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Recent advances in capture technologies have increased the production of 3D content in the form of Point Clouds (PCs). The perceived quality of such data can be impacted by typical processing including acquisition, compression, transmission, visualization, etc. In this paper, we propose a learning-based method that efficiently predicts the quality of distorted PCs through a set of features extracted from the reference PC and its degraded version. The quality index is obtained here by combining the considered features using a Support Vector Regression (SVR) model. The performance contribution of each considered feature and their combination are compared. We then discuss the experimental results obtained in the context of state-of-the-art methods using 2 publicly available datasets. We also evaluate the ability of our method to predict unknown PCs through a cross-dataset evaluation. The results show the relevance of introducing a learning step to merge features for the quality assessment of such data.

INTRODUCTION

Recent advances in capture technologies have increased the production of 3D content in the form of Point Clouds (PCs). As most multimedia contents, PCs may undergo different types of distortion introduced by several basic processing (acquisition, compression [START_REF] Quach | Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression[END_REF][START_REF] Quach | Folding-Based Compression Of Point Cloud Attributes[END_REF], transmission, visualization, etc.), usually applied to transmit or visualize such data. To estimate the perceptual impact of these distortions on the perceived quality, subjective and objective evaluations are usually conducted. Subjective evaluation gives scores that reflect the perception of human observers through psycho-visual tests, while objective evaluation aims to automatically predict the subjective scores. As for 2D images and videos [START_REF] Chetouani | On the use of a scanpath predictor and convolutional neural network for blind image quality assessment[END_REF][START_REF] Chetouani | Image quality assessment without reference by mixing deep learning-based features[END_REF], objective methods can be classified according to the availability of the reference PC: Full Reference (FR) approaches that need the reference PC, Reduced Reference (RR) approaches that exploit only partial information from the reference PC Funded by the TIC-ART project, Region Centre-Val de Loire, France and No Reference (NR) approaches that predict the quality from only the distorted version of the reference PC. It is worth noting that such quality prediction methods can be useful in several applications [START_REF] Chetouani | Classification of engraved pottery sherds mixing deeplearning features by compact bilinear pooling[END_REF][START_REF] Hamidi | Blind Robust 3D Mesh Watermarking Based on Mesh Saliency and Wavelet Transform for Copyright Protection[END_REF][START_REF] Fourati | Face antispoofing with image quality assessment[END_REF].

Different point cloud objective metrics have been proposed in the literature, e.g., the point-to-point or the pointto-plane metrics [START_REF] Tian | Geometric distortion metrics for point cloud compression[END_REF]. The latter consists in projecting the point-to-point error vector along the local normal. In [START_REF] Alexiou | Point Cloud Quality Assessment Metric Based on Angular Similarity[END_REF], the authors proposed a method based on the angular similarity between tangent planes. In [START_REF] Meynet | PC-MSDM: A quality metric for 3D point clouds[END_REF], the authors proposed a metric called PC-MSDM by extending the well-known SSIM metric [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], widely used for 2D images, to PC, by considering features including local mean curvature. The authors extended that work later in [START_REF] Meynet | PCQM: A Full-Reference Quality Metric for Colored 3D Point Clouds[END_REF] with a metric called PCQM, which takes into consideration also the color information. In [START_REF] Javaheri | Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation[END_REF], the authors proposed a new approach that focuses more on the distribution of the data. They introduced a new type of correspondence from point to distribution characterized by its mean and covariance using the well-known Mahalanobis distance. In [START_REF] Viola | A Color-Based Objective Quality Metric for Point Cloud Contents[END_REF], the authors proposed a color-focused metric that integrates geometry information. In [START_REF] Alexiou | Towards a Point Cloud Structural Similarity Metric[END_REF], the authors adapted also the SSIM metric for point clouds using a number of features. In [START_REF] Javaheri | Improving PSNR-based Quality Metrics Performance For Point Cloud Geometry[END_REF], the authors improved the point cloud PSNR metrics. Interesting learning-based methods were also proposed for 3D meshes [START_REF] Abouelaziz | Convolutional neural network for blind mesh visual quality assessment using 3d visual saliency[END_REF][START_REF] Abouelaziz | 3D visual saliency and convolutional neural network for blind mesh quality assessment[END_REF][START_REF] Chetouani | Three-dimensional mesh quality metric with reference based on a support vector regression model[END_REF][START_REF] Abouelaziz | No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling[END_REF]. Contrary to the above-described metrics, in this paper we introduce a learning-based full-reference method to predict the quality of PCs. The proposed method is based on the extraction and the combination of a set of features. More precisely, we consider geometrical and color attributes extracted from the pristine PC and its degraded version. We then compute the distance between the considered features and use a Support Vector Regressor (SVR) to predict the quality of such distorted PC. Our method is compared with state-of-the-art metrics and the performance contribution of each considered feature is evaluated. We also evaluated quality prediction performance on unknown PC through a cross-dataset evaluation. Our results show the relevance of introducing a learning step to merge features for PC quality assessment.

The remainder of this paper is structured as follows: the proposed method is described in Section 2. Experiment results including feature analysis are discussed in Section 3, followed by the conclusion in Section 4.

PROPOSED METHOD

In this paper, we design a learning-based framework to predict the quality of PCs with reference. As illustrated by Fig. 1, our method is based on two main steps: feature extraction and feature fusion. The former aims to characterize the difference between the reference PC X and its degraded version Y through the comparison of some attributes, while the latter aims to derive a quality index from the features thus extracted using an SVR model.

Feature Extraction

Several features can be considered to characterize the difference between two PCs. In this study, geometrical and color attributes are considered since both have an impact on our perception. Geometry-based attributes aim to capture the structural deformations and the color-based attributes aim to capture the color deformations. More precisely, the mean curvature and roughness have been employed as geometrical attributes. The latter have been computed using CloudCompare software [START_REF]Cloudcompare[END_REF] with an automatic radius adjustment based on the density of each PC. These features are employed as follows.

Let us first define F k as the k th considered feature with {k = 1: Color; k = 2: Mean curvature; k = 3: Rough-ness}. After decomposing each PC into patches of size 32 × 32 × 1, we compute for each considered feature F k the distance D Fk (P X → P Y ) between each patch P X of X and its corresponding patch P Y in Y . Several distance criteria can be used. Here, the Mean Absolute Error (MAE) has been employed. We then form a feature vector V Fk as follows:

V Fk (X, Y ) = {µ DF k (PX →PY ) ; σ DF k (PX →PY ) }, (1)
where µ DF k (PX →PY ) and σ DF k (PX →PY ) represent the mean and the standard deviation of the patch-based distances D Fk (P X → P Y ) of each feature F k , respectively.

In addition to the above feature vectors, the mean and standard deviation of the geometric distances between each point of X and its corresponding point in Y are also considered. The latter are also regrouped in a feature vector noted V G (X, Y ) (see Eq. 1).

Quality index

An SVR model is then used to predict the quality of the distorted PC. More precisely, we concatenate the above feature vectors to form a global feature vector V (X, Y ) as follows:

V (X, Y ) =      V F1 (X, Y ) V F2 (X, Y ) V F3 (X, Y ) V G (X, Y )      , (2) 
The input of our model is the global feature vector V (X, Y ), while its output is the predicted quality score. We tested different kernel functions and the best result was achieved with the Gaussian kernel.

It is worth noting that existing PC quality metrics usually employ a function f that aims to symmetrize those metrics (i.e. f (X, Y ) = f (Y, X)). For a given metric M , the symmetrization function is often applied as follows:

Q M (X, Y) = f (X → Y, Y → X), (3) 
where Q M (X, Y ) is the quality index computed between the PC X and its distorted version Y through the metric M .

For instance, the symmetrization function f is usually min and max for MSE and PSNR, respectively. In this study, instead of applying the symmetrization function that is not necessary the optimal solution, we rather consider three different configurations:

1. V(X, Y): The global feature vector is obtained by comparing points and patches of X and their corresponding points and patches in Y.

V(Y, X):

The global feature vector is obtained by comparing points and patches of Y and their corresponding points and patches in X.

3. V(X, Y) and V(Y, X): The features are obtained by concatenating the global feature vectors of the two above-configurations.

The quality prediction capacity of our method is evaluated through each of these configurations in Section 3.2.

EXPERIMENTAL RESULTS

The efficiency of our method to predict the quality of PCs is evaluated in this section. To do so, we first describe the datasets used and the evaluation protocol applied. Then, we discuss the performance reached by each considered features as well as their combination. The results thus obtained are compared to state-of-the-art 3D PC metrics. Finally, a crossdataset evaluation is carried-out to show the generalization ability of our method to predict the quality of unknown PCs. 

Datasets and Evaluation Protocol

In this study, two recent PC datasets are used: ICIP20 [START_REF] Perry | Quality Evaluation Of Static Point Clouds Encoded Using MPEG Codecs[END_REF] and PointXR [START_REF] Alexiou | PointXR: A Toolbox for Visualization and Subjective Evaluation of Point Clouds in Virtual Reality[END_REF].

• ICIP20 is composed of 6 commonly used point clouds from which 90 degraded versions were derived through 3 types of compression: V-PCC, G-PCC with triangle soup coding and G-PCC with octree coding. Each reference point cloud was compressed using five different levels.

• PointXR is composed of 5 point clouds from which 45 degraded versions were derived through G-PCC with octree coding for geometry compression and, Lifting and RAHT for color compression.

The above-described datasets are split into training and test sets N times (i.e. N folds). N corresponds to the number of reference point clouds of each dataset and it is thus equal to 6 for ICIP20 and 5 for PointXR. At each time, N -1 reference PCs and their degraded versions are used to train the model and, the rest (i.e. one reference PC and its degraded versions) are used to test the model. Two commonly used measures are adopted as evaluation criteria: 1) Pearson Correlation Coefficient (PCC) and 2) Spearman Rank-Order Coefficient Correlation (SROCC). Both take values on [0, 1] (absolute values), with 1 meaning the best correlation. These correlations are computed over each fold and the mean correlations are reported.

Feature Evaluation

Table 1 shows the mean correlations obtained for each of the three considered configurations on ICIP20 dataset. The best mean correlations are highlighted in bold. As can be seen, the first two configurations obtain close correlations with a slight difference in terms of mean SROCC. The third configuration that corresponds to the concatenation of the two global feature vectors, achieves the best performance with a mean PCC and SROCC equal to 0.973 and 0.969, respectively. The concatenation of all the feature vectors improves the global performance and, it is thus retained and compared with stateof-the art methods in Section 3.3.

Features

PCC SROCC We then compare the performance contribution of each attribute and their combination only for the retained configuration. Table 2 shows the results obtained on ICIP20 dataset. The top two mean PCC and SROCC values are highlighted in bold. As can be seen, all the features obtain high correlations. Geometry and Color achieve the higher correlations, while Roughness obtains the lower performance. This result was expected since the former are usually used to estimate the quality of such data as well as for 3D meshes [START_REF] Abouelaziz | Combination of handcrafted and deep learning-based features for 3d mesh quality assessment[END_REF][START_REF] Chetouani | Three-dimensional mesh quality metric with reference based on a support vector regression model[END_REF]. The overall best performance is reached after combining all the considered features with an improvement gain in terms of mean PCC between 1.8 to 12%.

1) V(X, Y) 0.967 0.958 2) V(Y, X) 0.967 0.965 3) V(X, Y) and V(Y, X) 0.973 0.

Comparison with the state-of-the-art

Our method is here compared with state-of-the-art metrics. Tables 3 and4 show the results obtained for ICIP20 and PointXR datasets, respectively.

On ICIP20 (see 

Cross Dataset Evaluation

In this section, we evaluate the generalization ability of our method to predict the quality of unknown PCs by using ICIP20 (PointXR) as training set and PointXR (ICIP20) as test set. 

CONCLUSION

In this paper, we proposed a learning-based method that efficiently predicts the quality of distorted PCs with reference. After splitting the reference PC X and its degraded version Y into patches, the mean absolute value between a set of features (i.e. curvature, roughness and color) extracted from each patches of both PCs are computed. Geometry distance between points of the two PCs was also considered as feature.

The resulted feature vectors are then fed as input to an SVR model to predict the quality. The performance contribution of each considered feature and their fusion were also analyzed through difference configurations. The best configuration was retained and compared with state-of-the-art metrics using 2 publicly available datasets. The proposed learningbased method obtained high correlations on both datasets and showed a good ability to predict unknown PCs.
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 1 Fig. 1: Flowchart of the proposed 3D point cloud quality measure.
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 1 969 Performance comparison in terms of mean correlations on ICIP20 dataset. The top mean PCC and SROCC values are highlighted in bold.
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 3 , the proposed method performs the best with a mean PCC gain varying between 2.96

	Features	PCC SROCC
	Geometry	0.956	0.945
	Color	0.945	0.955
	Curvature	0.910	0.898
	Roughness	0.863	0.828
	Combination of all features 0.973	0.969

Table 2 :

 2 Performance comparison in terms of mean correlations for each considered features and their combination on ICIP20 dataset. The top two mean PCC and SROCC values are highlighted in bold.

	and 10.57%. po2pointMSE and po2planeMSE obtain also
	high correlations outperforming PSNRpo2pointMSE and
	PSNRpo2planeMSE.		
	Method	PCC SROCC
	po2pointMSE	0.945	0.950
	po2planeMSE	0.945	0.959
	PSNRpo2pointMSE 0.880	0.934
	PSNRpo2planeMSE 0.916	0.953
	Proposed method	0.973	0.969

Table 3 :

 3 Comparison with state-of-the-art methods on ICIP20. Best result is highlighted in bold.

	On PointXR (see Table 4), our method performs also the
	best, followed by PSNRpo2pointMSE and PSNRpo2planeMSE.
	Both po2pointMSE and po2planeMSE obtain lower correla-
	tions.		
	Method	PCC SROCC
	po2pointMSE	0.887	0.978
	po2planeMSE	0.855	0.942
	PSNRpo2pointMSE 0.983	0.978
	PSNRpo2planeMSE 0.972	0.950
	Proposed method	0.986	0.983

Table 4 :

 4 Comparison with state-of-the-art methods on PointXR. Best result is highlighted in bold.

Table 5 :

 5 Table 5 shows the results obtained. As can be seen, high correlations are obtained when ICIP20 is used as training set. Whereas the correlations are not high as obtained in Section 3.3 when PointXR is used as training set. These results can be explained by the fact that ICIP20 is composed of PCs compressed using G-PCC and V-PCC, while PointXR contains only PCs compressed through G-PCC. Hence, the use of PointXR as training is more challenging since it allows to evaluate the capacity of our method to predict the quality of unknown PCs with unknown distortions. Cross database evaluation.

	Training set -> Test set PCC SROCC
	ICIP20 -> PointXR	0.964	0.972
	PointXR -> ICIP20	0.892	0.930