N
N

N

HAL

open science

Grafcet to Arduino: Edit and Upload Grafcets on an
Arduino Boards

Maurice Comlan, David Delfieu, Narcisse Assogba

» To cite this version:

Maurice Comlan, David Delfieu, Narcisse Assogba. Grafcet to Arduino: Edit and Upload Grafcets
on an Arduino Boards. The International Conference on Electrical, Computer, Communications
and Mechatronics Engineering (ICECCME), Oct 2021, Mauritius, Mauritius.

CMES52200.2021.9590933 . hal-03562309v2

HAL Id: hal-03562309
https://hal.science/hal-03562309v2

Submitted on 1 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1109/ICEC-

https://hal.science/hal-03562309v2
https://hal.archives-ouvertes.fr

Grafcet to Arduino : Edit and Upload Grafcets on
an Arduino Boards

Maurice COMLAN
Université d’Abomey-Calavi, Bénin
comlan @hotmail.fr

Abstract—This paper deals with the design and
implementation of a Grafcet editor and simulator, allowing to
generate a directly executable program on an Arduino board
from a Grafcet. This work is intended to be a solution to help
carrying out automation laboratory exercises; and, more
generally, to offer a Programmable Logic Controller (PLC)
development environment allowing to obtain low-cost PCLs
based on Arduino modules, from the Grafcet formalism.
Arduino boards are one of the most accessible and easy-to-use
microcontroller boards and Grafcet is a well-known and
essential model in the world of automated systems. All these
reasons motivated the choice of these technologies. Finally, to
achieve the set objectives, we started from a free Grafcet editor
JGrafchart, developed in Java and that we adapted by
including, amongst other things, the code generator for
Arduino.

Index Terms—Grafcet,
Controller, Code generator

Arduino, Programmable Logic

I. INTRODUCTION

The graphical representation describes the sequential
operation of an automated system unambiguously and in a
way that is comprehensible to all categories of personnel.
Indeed, the human eye is able to grasp, with a glance, a
sequential evolution represented graphically [1]. Among the
possible methods are the flowchart, the state machines, the
Grafcet, the Petri nets.

The Petri nets model was created in 1962 by Carl Adam
Petri [2], to model communicating processes. The major
interest of Petri nets, for the modeling of control systems,
comes from the fact that they allow to represent in a simple,
clear and graphic way the concepts of parallelism,
synchronization, resource sharing, communication, causality
[3]. Depending on their characteristics, Petri nets can be
simple, autonomous or not, predicates, color, continuous,
synchronized, timed, hybrids

From ordinary Petri nets derives the Grafcet. Nevertheless,
the semantics of the two (2) models differs [4]. The Grafcet,
standardized in 1988, makes it possible to describe the
behavior of the sequential part of the control system of
industrial processes [5], through a PLC, a programmable
electronic machine intended to control in industrial
environment and in real-time automated systems. In industry,
the behavior of a process is physically obtained thanks to an
industrial programmable logic controller: an electronic
machine equipped with a programmable memory, intended to

David DELFIEU
Université de Nantes, France
david.delfieu @univ-nantes.fr

Narcisse ASSOGBA
Université d’Abomey-Calavi, Bénin
assogbanarcisse @yahoo.fr

control automated systems in an industrial environment and
in real time. It is a simplified computer, which is physically
connected by an input interface to sensors and by an output
interface to actuators. They are relatively expensive and
difficult to acquire.

The behavior of an PLC can also be achieved with a
computer or a card with a microcontroller such as the mbed
modules [6], the Raspberry PI [7], LaunchPad [8] or
Arduino boards. Which are much more accessible and offer
acceptable performance for automated applications of
medium size. For example, the Arduino UNO card
(entry-level card) offers a 20Mhz processor, 32K of RAM
and 14 10 [9].

Our contribution: The development of automata is done
today from description in Grafcet or Ladder language. Apart
from their relatively high costs, the automata are difficult to
acquire. This situation is a hindrance to the realization of
industrial automation laboratory exercises. On the other hand
microcontroller cards present a better compromise between
price, accessibility and performance to obtain the same
results. The objective of this project is to development an
automaton environment that makes it possible, from the
Grafcet formalism, to produce low cost PLCs (Figure 1).

Fig. 1. Embedding Grafcet on Arduino

This paper is organized as follows. We first give related
works in Section II. We will talk about the Programmable
Logic Controller, the Grafcet and the Arduino Project. Then,
in Section III, we present GrafcetToArduino, a tool to edit and
upload grafcet on an arduino board. Finally, In Section IV we
present a case study. We use this tool for the realization of a
fire detection system.

II. RELATED WORKS
A. Programmable Logic Controller

A programmable logic controller (PLC) controls the
manufacturing processes for integrated production lines and
equipment. PLCs were designed to replace the need for a
large bank of relays or timers in facilities with numerous
inputs and outputs. Due to their durability and ability to
automate multiple processes, PLCs have become a staple in
modern manufacturing. In this section, we will review the
basic architecture of programmable logic controllers [10].

‘ Programming Device ‘

1y

R — T
— & Central Processing —

. Unit (CPU)

.
Soui Output

* | Medule ::> @ ::) Module .

. Memory %
) Data Program -
— T

Communication
Power Supply Device

Fig. 2. PLC Architecture [10]

The main components of a PLC consist of following basic
parts:

1. Power Supply : The power supply provides power to the
PLC by converting the available incoming AC power to the
DC power required by the CPU and the circuits in the Input
and Output (I/O) interface modules to operate properly. This
rectified voltage is transferred across back plane of the
chassis. Therefore, careful selection of a suitably sized
power supply is important to ensure it has the capacity to
provide the necessary “bus power” to supply all Input and
Output modules (I/O modules).

2. Processor Unit or Central Processing Unit (CPU) : The
processor unit or central processing unit (CPU) is the unit
containing the microprocessor and this interprets the input
signals and carries out the control actions, according to the
program stored in its memory, communicating the decisions
as action signals to the outputs. The CPU comprises two
components: the Controller and the Memory System

3. Input and Output (I/O) Modules : 1/0 modules are
available as either input only, output only, or a combination
of inputs and outputs. The I/O section establish the
interfacing between physical devices in the real world
outside the PLC and the digital arena inside the PLC.
Typical input modules have either 8, 16 or 32 input
terminals.

4. Programming Device : A PLC requires a programming
terminal and programming software for operation. The
programming device can be a handheld device, a desktop

console, or a computer. The programming terminal is used
for Programming the PLC, Monitoring the PLC operation,
Download a ladder logic program (sending of a program
from the programming terminal to the PLC) and Upload a
ladder logic program (sending of program from the PLC to
the programming terminal).

B. The Grafcet

The Grafcet is useful for designing graphs that give a
graphical and synthetic representation of the behavior of
systems. It is used in industry to describe the sequential
behavior of processes. Inspired by the Petri nets and
standardized by the IEC under the IEC-60848 standard [5], it
obeys rules of syntax and well-defined semantics.

A Grafcet is basically composed of a set of:

¢ steps, they describes a system state. A step is either active
or inactive. One or more actions are associated with it,
to indicate the behavior of an output variable;

o transitions, which indicates the possibility of activity
evolution between two or more steps. A Boolean
expression, called receptivity, is associated with each
transition;

o directed link, which connects one or several steps to a
transition, or a transition to one or several steps.

Input variables forming the
transition condition with the
logic operator : « AND »

Steps 1and2 |

Ouput variables assigned in
the i actions to

Directed links K
the step 2

Continuous actiens
associated to the steps
3and 4

Transitions3and4 |

Transition condition
associated to transitions 4

STRUCTURE

INTERPRETATION

Fig. 3. Basic elements of a Grafcet

In addition to these basic elements, there are more
complex components such as macro-steps, encapsulating
steps, parallelism and synchronization elements
(divergence/convergence).

IEC-60848 defines five (5) evolution rules. These rules de-
scribe the principle of sequential evolution between situations
(all the stages active at a given moment and forming the sys-
tem state) of the Grafcet.

1. Initial situation, choosen by the designer, is the situation
at the initial time;

2. Clearing of a transition, a transition is said to be
enabled when all immediately preceding steps linked to this

transition are active. The clearing of a transition occurs when
the transition is ENABLED, AND WHEN its associated
transition-condition is TRUE;

3. Evolution of active steps, the clearing of a transition
provokes simultaneously the activation of all the immediate
succeeding steps and the deactivation of all the immediate
preceding steps;

4. Simultaneous evolutions, several transitions which can
be cleared simultaneously are simultaneously cleared;

5. Simultaneous activation and deactivation of a step, if
during the operation, an active step is simultaneously actived
and deactived, it remains active.

C. Arduino boards

Arduino, is a generic brand name of the Italian company
Smart Projects, given to a set of electronic cards. The diagrams
of these cards are published under free license. Twenty-four
(24) versions of Arduino-type cards have been produced and
sold commercially until 2017 (Uno, Mega, Nano, Leonardo,
Due ...) [11].

An Arduino module is generally built around an Atmel
AVR microcontroller (ATmega328, ATmega32u4 or
ATmega2560 for recent versions, ATmegal68, ATmegal280
or ATmega8 for older versions), and complementary
components that facilitate programming and interfacing with
other circuits. Each module has at least one 5 V linear
controller, a 16 MHz quartz oscillator and uses most
microcontroller inputs/outputs for interfacing with other
circuits.

The different versions of the Arduino cards work under the
same general principle.

Reset Button Tx/Rx LED

Digital I/0 pins

USB Jack

Power LED

USB to Serial IC
ICSP Header
16 MHz Crystal

Resettable Fuse

Atmel Atmega328
DC Power Jack

3.3v Voltage Regulator Power Pins Analog I/O Pins

Fig. 4. Diagram of an Arduino card

The microcontroller is pre-programmed with a bootloader so
that a dedicated programmer is not required. The modules are
programmed with a serial TTL connection, but the connectors
allowing this programming differ according to the models.

The programming software of the Arduino bords is a free,
cross-platform Java application, serving as a code editor and
compiler, which can transfer firmware and program through
the serial link (RS-232, Bluetooth or USB depending on the
module). The programming language used is C++, compiled
with avr-g++.

ITII. GRAFCETTOARDUINO : A TOOL TO EDIT AND UPLOAD
GRAFCET ON AN ARDUINO BOARD

A. Editor

We drew inspiration for this proposal from the Jgrafchart,
Automgen 8 and Unity Pro XL interfaces.
The main interface will consist of the following elements:

e a menu bar;

e a quick action bar, below the menu bar;

« a lateral pallet for the Grafcet components;
« an editing area;

« and an area for displaying errors and logs.

The menu bar : It will consist of six (6) menus (File, Edit,
View, Execute, Automaton, Help). The action bar : It gathers
just below the menus a series of the most important actions
during editing. The Side pallette : Located to the left of the
main interface, it offers the Grafcet components (step,
transition, discrepancies, comments, etc.) that can be selected
and dropped in the editing area. The editing area : It is in
this area that the Grafcet is drawn, it receives the elements
available in the side palette. At this level, double-clicking on
a component opens a new window that allows you to edit
the properties of the component. A right-click on the other
hand opens a context menu containing, among other things,
the actions copy, cut, paste, delete, properties and other
actions that will depend on the type of component. If the
right click is made in a zone without any element, then you
get actions allowing to quickly add some elements of the
palette (Step, transition, comment...) and other actions like
paste, wizard, variables, preferences. The error and log
display area : This area completely at the bottom of the
main interface will display errors and messages resulting
from the execution of an action. It will serve as the first
basis for debugging and will allow the user to have a
feedback of the actions they perform.

o0 JGrafchart - Arduino Beta
File Edit View Execute Automaton Help
CaB 0 2¢ Xhil 260 &a& nnr» 9

FC|GUl
Function Chart

Systéme de 3 feux
Le vert est connecté & la PIN 5 du Arduino
Le jaune 2 la PING
Le rouge 2 la PIN7

Initial Step

Messages: | [~

Fig. 5. Editor main interface

In order to reach our goal and keep on schedule, we
started with the JGrafchart software. JGrafchart is a freeware

developed at the Automation Department of Lund University
in Sweden [12]. The software is developed in Java with the
Swing [13], enabling it to be deployed on all operating
systems. A characteristic that was decisive in our choice.

To adapt the application to our needs, we had to make some
changes by disabling certain features to lighten the application
and then developing new ones according to the specifications.

So:

o the menu “Misc.” (Others) has been disabled. This menu
managed the application’s interconnection to a computer
network via a server on which files are shared using the
DPWS protocol.

« the control module by PID, a control method often used
for servos [14], has been disabled. This module was not
part of our work.

« the side palette has been lightened by removing compo-
nents related to disabled modules.

« the ”Automaton” menu, which manages interactions with
the connected PLC (Arduino board) has been created.
Via this menu, it is possible to edit Grafcet variables;
to define the type of card and the COM port to which
it is connected; to export the source code for Arduino
generated from the Grafcet; to directly upload the code
to a pre-configured card.

« the variable management module has also been recreated,
to make it easier to use the application for professionals
familiar with environments like Unity Pro or PL7. From
the new module it is possible to create and manage three
(3) types of variables:

— the standard variable;
— the function block ;
— transition session.

« changes have also been made to the edit box, including
the edit menu of steps and transitions.

« finally, some adjustments have been made to the “File”
menu, adding the “Open recent file” submenu, which
gives access to the last edited files. And the upload icon
has been added to the quick action bar.

The executable and the source code of the editor are avail-

able at :
https://github.com/maurice-comlan/Grafcet-To-Arduino.

B. Translation of Grafcet into Arduino source code

For the interpretation of the Grafcet and its translation into
source code for Arduino, we wrote pseudo interpretation
code 1.

CODE 1. Interpretation algorithm

Define the list of steps; /% Each step
including the list of its actions =/
Define the list of transitions; /% Each

transition including its transition
condition, the list of its preceding steps
and the list of its following steps =/
Create an empty set of fireable

transitions ;

Activate the initial steps;
Execute associated actions;
While TRUE Do

Clear the set of fireable
For each transition Do

If transition validated AND transition

conditions satisfied Then

Add transition to the

transitions ;

set of

fireable transitions;
EndIf
EndFor
If the set of fireable transitions is

not empty Then
For each fireable transition Do
/% In simultaneous theory =/

Fire the transition;

Disable the previous steps to the
transition ;

Enable the following steps at

transition ;
Execute the actions
with the activated
EndFor
EndIf
EndWhile

associated
steps ;

For the implementation of the Pseudo-code 1 we have cre-
ated three (3) object models, representing three (3) main ele-
ments of a Grafcet.

« the action objet model,
« the step objet model;
« the transition objet model.

The definition of these object classes, combined with the use
of some libraries created for Arduino, facilitated the translation
of the Pseudo-code 1 into C++.

IV. APPLICATION CASE: FIRE DETECTION SYSTEM

To test the performance of the environment we have set
up, we have developed an application case. It is a fire
detection system based on a dual capture system. Excessive
light at the fire scene is initially captured by a flame sensor
that triggers a first light signal. The abnormal temperature
increase is then captured by a temperature sensor which
triggers a second light signal. These two conditions trigger a
third light signal followed by an audible signal. The action
of an operator on a button stops the different light and sound
signals.

This case is very interesting in that it tests several aspects
of our system:

« taken into account action on analog and digital outputs;
o steps without action or with multiple actions;

o simple and complex transition conditions;

o forced transition;

o parallel evolution and synchronization;

« finally the compilation and the transfer on card is tested.

e eee sesee sesse eseees esees sssee eeess seees seeee eesss
Geesee eeess seess seees seses sesss seeee seees eeses eeees

Leseee
R
IR

R

o5 e
ol w4 v w4 v

.4oﬂ o
:
qﬁ@r.

e essssssees

eeeee@@@@@
ceeseweee

ceweee

...foesaaaeve@@weswesoevoaoeeessssvaasweeineswsssssaa,
. R R R R R R T
B R R R R
R R e T
n ﬂ""s
ao oz 2 EEEEES
ceeees

AR ARIRIEANNN AR ADADIADARAARIRRR AL SAASSAARARN DA ARARAAIN
“eeesssseeesss st e e e e e

ceeene
ceeeee.
ceeeeec

‘ e b e aé Né 0 I vee seves VAfef be aluei\ee boo
Fig. 6. Principle of fire detection
A. System Grafcet
Figure 7 presents the Grafcet proposed for the application
case. The variables used for the realization of this Grafcet
are listed in Figure 8. The XML code and the C++ code for
Arduino for application case are generated by our fritzing
GrafcetToArduino tool.
Fig. 9. Montage diagrams with Fritzing : View on breadboard
e .
B B " b
VAVAVAV 2 P P z
bp_marche = 1 Z%QH xX Esrggntsssnm) 51 52 %gg
W - L e 238
s o5 S C £ I R T
2200 XX\ Orange (605nm)
VAVAVAV 2 z =<‘I L j; Q1 l| i‘
Vide 1 4 LED4
2200 wx Orange (605nm)
detect_temp = 1 W * m -
LED3 5
200 WX Red (633nm)
> B AW MM~
Arduino
s £533: 2% 7
Fig. 7. Grafcet of fire detection system " g5t
% 3 =
g 833> i
@ O Data Editor | | | I
Variables | Function Block | Transition Session
Filter by name: New variable | fritz-‘ing
Name Type Addresse Value Comment
Lozndb, BOL e o Fig. 10. Montage diagrams with Fritzing : Schematic view
L_Flamme BOOL %Q7 False
L_temp BOOL %Q8 False
L_Final BOOL %02 False
buzzer BOOL %Q10 False TABLE I
limit_termp INT 400 Vout_LM35(E)=1... LIST OF COMPONENTS
cap_flamme BOOL %al4
cap_temp INT %A1
bp_marche BOOL %I2 true Components Quantity
bp_arret BOOL %13 true =
Arduino Uno 1
Buzzer 1
LED 5
Résistances 6
Bouton poussoir 2
Fig. 8. Variables used in the Grafcet of the application case LM35 1
Phototransistor 1

B. Montage diagrams

The diagrams have been made with the software Fritzing
[15]. The components used for the realization are listed in the

Table 1.

For the Grafcet edition,

V. ANALYSES ET DISCUSSIONS

we relied heavily on the

performance already offered by JGrafchart [12]. This made it

easier to focus on other features. However, we have lost
performance in terms of checking the consistency of actions
associated with steps and conditions associated with
transitions because the basic language to perform these
operations has been modified; we went from the Grafchart
language [12], developed by the JGrafchart team, to the C
++ language, used to program Arduino boards. It was
therefore necessary to integrate a C ++ syntactic and
semantic analyzer into the editor to maintain this
performance. This change of language also had an impact on
the simulation mode which strongly depends on the syntactic
and semantic analyzer to calculate the value of the variables
and to interpret the actions.

For this first version, some Grafcets functionalities have not
been taken into account. These are the means of structuring
by forcing the situation of a partial grafcet and of structuring
by encapsulation [5].

The tests carried out on the Arduino Uno boards were
conclusive. The actions associated with the steps are
performed in the normal order. The stages are indeed
activated and deactivated as the transitions are completed.
Due to lack of hardware, we were unable to test the
performance of the application on other types of Arduino
boards.

Also the use of the software in a Windows environment
requires the installation of the program nmake, in addition to
the C ++ compiler, to take into account the makefile which is
not supported by default on Windows [16]. But on the other
hand if the design should not lead to execution on an
Arduino board and is limited only to the generation of code
for Arduino, the application works perfectly without the
need for additional software except the JVM.

Our vision is to create an open source and multiplatform
automation workshop. To achieve this objective,
improvements will be continually added to this version of
the software to take into account other Grafcet / SFC
functionalities and integrate other types of models such as
Ladder and extend the possibilities of low-cost PLCs.

VI. CONCLUSION

The work carried out on behalf of our thesis project
consisted in the design and implementation of a Grafcet
editor and simulator, allowing us to generate a program
directly executable on an Arduino card from the Grafcet.
The interest of the work is to provide an environment to
facilitate the achievement of the objectives of the project.
practical industrial automation work on low-cost automatons,
designed around Arduino microcontroller cards.

To achieve this objective, we first studied the
specifications of one of the most widely used models in the
field of automation and process control: the Grafcet. We then
analyzed the operation and functionalities of three (3)
existing Grafcet editors. From this analysis, the free editor
JGrafchart was selected as the basis for the development of
our solution. JGrafchart was then modified and adapted to
the requirements of the specifications.

Once the editor was up and running, the second step was
to set up the Grafcet translation module in source code for
Arduino and send code to an Arduino board. At this level, a
translation algorithm based on the work of [17] has been
implemented, followed by an analysis of the principle of
compiling Arduino source codes and their transfer to the
board via Arduino’s IDE.

To appreciate how the editor works, an application test case
was developed to test the most important features and validate
the work that was done.

The scalability of this type of application is a major
advantage because it will improve the editor’s functionality
by adding, for example, the languages defined in the
IEC-61131-3 standard to the list of languages used to edit
actions related to a step or define instructions for block
functions. In perspective to this work, it would be interesting
to add to the editor taken into account other formalism such
as Ladder and also extend the possibilities of automatons to
other microcontroller board.

REFERENCES

[1] E. H. El Mimouni, A. Hanafi, R. Lajouad, A. Rmicha, A. Jemily,
A. Errahouti, and K. Moujibi, Sciences de I’ingénieur, lere STE, 1st ed.,
2006.

[2] C. A. Petri, “Communication with automata,” Ph.D. dissertation, PhD
thesis, Institut fuer Instrumentelle Mathematik, 1962.

[3] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets,
event structures and domains, part 1i,” Theoretical Computer
Science, vol. 13, mno. 1, pp. 85 — 108, 1981, special

Issue Semantics of Concurrent Computation. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304397581901122

[4] M. Sogbohossou and A. Vianou, “Formal modeling of grafcets with time
petri nets,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 5, pp. 1978 — 1985, 2015.

[5] C. E. I. CEI, “Cei 60848: Langage de spécification grafcet pour
diagrammes fonctionnels en séquence,” 2002.

[6] M. M. Macias, J. E. Agudo, C. J. G. Orellana, H. M. G. Velasco, and
A. G. Manso, “The” mbed” platform for teaching electronics applied to
product design,” in 2014 XI Tecnologias Aplicadas a la Ensenanza de
la Electronica (Technologies Applied to Electronics Teaching)(TAEE).
IEEE, 2014, pp. 1-6.

[7]1 E. Upton and G. Halfacree, Raspberry Pi user guide.
Sons, 2014.

[8] A. V. Parkhomenko, “Development and application of remote laboratory
for embedded systems design,” 2015.

John Wiley &

[9] Arduino, “Arduino Uno Rev3,” 2017. [Online]. Available:
https://store.arduino.cc/arduino-uno-rev3

[10] “Plc - architecture/hardware,” jul 2021. [Online]. Available:
https://www.plcautonetics.com/plc-architecture/

[11] “Arduino - compare,” jul 2017. [Online]. Available:

https://www.arduino.cc/en/Products/Compare

Lund University, “Automatic Control - Grafchart,” 2017. [Online].
Available: http://www.control.lth.se/Research/tools/grafchart.html

R. Eckstein, M. Loy, D. Wood, and M. Loukides, Java swing. O’reilly
Cambridge, MA, 1998.

D. Ross, E. Deguine, and M. Camus, “Asservissement par pid,” rose.
eu. org, vol. 3, 2010.

A. Knorig, R. Wettach, and J. Cohen, “Fritzing: a tool for advancing
electronic prototyping for designers,” in Proceedings of the 3rd Inter-
national Conference on Tangible and Embedded Interaction, 2009, pp.

[12]
[13]
[14]

[15]

351-358.
[16] Microsoft, “Makefiles (Windows),” 2017. [On-
line]. Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa380049(v=vs.85).aspx
R. David and H. Alla, Du Grafcet aux réseaux de Petri, 2nd ed., ser.
Série automatique. Hermes, 1992.

(17]

