff, S., & Tavecchio, F. 2017, Space Sci.

Rev., 207, 5
Rossi, P., Mignone, A., Bodo, G., Massaglia, S., & Ferrari, A. 2008, A&A, 488,

795
Rybicki, G. B., & Lightman, A. P. 2008, Radiative Processes in Astrophysics

(John Wiley & Sons)
Scheck, L., Aloy, M., Martí, J., Gómez, J., & Müller, E. 2002, MNRAS, 331,

615
Shu, C.-W., & Osher, S. 1988, J. Comput. Phys., 77, 439
Stevens, I. R. 1991, ApJ, 379, 310
Stevens, I. R., & Kallman, T. R. 1990, ApJ, 365, 321
Synge, J. 1957, The Relativistic Gas (Amsterdam: North-Holland Publishing

Company)
Tilley, D. A., Balsara, D. S., & Howk, J. C. 2006, MNRAS, 371, 1106
Toma, K., Komissarov, S. S., & Porth, O. 2017, MNRAS, 472, 1253
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Appendix A: Propagation and instabilities

A.1. Model for jet propagation

A model for the propagation of a relativistic jet was derived, for
instance, by Martí et al. (1997) and Mizuta et al. (2004), who
neglected multidimensional effects, but assumed 1D momentum
balance between the beam and the ambient gas in the rest frame
of the contact discontinuity at the head of the jet. In the case of
an ambient medium with its own (nonrelativistic) flow speed vw,
this gives

S b

[
ρbhbγ

2
hγ

2
b(vb − vh)2 + pb

]
= S w

[
ρwhwγ

2
h(vw − vh)2 + pw

]
,

(A.1)

where γ are Lorentz factors, S are cross-section areas, and v
are velocities. Subscripts b refer to beam values, w refers to
the ambient medium, and h to the interface at jet head. Solving
Eq. A.1 for vh, we obtain

vh =
1

Aη∗ − 1

√
Aη∗(vb − vw)2 − (Aη∗ − 1)

(AK − 1)c2
s,w

γ2
hΓ

, (A.2)

where η∗ ≡ ρbhbγ
2
b/ρwhwγ

2
w = ξb/ξw, A is the cross-section ratio

(A ≡ S b/S w), and K is the pressure ratio defined in Sect. 3.1.
This equation is consistent with the one derived by Mizuta et al.
(2004) when taking vw = 0. The term including K can be
neglected as the sound speed in the stellar wind is much slower
than the beam velocity. Assuming A = 1, Eq. A.2 therefore
becomes

vh =
η∗vb − vw −

√
η∗(vb − vw)

η∗ − 1
. (A.3)

A.2. Instabilities in relativistic jet flows

During the jet propagation, various hydrodynamical instabilities
can be triggered and in the end perturb the beam, reducing the
effective beam speed at the front shock and decelerating the jet.
One of them is the KHI at the relativistic flow interface, which
was extensively studied: Turland & Scheuer (1976), Blandford &
Pringle (1976), Ferrari et al. (1978), Hardee (1979), Bodo et al.
(1994), Hanasz & Sol (1998), Hardee et al. (1998), Hardee et al.
(2001), Perucho et al. (2004b), Perucho et al. (2004a), Perucho
et al. (2005), Mizuno et al. (2007), Rossi et al. (2008), Perucho
et al. (2010c).

Then, the Rayleigh-Taylor instability (RTI) can be triggered
when a lighter fluid supports a heavier one against gravity, or
equivalently, if the lighter fluid accelerates the heavier one (see
Norman et al. 1982; Allen & Hughes 1984; Duffell & Mac-
Fadyen 2011 for nonrelativistic flows and Matsumoto et al.
2017 for relativistic flows). This impacts the jet structures sta-
bility when the jet expands radially due to the centrifugal force,
as studied by Meliani & Keppens (2007), Meliani & Keppens
(2009), Millas et al. (2017), for example, or oscillates radi-
ally because of a pressure gradient, see Matsumoto & Masada
(2013), Toma et al. (2017).

Other instabilities include the Richtmyer-Meshkov insta-
bility (RMI); see Nishihara et al. (2010) for a review
and Matsumoto & Masada (2013) for a numerical study.
The centrifugal instability (CFI) was studied in Gourgouliatos &
Komissarov (2018b). Finally, we cite vortex formation and shed-
ding at the contact discontinuity of jet head, as in Norman et al.
(1982), Scheck et al. (2002), or Mizuta et al. (2004), for instance,

which increases the cross-section of the jet head. This therefore
diminishes the jet propagation speed. The vortices may also per-
turb the beam flow when they encounter it while propagating
in the inner cocoon. Norman et al. (1982) noted the importance
of the beam Mach number in the vortex-shedding phenomenon,
observing that lower Mach numbers produce higher vortices.
This work will focus specifically on the KHI as other instabil-
ities develop at the beam radius scale, meaning that most of their
modes will not appear due to grid resolution limitations.

A.2.1. Kelvin-Helmholtz instability

To numerically derive the linear growth time of the Kelvin-
Helmholtz instability tKHI , we chose to use the approach intro-
duced in Hanasz & Sol (1996), describing the jet with a 2D slab
geometry. This choice was made because the solutions for the
slab and cylindrical geometries behave in a similar way in a wide
range of physical parameters, with only slight numerical differ-
ences (Ferrari et al. 1982). In this analogy, symmetric and anti-
symmetric modes in the slab correspond to pinching and helical
modes in the cylinder. Only high-order fluting modes do not have
counterparts in slab jets.

Hanasz & Sol (1996) considered a core-sheet jet made of
three layers: a beam with a relativistic flow, a cocoon with a
nonrelativistic flow speed, and an ambient medium at rest. The
transition layers at all interfaces are described in the vortex-sheet
approximation. In the following, quantities with subscript b refer
to the beam, subscript c refers to the cocoon, and w refers to the
ambient medium. We introduce the quantities ηc ≡ ρb/ρc and
ηw ≡ ρc/ρw as the beam-cocoon and cocoon-ambient medium
density contrast, respectively, and R ≡ rc/rb as the radius ratio
of the sheet and the core.

The deformations of the internal interface generate a sound
wave that travels in the cocoon layer with the same frequency
and wavenumber. As the maxima of the growth rate coincide
with acoustic waves that travel an integer n times their wave-
length on their path back and forth in the cocoon, we chose
to focus on these resonances to derive an estimate for the KHI
growth time.

For a sound wave traveling between the internal and external

interfaces with a wavelength λc = 2π/
√

k2
x + k2

z and a propaga-
tion angle α defined by tanα = kx/kz, the distance traveled by
the wave between the interfaces is L = (R − 1)/ cosα. From the
full derivation of the dispersion relation, we have in the cocoon

kz =

 ω2
0

ηcΓ
− k2

x

1/2

, (A.4)

ω0 = ω −
√
ηcΓMckx. (A.5)

Substituting these expressions in the resonance condition 2L =
nλc, we obtain the following expression:(R − 1) − nπ

 ω2

ηcΓ
+ (Mc − 1)k2

x + 2ωkx
Mc√
ηcΓ

1/2
×

 ω√
ηcΓ
− Mckx

 = 0. (A.6)

This equation can then be solved using a Newton-Raphson
method and leads to the calculation of the wavenumber kx max-
imizing ω with the densities and radii as parameters. The linear
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growth time for the KHI is obtained from the corresponding ω
by taking tKHI = ω−1. To derive the growth time from our sim-
ulations, densities were measured as a volume-averaged value
over each jet zone (more on this method in Sect. 2.7), while the
beam and inner cocoon radius were derived from the respec-
tive measured volume and length in the propagating direction
of the zones by approximating them as coaxial cylinders. These
timescales correspond to the “linear” growth times, whereas the
observed growth rate in our simulations will be significantly
higher due to nonlinear effects. They are still of interest when
we compare them for different runs because the relation between
different linear growth time is the same as for the observed runs.

A.2.2. Rayleigh-Taylor instability

Neglecting the effects of interface curvature and assuming the
perturbation of physical variables have the Wentzel-Kramers-
Brillouin spatial and temporal dependence in exp [i(ks − ωt)] ,
where s is the local coordinate tangent to the interface and
perpendicular to jet propagation, we can derive the linear
growth time using the dispersion relation from Matsumoto et al.
(2017),

ω2 = −gk
γ2

bρbhb − ρichic + Γγ2
b p0/c2

γ2
bρbhb + ρichic

. (A.7)

We take γic = 1 (which is verified in all our runs), and g is
the acceleration of the surface assuming that the amplitude of
the oscillation is roughly equal to the beam radius and p0 is
the pressure at the interface, we take p0 = (pb + pic)/2 as a first
approximation. We deduce from Eqs. A.7 that the RTI timescale
tRT I = Imω−1 is proportional to the square root of the wave-
length λ = k−1, meaning that the temporal growth of the shorter-
wavelength modes is faster. However, when the instability to
wavelengths smaller than the jet radius and in a numerical grid
is neglected, only the modes with wavelengths of several cell
length will matter. This restricts the growth of the RTI to only
a few possible wavelengths. This explains the large difference
to the growth time of the KHI: we find tKHI to be mainly in the
range 101−2s, while tRT I is found to have values of a few 104 to
105s using this derivation.

Appendix B: Radiative processes

A thermal plasma distribution of the electrons can be written in a
general way using a Maxwell-Jüttner distribution of the electrons
in the plasma rest frame from Jüttner (1911), as in Wardzinski &
Zdziarski (2000),

ne(γ) =
ne

Θ

γe(γ2
e − 1)1/2

K2(Θ−1)
exp(−γe/Θ), (B.1)

where K2 is the modified Bessel function of the second kind of
order 2 and Θ = kBT/mec2 is the normalized temperature. This
formulation was adapted to our model because temperatures can
exceed 1010 K behind shocks. The proton distribution can at first
be assumed to be nonrelativistic at the temperatures reached by
our simulations as Θp = kBT/mpc2 � 1 for T < 1012 K, where
the Maxwell-Jüttner and Boltzmann distributions coincide. An
improved model should include a relativistic treatment of pro-
tons and e± pair production because some shock zones may
approach temperatures at whic either protons start to become rel-
ativistic or where pair creation starts to be effective.

The following expressions were derived in the plasma rest
frame, but the calculated volumic power loss is invariant with

10 3 100 103 106 109 1012

T [K]

100

101

102

g

Z=1
Z=2
g = 1.2

Fig. B.1. Gaunt factor for hydrogen and helium across the equivalent
tabulated range of temperature covered in van Hoof et al. (2015) and
used in our Cygnus X-3 runs. Above 109 K, ḡ ∝ T∼3/4. The dotted line
shows the mean value ḡ = 1.2 used for the Cygnus X/-1 runs.

frame because the volume dilatation is compensated for by the
time dilatation of the boost. The numerical approximation of the
Bessel K function used in A-MaZe is detailed in Appendix C.6.

B.1. Free-free radiation

Free-free radiation is emitted as an electron is accelerated by the
Coulomb field of an ion. The expression of the volumic power
loss due to the free-free mechanism of electrons in a hydrogen
- helium plasma, including relativistic corrections, can be found
in Rybicki & Lightman (2008),

P f f = 1.4 · 10−27T 1/2ne

(
nH ḡH + Z2

HenHeḡHe

)
(1 + 4.4 · 10−10T ).

(B.2)

This expression shows a dependence on ρ2 and T 1/2 at classi-
cal electron temperatures, which becomes T 3/2 at high tempera-
tures due to relativistic corrections. Rybicki & Lightman (2008)
suggested ḡH = ḡHe = 1.2 as a good numerical approxima-
tion for the frequency-averaged Gaunt factor in all temperature
ranges, which is the value we used for the Cygnus X-1 runs. This
approximation is good up to T ∼ 109 K, but a better approxima-
tion is needed because the temperature in the jet can become rel-
ativistic. A better evaluation of this term was given in van Hoof
et al. (2015), who provided the values for ḡH and ḡHe as func-
tions of a parameter ∝ T−1. An illustration of the coefficients
is given in Fig. B.1. These functions were implemented in the
Cygnus X-3 runs.

B.2. Synchrotron

Ghisellini (2013) derived the synchrotron power emitted by a
single electron with a Lorentz factor γe = (1 − β2

e)−1/2 and pitch
angle θ (the angle between its velocity and magnetic field lines)
in the flow frame,

Pe(γe, θ) = 2σT cγ2
eβ

2
e sin θ UB, (B.3)

with σT the Thomson scattering cross-section and UB = B2/8π
the magnetic field energy density. This power can be aver-
aged over the pitch angle θ because the electron distribution is
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assumed here to be isotropic,

Pe(γe) =
4
3
σT cγ2

eβ
2
eUB. (B.4)

The volumic power loss is derived by integrating over the elec-
tron distribution,

Psyn =

∫
Pe(γ)ne(γ)dγ

=
4
3
σT cUB

ne

ΘK2(Θ−1)

∫ ∞

1
γ(γ2 − 1)3/2e−γ/Θdγ

= 4σT cneΘ
K3(Θ−1)
K2(Θ−1)

UB, (B.5)

with K3 the modified Bessel function of the second kind of order
3. In our simulations, the magnetic energy density is the sum of
the contributions from the jet and the star, weighted by the tracer
J.

These two contributions were modeled differently in the
Cygnus X-1 and Cygnus X-3 runs: the magnetic field was cho-
sen to be constant in Cygnus X-1 as a first attempt to model
losses, at the risk of overestimating synchrotron losses in the
long run. Seeing no impact of radiative losses until late simula-
tion times in the Cygnus X-1 runs, we chose to launch runs based
on Cygnus X-3 and updated our assumptions on the magnetic
field. Because many authors such as Perucho (2019) suggested
that the jet magnetic field structure is presumably toroidal, we
chose a linear decrease with distance for the jet inner field to
reflect this assumption. The stellar magnetic field was assumed
to be a dipole, decreasing as r−3, with r the distance to the stellar
center. This assumption does not take effects such as increased
magnetic field downstream of shocks in consideration and may
cause us to underestimate the synchrotron losses in the beam and
inner cocoon. A better treatment of synchrotron losses would
require magnetohydrodynamical simulations, which are beyond
the scope of this study.

B.3. Inverse Compton scattering

Following Ghisellini (2013), the radiated power per electron in
the flow frame is

Pph(γe, ψ) = σT cγ2
e (1 − βe cosψ)2Uph, (B.6)

with ψ the incident photon angle and Uph the radiative energy
density in the flow frame. In this frame, the electron distribution
is assumed to be isotropic, therefore (1 − βe cosψ)2 can be aver-
aged over the solid angle, from which we obtain 1 + β2

e/3. The
power loss of a single electron is then

Pe(γe) = 〈Pph(γe, ψ)〉 − σT cUph

=
4
3
σT cγ2

eβ
2
eUph. (B.7)

The volumic power loss in the fluid frame is obtained by inte-
grating over the electron distribution, which yields

PIC = 4σT cneΘ
K3(Θ−1)
K2(Θ−1)

Uph. (B.8)

Considering the star as the sole source of seed photons for
inverse Compton scattering, we derive the radiative energy den-
sity in the rest frame of the flow moving with a speed v j = β jc.
When we define θ as the angle between the photon direction and

the flow direction in the star rest frame, the radiative energy den-
sity is

Uph = γ j(1 − β j cos θ)
σT?4

π

(
R?

r

)2

, (B.9)

where r is the distance to the stellar center in the stellar rest
frame. Synchrotron and inverse Compton cooling follow the
same law, and their ratio is equal to the ratio of the magnetic
and stellar photon energy density, UB and Uph, respectively.

B.4. Line and recombination cooling

This term accounts for the collisional excitation of resonance
lines and dielectronic recombination, where an ion captures an
electron into a high-energy level and then decays to the ground
state. We assumed solar photospheric abundances and the ther-
modynamical equilibrium of the plasma (Saha equilibrium),
although in reality, the recombination may be delayed and may
not correspond to the actual temperature of the plasma. This term
follows the law

Pline =
∑

i

nenion,i10Λi(T ), (B.10)

with i the different ion species. To facilitate the calculations, the
various ions were taken into account in a single parameter Λ(T )
from Cook et al. (1989), such that we can take Pline = n2

e10Λ(T ).
This parameterization was then extended in temperature range
and implemented numerically in Walder & Folini (1996) and
subsequent works. We chose an upper temperature of 107.7 K for
this process, which corresponds to the recombination of fully
ionized iron and the Fe-α line. This very efficient process is only
effective in the coolest and most external parts of the cocoon.

B.5. Scalings of radiative processes

The scalings of the various radiative losses with density, temper-
ature, and distance to the star are listed in Table B.1. For free-
free losses, the dependence of the Gaunt factors on temperature
modifies the high-temperature scaling from T 3/2 in the Cygnus
X-1 runs to T 2 in the Cygnus X-3 runs. For the synchrotron
and inverse Compton losses, the term K3/K2(Θ−1) is constant
at low temperatures and proportional to T at relativistic temper-
atures, which explains the evolution of the scaling with tempera-
ture from a linear to a square power-law for these two processes.
Last, the line and recombination losses have a non-power-law
dependence on T. At low temperatures, which are found only in
the outer cocoon, the main cooling process is line recombina-
tion. At higher temperatures, free-free losses take over. At the
highest temperatures, the cooling is dominated by synchrotron
or inverse Compton processes, depending on our choice for the
magnetic field intensity.

B.6. Cooling time

The cooling time in the observer’s frame of a fluid particle with
rest frame temperature T and Lorentz factor γ is defined as
tcool = γT/Ṫ , where the dot marks the derivation with respect
to the proper time of the fluid. For a perfect gas, T = p/Rρ,
with R the gas constant divided by the molar mass of the fluid.
Therefore

tcool = γ
p

ṗ + p ρ̇
ρ

= γ

(
ṗ
p

+
ρ̇

ρ

)−1

, (B.11)
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Table B.1. Power-law exponent of the main variables in the loss term.
The slash indicates a non-power-law scaling.

setup Cygnus X-1 Cygnus X-3
variable ρ T r ρ T r

P f f 2 1/2→3/2 0 2 1/2→2 0
Psyn 1 1→2 0 1 1→2 -6
Pic 1 1→2 -2 1 1→2 -2

Pline 2 / 0 2 / 0

with all thermodynamic quantities measured in the comoving
frame of the flow. Two extreme cases can be considered: the
isobaric case (ṗ = 0), where tc,p = γρ/ρ̇, and the isochoric
case (ρ̇ = 0), where tc,ρ = γp/ ṗ. From the definitions given
in Sect. 2.1,

τ̇ = 2γ(ρc2 + Γ1 p)γ̇ + (γ2Γ1 − 1)ṗ + γ2c2ρ̇, (B.12)

with Γ1 = Γ/(Γ − 1). Then, using
dτ
dt

= γ−1τ̇ = Prad and con-
sidering γ̇ � ṗ, ρ̇ as an approximation in the weakly relativistic
case, we can approximate these timescales as

tc,p =
γ2ρc2

Prad
, (B.13)

tc,ρ =
(γ2Γ1 − 1)p

Prad
· (B.14)

Assuming γ2 = 1 to approximate these cooling times, tc,p ∝
1021ρ/Prad and tc,ρ ∝ 1.5p/Prad. In all the cases considered in
the article, the isochoric cooling time is the shortest by about
two orders of magnitude.

Appendix C: Detailed numerical methods

We detail here the numerical methods we used to perform the
simulations described in this paper. We use the hydrodynami-
cal framework of the A-MaZe simulation toolkit as described in
Popov et al. (2019), on a Cartesian static mesh and without the
well-balanced option.

C.1. Integration scheme

Semidiscretization of Eq. 7 in space results in

∂Ui, j,k

∂t
+

Fi+1/2, j,k − Fi−1/2, j,k

dx
+

Gi, j+1/2,k −Gi, j−1/2,k

dy
+

Hi, j,k+1/2 −Hi, j,k−1/2

dz
= Ψi, j,k. (C.1)

Here, dx, dy, and dz represent the spatial discretiza-
tion in the x-, y-, and z-direction, and Ui, j,k is the vector
of the discrete conserved variables at cell centers (i, j, k) ∈
(1, . . . ,Nx, 1, . . . ,Ny, 1, . . . ,Nz), with Nx,Ny, and Nz the num-
ber of cells in the x−, y−, and z−direction of the computational
space. Half indices denote cell faces. Fi±1/2, j,k, Gi, j±1/2,k, and
Hi, j,k±1/2 denote the fluxes through the cell faces in the x-, y-,
and z-direction. Ψi, j,k represents the source terms that are also
evaluated at the cell centers.

We performed a time integration of the Nx × Ny × Nz-D sys-
tem of ordinary differential equations, Eq. C.1 with a first-order
Runge-Kutta method (forward Euler method), although A-MaZe
also offers strong stability-preserving (SSP) higher-order inte-
gration schemes (Shu & Osher 1988; Gottlieb et al. 2001).

We used a simple central scheme to evaluate the fluxes, as
detailed here for the flux through the right x-interface of cell
(i, j, k),

Fi+1/2, j,k =
F(UL

i+1/2, j,k) + F(UR
i+1/2, j,k)

2
−

−
λmax

2

(
UR

i+1/2, j,k − UL
i+1/2, j,k

)
. (C.2)

UL
i+1/2, j,k,U

R
i+1/2, j,k are the limited reconstructed variable values

to the left and right of the cell interface i + 1/2, j, k. We used
linear reconstruction and minmod limiters. λmax is the highest
characteristic speed. This integrator is relatively diffuse, but easy
to implement for any hyperbolic system of equations and for an
arbitrary EoS.

C.2. Inversion scheme

To solve these equations for the conservative variables (D, S j, τ),
primitive variables (ρ, v j, p) are also necessary to compute the
fluxes F i. The following system is obtained from the definition
of the conservative variables:

ρ = D/γ, (C.3)

v j = S j/ξ, (C.4)
p = ξ − τ, (C.5)

where ξ = γ2ρh needs to be determined to derive the primitive
variables. Del Zanna & Bucciantini (2002) suggested a method
adapted to the polytropic EoS. With Eqn. C.5 and Γ1 ≡ Γ/(Γ−1),
we obtain

ξ =
γ2Γ1τ − γDc2

γ2Γ1 − 1
· (C.6)

Using the definitions of the Lorentz factor and S,

ξ2 =
S 2

c2(1 − γ−2)
· (C.7)

The two expressions for ξ are combined to obtain the final equa-
tion for γ,(
γ2Γ1τ − γDc2

γ2Γ1 − 1

)2

c2(1 − γ−2) − S 2 = 0, (C.8)

which is solved numerically using the Brent method (Brent
1973). Primitive variables were then computed using the formu-
las

ρ = D/γ,

ξ =
γ2Γ1τ − γDc2

γ2Γ1 − 1
,

v j = S j/ξ,

p = γ−2Γ−1
1 (ξ − γDc2).

This method is quite efficient, but is only valid for a constant Γ-
law EoS. Mignone & McKinney (2007) suggested a discussion
of the validity of a constant Γ-law EoS and an inversion method
suitable for all EoS, but we find that the method described above
is suitable in our case.
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Fig. C.1. Solution of the relativistic blast problem with a Lorentz factor γ = 6 shock detailed in the text at time t = 0.35. Left: Pressure (P), density
(D), and velocity (V) as computed on a very fine mesh (25600 cells) showing the shock, the contact discontinuity, and the rarefaction fan. Right:
Zoom into the thin high-density layer between the shock and the contact discontinuity. This feature is the most difficult to resolve. We show the
solutions based on different resolutions: 400 cells (black), 1600 cells (blue), 6400 cells (pink), 12800 cells (green), and 25600 cells (orange).

Fig. C.2. γ = 7.1 (Mach ≈ 17.9) jet simulated in Del Zanna & Buc-
ciantini (2002) and reproduced by the scheme used for this work. The
image shows time=40 and can be directly compared with the last panel
in Fig. 9 of Del Zanna & Bucciantini (2002).

C.3. Benchmark for the scheme

Central schemes similar the one used in this paper have been
widely used to perform (magneto-)hydrodynamical simulations
(e.g., Del Zanna & Bucciantini 2002; van der Holst et al. 2008;
Del Zanna et al. 2007). These schemes are easy to implement
and very robust, but are relatively diffuse (see, e.g., Tóth &
Odstrčil 1996 for a discussion). As these schemes are not based
on (even partial) characteristic decomposition, contact interfaces
in particular are smeared out relatively strongly. This has conse-
quences for the growth of instabilities along these interfaces.

Central schemes have become more popular again because
more sophisticated Riemann solvers – in particular exact solvers
– are very CPU costly. Moreover, they are also not really adapted
to the situation when more complex physics is involved in addi-
tion to (M)HD. Flows that include radiation, gravity, and par-
ticles show a different wave pattern, and waves have different
velocities than pure (M)HD waves.

There are two ways to overcome the large diffusivity of cen-
tral schemes: 1) higher-order spatial reconstruction schemes as
proposed in Del Zanna et al. (2007), for example, or 2) meshes
with a finer spatial discretization. This second approach was
chosen for this work, where we used concentrated fine meshes

along the beam of the jet where the instabilities develop. Ide-
ally, the two approaches and the adaptive mesh algorithm imple-
mented in A-MaZe may be combined for a more relevant mesh
refinement.

C.3.1. Basic tests of the adiabatic scheme

The central scheme has been used by the authors for other work
(Folini et al. 2004). We tested the implementation of SR by per-
forming about 20 tests as proposed in the literature and found
that we can reproduce these results well. Here, we only show
two examples. The first is the relativistic blast wave problem
as originally proposed by Donat et al. (1998). This Riemann
problem is defined by setting the state to the left or right of the
original interface located at 0.5 to (ρ, v, p)L = (1, 0, 1000) and
(ρ, v, p)R = (1, 0, 0.01), resulting in a γ = 6 blast shock prop-
agating to the right and a strong rarefaction fan propagating to
the left. The solution at t = 0.35 on a very fine mesh of 25600
cells is shown in the left panel of Fig. C.1. The problem is tough
and demonstrates why relativistic hydrodynamics is a numerical
challenge.

Donat et al. (1998) presented a solution based on a third-
order scheme combined with the Marquina solver, which usses
the full spectral decomposition. Del Zanna & Bucciantini (2002)
presented two solutions of the same problem based on a mesh
of 400 cells. The first solution was computed with a third-order
scheme based on the Harten, Lax, van Leer (HLL) solver (which
uses only a part of the spectral information) and a monotized
central (MC) limiter (their third-order convex essentially non-
oscillatory - or CENO3 - scheme). The second solution is based
on the same method as used in this paper, the second-order
Lax-Friedrichs-scheme and minmod limiters. The hard part to
compute is the thin high-density shell between the shock wave
and the contact interface. These shells are typical for relativistic
flows. In Fig. C.1, at t = 0.35, it is located between x = 0.84
and x = 0.85, where the density jumps by about two orders of
magnitude in the shock wave and by three orders of magnitude
in the contact interface. Most of the mass is concentrated within
a region covering only about 1% of the domain.
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Based on a discretization of 400 cells, none of the described
schemes resolved the shell: The third-order schemes of Donat
et al. (1998) and Del Zanna & Bucciantini (2002) reached a
density of about 7.3 in 1-2 cells, and the second-order LF-
scheme in Del Zanna & Bucciantini (2002) reached a den-
sity of about 6.5 over 1-2 cells. The correct value is about
10.5, however. The convergence of our scheme to the correct
density value is demonstrated in the right panel of Fig. C.1.
With 400 cells, our scheme is in line with that of Del Zanna &
Bucciantini (2002). When 1600 cells are used, the density peaks
at about 9.0 in 1-2 cells and at almost the correct value when
6400 cells are used. With 12800 cells, the density peak is well
resolved, but the contact interface is still somewhat smeared out.
The simulation using 25600 cells fully resolves the thin shell
with some tens of cells, and the transition to the contact is quite
sharp. We note that the computational costs for our scheme for
1600 cells is probably not (much) more than using a third-order
scheme and a Riemann solver based on spectral decomposition
of 400 cells. This demonstrates that a strategy based on fine
meshes and a simple solver can be efficient. Admittedly, data
files are more heavy than those produced on a 400 cell mesh,
however.

The second test is the jet test-case proposed in Del Zanna
& Bucciantini (2002): In cylindrical geometry, a γ = 7.1 jet is
launched into a uniform environment with a low pressure, corre-
sponding to a relativistic Mach number of about 17.9. This test
is harder to simulate than the jets presented in this paper. Twenty
cells covered the beam width, and the mesh in the domain was
160x400 in radial- and z-direction, respectively. Comparing the
result obtained with our code (see Fig. C.2) with Fig. 9 of Del
Zanna & Bucciantini (2002), we observe an excellent agreement
in the position of the front bow-shock, the position of the Mach
stem at the end of the beam, the position of the cross-shocks in
the beam, and the general shape of the cocoon. In our case, the
interface between inner and outer cocoon is more smeared out.
The smaller modes in the instability developing along this inter-
face are less resolved than in Del Zanna & Bucciantini (2002).
This discrepancy is natural because Del Zanna & Bucciantini
(2002) used the more accurate CENO3 scheme, while our result
is based on the second order in the space LF method. How-
ever, this drawback can be overcome by using a finer mesh (not
shown).

C.3.2. Uncertainty for simulations of turbulent and cooling
flows

The exactness of the simulation presented in this paper is harder
to estimate. The flows are turbulent, and cooling introduces more
instabilities, waves, and interfaces. The turbulent region of the
cocoon has no fixed boundary, but is connected by shocks and
material interfaces to the environment. Interior turbulent fluctu-
ations will impact the shape of the interfaces and, inversely, the
dynamics of the interfaces will act on the interior turbulence.
Based on these arguments, we cannot expect to find a converged
solution in the sense demonstrated in Fig. C.1. We have to trust
the general correctness of the scheme and have to give some rea-
sons why the presented solutions are close to correct. A rigorous
error analysis based on statistical analysis of many simulations
that differ slightly in their initial conditions would be desirable,
but is sophisticated, complex, and computationally expensive
and thus beyond reach for this study. A step in this direction,
nevertheless, is presented in Fig. C.3. We list in the following
some points that shed some light on the uncertainties.

Fig. C.3. Simulation of the fiducial case of CygX1 on a mesh that is
twice as fine as the simulation presented in Fig. 3. We show the simula-
tion at 6000 s, corresponding to the middle panel of Fig. 3.

1. Turbulence: Reynolds numbers are too high to resolve the
turbulent cascade with any numerical scheme. Moreover, ideal
hydrodynamics does not treat diffusion explicitly. A numerical
scheme implicitly introduces a certain diffusion (Hirsch 2006;
LeVeque et al. 2002), however, which is much higher in astro-
physical rarefied flows than the physical diffusion. However, as
pointed out by Boris et al. (1992) and further explored by Porter
et al. (1992) and Porter & Woodward (1994), finite-volume
methods such as ours cut the turbulent cascade in a way that does
not lead to an energy pile-up or -sink at the numerical diffusion
scale, thus cutting the cascade correctly, at least to first order.
This approach is called monotone integrated large-eddy simula-
tion (MILES). A more rigorous study of the MILES approach is
given in Garnier et al. (1999), for example, and a summary of
the idea and more references can be found in Folini & Walder
(2006). These studies show that turbulent flows are relatively
well captured by finite-volume methods and do not introduce
large errors.

2. Cooling: Radiative shocks are prone to an overstability
whenever the slope of the cooling law is sufficiently shallow
or negative. For a radiative cooling parameterized as a func-
tion of density and temperature τ̇(ρ,T ) = ρ2Λ(T ) with Λ(T ) =
Λ0T β, which applies for free-free and line cooling, Chevalier &
Imamura (1982) and Bertschinger (1986) have shown that the
overstability is present whenever β . 0.4 (fundamental mode),
and β . 0.8 (first-overtone mode). We have shown (Walder &
Folini 1996) that the presence and amplitude of the overstable
modes in a numerical study critically depend on the numerical
resolution because smeared-out interfaces radiate more than bet-
ter resolved interfaces. The resolution we chose for the simu-
lations is sufficient to resolve the overstability (not shown). We
add two remarks, however. First, the numerical model we used
does not include mass diffusion and, in particular, heat diffusion,
which physically determines the smearing of the interface. It is
thus not clear whether we under- or over-estimate this particular
effect. Second, radiative multidimensional shocks can generate
and drive turbulence (Walder & Folini 1998) and turbulent thin
shells (Folini & Walder 2006; Folini et al. 2014).

3. Resolution comparison: The fiducial case of CygX1 was
simulated on a mesh twice finer than the generic mesh up to
about 10’000 s. The snapshot at 6000 s is shown in Fig. C.3.
This can be compared to the snapshot of the generic case shown
in the middle panel of Fig. 3. The comparison shows that the
instability sets in at about the same time in both simulations.
However, in the simulation on the finer mesh, the jets propagate
about 10% faster than in the simulation on the generic mesh. We
also observe similar effects, of the same order, in 1D test simu-
lations. This is expected on the basis of the arguments given in
the point above. Better resolving the contact interface at the head
of the jet will reduce cooling there, leaving slightly more energy
to push the bow shock to a larger distance. An error of 10% is
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quite a good result for most large-scale fluid-dynamical simula-
tions. We stress again that the correct jet speed depends on the
physical diffusion.

To even improve the confidence in the solutions presented
in this paper, we ran a 2D resolution study, using the generic
and the finer mesh in the 3D case. This study also covered the
turbulent phase. Again we find that the essential features of the
jet (number and location of the cross shocks, cocoon shape, and
time at which the instability and the turbulence set in) are inde-
pendent of the resolution. However, the 2D simulations cannot
directly be compared to the 3D simulations because the charac-
ter of the turbulence is different in 2D and 3D.

C.4. Necessity of relativistic simulations

Because computational costs are considerably higher for a
relativistic simulation, it might be questioned whether it is
necessary to perform relativistic simulations to obtain correct
solutions for the mildly relativistic problems presented in this
paper, with γb ≈ 1.06 for CygX1 and γb ≈ 1.51 for CygX3.
However, even these small Lorentz factors lead to a signifi-
cant difference in the jet propagation between a relativistic and
a Newtonian simulation. This is illustrated in Fig. C.4, which
shows 1D simulations at (observer) time t = 6500 s of the
jet propagation of CygX3, including all cooling terms. The jet
head is located in the thin high-density shell. In the Newto-
nian case, this shell in the observers frame is located at about
x = 45·1012 cm. The shell in the relativistic case is located at x =
71 · 1012 cm. Both simulations used 12800 cells. Thus, the rela-
tivistic jet head propagates about 1/3 faster than the Newtonian
jet head. This can be explained on the basis of Eq. 5: the ratio of
η∗ and η for CygX3 (see Table D.4) is about 2.3, resulting in a
difference in the jet-propagation speed of about 45%. The differ-
ence for CygX1 is smaller, but still about 5%. In 1D, the shocked
beam will cool down, in contrast to the multidimensional sim-
ulations, in which the beam is regularly reheated by the cross
shocks.

C.5. Impact of the adiabatic index choice on jet propagation

Because the simulated flows are relativistic, the choice of using
a constant adiabatic index of value 5/3 may be discussed. We
show in Fig. C.5 a 1D test similar to the one presented in
Sect. C.4, comparing jets with Γ = 5/3 and Γ = 4/3 with the
relativistic and the Newtonian solver. Changing the adiabatic
index has an almost negligible effect on the jet head (the thin
high-density shell) propagation, but jets with Γ = 5/3 present a
more advanced front shock by 25% in the Newtonian case, and
it is more advanced by 16% with the relativistic solver. This is
caused by the higher post-shock densities for Γ = 4/3, which
result in a stronger cooling of the shocked gas. The situation
is different in 2 and 3D, however, because Mignone & McK-
inney (2007) reported that jets with a smaller adiabatic index
propagate faster. This is due, as mentioned Sect. 3.1 (follow-
ing Martí et al. 1997), to the first recollimation shock in the
beam, which is strong enough to reaccelerate the beam flow at
Γ = 4/3.

C.6. Numerical approximation of Bessel K functions

Equations B.1 and therefore Eqns. B.5 and B.8 use the modified
Bessel function of the second kind (also called Bessel K function
or Macdonald function), especially the ratio K3/K2. A Fortran 90
implementation of this function by Moreau (2005) was ported to

Fig. C.4. Comparison in density profiles of 1D simulations for param-
eters similar to the fiducial cases. We show in the observer frame
the comparison between a Newtonian and a relativistic simulation for
CygX1 at 30 000 s (blue) and for CygX3 for 6 500 s (red). The simu-
lations include all cooling terms. The pattern with forward and reverse
shock and a thin layer of cooled gas to the left of the contact interface
between beam and environment material is similar for all simulations.
The mesh consists of 12800 cells, about as many as the mesh covering
the beam in the 3D simulations presented in the paper.

Fig. C.5. Comparison in density profiles of 1D simulations similar to
the fiducial case CygX3. Everything is the same as in Fig. C.4, with the
exception of the adiabatic index Γ. Little effects are observable on the
jet head (the thin high-density shell) propagation when Γ is varied, but
choosing Γ = 5/3 results in a more advanced front shock by 25% in
the Newtonian case and 16% in the relativistic one. This is caused by a
stronger cooling of the shocked gas due to higher densities.

A-MaZe, but as both functions tend to zero at low temperature,
a simple division of K3(Θ−1) by K2(Θ−1) caused underflows dur-
ing calculations. We therefore modified the method to derive the
ratio directly. Figure C.6 compares our Fortran method with the
built-in Bessel K functions from the SciPy package and shows
the stability of our method over the whole temperature range
compared to a simple division.
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Fig. C.6. Comparison of our Fortran method for the ratio K3/K2 with
the simple division of both terms using the functions defined in Python
package SciPy. Our Fortran method avoids underflows for high values
of Θ−1 with a relative error that never exceeds 10−8.

Appendix D: Simulations setups

Tables D.1 and D.3 show the input parameters for each run in
CGS units. Tables D.2 and D.4 show the same inputs in terms of
the a-dimensional parameters introduced Sect. 3.1.

Table D.1. Simulation parameters of the runs based on Cygnus X-1. The mass-loss rate Ṁ? is given in units of M� yr−1.

Jet parameters Star parameters
setup name L j (erg s−1) ρ j (g cm−3) v j (cm s−1) r0 (cm) T j (K) B j (G) Ṁ? v∞ (km s−1) T? (K) B? (G)

CygX1 5.1 · 1036 1.3 · 10−15 1 · 1010 5 · 1010 108 10. 3 · 10−6 1000 3 · 104 10.
CygX1_noLoss 5.1 · 1036 1.3 · 10−15 1 · 1010 5 · 1010 108 0. 3 · 10−6 1000 3 · 104 0.
CygX1_wind 5.1 · 1036 1.3 · 10−15 1 · 1010 5 · 1010 108 10. 3 · 10−6 1500 3 · 104 10.
CygX1_mP 5.1 · 1035 1.3 · 10−16 1 · 1010 5 · 1010 108 10. 3 · 10−6 1000 3 · 104 10.
CygX1_T7 5.1 · 1036 1.3 · 10−15 1 · 1010 5 · 1010 107 10. 3 · 10−6 1000 3 · 104 10.
CygX1_T9 5.1 · 1036 1.3 · 10−15 1 · 1010 5 · 1010 109 10. 3 · 10−6 1000 3 · 104 10.

Table D.2. Dimensionless parameters of the Cygnus X-1 runs.

setup name β j M j M j η η∗ K

CygX1 0.334 67 71 0.077 0.087 258
CygX1_noLoss 0.334 67 71 0.077 0.087 258
CygX1_wind 0.334 67 71 0.116 0.130 387
CygX1_mP 0.334 67 71 0.008 0.009 26
CygX1_T7 0.334 211 224 0.077 0.087 26
CygX1_T9 0.334 21 22 0.077 0.087 2577

Table D.3. Simulation parameters of the runs based on Cygnus X-3. The mass-loss rate Ṁ? is given in units of M� yr−1.

Jet parameters Star parameters
setup name L j (erg s−1) ρ j (g cm−3) v j (cm s−1) r0 (cm) T j (K) B j (G) Ṁ? v∞ (km s−1) T? (K) B? (G)

CygX3 1038 1.4 · 10−14 2.25 · 1010 2 · 1010 108 10 10−5 1500 8 · 104 100
CygX3_noLoss 1038 1.4 · 10−14 2.25 · 1010 2 · 1010 108 10 10−5 1500 8 · 104 100
CygX3_mW 1038 1.4 · 10−14 2.25 · 1010 2 · 1010 108 10 7.5 · 10−6 1000 8 · 104 100
CygX3_mP 5.0 · 1037 7 · 10−15 2.25 · 1010 2 · 1010 108 10 10−5 1500 8 · 104 100
CygX3_mPmW 5.0 · 1037 7 · 10−15 2.25 · 1010 2 · 1010 108 10 7.5 · 10−6 1000 8 · 104 100
CygX3_mPmmW 5.0 · 1037 7 · 10−15 2.25 · 1010 2 · 1010 108 10 7.5 · 10−6 750 8 · 104 100

Table D.4. Dimensionless parameters of the Cygnus X-3 runs.

setup name β j M j M j η η∗ K

CygX3 0.75 150 228 0.0028 0.0065 3.5
CygX3_noLoss 0.75 150 228 0.0028 0.0065 3.5
CygX3_mW 0.75 150 228 0.0025 0.0058 3.1
CygX3_mP 0.75 150 228 0.0014 0.0032 1.8
CygX3_mPmW 0.75 150 228 0.0013 0.0029 1.6
CygX3_mPmmW 0.75 150 228 0.0009 0.0022 1.2
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Appendix E: Instability growth phase

Figures E.1 and E.2 show pressure slices of the runs CygX1 and
CygX3 runs, respectively. They highlight the internal structure

of the beam with alternating over- and under-pressured regions
compared to the fluid in the surrounding cocoon.

Fig. E.1. Pressure slices during the instability growth phase of the fiducial Cygnus X-1 run CygX1. The color scale is fixed from 1 (blue) to 1000
Ba (red) to better highlight the beam structure. The beam shows alternating over- and underpressured zones whose number has risen at the 5000 s
mark. The inner cocoon shows ripple-like structures alternating on either side of the beam with increasing intensity as the jet evolves.

Fig. E.2. Pressure slices during the instability growth phase of the fiducial Cygnus X-3 run CygX3. The color scale is fixed from 103 (blue) to 105

Ba (red) to better highlight the beam structure.
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