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Abstract

We propose two light-weight and specialized Spatio-
Temporal Graph Convolutional Networks (ST-GCNs): one
for actions characterized by the motion of the human body
and a novel one we especially design to recognize particu-
lar objects configurations during human actions execution.
We propose a late-fusion strategy of the predictions of both
graphs networks to get the most out of the two and to clear
out ambiguities in the action classification. This modular
approach enables us to reduce memory cost and training
times. Moreover we also propose the same late fusion mech-
anism to further improve the performance using a Bayesian
approach.

We show results on 2 public datasets: CAD-120 and
Watch-n-Patch. Our late-fusion mechanism yields perfor-
mance gains in accuracy of respectively +21 percentage
points (pp), +7 pp on Watch-n-Patch and CAD-120 com-
pared to the individual graphs. Our approach outperforms
most of the significant existing approaches.

1. Introduction

Human activity recognition is an important task in the
development of many practical applications such as home
health monitoring, human-robot interaction, among others.
An activity can be seen as a sequence of actions occurring
in the same environment e.g.: the activity prepare a bowl
of cereals involves actions such as add cereals to the bowl,
pour milk from the bottle to the bowl and maybe place a
spoon in the bowl. Activities involved at home or in an in-
dustrial environment may differ but their underlying actions
may be similar as they cover object displacement, object
grasping, object interaction... Indeed, these atomic actions

Figure 1: Skeleton-graph on the left and object-graph on the
right. Their action predictions are concatenated and con-
nected to a fully connected layer for late fusion decision.

concern the movement of objects, their grasp, or the inter-
actions they may have with their environment. Therefore,
we are interested in the recognition of action based on the
human pose involved as well as the objects in interaction. In
this context the same object appear across multiple actions
but its interactions with other objects or human limbs differ.

Data-driven approaches based on convolutional neural
networks (CNN) adapted to the video domain with 3D con-
volutions allow the recognition of actions in video streams.
3D convolutional neural networks learn spatio-temporal
features simultaneously. Approaches like C3D [27] ob-



tain an accuracy of 90.4% in the action recognition dataset
UCF101 [26]. However, 3D convolutions increase the size
of the network and thus the number of parameters to learn
and they often rely on large datasets collected on YouTube.
Often few to no objects are present nor in common across
the videos or across different actions labels. Thus they of-
ten rely on large datasets for training such as Kinetics and
UCF101 that are created from videos collected on YouTube.
The different classes are performed in radically different en-
vironments with no to very few objects present in the scene.
For example in swimming no objects are present and in play-
ing guitar only the guitar is present. These are not suitable
for daily living action recognition where the same objects in
the same environment are used to perform different actions.

Recent advances in pose estimation and in object detec-
tion allow us to extract out of video streams time series of
skeleton joints and objects nature and positions. We believe
these are the main cues that enable to detect actions. Thus,
we aim to perform action recognition based on higher-level
information from pre-processed videos with such detectors.
Since the introduction of Graph Convolutional Networks
(GCN) by Kipf and Welling [10] in 2017, GCNs gained
in popularity among the Computer Vision community. Es-
pecially in the action recognition topic where the human
skeleton joints and limbs naturally define a graph. We pro-
pose a modular framework for action recognition based on
GCNs. In addition to a GCN based on a temporal skele-
ton graph similar to [29], we consider objects in the scene
as well as another graph, where a connection exists if they
can interact. We are able to model those time sequences
of 2D positions in the image as spatio-temporal graphs and
achieve recognition via GCN. As a result we obtain a much
lighter network yet efficient compared either to graph neural
networks or classical 3D CNN.

Our previous work [19] spotlights the late fusion of het-
erogeneous classifiers: parametric (knowledge-driven) and
CNN (data-driven) ones. Here we study the late fusion
of a Bayesian approach to our new graph convolution net-
works and demonstrate that such graph networks outper-
form clearly 3D CNN ones.

This modular framework shines a light on the impor-
tance of object interactions to clear-up ambiguities in the
skeleton-based GCN human action prediction. Thus our
two major contributions are: (1) The design of a object
graph to model inter-objects interactions occurring during
the execution of an action. (2) A modular approach with a
late fusion mechanism to get the prediction out of both the
skeleton-based and objects-based graphs. As an extension
we propose: (3) the same late fusion mechanism, i.e. with a
bayesian approach to further improve performance using a
knowledge-driven (parametric model) based on a Bayesian
framework. We observe that when two models complement
each other, the late fusion mechanism leads to a substantial

performance gain. Overall, with performance gain we also
show better inference speed and fewer parameters to learn.

2. Related Work

Early approaches and datasets focus solely on human
perception and its pose trajectories in video sequences for
action classification. Often, each video in those datasets
contains a single human action without any context: no
backgrounds nor surrounding objects. Still today, most of
the largest datasets focus on skeleton-based action detec-
tion with few to no objects to interact with, e.g.: MSRAc-
tion [14], BerkeleyMHAD [21], Human3.6M [7], NTU
RGB+D [25]. Some datasets feature objects but they are
involved in only one action. Thus the action can be recog-
nized solely from the object presence e.g. in UCF101 [26]
a guitar appears only in the sequence fo play guitar. We
also observe this in the action recognition dataset HMDB-
51 [12], where actions does not occur in sequences. For
example a brush appears only in the videos belonging to
the action to brush hair and a club only appears in the
videos corresponding to fo play golf. For these reasons
those dataset are not suitable to evaluate our model.

Action recognition is widely addressed by recurrent
neural networks (RNN) and 3D convolutional neural net-
works [27, 2] to learn features and capture long term depen-
dencies directly from video streams. They simultaneously
extract temporal and spatial features at the 3D convolution
layers stage. Thus they do not explicitly reason on skele-
ton and objects involved. For this reason, they require the
learning of a huge number of parameters e.g. 13M for C3D
and are poorly suited to small datasets.

Jain et al. [8] propose a Structural Recurrent Neural
Network (S-RNN) with pre-defined spatio-temporal graph
structures. They propose a mapping from a spatio-temporal
graph to a mixture of recurrent neural network architecture
where nodes and edges are represented as Long Short-Term
Memory units (LSTM). They essentially rely on two inde-
pendent RNNs: one for interactions evolutions and one for
spatial inference. They reason on 3D skeletons and their
interaction with objects. The pre-defined spatio-temporal
graph changes with respect to the task. For example drink-
ing only involve the human node and the cup node, whereas
making cereals involves the human node and bowl, milk,
cereals nodes. However they connect all the objects to-
gether in their spatio-temporal graph in order to handle the
dynamic number of objects within the different sequences.
They handle the variety of spatio-temporal graphs in a sin-
gle structural RNN graph.

In an attempt to bring more generic properties, Qi et
al. [23] propose to learn the graph structure instead of using
pre-defined structures. The network learns to infer the adja-
cency matrix in an end-to-end manner. They rely on graph
neural network (GNN). Through multiple iterations of mes-



sage passing and states updating of nodes, each node cap-
tures the semantic relation and structural information within
its neighboring nodes.

The underlying model of the two previous works is a
GNN. Recent studies proposed a variant to GNN: graph
convolutional network (GCN). Convolutions are adapted
from a 2D or 3D grid to a graph structure. This idea was ini-
tially applied to action recognition with the ST-GCN [29].
Nodes of the ST-GCN corresponds to human body joints,
that are connected spatially and temporally. Spatial edges
connect joints following the human skeleton structure, and
temporal edges connect the same type of node across time.
They solely use the skeleton information to infer actions.
ST-GCN is computationally efficient compared to CNNss,
especially regarding the memory usage, thank to the in-
troduction of graph convolutions. However in this ap-
proach object and environment are not involved. Other re-
cent approaches proposed the use of GCN over deep fea-
tures [13, 3] to better capture temporal dependencies.

In an attempt to reduce 3D convolutional models param-
eters while maintaining performance, more recently volterra
networks are proposed as in [24]. They introduced volterra
filters based on the volterra series formulation [28]. They
propose cascaded volterra filters to a significantly reduce
model parameters and also for data fusion. They propose to
a non linear fusion of the spatial and temporal streams.

Fusion strategies are often proposed to tackle numerous
challenges. Fusion at the early stage may consists in the ad-
dition of the optical flow that describe the general motion
to a sequence of images as in [5]. The fusion of differ-
ent sources of information such as audio and video is also
proposed as in [4]. These different approaches show the ad-
vantages of using a fusion mechanism to increase the overall
performance. However, this gain is achieved at the expense
of the amount of data required for training. The addition of
more modalities increases the number of parameters in the
convolutional network. This has two effects: first it requires
the existence of a such dataset and second it increases the
training time.

Here we design two independent and complementary
GCNs: one based on spatio-temporal skeleton modeling
and another one based on spatio-temporal objects model-
ing. We propose to merge both models at their prediction
levels towards the same layer: a fully-connected layer. We
study the late fusion of both models that a priori comple-
ment each other and the gains that this can yield.

3. Proposed Approach

This section briefly recalls the original spatio-temporal
graph convolution network applied on skeleton sequence as
in [29]. Then we describe our extension to objects interac-
tions sequences. We also propose a late fusion strategy of
the predictions from both graphs models. At last a Bayesian

approach BM is also presented, we believe it may also show
complementary to the graphs.

Graph convolution networks introduced by Kipf and
Welling [10] apply convolutions to graphs instead of an im-
age. The image is composed of pixels arranged in a grid,
and the convolution operates on the ordered neighboring
pixels. Unlike convolutions on images, for a graph node,
the number of neighbors varies and are un-ordered. Follow-
ing this adaptation of CNN to GCN a spatio-temporal graph
convolution network for action recognition was introduced
by Yan et al. [29]. They solely model the human skeleton as
a spatio-temporal graph to perform action recognition moti-
vated by the fact that some body parts are more relevant than
others. The skeleton graph is defined by a set of nodes and
edges Gs = (Vs,Es). Vs includes all the joints in a skele-
ton sequence. Each node is associated to a feature vector
that contains the 2D positions of the joint and a confidence
score. Two nodes are connected following natural connec-
tions of the human skeleton

We are interested in action recognition when a person is
interacting with objects in its vicinity. Our work is based
on Yan et al. [29] publication with their original spatio-
temporal skeleton graph. It is able to model actions where
the human pose is discriminant. However some actions re-
quire more contextual data. Thus we propose to build a sec-
ond original graph convolutional network that aims to rec-
ognize actions from the object set behavior in the sequence.
In our objects-graph G, = (V, ) the node set V contains
all the object nodes in the sequence. Each node is associ-
ated to a feature vector. Similarly to the skeleton sequence
the object sequence is represented by the sequence of 2D
coordinates associated to the bounding box during the ac-
tion. Thus, in the feature vector we add the coordinates of
the center of the bounding box, a classification confidence
score and a object label representing the object class. There
are two types of edges {£s,Er} € £ and two nodes are
connected by an edge e € Eg if they can interact. Same ob-
jects are connected by a edge e; € £ between two frames.
It enables to add structural knowledge though the e € Eg
edges from our experience when designing this graph. For
instance, in most cases, a knife does not interact with a bot-
tle, whereas a glass may interact with a bottle when pour-
ing water. Even though various objects appear in a given
dataset, we define a single object-graph containing all the
objects and their possible interactions.

Both spatio-temporal graphs are able to model tempo-
ral coherence within the action execution but it lacks from
temporal coherence between two successive actions. For
this reason we propose to model the correlations between
two successive action states by adding a recurrent layer: a
Gated Recurrent Unit (GRU).

Designed this way, both graph convolution models are
lightweight in terms of number of nodes as well as in the



size of their associated features. Thus training time are con-
sequently reduced.

It comes appropriate to use hyper-parameter optimiza-
tion tools to tune the training parameters. Given a metric to
optimize and an algorithm to run, such tools intend to find
optimal parameters. We propose to use SMAC [0] to opti-
mize the following free parameters: learning rate initializa-
tion, dropout and batch-size as shown in Tab 1. We choose
to optimize with respect to the F1-score to overcome issues
related to datasets eventually imbalanced. SMAC aims to
build a model of the objective function in order to test at
each iteration a promising set of parameters. SMAC is de-
signed, through this model building to optimize costly eval-
uation function.

Out of the two graph models, we have one model spe-
cialized to predict actions where the body motion is highly
characteristic and another model to better leverage ambi-
guities using the objects motion in the scene. We propose
a fusion of their respective predictions. Both approaches
estimate probability distributions for each class. We have
two vectors corresponding to the soft-max layers: one for
skeleton-graph model and one for the objects-graph model.
We propose a strategy that takes as input video clips that are
first pre-processed to extract skeleton and objects detections
when not available in the ground truth.

We thus obtain two prediction vectors for each of the
models that are later concatenated. This concatenation is
connected to a dense layer of the same size as the number
of classes, as shown with only N = 4 classes as example in
Fig. 1. So there are only N2 4+ N parameters to learn (/N2
weights related to the dense layer and N bias related to acti-
vation). This interconnection aims to take the advantage of
both models in the final prediction. Hereafter, this approach
is named SKLO.

3.1. Bayesian approach with human-object obser-
vations

In this work we propose also propose to combine the
graph models to a bayesian model. The bayesian model BM
proposed by Maurice et al. [20] is based on the same ob-
servations: human pose, human-object and object-to-object
interactions. Moreover transitions between actions, per-
formed during the execution of an activity, provide spatio-
temporal information that allows the recognition of the on-
going action. This approach relies on observations in order
to estimate, at each time of the video, the probabilities of
each considered actions.

All the elements of the scene are first localized in the
image plane by 2D state-of-the-art detectors one for human
pose estimation an another for the objects. Then they are
modeled in 3D space using RGB-D sensor (e.g. Kinect) cal-
ibration data. The detection of the human pose in the image
is based on OpenPose [!], which is trained on MSCOCO

Keypoints Challenge [15]. Single Shot Multi-Box Detec-
tor (SSD) [17] is used to recognize objects, which is trained
with the MSCOCO dataset [15].

They associated a model to each action a. Let A =
{a',...,a™} be the set of N actions. The joint observation
of the human pose s; and the set of objects {2, is described
at time ¢ by O; = {s;,Q;} where Q; = {w!, ..., W)}
with Card(§2) being the number of objects in the scene.
The inference is performed on a sliding window of T
frames, so that this approach does not require video clips
segmentation beforehand, and ensure temporal consistency
of the observations. They model the a posteriori probability
of the actions given the observations as follows:

T T
plaor|Ov:r) o [ [ p(Odlae) [ placlar—r). (1)
=0 =1

Where p(O;|a;) is the likelihood of the observation given
the action a;. p(at|a;—1) characterizes the probabilities of
transitions between two successive actions. All the observa-
tions of the scene in this approach are modeled in 3D thanks
to the sensor calibration data.

In the end with BM, we infer probabilities for each ac-
tion that we can merge to the predictions of SKLO. Simi-
larly we propose to merge them through a fully-connected
layer. Weights are learned to favor one model over the oth-
ers depending on the predictions for each of the actions.

4. Implementation and datasets

This section briefly details the implementation and
datasets selected for further evaluation.

4.1. Implementation details

In order to build our graphs we need the nature and the
2D positions of the human joints as well as objects present
in the videos. Human skeleton positions are inferred us-
ing OpenPose [1]. Objects detections are either provided as
ground truth by datasets as it is the case for CAD-120 either
detected by SSD [ 18] pre-trained on MSCOCO [16].

Videos from CAD-120 and Watch-n-Patch are trimmed
into video clips. Each video clip represents one action. Dur-
ing training and testing, we set our maximum temporal di-
mension to be 16. When the length of a video clip is less
than 16, we zero-pad the missing positions. If the length
of a video clip is greater than 16, we sub-sample the video
clip.

Networks are trained using the standard loss for multi-
class classification task: the categorical cross entropy loss.
Training and evaluations are carried out on a NVIDIA
1080Ti graphic card.



Table 1: Hyper-parameters intervals

Hyper-parameter Interval
Learning rate initialization  [0.01, 0.1]
Dropout [0.5, 1]
Batch-size [1, 160]

5.data_04-46-46_89

Figure 2: Example images from Watch-n-Patch, office en-
vironment on the left, kitchen on the right. In blue: upper-
body joints detected by OpenPose. In yellow: objects de-
tected by SSD.

Figure 3: Example images from CAD-120 [ 1] dataset: ac-
tor 1, video #2305260828, activity microwaving-food. Ac-
tion label on the left: reach, on the right: move.

4.2. Datasets

Our proposed approach combines skeleton and objects
cues in two light spatio-temporal convolutional graph net-
works. To evaluate this proposition we choose datasets with
numerous human objects interactions as well as some inter-
actions between objects. The advantage of action sequences
is that they allow to observe the positions of the same ob-
jects present in the scene during the execution of different
actions.

CAD-120 - The CAD-120 [11] dataset consists of 120
videos with RGB-D channels, played by 4 actors. It con-
tains 10 daily life activities (preparing a bowl of cereal,
taking medication...). These activities involve 10 actions:
reaching, moving, pouring, eating, drinking, placing, clean-
ing, opening, closing, null. Since its release it has been
cited over 590 times and more than 100 times within the
past year, approaches [22, 23] also evaluate themselves on
this dataset. It features rich objects interactions.

Table 2: Detail of class distribution within datasets and the
number of clips (Nc).

Dataset Nc Distribution (% per class)

CAD-120 1149
Watch-n-Patch ofc. 1148

[23,30,3,3,3,15,4,3,1,14]
[12,16,21,6,4,14,9.9,5,3]

Watch-n-Patch ktc. 1207 [15,11,8,8,6,10,6,17,6,6,6]

Watch-n-Patch - This dataset offers two environments
with different actions and their associated training and
testing sets. The office environment consists of 196
videos recorded in 8 different offices. There are 10 an-
notated actions: read, walk, leave-office, fetch-book, put-
back-book, put-down-item, pick-up-item, play-computer,
turn-on computer, turn-off computer. The kitchen envi-
ronment consists of 117 videos recorded in 5 different
kitchens. There are 11 annotated actions: fetch-from-fridge,
put-back-to-fridge, prepare-food, microwaving, fetch-from-
oven, pouring, drinking, leave-kitchen, fill-kettle, plug-in-
kettle, move-kettle.
Both datasets are illustrated in Figs. 2 and 3.

4.3. Evaluation Metrics

Various evaluation metrics exist for the multi-class clas-
sification task. We evaluate our graph models and their fu-
sion proposed in section 3 with two metrics. The first one is
the usual accuracy, which is defined as follows:

Number of correct predictions
Total number of predictions

accuracy = 2)
This measures the ratio of correctly recognized actions to
the total number of actions to recognize, independently of
the number of samples in each class. We also compare our
model to the literature according to the F1-score averaged
over all classes. Fl-score is a metric that takes into ac-
count the precision and recall of the different action classes.
Those two metrics are interesting to study especially in
presence of imbalanced datasets.

5. Evaluations

We first present the results obtained from each individual
graph and benefits to be derived from their late fusion. In
Tab. 3, we notice that the skeleton-graph model (SKL) out-
performs the object-graph (O) model when comparing the
raw accuracy on all datasets. Indeed, an advantage of the
object-graph model is its ability to discriminate particular
object configurations with respect to the actions to be de-
tected. However if particular actions and associated object
configurations offer a great specificity they are also less fre-
quent in the dataset, therefore this performance counts less



Table 3: Accuracy of graphs models (SKL, O) and a
bayesian model BM [20] and of their fusion. Gain in per-
centage points (pp).

Dataset CAD-120 WnP
Fold S1 S2 S3 S4  Mean FO
SKL 65 74 63 61 66 83
(0] 43 32 44 34 38 27
SKLO 83 91 86 78 85 85
Gain vs. SKLL +18 +17 423 +17 +19 +2
BM [20] 84 78 82 82 82 78

BM+C3D[19] 86 89 84 83 86 93
BM + SKLO 89 91 87 85 88 90
Gain vs. C3D +6 0 +1 +7 +4 +5
Gain vs. SKLO +6 0 +1 +7 +4 +5

in the global accuracy computation. For example, the ac-
tion pouring in the CAD-120 dataset implies the milk to be
nearby the bowl and this action represents only 3 % of the
actions.

We now study the gain derived from the fusion of (S) and
(O) called SKLO, if the two models have a high specificity
towards different action classes we observe a better overall
accuracy. From their fusion, we obtain gains of +2 pp on
Watch-n-Patch office and +19 pp on CAD-120. In Tab. 3,
we also show that the fusion of SKLO and BM can further
improve the performance in terms of accuracy with +4pp on
CAD-120 and +5pp on Watch-n-Patch.

We present two evaluation protocols for CAD-120, the
first (S1,...,S4) follows the instruction of the authors where
the 4-fold cross-validation is build in order to train over 3
actors and test over the remaining 1 actor. In order to com-
pare ourselves with a recent approach GPNN [23], we also
follow their experimentation protocol, which differs from
the original release of the dataset. In this experiment folds
are built randomly with a 80 % in the train set and 20 %
in the test set. They show a Fl-score of 88.9 for action
recognition, whereas we obtain in average 88.5 as shown in
Tab. 4.

As we can see in Tab. 5, our approach requires 15 times
less model parameters than GPNN and 10 times less than
C3D. Even compared to recent networks aiming to reduce
the number of parameters as in [24] our model uses 3 times
less parameters. Our number of parameters of our model
depends on the number of graph nodes, the number of frame
chosen to sub-sample the video, the neighborhood extent
during the convolution operation. Defining the prediction
speed as the number of video clips processed per second,
we are able to process 7 times more video clips per second
compared to GPNN and almost 5 times compared to C3D.

On Watch-n-Patch kitchen, we observe that the skeleton-

Table 4: Performance comparison to the literature based on
the F1-score using the CAD-120 dataset, in the two evalua-
tion protocols.

Dataset Protocol Approach F1-score
C3D 63.2
cross-subject LHAOD [11] 80.4
CAD-120 S-RNN [8] 83.2
BM [20]+ SKLO 87.5
GPNN [23] 88.9
cross-random
BM [20] + SKLO 894
KMHIS [9] 59.8
D 71.1
WnP authors’split 3
BM [20] 76.1
GEPHAPP [22] 81.5
BM + SKLO 90.0

Table 5: Memory and speed comparison.

Approach Number of parameters Speed
C3D [27] 15,929,225 17
Volterra networks [24] 4,600,000 -
GPNN [23] 24,356,171 11
SKLO 1,581,669 80

graph model (S) detects with an accuracy of 0.98 and 0.87
the actions leave-kitchen and fetch-from-oven respectively.
Whereas it struggles regarding the actions pouring and
move kettle. The later is often mistaken for leave-kitchen or
fetch-from-oven. When we use the object graph, it is easier
to clear-out the ambiguity as in leave-kitchen all the objects
are static. The performance and sources of confusion are
different and then the fusion (S+0) is able to benefit of both.

For a in-depth analysis, we provide in Figs. 4, 5 and 6 the
confusion matrices obtained from the different graph mod-
els and from their fusion on CAD-120. On the diagonals we
can clearly see that the performances of the models comple-
ment each other with respect to classes. Also, we can note
that the source of confusion differs.

Weights of the dense layer can favor one model over an-
other but it can also encompass the inter-correlations be-
tween the actions predictions. Weights learn to capture the
specificity of each of the model. Actions that can’t be dis-
tinguished by the observation of the objects, weights put
emphasis on the prediction from the skeleton model. Mean-
while for some actions the emphasis is put on the predic-
tion from the object model. Similar behavior is observed in
the fusion of BM with SKLO, each approach has their own
specificity.
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Figure 4: Confusion matrix of the Object Graph on CAD-
120 dataset
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Figure 5: Confusion matrix of the Skeleton Graph on CAD-
120 dataset

6. Conclusion and future work

We propose a modular and light-weight convolutional
graph networks for action recognition. The prediction of
the two networks are blended through a dense layer, this

True label

T
0 1 2 3 4 5 6 7 8 9

Predicted label

Figure 6: Confusion matrix of the fusion SKLO by a Fully
Connected layer on CAD-120 dataset

enables to learn weights that can encompass the intercon-
nections that exists between the skeleton trajectory and the
evolution of the objects configuration in the scene during
any action.

We show that both networks achieve a great specificity
towards some actions and they both complement each other.
Thanks to this synergy the dense layer is able to clear out
ambiguities. We show on CAD-120 and Watch-n-Patch that
the addition of a object graph network and the fusion of the
graph networks to BM approach yields performance gains
in accuracy of respectively +21pp and +7pp over a baseline
approach. We also exhibit a great reduction of the number
of parameters, between 10 and 15 times less, compared to
usual models of the literature.

Future work includes the use of other contextual infor-
mation such as the room nature or the use of synthetically
generated human pose and trajectories.
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