
HAL Id: hal-03562184
https://hal.science/hal-03562184v1

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Idawi: a middleware for distributed applications in the
IOT, the fog and other multihop dynamic networks

Luc Hogie

To cite this version:
Luc Hogie. Idawi: a middleware for distributed applications in the IOT, the fog and other multihop
dynamic networks. [Research Report] CNRS - Centre National de la Recherche Scientifique; Université
Côte d’azur; Inria. 2022. �hal-03562184�

https://hal.science/hal-03562184v1
https://hal.archives-ouvertes.fr

Idawi: a middleware for distributing

applications in the IOT, the fog and other

multihop dynamic networks

Luc Hogie

luc.hogie@cnrs.fr
I3S Computer Science laboratory, Université Côte

d’Azur/CNRS/Inria, France

February 8, 2022

1

Contents

1 Introduction 4

2 Architecture of the system 7
2.1 Components/services/operations 8

2.1.1 Referring to components 9
2.1.2 Referring to services and operations 9
2.1.3 Location of components 10

2.2 Communication . 10
2.2.1 Message-passing . 10
2.2.2 Message queues . 11
2.2.3 Advanced message management 11
2.2.4 Routing . 13

3 Computation model 13
3.1 Input/output . 14
3.2 Invocation of operations . 14
3.3 Results . 15
3.4 Creating an operation . 15
3.5 Scheduling . 16

3.5.1 Pool of threads . 17
3.5.2 The special case of preemptive executions 17

3.6 Web/REST interface . 17
3.6.1 Query URL . 17
3.6.2 Response format . 18
3.6.3 GET/POST . 19

3.7 Deployment . 19
3.8 Other builtin services . 19

3.8.1 Error log . 19
3.8.2 Exit . 19
3.8.3 Ping . 19
3.8.4 System monitoring . 19
3.8.5 Publish/subscribe . 19
3.8.6 Map/Reduce . 20
3.8.7 Gossiping . 20

4 Deployment and bootstrapping 20
4.1 Requirements . 21
4.2 The problem of shared file systems 21
4.3 Deployment of the binaries . 22

4.3.1 Identifying binaries . 22
4.3.2 Transfer of the JVM . 22
4.3.3 Transfer of the Java bytecode 22

4.4 Bootstrapping remote components 23
4.5 Killing remote components . 23

2

4.6 Deployment as a service . 23

5 Related works 24
5.1 Some elements of History . 24
5.2 Position against existing tools . 25

5.2.1 Simulators . 26
5.2.2 MPI . 26
5.2.3 JXTA . 27
5.2.4 P2P-MPI . 28
5.2.5 JMS . 28
5.2.6 0MQ . 28
5.2.7 JGroups . 29
5.2.8 RMI . 29
5.2.9 ProActive . 30
5.2.10 Akka . 30
5.2.11 ParallelTheater . 31
5.2.12 JavaCà&Là (JCL) . 31
5.2.13 ActorEdge . 32
5.2.14 GoPrime . 32
5.2.15 EmbJXTAChord . 32

3

Abstract

As technology improves, new kind of devices are given the ability to
interconnect to others, thereby shaping today’s networks. Sensors, smart-
phones, tablets, laptops, desktops, servers, be they organized or not, alto-
gether form the Internet of Things (IoT), the cloud, and the glue between
them. All these devices are heterogeneous in terms of hardware (CPUs,
memory type and size, network interfaces, etc), software (Unix, Windows,
Android, etc) and behavior (mobility, reliability). However they all have
in common the ability to perform computations. But in this context of
extreme heterogeneity, distributed computing has become even harder,
and the tools we use for clusters, grids and clouds cannot be used. A few
middleware solutions to distributed computing this is difficult environ-
ment have been proposed recently, but these tools address only a limited
number of issues, and they can hardly be coupled together to a single
usable solution. As a consequence, Researchers most often opt for devel-
oping their own solution, or resorting to simulation. At I3S we also did
that. Through several Research projects which implied many aspects of
cluster computing and IoT, we built a codebase of successful solutions to
many problems we faced along the years. Revamped and generalized into
the most consistent, efficient and cleanest possible middleware, we now
expose it to the Research communities as Idawi: an Open Source Java
message/queue/service/object-oriented decentralized overlay network of
components designed to meet the conceptual and practical needs of Re-
searchers working on distributed algorithms.

1 Introduction

This paper describes Idawi, a new middleware designed to assist Researchers
and R&D Engineers in the experimentation of distributed algorithms. Idawi
is developed at the COMRED Research Group of the I3S Computer Science
laboratory of Université Côte d’Azur (France), and Inria Sophia Antipolis. Its
source code can be found at: https://github.com/lhogie/idawi. It is re-
leased under Apache V2 license.

The design of Idawi is driven by the needs of R&D projects we have been
getting involved into, and it benefits from the experience we acquired working
on them. Indeed, in addition to studying distributed systems from a theoret-
ical point of view, for many years we have been using, evaluating, designing,
and tuning algorithms for High Performance Computing (HPC), the Internet
of Things (IOT), Mobile Ad hoc Networks (MANETs), fog computing, peer-
to-peer (P2P) computing [4], etc. In this context, we evaluated many existing
frameworks/libraries available to Researchers. Most of the time we found out
that these solutions hardly match what experimentation usually need in terms
of models and features. As a consequence, during this projects, we most often
ended up writing a significant amount of code/time to adapt existing solutions
or to design/implement fresh ones. This led us to write and maintain thousands
of line of code along the years. The components of the BigGrahs CNRS Re-
search platform are ones of them: Grph [31], BigGraph [26], and JMaxGraph

4

[32, 41, 40]. Others include their satellite tools [24, 28, 20, 23, 29, 27, 21].
Idawi stands as a synthesis of these past developments, and our experience in
the field of distributed computing. As such it gathers the concepts and solutions
which proved effective in our past studies, and that we believe will be useful to
future Research not only of our local Research groups but of a broader Scientific
community. The following of this introduction details the requirements Idawi
proposes solutions to.

A general network model

Research in distributed system consider a wide variety of network settings. An
experimentation tool in this field then should not be restricted to a specific one.
In particular the IOT, fog computing and MANETs operates on a network in
which nodes are heteroegenous, mobile, unreliable, etc. These nodes must be
considered to have a view of the network that is restricted to their surround-
ings, and that they need to self-organized in a decentralized way. Decentralized
algorithms are heavily studied today. Indeed all these fields consider networks
featuring mobility, extreme heterogeneity, and high number of nodes. These
networks do not accommodate centralized software management systems. Un-
fortunately most existing distributed middleware have very limited support for
decentralization, if any. Idawi proposes a multi-hop overlay communication net-
work in which each node acts as a router: nodes collectively participate to the
delivery of messages without relying on any centralized service or super-node.

Communication in such an networking environment can hardly be achieved
using existing communication primitives which usually implement point-to-point
communication. In the networking conditions we assume, nodes must be consid-
ered unreliable and likely to vanish in the middle of a transaction. Also, the very
nature of the applications running on top of them is peer-to-peer (P2P), which
implies that the global behavior of the application is the result of the collective
behavior of each of its part. In this context, the communication model must be
natively collective. This means that a (dynamic) set of recipient nodes should
be addressable just like a single one, and this should be as much transparent as
possible to the application.

Also, as these network involve mobility, which entails intermittent connec-
tions, delays, timeouts, communication must take time into account. We are
not talking about a real-time system here, but communication primitive must
enable the application to deal easily with time.

A flexible computational model

Most object-oriented distributed systems rely on the RPC paradigm and they
foster transparency as much as they can. But as distributed calls take the
shape of local ones, they are targetted to one specific recipient. Indeed the
OO model for execution does not suit well group-communication. Just like the
communication model (which it relies on), the computation model should be
natively collective, so as to support distributed queries, redundancy, etc.

5

First, the RPC model defines that values are returned when the remote
executed has completed. This prevents the obtention of information at runtime
just like intermediary results, progress informations, etc. In the context of
distributed computations, this proves to be a problem on the caller side as
computations are likely to take time, but no information on their status can be
obtained.

Second, we reckon transparency should not be favoured. As remote calls
are inherently costly as they involve network communication, they have to be
avoided as much as possible. Thus it is desirable that they are clearly identifiable
within the source code. We believe that disguising a remote call into as local
one, like many system like to do, tend to the implementation of low performance
code.

Finally, most middlware define event-based computations, which suit most
applications. However algorithms requiring interactions can hardly be imple-
mented using that model: they are more naturally expressed using an imperative
programming model. A computation engine should support both event-based
and imperative programming models.

Network agnosticism

Network technologies are numerous, besides the ubiquitous Ethernet for wired
networks dans Wi-Fi for wireless ones, Infiniband is widely adopted in clus-
ters, Bluetooth is common in IOTs, etc. These technologies not only differ at
the physical layer: their APIs do not allow to do the same things. For exam-
ple, TCP, regardless of the PHY layers it operates, provides data connections
through what it calls sockets. On the contrary, Bluetooth, UDP and Infiniband
do no offer such connected mode: data has to be sent as chunks. Also they
do not always garantee of reception, and that chunks be will be received in the
same order they were sent. This heterogeneity cannot be accounted for at the
level of applications. Application must be provided with an abstract communi-
cation model which exposes basic universal primitives for network communica-
tion. This paradigm is well-adapted as most middleware now have agnoticism
of the network layer.

The ability to work in a trials and errors mode from within
the user’s favorite IDE

In link with the theoretical aspects of architecture and computational complex-
ities, the process of designing distributed software (and software in general)
deeply involves implementation, executions and observation of factual behav-
ior. In practice the implementation/tuning work is done within an Integrated
Development Environment (IDE). This work consists of countless small adjust-
ments of the source code and verification by new executions. When the software
under work is a distributed system, executions requires the prior deployment
of the new binaries onto target nodes. Then, at running time, it is highly de-
sirable than remote code can be easily monitored as if it were running locally.

6

In particular, having a transparent and on-the-fly reporting of errors is crucial.
Then, upon completion, remote resources must be releases without requiring
any manual operation from the developer. Idawi features a SSH-based deploy-
ment service to enable the seamless deployment, execution, communication and
termination of distributed computations even in the presence of firewalls and
NATs.

Ability to process large datasets

Experimentation works start using toy data set so as to evaluate the behavior
of the system on specific configurations. When the behavior is validated, or
trusted enough, experimentation most often consists of processing large data
sets. Multi-thread parallel is a powerful tool to solve large problems, but it
is also known to be inherently difficult. Many modern solutions incorporate a
lock-free computation engine which maximizes the utilization of the CPU cores
through the use of a thread pool.

Unique features:

• it is decentralized

• it has a collective message/queue-oriented communication model

• it has a collective computation model

• it has automatized deployment/bootstrapping of components through SSH

• it provides interoperability through a REST web interface

• it has the ability to do emulation

2 Architecture of the system

Idawi is a middleware for dynamic decentralised distributed systems. It pro-
vides an architectural model and implementations to assist Engineers and Re-
searchers at building their own system. Systems based on Idawi do not need
to be either dynamic or decentralised. They actually don’t even need to be
distributed at all. But Idawi does support distribution, decentralisation, and
dynamics if needed. One of the main design objectives of Idawi is to be useful
in the context of Research and experimentation, from which it was born.

To explain what Idawi is, let us first start by stating what it is not. Idawi
is not a library. Indeed libraries do not impose that user’s application have any
particular design characteristic. They merely expose objects and/or primitives
to them so as enable them to extend their functionality. On the contrary,
Idawi is an object-oriented middleware that structures underlying applications.
These must conform a certain class organisation. If this constraint may seem
frustrating at first sight, it actually strongly guides programmers towards a
polished application model, by providing a clean framework into which that have

7

to plug their business functionalities. Idawi is not the reference implementation
of a theoretical system with proofs of correctness or optimality. Idawi models
and implementation are driven by the practical use cases we identified and its
relies on our experience in designing and programming software system.

Many software rely a particular design paradigm, and push it as far as pos-
sible. This is especially true with object-oriented (OO) designers which often
try to describe every single concept of their business by a class, everything in
their application ending being an object. Indeed, the OO approach has many
intrinsic advantages of the, and it often leads to beautifully designed applica-
tions, but designers are always tempted to push it too far. There indeed are
situations in which other paradigms apply smoother. Following this statement,
the design of Idawi does not favour a specific paradigm. Instead it borrows
good properties of several design approaches and applies them to its own pur-
poses when they are appropriate. Overall, it is organised in the cleanest possible
object-oriented model, so as to maximize robustness, extensibility and under-
standability. Wherever it makes sense, Idawi concepts are describes by classes.
It relies on the concept of components exposing services, following the SOA
style of programming. The communication model is message/queue-oriented:
entities communicate with one another by sending/receiving explicit messages
targeted to queues. On top of this native communication scheme, Idawi ex-
poses a REST interface which enables interoperability with other tools. This
makes Idawi conform to the Web of Things (WoT) ideas that any device in the
network is observable through a web browser.

Let us detail all this in the coming sections.

2.1 Components/services/operations

First-grade classes in Idawi are components. Conceptually, components rep-
resent entities of the user application domain. Technically, a component is an
object that does nothing but embedding a set of services that it exposes to its
peer components. A component without service cannot do anything. It is not
even able to communicate with its peers: functionality, including networking, is
brought by services.

A service implements functionality about the specific concern it is about.
Services are the way to incorporate functionality in an Idawi system. Builtin
system-level functionality (networking, routing, deployment, etc) comes as ser-
vices. Users applications will come as services as well. A service has a unique
identifier in its host component. A service exposes functionality through its set
of operations.

An operation is a piece of code that can be triggered remotely from any com-
ponent. An operation has a unique identifier in its host service. An execution of
an operation happens in one single thread. There is no guarantee that two sub-
sequent executions will use the same thread. The execution of an operation is
fed by an input queue of messages. This queue provides the input data. It may
contain input parameters sent by the initiator when it requested the execution,
but it can also provides data at runtime. Unlike the input parameters is always

8

comes from the initiator of the execution, runtime input data may have been
provided by any component in the system. To the purpose of producing output,
an operation is free to send any message to any component at runtime. The
execution of an operation can hence be seen as a many-to-many interaction.

Among the builtin system services, the service management service enables
components to discover the services available on their peers. They can also
remotely start and stop services.

2.1.1 Referring to components

In Idawi, components have no reference to their peers. They refer to them
as component descriptor. A component descriptor is an object holding infor-
mation about a component. The content of such a descriptor is unspecified.
It may store no more than the name of the peer, but it may also contains
detailled information about the target component. As the whole system is dy-
namic, components change and knowledge about them outdates. To overcome
this, a specific service (optionally) running on components periodically creates
and broadcasts fresh descriptors. Components then automatically receive frest
information about their peer, enabling them to maintain an (as much as pos-
sible) accurate view of the system. The set of descriptors a component holds
constitutes the knowledge is has of the system. Because of the significant time
needed to disseminate a descriptor, the larger the system is, the less accurate
is the individual components’ knowledge of it. The use of this knowledge is not
restricted to the services within the component: there exists a specific service
which exposes this knowledge to other components, which can then known what
other components know about the system.

2.1.2 Referring to services and operations

Object-oriented middleware generally rely on stubs to refer to remote objects.
A stub is a lightweight local (proxy) object that stands for its remote (business)
object. Both share the same public interface (set of public methods). Stubs
then make remote method invocation transparent to the callers, which deal with
stubs the same way they would do with full-fledged business objects. Because
of this, referring to a remote method benefits from the support of the compiler,
which guarantees that (method) names are accurate. This static way of doing
also takes advantage of the powerful refactoring features of modern IDEs. On
the contrary, middleware solutions based on queues (like Idawi is generally
use strings as identifiers for target queues. Using strings (or any other literal)
prevents the compiler to do any verification of the validity of identifiers. Idawi
purposely does not do transparent method invocation, but it still benefits from
the compiler/IDE, as it relies on the type system of Java by identifying things
by their top-level class. More precisely, within a component (resp. service),
services (resp. operations) are identified by their class. Further, an operation
class is required to be a static member of its service class, so as to automatically
link an operation ID to the ID of its enclosing service.

9

2.1.3 Location of components

In an Idawi system, components may live the same JVM, or in different JVMs,
on the same host computer or not. In most settings, there will be a 1-1
component-host relationship and all interaction will involved the network, but
the ability to instantiate components in the same computer (in the same JVM
or not) has two significant benefits. First it enables Idawi to operate like an
emulator. More precisely, an Idawi physically distributed system can be virtu-
ally extended by creating new components in the same node of already existing
components. This is especially relevant when evaluating the scalability of a
distributed application. Second, it makes it possible testing, which would be
impracticable otherwise. To this purpose, if two components in the same JVM
will be preferably use shared-memory to communication, it is possible to force
them to use the networking layers instead. This enables the local testing of
networking code, which is normally used only when components are in different
JVMs.

2.2 Communication

An Idawi network of components is structured as a graph. In this graph, two
given components are neighbours if they have direct interactions. Any two com-
ponents can be neighbours unless the underlying network infrastructure prevents
direct interaction. This may happen in the presence of NATs/firewalls. Also,
wireless communication introduces additional constraints like limited range, hid-
den nodes, limited number of neighbours (Bluetooth), etc.

Any two neighbours components can communicate with each other using
a specific protocol that is independant to the underlying network infrastruc-
ture. The communication model of Idawi abstracts existing transport layers
by exposing a generic communication model, and implementations for TCP,
UDP, file-based communication and inter-process piping. The latter enables a
component in a JVM to interact with another component in another (JVM)
process, through SSH or not. This provides other services with agnosticism of
the network stacks.

In this graph, two non-neighbours components can communicate through
intermediary components that will relay messages. The relaying policies are
defined by routing services. Routing services compute relays out of the local
knowledge they have of the system. As the network is dynamic, this knowledge
may have a certain degree of inaccuracy, which leads to a difficulty to find the
shortest routes. This provides other services with agnosticism of the network
topology.

The network of components forms an overlay network atop the existing in-
frastructure.

2.2.1 Message-passing

Idawi relies on the message-passing paradigm. Components interact with each
other by sending/receiving messages of a bounded size. A message has a prob-

10

abilistically unique random 64-bit numerical ID. It carries:

• a content, which can be anything

• target service/queue IDs

• the route it took so far

• routing information, which consists of:

– the component destination address

– some technical data, if any

There is no connection involved in communications. Consequently when a com-
ponent stops getting reachable, no error occurs in the code of other components.
They simply stop receiving messages from the unreachable node and messages
sent to it never reach it.

2.2.2 Message queues

When a message arrives at (a) destination, it is delivered into a message queue.
A message queue is a thread-safe container of messages. It features the following
primitives:

size() gets the number of messages currently in the queue

get(timeout) gets and removes the first message in the queue, waiting until
timeout expires if the queue was empty.

add(timeout) adds a message in the queue, waiting until timeout expires if
the queue was full.

Sending a message to a queue is achieved using the send() primitive. This
is an asynchronous (non-blocking) operation. It provides no guarantee of recep-
tion.

2.2.3 Advanced message management

So as to provide a convient API for the management of messages, message
queues also propose a (Java)streams-oriented API. The forEach(code) primi-
tive invokes an user-specified code each time a new message is received. Let q
be a queue of messages.

1 q.forEach(msg -> {

2 System.out.println("new message: " + msg);

3 return Enough.no;

4 });

The user code must return whether it has received enough messages so far, or
further ones are required.

forEach(result, error, progress, eot) adds demultiplexing of messages ac-
cording to their kind. Four kind of message are supported:

11

error the message carries an error

progress the message carries progress information, which is either a progress
ratio (in [0, 1]) or a progress message indicated what is happening

eot the message carries an marker of end of tranmission from a given component

result the message carries a result of some computation

For each of this message kinds, the user must provide a specific handler.
Through the collect(msg) primitive, message queues also make it possible

to collect incoming messages to a message list, until a certain condition. The
following example collects messages into a list until an EOT is received. Further
message will then be ignored.

1 q.collect(msg -> {

2 System.out.println("new message: " + msg.content);

3 return msg.isEOT();

4 });

A message list features a number of primitives for browsing, filtering, and clas-
sifying the message in contains.

Idawi proposes an API for the manipulation of data streams on top of Idawi
message-based native communication scheme. The Streams.split(i, id, s, l) prim-
itive converts a data stream to a sequence of message.

i is an input stream

id specifies a description for the data carried. This description will be used as
an ID by the target operation for demultiplexing

s the expected number of bytes in the stream

l a lambda that defines what to do with any new message generated out of the
stream

For example, let f by a file:

1 var in = new FileInputStream(f);

2
3 // split the file data and put in messages

4 Streams.split(in , f.getName (), f.length (), msg -> {

5 // sends the message

6 })

On the server-side, the join() method creates a binary input stream out of
incoming messages, assuming they transport byte arrays. This stream facility
natively supports multi-source (many-to-one) streaming.

12

2.2.4 Routing

When the component receives a new message (it is actually the networking
service which receives it), it passes it to the routing service for that message. The
corresponding routing protocol computes a set of relays to which the message
is forwarded.

Idawi comes with a default routing protocol. This protocol is decentralised.
It defines that all components behave as routers, forwarding the messages com-
ing from their neighbours to other neighbours that will do the same. This way,
non-neighbours components can communicate just like if they were actually
neighbours.

This protocol is multicast defines message recipient as a compound queue
address. This makes it multicast/broadcast by nature. It defines that a com-
ponent address is a triplet (C, e, d) where:

C is the set of component names. If C is not defined, the address is considered
to be a broadcast address.

e the expiration date of the message

d is the maximum number of hops allowed to travel

This way to address components suits the very nature of dynamic multihop
networks. It enables to address all, one or multiple components at at maximum
distance and/or reacheable until a given timeout. For example, ”all my neigh-
bor components”, ”all the components closer than 10 hops”, ”all components
reacheable within the next 2 seconds”, ”this component”, ”these two compo-
nents”. Unicast comes naturally when one single target component is specified
in the set of recipient names.

After a message has been forwarded by a component, it is not dropped.
Instead, until it expires, it is stored and considered for re-emission each time
a new neighbour component pops up. This enables Idawi to deal with node
mobility and scarce connectivity found for example in delay tolerant networks
(DTNs).

3 Computation model

The RPC model is used by most systems, in spite of its inherent limitations.
It defines that a list of parameters is passed to a procedure when it starts,
and that the return value is transferred back the caller when the procedure
has completed. This model limits the expressiveness of remote code to what
functions/methods offer. In particular this model prevents procedures to get
and to provide information at runtime. However this enables remote codes to
provide progress ratios, temporary results, to use streams (which is required
when dealing with large data), etc.

The computation model of Idawi tackles all this problems at once, by doing
a major departure from this RPC-oriented model. It defines that an running

13

operation has an unbounded input queue and it is able to send as many messages
as needed. Also, just like Idawi communication model which is relies on, the
computation model is inherently collective. In other words, group computation
benefits from native support. Killer application of collective computing include
fault-tolerant distributed computing, distributed resource discovery, querying of
distributed databases etc.

3.1 Input/output

This computation model is built on top of it communication model. It defines
that upon the reception of an exec message, a component creates a queue in the
target service, and puts the message in it. Then the operation is scheduled for
execution. When it starts, the operation will be able to consume the message,
as well as further ones, if any.The number of incoming message is not limited.

In most cast the input queue will be fed by the caller of the operation. But
this address can also be passed to other components which will then become
able to feed the running operation. Then a running operation accepts input
from multiple sources.

An operation does not return data in the sense a function does. To make its
output available, an operation can send messages at any time during its execu-
tion, using the send() primitive. Result messages are usually sent back to the
caller of the operation (whose the address can be found in the trigger message),
but just like any other message, they can be sent to any other component/ser-
vice/operation in the system. This feature is useful for example in the situation
where a component A triggers the transmission of large data from a component
B directly to a component C. This situation is common in home systems when
a user of a phone within the LAN wants to download a movie directly into the
internet box, in order to watch it on the TV. Downloading first on the device
then uploading to the box is a waste of time and resources as the movie data
transfers anyway through the box to reach the phone.

This enables running operations to invoke other operations in other compo-
nents (composition of services) as well as to send results (if any) to any other
service, thereby forming workflows (operations feeding other operations, in a
graph). But results are actually optional and operations may just alter the
local state of the service they implement.

Once the operation has completed, and ”end of transmission” (EOT) mes-
sage is automatically sent to the initiator of the operation, and the input queue
is deleted.

3.2 Invocation of operations

To order to make it easy the execution of remote operations, the exec() primitive
is provided to services. It takes as input:

r the address of the operations to execute

p the initial input data

14

q an optional queue for collecting results

As a consequence o The exec() primitive creates and sends an exec message.
It is asynchronous, immediately returning a proxy to the remotely running op-
eration. This proxy features the address of the input queue of the running
operation, which can be used (by any component) to send it input data.

Here is a short example of how to call the same remote operation simulta-
neously on two components.

1 // addresses two components

2 var componentsAddress = new To(Set.of("c1", "c2"));

3 var operationAddress = componentsAddress.s(aService.

anOperation);

4 RunningOperation proxy = exec(operationAddress , true ,

null);

3.3 Results

On the execution of an operation, the caller optionally creates a new local input
queue (as defined by the parameter of exec()) that will store optional output
the data transferred back by the running operation. This message queue can be
seen as an extension of a future. It is where results, if any, will be obtained.

exec() is asynchronous (just like any message emission is), but synchronic-
ity can be achieved by invoking synchronous (blocking) primitives of message
queues.

Errors (thrown exceptions) are transferred just like any other results. Com-
ponent then receive the exception in their result message queue. They can treat
it in different ways. A common way is to fire the exception locally, just like if it
the error had happened locally. Please note that Idawi makes it non-ambiguous
the obtention of an exception as a regular result or as an error.

3.4 Creating an operation

Operations can added/removed at runtime. The primitive registerOperation(name, code)
adds a new operation in a service. The user code of the operation is here ex-
pressed as a lambda expression.

1 registerOperation("stringLength", new q -> {

2 var execMsg = q.get_non_blocking ();

3 var s = (String) execMsg.content;

4 reply(execMsg , s.length ());

5 });

Its counterpart unregisterOperation removes an operation.

1 Operation o = lookup("stringLength");

2 unregisterOperation(o);

15

In order to benefit from the compiler assistance to resolve operation names,
an operation can be statically declared as an inner class.

1 public class grep extends BasicOperation {

2 @Override

3 public void exec(MessageQueue q) throws Throwable {

4 var execMsg = q.get_non_blocking ();

5 var s = (String) execMsg.content;

6 reply(execMsg , s.length ());

7 }

8 }

Registering such an operation is done via:

1 registerOperation(new grep());

On top of this native model, Idawi proposes method-oriented flavour dec-
laration of operations. Operation declared this way are called typed operations.
A typed operation describes an operation as a Java method. The signature of
this method represents both the type of the input data of the operation as well
as its return type.

1 public class stringLength extends TypedOperation {

2 public int f(String s) {

3 return s.length ();

4 }

5 }

The name of the method does not matter. In this mode, the operation has no
way to obtain the exec message that triggered its execution. Instead it gets
the list of parameters that were embedded in the exec message, and whose the
types are statically specified by the signature of the method. Similarly, its return
value is specified by using the return Java keyword, just like in any method.
If this way of declaring seems more natural to most, it loses many benefits of
Idawi computational model. In particular, data cannot be passed at runtime,
and there cannot be more than 1 result. This result cannot be sent before the
operation has completed.

3.5 Scheduling

In order to enable take profit of multi-core computer architectures which are
not ubiquitous, distributed computing libraries and framework embed a parallel
computation engine. Many approaches exist. For example active objects have
their own control thread: when the number of entities grows, the number of
thread increases correspondingly, thereby dramatically worsening the overhead
of the thread-scheduler and quickly reaching the system limit. Actor system à-la
Akka overcome this inability to scale up by using a fix number of pre-allocated
threads. Idawi uses this approach.

16

3.5.1 Pool of threads

In Idawi, components have no threads associated to them. Operations exposed
by services in all components in a JVM are executed by a shared pool of threads.
There exists only one pool of threads per JVM and its size if determined by the
number of physical cores on the hardware node. This architecture is profitable
to scalability because, the number of threads remains constant, regardless of the
number of components (in the JVM). When using multiple JVMs in parallel in
the same node, each JVM must be explicitly set up to use only a fraction of the
threads, depending on the application requirements.

3.5.2 The special case of preemptive executions

Idawi has not notion of priority. Operations are executed in the same order
they were submitted, according to a FIFO strategy. There however is an excep-
tion. A preemptive execution does not involve the pool of thread. Instead the
operation is executed immediately and synchronously (in the current thread).
This feature is essential to system-level services which should not wait. This is
for example the case of the kill service, whose the functionality is to force the
target component to stop immediately. This feature has the disadvantage of be-
ing harmful to the system as too many preemptive executions will unavoidably
introduce a bottleneck to the scheduling of non-preemptive executions, thereby
decreasing the overall performance of a node.

3.6 Web/REST interface

The Rest service exposes the Idawi distributed system through HTTP. There
can be an HTTP service in any component, each of them exposing the entire
system. This makes the Web access to Idawi is then redundant.

3.6.1 Query URL

The HTTP server accepts URLs following this pattern:

http://ip:port/c1,c2,...,cN/s/o/p1/p2/.../pN

Where:

ip:port is the IP address and TCP port number where the Web server can be
reached

c1,c2,...,cN is a list of target component names

s is the name of a service within component c

o is the name of a typed operation within service s

p1, p2, ..., pN are string representations of parameters for operation o

17

The REST web service represented by an URL is a dynamic representative
of Idawi native services. There is nothing specific to write in an operation to
make it usable via REST. The only constraint is that it need to be a typed
operation. Its parameters are automatically converted from the URL strings
to the actual types specified in the operation implementation method, and the
returned value of this method is serialised to as to be sent back to the Web
client.

Additionally, the behavior of the Web server can be controlled using HTTP
parameters to the URL:

?o1=v1,o2=v2,...,oN=vN

3.6.2 Response format

The default output format of REST web services is the JSON text obtained out
of the GSON serialisation process. But several other formats are available, via
the format option:

• Apache Jackson’s JSON

• Apache Jackson’s XML

• raw Java or FST serialisation binaries, for Java applications willing to go
Web anyway

• toString() raw output

• printStackTrace() raw output, useful to understand errors, at development
time

Regardless of its syntax (JSON, XML, etc), the result always follows the same
structure. It consists of 3 sections:

results contains all the results obtained,

warnings contains all the warning issued,

errors contains all the errors that have happened. The presence of an error
does not necessarily mean that results are not available. Remote code are
able to send error but still pursuing the computing to the end.

The Web server supports the collective computation model of Idawi. The
overlay network is used to route the request to the target components, and to
retrieve results back. This design enables any component to be a Web proxy
to other components. These other components do not need to run the REST
service as they will be contacted by the proxy via the overlay. Thanks to this use
of the overlay network, a Web requests can reach components even if their host
is not reachable via HTTP. When multiple components are queried in parallel,
their results appears as a list in the result JSON text.

18

3.6.3 GET/POST

The web server supports GET and POST requests, indifferently. In the case
of POST requests, the binary data sent by the client is mapped to the last
parameter of the type operation that is then expected to be of type byte[].

3.7 Deployment

As deployment is a unique feature of Idawi, it deserves to be extensively de-
scribed in its own Section 4.

3.8 Other builtin services

This section details services that are builtin the Idawi package.

3.8.1 Error log

As explained in Section 3.3, operation (remote) errors can be handled program-
matically when operations run. In addition to this, when the error log service is
loaded, errors are logged on the components where they happened. Considered
altogether, the error log services on all components constitutes a distributed
database that can be queried as a whole, thanks to the collective computation
model.

3.8.2 Exit

The exit service is a very minimal service that kills every (reachable) components
in the system. As the system is decentralised, the components are organised as
a graph. The exit service visits each component by running a distributed depth-
first search algorithm.

3.8.3 Ping

The service does like the POSIX ping command: it sends a message to a given
addresse and waits for one or several replies.

3.8.4 System monitoring

This service enables components to retrieve information about load/memory of
other components.

3.8.5 Publish/subscribe

This service maintains a number of topics on a component. Topics contains pub-
lications submitted by components. Each submission to a topic in a component
is broadcasted to all addresses subscribing to this topic.

Publications are stored on the local file system.

19

3.8.6 Map/Reduce

The MapReduce service is an implementation of MapReduce for Idawi. It
proposes strategies (random, round robin, all-to-all) for mapping tasks to com-
ponents, and a computation engine with support to fault tolerance.

As it is based on the Idawi messaging model, it makes it possible to get
progress information about tasks at runtime.

3.8.7 Gossiping

The gossiping service provides to other services a way to periodically dissem-
inate information to specific destinations. Destinations can be either specific
components, or broadcast addresses.

4 Deployment and bootstrapping

In many distributed systems, the deployment process involves human work to
provide deployment configuration files (specify the location of binaries, their
destination, how to deploy them, and how to bootstrap/stop remote elements),
and to execute command-line packagers, remote shells, deployment scripts, etc.

Generic deployment systems like DeployWare [17, 33] target the deployment
of any software, along with their complex dependencies, with support to multiple
languages. But in fact deployment is hardly automatizable because it is closely
dependent to the architecture of the systems, of the applications, as well as to
the technologies they involve. For this reason, most distributed libraries come
with ad hoc deployment procedures, like in ProActive [1], Jade [10, 33], and
OSGi [39]. OSGi is worth detailing here at it exposes its deployable elements
(called bundle) to user applications, which can manipulate it at runtime. Also
OSGi enabled the development of Frogi [15], a solution to the deployment of
Fractal [9] components as OSGi services.

All of the aforementioned solutions consider managed clusters (or grids) as
their deployment target. Recent works on deploying applications across unre-
liable networks suggest the use of Bit-torrent as a support to deployment [37].
Considering even more difficult networking conditions, deployment in mobile
networks have been investigated in [18]

Deployment/bootstrap in Idawi address several difficulties:

• computing resources are heterogeneous in terms of hardware, operating
systems;

• they may belong to heterogeneous institutions/companies;

• they may share a common file-system;

• computing resources are unreliable;

• computing resources participate in the process by themselves deploying/-
bootstrapping to other resources otherwise unreachable.

20

Also, as Idawi is geared towards experimentation, developers use it in a partic-
ular way: they will use it in a trials and errors mode, which involves frequent
subsequent runs, each with a new version of the source code or different depen-
dencies. This particular usage makes by-hand deployment inadequate: deploy-
ment must be automatized as much as possible (ideally it is zero-configuration),
and it must be quick so as to have a minimal impact on the user experience.

4.1 Requirements

Deployment in Idawi does the following assumptions:

1. all the executable code (bytecode, scripts, native libraries, etc) of the user
application can be found in the classpath;

2. computational resources are accessible via SSH.

These assumptions are a reasonable bet as 1) is a good practise to packaging
Java programs, and 2) relies on ubiquitous tools.

All the deployment systems we found impose that their core libraries have
been pre-installed on the target nodes. Sometimes they even requires that spe-
cific services (daemons) run.

4.2 The problem of shared file systems

In order to fasten the deployment process, Idawi makes use of parallelism: a
component is able to deploy multiple other components simultaneously. In man-
aged grids or clusters, the architecture is documented and users know whether
nodes share or not a file system, which enables the operator to configure its
deployment process.

As Idawi is expected to execute on any network conditions, it cannot assume
to know if two given node share or not a file-system. This may lead conflicting
access to shared file systems.

To solve this, Idawi first executes a distributed algorithm for the classifica-
tion of computers according to their file-system. This algorithm computes set
of computers sharing a same file-system.

It works like this: let a be an Idawi node which need to know which nodes
in set N their their filesystem. a marks every node b in N with the ID of b, in
parallel; the mark is implemented using the mkdir system call which is atomic.
At the end of the marking process, every nodes in N will have in their file-
system the ID of other nodes it shares the file-system with. This information
is, then fetched by a (in parallel), enables a to build sets of node sharing their
file-systems.

One single computer is picked up at random from every set, resulting in a
subset of the initial set of computers. This new set of computers exhibits the
following properties:

• no two computers share a file-system

21

• there exists a representative node for every file-system

Copying executable code to every computer in this set will ensure that the
executable code will be available to all target computers, avoiding any problem
of concurrent access.

4.3 Deployment of the binaries

4.3.1 Identifying binaries

Unlike other solutions which most often require the user to provide a configu-
ration specifying the location of binaries and JVM specifications, Idawi takes
benefit of the ability of Java program to discover them at runtime. This in-
formation can be obtained from the system properties any Java program has
access to. Regardless of how the program was started (via the command line
on a server, from an IDE, etc), a Java program knows its classpath as well as
the home directory of the JVM it runs into. As any Idawi component is able
to locate all the binaries for the application it belongs to, it gets in capacity
to clone its runtime. Clones having the exact same binaries, interoperability
problems relation to versions are suppressed.

4.3.2 Transfer of the JVM

Unlike other solutions, Idawi does not consider pre-installation of a Java Run-
time Environment (JRE) on target computer. Just like it imposes that all
computers have the very same version of the bytecode (which it taken care of
by the synchronization process), it imposes that the JVMs also are the exact
same. In other words it considers the JVM to be part of the Idawi, and that
a specific version is required. Because the source code of Idawi complies to a
specific version of the JVM (just like any Java code does), the responsibility of
determining the correct version of the JVMs is left to the source itself.

Hence, a parent component checks that the correct JVM is present on the
remote computer. If not, the parent forces the target computer to download it
from the official website and install it.

This process is executed in parallel on every target computer.

4.3.3 Transfer of the Java bytecode

Many deployment systems consider an image as the deployment unit. Such
image can weight up to gigabytes of data and take long times to transfer. Idawi
takes a fine-grained approach. It takes benefits of the Java platform to which it
is specific. The deployment unit in Idawi is the file. In order to minimize the
amount of data transferred, thereby fastening the deployment process, Idawi
resort to synchronization instead of doing a complete copy: only what is not
already there gets transferred. The process of deployment bytecode and resource
is then incremental. To do that, Idawi relies on the rsync POSIX utility, which
performs the following steps:

22

1. in parallel,

• retrieves a set R of triplets (name, size, timestamp) for every remote
file

• builds such a set L for local files

2. transfers missing or out-of-date files in L − R (out-of-date files will be
overwritten)

3. deletes file no longer in use in R− L

By doing this, the whole set of files constituting the executable code is
transferred only once. Subsequent transfer will consider only the differences
from previous ones. As these differences are most of the time insignificant, both
the amortized time and space complexity is constant.

Thanks to the determination of shared file systems described in section 4.2,
Idawi is able to transfer code to multiple computers in parallel. Transferring
to one single node or to multiple ones is not much different in time.

4.4 Bootstrapping remote components

When the executable code has been deployed and the right JVM has been
installed, the remote component is ready to be bootstrapped.

To do that, Idawi uses SSH to start a new JVM with an appropriate main
class that is part of Idawi’s binaries. Using the SSH input/output streams, the
parent component:

1. sends deployment information for the component to be created in the new
JVM

2. waits for an acknowledgement from its child node that is was successfully
created and initialized

As long as the SSH connection is open, the two components can use it to send/re-
ceive messages.

4.5 Killing remote components

When the SSH connection linking a parent component to its child gets closed,
if the the child was set to be autonomous, it remains alive. Otherwise it termi-
nates. This process is transitive. In turn, if the child component was a parent
of non-autonomous children components, those will terminate.

4.6 Deployment as a service

In Idawi, the functionality of deployment is exposed as a service, making it a
decentralized application whose the operations are available to any componen-
t/service in the system. In other words, deployment from a component can be
triggered remotely by any other component.

23

5 Related works

5.1 Some elements of History

It is primitive form, back in the early days of programming, distributed comput-
ing was implemented using application-specific request-response network proto-
cols. The early 80s saw the arrival of Remote Procedure Calls (RPCs), and
their popular implementation from Sun Microsystems. RPCs use the calling
conventions of the C language which defines functions accepting parameters
and returning values. RPCs serializes parameters and returns values using the
External Data Representation (XDR) protocol in order to transfer them through
the network, from/to computers possibly using incompatible encoding/endian-
ness. This paradigm is still used today in most systems, in spite of the ma-
jor drawback that it does not permit any from of interaction with a running
procedure. More precisely, a remotely running procedure cannot return any
information back to its caller until it completes, making it difficult to monitor
it, to grab progress information, or to get intermediary results if any, etc. Also
RPC cannot get input as they run, which prevents any form of remote execution
control. But many computing projects today relate to big data, which implies
that they involve time-consuming computations, thereby making the ability to
interact crucial to applications. In the 90s, with the increasing popularity of
the object-oriented (OO) paradigm, RPCs libraries evolved to middleware so-
lutions such as CORBA and Sun’s RMI. At the same time, the message-based
appraach got revigorated by the initial release of the Message Passing Interface
(MPI) (1992). MPI immediately became a de facto standard and still is the
communication library which is the most frequently found in HPC projects to-
day. Rapidly, the distributed OO approach got augmented with the high-level
architectural abstractions of components and agents. This permitted the de-
velopment of specifications like Fractal [9], and assorted tools like Julia [julia],
ProActive [1] (distributed implementations of ProActive), Jade [jade], etc. In
2006, when Map/Reduce came along with its reference implementation Apache
Hadoop, things changed significantly. A large part of distributed computing
communities now stared at the suddenly resurrected Bulk Synchronous Parallel
(BSP) paradigm. Designing a distributed application as a map/reduce pro-
cess became the norm. Map/Reduce had tremendous success, and it opened
the path to a new generation of tools like Apache Spark, and the vertex-centric
computing frameworks Google Pregel and Apache Giraph. Recent approaches to
distributed system foster the use of lock-free parallel multi-thread computing in
actor systems à la Akka [19] and Zio. Also, for the sake of interoperability, many
of these solutions have adopted Service-Oriented Architectures (SOA), expos-
ing WSDL/SOAP or, more recently, JSON/RestFul services. Also, the current
state of Research in distributed computing can be seen through projects like
[javacaetla] and EmbJXTAChord [7] which sum up the good features found
in all past developments in comprehensive tools. Idawi can be seen as one of
these.

All of the aforementioned tools are very different from each other, as they

24

where developed by communities working in distinct areas, following different
targets, etc. Each of them excels at what it is made for, but we have not found
one of them that is really effective we use as a research tool. Indeed most often
they are geared to production rather than experimentation, meaning that they
do not (need to) provide facilities to monitor, debug, understand the internals
of distributed algorithms. Also, their application fields generally are restricted
to specific use cases, data models, and computing infrastructures. In particular,
most of these works are designed to work in grids or managed clusters, which
are specifically tailored to distributed computations: they feature shared file-
systems, resource managers (like Slurm, Torque, OAR, Globus Toolkit, gLite,
and UNICORE), and they usually benefit from a dedicated engineer for main-
tenance and assistance to users. But in practise, R&D in distributed com-
puting goes way further: mobile Ad hoc networks (MANETs), the Internet of
Things (IOT), and fog computing, just to name a few, consider a much more
hostile computing environment made of untrustable heterogeneous mobile de-
vices. They reinvigorates the idea that any device can be used to perform
computations, like the Sarah [18] and SoNi [22] projects did in the 2000s when
mobile phones and PDAs invaded cities, forming spontaneous MANETs. This
idea of an ubiquitous computing implies multiscale [2] decentralized multi-hop
networks in which heterogeneity, mobility, untrustability, unpredictability and
unreliability are the rule. These networks are populated with any kind of com-
municating devices, like mobile phones, smart devices, workstations, gateways,
servers, clouds, etc, which interact by resorting to a variety of wired (Ethernet,
Infiniband, etc) and wireless (Wi-Fi, Bluetooth, Wi-Fi direct, etc) technologies.
In this environment the availability of an IP stack cannot be always accounted
for. Also it imposes software (middleware, libraries, user-applications, etc) to
implement a computing model featuring a high degree of elasticity, which grid
software does not (need to) have. For three decades, Researchers in the fields
of MANETs/WSNs/DTNs have been designing protocols and simulators [25]
in order to enable computations in such difficult networking conditions, but
few truly distributed software were proposed until the recent [javacaetla] and
Idawi. Extensive information can be found in topic-specific surveys [6][34].

5.2 Position against existing tools

This section gives an overview of the distributed libraries and frameworks suited
to the construction and experimentation of distributed systems for Science. For
each of them it provides a short description and it details their advantages
and limitations which are of interest in our context, and that are taken in
consideration in the design of Idawi. In this article we deliberately omitted
lab tools which were designed for a particular proof-of-concept but never reach
sufficient maturity for a public distribution/usage.

25

5.2.1 Simulators

Dealing with a real distributed systems is notoriously difficult, especially when
mobility and heterogeneity are involved. Simulators are not the real thing but
they are much easier to handle, they are tailored to assist experimentation,
and they enable faster prototyping/evaluation of distributed algorithms, which
makes them especially handy at design-time. Consequently, many studies in
distributed systems resort to simulation, at least in a first stage. Conversely
simulators are primarily used by academics, to the purposes of Research and
teaching. ns is the de facto standard when it comes to the simulation of net-
worked systems. It consists of a C++ core wrapped by Python modules. This
architecture is very common in modern systems as it offers performance close
to the speed of compiled code, and at the same time the flexibility of Python
scripting language.
→But Idawi takes another angle: it is written entirely in Java, as this provides
better portability while keeping comparable performance. Also the flexibility of
Java has improved a lot of the recent advances of the language, in particular
thanks to the introduction of lambdas/functional programming and the addi-
tion of numerous facility methods to the standard API.
Executions of ns generate timestamped traces, which can then be statistically
or graphically analyzed using tools like R, GNUPlot, Matplotlib, etc. ns comes
with a great wealth of communication protocols, and its behavior is generally
trusted, despite a significant degree of inaccuracy of its physical layer had been
pointed out [8]. Unfortunately ns is a complex tool with a steep learning curve.
Also, as it was designed to simulate wired networks, its support for mobility and
distributed computations is scarce. This specific concern is tackled by a specific
class of simulators like SimGrid [13] which focuses on the simulation of large
MPI computations, and GSSim [5] which is geared towards experimentation re-
lated to resource management. These simulators all consider the grid at the sole
computing environment, which make them hardly usable for the investigations
of algorithms targeted to more difficult computing environment like the IOT,
fog computing, etc. For this reason, a new class of simulator emerged, with tools
like NetSim [42], MadHoc [30] and JBotSim [14]. These tools propose models
for mobility, for intermittent networking, as well as APIs at a higher level of
abstraction, closer to the concerns of applications developers.

5.2.2 MPI

The de facto standard to parallel/distributed computing as soon as it was ini-
tially released in 1992. MPI is still today the most popular library. Its written
in C but has bindings to many other languages. Its API is geared towards
communication: it consists of primitives at a low level of abstraction, which
makes it highly flexible, but does not help structuring the design of distributed
systems in any way. Idawi takes the best of both worlds: it provides a SOA-
style framework to the construction of distributed application but keeps, within
this framework, communication schemes at a low-level of abstraction, so as to

26

provide a high degree of flexibility. MPI features a large set of primitives for
both point-to-point and group (collective, gather and reduce operations) com-
munication and synchronization. It supports synchronous and asynchronous
messaging.
→Communication in Idawi is collective an asynchronous by nature, thereby
enabling point-to-point communication as a particular use case. Synchronicity
is achieved in Idawi by the use of blocking queues.
It has network agnosticism of the transport layer, and it comes with drivers for
TCP, UDP and Cisco usNIC. MPI-3 introduces explicit shared-memory pro-
gramming.
→Shared memory is not available in Idawi: communication is achieved via the
use of messages so as to eliminate the risk of concurrent access to a shared data.
Operating system processes are first-class citizens within a MPI computation:
they are what MPI considers as the communicating entities. As a consequence,
no two entities can live in the same process. This limitation hinders the execu-
tion of large distributed systems, as the number of processes in a running OS is
limited.
→Scalability is a major concern of Idawi, which makes it possible to have nu-
merous entities in a same JVM (OS process).
Another major drawback of MPI is its support for structured data. It is written
in C but structures (in the sense of the C language) are not directly usable
within MPI: they must be wrapped in to MPI-specific data types. This is an
obstacle to the design of complex distributed systems as interchanged data can-
not be structured.
→Idawi messages can carry any (serializable) object
.

5.2.3 JXTA

Developed by Sun Microsystems until 2010, JXTA was a object-oriented frame-
work for P2P networking. It defines an overlay network of communicating peers.
JXTA has a hierarchical organizations which defines that peer belong to groups,
and groups can be nested. Just like MPI (and many others), JXTA has network
agnosticism. Peers are able to exchange messages regardless of the underlying
network topology. On top of its agnostic network layer and its P2P architecture,
JXTA features a strategy enabling peers to interact even if they are separated
by firewalls and NATs.
→There is no such notion of group in Idawi. Peers organisation is completely
flat. Note that a structure can be defined at application-level.
Two peers can communicate using virtual channels, named pipes for asyn-
chronous unicast connections or JXTA-sockets for synchronous unicast connec-
tions. Pipes can be reliable or unreliable, whereas sockets are always reliable.
In addition, JXTA provides also propagate pipes, which ensure multicast com-
munications within a group.

27

5.2.4 P2P-MPI

The Inria middleware P2P-MPI [36] project introduces a message-passing P2P
computing framework providing a communication primitives inspired by those
of MPI, hence its evocative name. P2P-MPI was developed at Strasbourg Uni-
versity in France. It is now discontinued but it had a number of good features
which make it worth mentioning in this paper. Firist it is built on the idea of
a decentralized model, though not completely flat as it relies on the presence of
super-nodes.
→There are no super-peer in Idawi: all peers are seen equal in terms of respon-
sibility.
Second, it proposes an unique deployment system which automatically migrates
code and data to remote hosts prior to executing code on them. Third, P2P-
MPI does dynamic discovery of computational resources in the network, which
allows it to allocate execution requests to resources. The allocation strategy can
be configured to perform replication. P2P-MPI has a Swing-based graphical vi-
sualization tool to navigate through the platform.
→A web-based navigation interface for Idawi is under construction. It uses the
REST interface o fthe plateform.
P2P-MPI is written in Java but it does not have an object-oriented design:
P2P-MPI is an implementation of the MPJ specification, which defines only
primitives. No objects needed.
→Far beyond communication, Idawi proposes a complete framework to guide
the design of distributed applications, and this framework is object-oriented.
Until its last release, P2P-MPI relied on JXTA. JXTA got then discarded be-
cause of its too high complexity.

5.2.5 JMS

The Jakarta Messaging API (formerly known as Java Messaging API) is a speci-
fication for message-oriented communication that originates from Sun Microsys-
tems. Just like Idawi, it has real-time consideration by considering the expira-
tion of messages. It supports both one-to-one and many-to-many (publish/sub-
scribe) communication. Notable implementations of JMS include RabbitMQ
and ActiveMQ [16]. It is to be mentioned that the latter can be set to work
in a P2P setting. Similarly to Idawi JMS defines composite destinations as a
way to enable multicast; and it features a web server which exposes a REST
interface.

5.2.6 0MQ

ZeroMQ is not to be confused with RabbitMQ and ActiveMQ which both relate
to JMS, It is not a distributed application framework, it is a distinct communi-
cation library. Like JMS, 0MQ also both enables data-transfer in one-to-one and
many-to-many modes. A strong feature of 0MQ it the interoperability of com-
ponents written in different programming languages. 0MQ has a fully flat P2P
topology: there is no centralization whatsoever. In top of its communication

28

layer, it supports RPCs. This RPC system has a feature of interest: at runtime,
when the remote function raises an exception, that exception is forwarded back
the the caller, which raises it on the client side. This mechanisms makes error
management on the client transparent.
→This features is implemented in Idawi, in addition to a specific error man-
agement service enabling distributed application to adapt their behavior when
errors occur.
It efficiently exploits TCP connections by enabling multiple concurrent RPC
calls over one single TCP connection.
→The TCP driver of Idawi also does this.
0MQ also has support for redundancy of executions.
→Redundancy in Idawi is a inherent consequence of its collective communica-
tion model.
It has been frequently reported that ZeroMQ has much higher overhead than
MPI, which makes it a poor candidate to HPC. It is written in C but has
bindings to many languages, including Java.

5.2.7 JGroups

JGroups is a toolkit for reliable messaging. To this target, it has a unique
high-level mechanism which re-transmit lost messages if necessary, and which
automatically discard crashed nodes. Like many other toolkits, it supports
one-to-one and one-to-many communication, and provides network agnosticism
over TCP and UDP. JGroups represents message recipients as literals (strings),
thereby not exploiting the compiler.
→It is to be noted that in many tools, remote elements are represented a string
value storing their name. This impedes the compiler to check the validity of the
name as the expression of this name does not relies on anything known by the
compiler. In Idawi, remote services are identified by their class. It becomes then
impossible to mistype the name of a service as this would make the compiler
generate an error. In other words, in Idawi service identification relies on the
type system.
It does fragmentation of large messages.

5.2.8 RMI

RMI (Remote Method Invocation) is the Java builtin mechanism for calling re-
mote code. It is mentionned here for it relies on the notion of stubs, which are
the local counterpart of remote object to which they act as a bridge to. A stub
has the same interface as its implementation object, thereby bringing trans-
parency of distribution. But in reality transparency cannot be fully achieved
for (at least) the following reason: a call of a local method returns a reference
to a local object (unless this object is a primitive or immutable type in such
case is it copied) but calling a remote one always returns (via serialization) a
copy. Because the call in syntactically identical is either case, the caller must
know if its calling a local or remote method, which contradicts the principle of

29

transparency.
→This ambiguity related to the way objects are returned by reference of by
value, depending on where they actually are, is one of the reasons why Idawi
opts for explicit distribution rather than transparency.

5.2.9 ProActive

ProActive [12] is a parallel/distributed library which was formerly developed in
our lab at Côte D’Azur University. It is now maintained and extended by Ac-
tiveon. It is a industrial-strength Java middleware designed around the concept
of an active object. The principle of active object is to decouple the invocation
of methods from their execution, which are then executed its different threads,
as each active object in the system runs in its own thread. A major issue of
having one thread per active object is the impossibility to scale, as the number
of threads is limited.
→For the sake of scalability, Idawi uses a fixed number of threads, which are
shared by entities.
The goal is to enable parallelism by delegating method executions to a scheduler,
and distribution by making the location of active-objects transparent to others.
In ProActive all method calls are asynchronous. When invoked, the client is
immediately provided with a future object, which is of the same class of the
return type of the method. This future object, whose the creation if implicitly
and the class can be dynamically generated using the JavaAssist technology,
enables the client to handle the future just like if it were a definitive result, but
also to use future-specific methods like waitByNecessity(). However when the
method returns a primitive or an instance or a final class (or more generally a
class that cannot be inherited from, which ProActive calls reifiable1) no future
can be produced, preventing asynchronism.
→Similarly, in Idawi communication is always asynchronous, however syn-
chronicity can be achieved via the use of message queues (which have a similar
role than futures in this context.
ProActive provides a P2P network model atop TCP which provide resilience
upon failure. Unfortunately it does not accommodate NATs and firewalls.

5.2.10 Akka

A common approach to parallel computing is the use of shared data whose the
access is ruled by locks. But using locks hinders performance and reasoning
upon shared access is error-prone. The actor model is proposed as a solution
to this problem. Actors do not share date and they interact with one another
by sending messages. Message are processed in a sequence. Upon the reception
of a message, and actor can modify its internal state, and send messages to
other actors. As the actor model involves no concurrent access to data, to

1not to be confused with Oracle’s definition of a reifiable type which is a type whose type
information is available at runtime

30

enables lock-free programming. The truth is that it is commonly omitted that
the access to the message boxes is a concurrent operation as mailboxes can
be fed by message-delivery layer and fetched by the owner actor at the same
time. Akka is a actor framework. Unlike ProActive and Monix, Akka has
by default bidirectional communications. Its extension akka-stream is about
defining workflow of processing data. But streams have single output, unlike
Idawi.

In Akka, every single message targeted to a given actor trigger its execution,
meaning that an execution cannot be fed by more that 1 message. The com-
puting scheme of Akka is hence purely event-based.
→On the contrary Idawi’s operation are triggered by messages specifically tagged
has ”trigger” messages. Other messages are delivered to the input queue of
the running operation. If this allows event-based computing à-la Akka, it also
enables imperative programming of operations, which is desirable in many sit-
uations.

5.2.11 ParallelTheater

ParallelTheater [35] defines the notion of theater which acts as a container for
actors. A JVM can contain only one theater at a time. In ParallelTheater,
actors belonging to a same theater are invoked sequentially: no parallelism
occurs within a theater. Like in JMS and Idawi, a real-time flavor is brought
by messages having a timestamp as well as a deadline.

For communication, ParallelTheater relies on the RPC paradigm. Client
theaters invoke methods on others by using serialization. A method is candidate
to invocation is annotated. Just like in [38] and unlike Idawi, methods are
identified by a string value: the compiler cannot verify the existence of a method.
A similar weakness of static checking is also found when parameters are passed
to the method. Indeed parameters are passed as varargs, which is flexible and
easy to implement, but prevents any assistance from the compiler as there is no
specification of parameter types. This is an important source of mistake when
writing the code. Like Akka, ParallelTheater and Idawi has lock-free parallel
computations.

5.2.12 JavaCà&Là (JCL)

JCL [38] is a fresh HPC middleware with IOT flavors, in the same vein à Idawi.
It gathers concepts and technologies in both IOT and HPC. Its boasted objective
is to federate in a single tool a set of relevant technologies that can be found in
different tools in both worlds. It exposes 3 programming model: event-based,
distributed shared memory (it provides an implementation of a distributed map)
and task-oriented. The programming model of Idawi mixes event-based and
imperative programming. On top of this, a map/reduce service provides the
ability to reason in terms of tasks.

31

5.2.13 ActorEdge

ActorEdge [3] relies on the actor model. Like ProActive, each actor has its own
control thread. For the sake of interoperability, ActorEdge uses JSON format-
ted messages over TCP/IP connections.
→Idawi opted for binary-encoded messages generated by serialization of ob-
jects, which provide higher throughput, but hinders interoperability with non-
Java software. For this reason, every entity in Idawi has a REST interface
accepting a number of text-based format like JSON and XML.
ActorEdge is written in Objective-C.

5.2.14 GoPrime

GoPrime [11] is a fully decentralised middleware for the adaptive self-assembly
of distributed services. GoPrime proposes a model for QoS which encodes the
quality of various characteristics of services (such as reliability, accuracy, speed,
etc) as numeric vectors, thereby allowing the clients to estimate the adequacy
of services to their own specific requirements. It uses REST for communication
Just like Idawi, GoPrime core features a number of managers responsible for
providing system-level functionality such as gossiping, service deployment, etc.

5.2.15 EmbJXTAChord

EmbJXTAChord [7] aims at combining the good features of existing tools into a
new one. It is decentralized and enable transparent routing. It does not support
UDP, which we believe is a lack, but does support Bluetooth It tackles integra-
tion issues more than computing. Service architecture based on a RESTful-API
Support for HTTP tunneling and NAT traversal

References

[1] Giovanni Aloisio, Massimo Cafaro, and Italo Epicoco. “A Grid Software
Process”. In: Grid Computing: Software Environments and Tools. Ed. by
José C. Cunha and Omer F. Rana. Springer, 2006, pp. 75–98. doi: 10.
1007/1-84628-339-6_4. url: https://doi.org/10.1007/1-84628-
339-6%5C_4.

[2] Jean-Paul Arcangeli, Raja Boujbel, and Sébastien Leriche. “Automatic
deployment of distributed software systems: Definitions and state of the
art”. In: J. Syst. Softw. 103 (2015), pp. 198–218. doi: 10.1016/j.jss.
2015.01.040. url: https://doi.org/10.1016/j.jss.2015.01.040.

[3] Austin Aske and Xinghui Zhao. “An Actor-Based Framework for Edge
Computing”. In: Proceedings of the 10th International Conference on Util-
ity and Cloud Computing, UCC 2017, Austin, TX, USA, December 5-8,
2017. Ed. by Ashiq Anjum et al. ACM, 2017, pp. 199–200. doi: 10.1145/
3147213.3149214. url: https://doi.org/10.1145/3147213.3149214.

32

[4] Mohammad Sadegh Aslanpour et al. “Serverless Edge Computing: Vision
and Challenges”. In: ACSW ’21: 2021 Australasian Computer Science
Week Multiconference, Dunedin, New Zealand, 1-5 February, 2021. Ed.
by Nigel Stanger et al. ACM, 2021, 10:1–10:10. doi: 10.1145/3437378.
3444367. url: https://doi.org/10.1145/3437378.3444367.

[5] Slawomir Bak et al. “GSSIM - A tool for distributed computing experi-
ments”. In: Sci. Program. 19.4 (2011), pp. 231–251. doi: 10.3233/SPR-
2011-0332. url: https://doi.org/10.3233/SPR-2011-0332.

[6] Sharu Bansal and Dilip Kumar. “IoT Ecosystem: A Survey on Devices,
Gateways, Operating Systems, Middleware and Communication”. In: Int.
J. Wirel. Inf. Networks 27.3 (2020), pp. 340–364. doi: 10.1007/s10776-
020-00483-7. url: https://doi.org/10.1007/s10776-020-00483-7.

[7] Filippo Battaglia and Lucia Lo Bello. “A novel JXTA-based architecture
for implementing heterogenous Networks of Things”. In: Comput. Com-
mun. 116 (2018), pp. 35–62. doi: 10.1016/j.comcom.2017.11.002. url:
https://doi.org/10.1016/j.comcom.2017.11.002.

[8] Alessandro Bazzi and Gianni Pasolini. “On the accuracy of physical layer
modelling within wireless network simulators”. In: Simul. Model. Pract.
Theory 22 (2012), pp. 47–60. doi: 10.1016/j.simpat.2011.11.004.
url: https://doi.org/10.1016/j.simpat.2011.11.004.

[9] Gordon S. Blair, Thierry Coupaye, and Jean-Bernard Stefani. “Component-
based architecture: the Fractal initiative”. In: Ann. des Télécommunications
64.1-2 (2009), pp. 1–4. doi: 10.1007/s12243-009-0086-1. url: https:
//doi.org/10.1007/s12243-009-0086-1.

[10] Sara Bouchenak et al. “Autonomic Management of Clustered Applica-
tions”. In: Proceedings of the 2006 IEEE International Conference on
Cluster Computing, September 25-28, 2006, Barcelona, Spain. IEEE Com-
puter Society, 2006. doi: 10.1109/CLUSTR.2006.311842. url: https:
//doi.org/10.1109/CLUSTR.2006.311842.

[11] Mauro Caporuscio et al. “GoPrime: A Fully Decentralized Middleware
for Utility-Aware Service Assembly”. In: IEEE Trans. Software Eng. 42.2
(2016), pp. 136–152. doi: 10.1109/TSE.2015.2476797. url: https:

//doi.org/10.1109/TSE.2015.2476797.

[12] Denis Caromel, Alexandre di Costanzo, and Clément Mathieu. “Peer-to-
peer for computational grids: mixing clusters and desktop machines”. In:
Parallel Comput. 33.4-5 (2007), pp. 275–288. doi: 10.1016/j.parco.
2007.02.011. url: https://doi.org/10.1016/j.parco.2007.02.011.

[13] Henri Casanova et al. “Versatile, Scalable, and Accurate Simulation of
Distributed Applications and Platforms”. In: Journal of Parallel and Dis-
tributed Computing 74.10 (June 2014), pp. 2899–2917. url: http://hal.
inria.fr/hal-01017319.

33

[14] Arnaud Casteigts. “JBotSim: a tool for fast prototyping of distributed
algorithms in dynamic networks”. In: Proceedings of the 8th International
Conference on Simulation Tools and Techniques, Athens, Greece, August
24-26, 2015. Ed. by Georgios Theodoropoulos. ICST/ACM, 2015, pp. 290–
292. doi: 10.4108/eai.24-8-2015.2261067. url: https://doi.org/
10.4108/eai.24-8-2015.2261067.

[15] Mikael Desertot, Humberto Cervantes, and Didier Donsez. “FROGi: Frac-
tal Components Deployment over OSGi”. In: Software Composition - 5th
International Symposium, SC@ETAPS 2006, Vienna, Austria, March 25-
26, 2006, Revised Papers. Ed. by Welf Löwe and Mario Südholt. Vol. 4089.
Lecture Notes in Computer Science. Springer, 2006, pp. 275–290. doi: 10.
1007/11821946_18. url: https://doi.org/10.1007/11821946%5C_18.

[16] Nicolas Estrada and Hernán Astudillo. “Comparing scalability of mes-
sage queue system: ZeroMQ vs RabbitMQ”. In: 2015 Latin American
Computing Conference, CLEI 2015, Arequipa, Peru, October 19-23, 2015.
IEEE, 2015, pp. 1–6. doi: 10.1109/CLEI.2015.7360036. url: https:
//doi.org/10.1109/CLEI.2015.7360036.

[17] Areski Flissi et al. “Deploying on the Grid with DeployWare”. In: 8th
IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid 2008), 19-22 May 2008, Lyon, France. IEEE Computer Society, 2008,
pp. 177–184. doi: 10.1109/CCGRID.2008.59. url: https://doi.org/
10.1109/CCGRID.2008.59.

[18] Frédéric Guidec. Déploiement et support à l’exécution de services com-
municants dans les environnements d’informatique ambiante. 2008. url:
https://tel.archives-ouvertes.fr/tel-00340426.

[19] Philipp Haller and Martin Odersky. “Actors That Unify Threads and
Events”. In: Coordination Models and Languages, 9th International Con-
ference, COORDINATION 2007, Paphos, Cyprus, June 6-8, 2007, Pro-
ceedings. Ed. by Amy L. Murphy and Jan Vitek. Vol. 4467. Lecture Notes
in Computer Science. Springer, 2007, pp. 171–190. doi: 10.1007/978-
3-540-72794-1_10. url: https://doi.org/10.1007/978-3-540-
72794-1%5C_10.

[20] Luc Hogie. A SDK enabling the generation of progress/feedback informa-
tion for algorithms. https://github.com/lhogie/long_process. 2018-
2019.

[21] Luc Hogie. JOAR: a library for manipulating processes running on OAR
clusters from Java. https://github.com/lhogie/joar. 2018-2019.

[22] Luc Hogie. “Mobile Ad Hoc Networks: Modelling, Simulation and Broadcast-
based Applications. (Réseaux Mobile Ad hoc : modélisation, simulation et
applications de diffusion)”. PhD thesis. University of Luxembourg, 2007.
url: https://tel.archives-ouvertes.fr/tel-01589632.

[23] Luc Hogie. raw-csv: a library for CPU/memory-efficient parsing of CSV
data. https://github.com/lhogie/raw-csv. 2018-2019.

34

[24] Luc Hogie. Toools: a toolkit for scientific software developments in Java.
https://github.com/lhogie/toools. 2001-2021.

[25] Luc Hogie, Pascal Bouvry, and Frédéric Guinand. “An Overview of MANETs
Simulation”. In: Electron. Notes Theor. Comput. Sci. 150.1 (2006), pp. 81–
101. doi: 10.1016/j.entcs.2005.12.025. url: https://doi.org/10.
1016/j.entcs.2005.12.025.

[26] Luc Hogie and Nicolas Chleq. BigGrph - a distributed graph library. https:
//github.com/lhogie/biggrph/. 2014-2017.

[27] Luc Hogie and Nicolas Chleq. Jacaboo: a library for the deployment of
Java distributed applications. https://github.com/lhogie/jacaboo.
2014-2018.

[28] Luc Hogie and Nicolas Chleq. Live-Distributed Java Objects: a middleware
for the manipulation of objects spanning on multiple computers. https:
//github.com/lhogie/ldjo. 2014-2018.

[29] Luc Hogie and Nicolas Chleq. Octojus: a middleware for parallel RPC.
https://github.com/lhogie/octojus. 2014-2018.

[30] Luc Hogie et al. “A Context-Aware Broadcast Protocol for Mobile Wire-
less Networks”. In: Modelling, Computation and Optimization in Infor-
mation Systems and Management Sciences, Second International Con-
ference, MCO 2008, Metz, France - Luxembourg, September 8-10, 2008.
Proceedings. Ed. by Le Thi Hoai An, Pascal Bouvry, and Pham Dinh Tao.
Vol. 14. Communications in Computer and Information Science. Springer,
2008, pp. 507–519. doi: 10.1007/978-3-540-87477-5_54. url: https:
//doi.org/10.1007/978-3-540-87477-5%5C_54.

[31] Luc Hogie et al. Grph - a high-performance graph library for mixed graphs.
https://github.com/lhogie/grph/. 2008-2014.

[32] JMaxGraph - a graph library for the computation of huge graphs. https:
//github.com/lhogie/jmaxgraph/. 2018-2019.

[33] Sébastien Lacour, Christian Pérez, and Thierry Priol. Generic Applica-
tion Description Model: Toward Automatic Deployment of Applications on
Computational Grids. Research Report PI 1757. 2005, p. 21. url: https:
//hal.inria.fr/inria-00000645.

[34] Anne Hee Hiong Ngu et al. “IoT Middleware: A Survey on Issues and
Enabling Technologies”. In: IEEE Internet Things J. 4.1 (2017), pp. 1–
20. doi: 10.1109/JIOT.2016.2615180. url: https://doi.org/10.
1109/JIOT.2016.2615180.

[35] Libero Nigro. “Parallel Theatre: An actor framework in Java for high
performance computing”. In: Simul. Model. Pract. Theory 106 (2021),
p. 102189. doi: 10.1016/j.simpat.2020.102189. url: https://doi.
org/10.1016/j.simpat.2020.102189.

35

[36] Choopan Rattanapoka. “P2P-MPI : A fault-tolerant Message Passing In-
terface Implementation for Grids”. PhD thesis. Louis Pasteur Univer-
sity, Strasbourg, Alsace, France, 2008. url: https://tel.archives-

ouvertes.fr/tel-00724132.

[37] Steven J. H. Shiau et al. “A BitTorrent Mechanism-Based Solution for
Massive System Deployment”. In: IEEE Access 9 (2021), pp. 21043–21058.
doi: 10.1109/ACCESS.2021.3052525. url: https://doi.org/10.1109/
ACCESS.2021.3052525.

[38] Leonardo de Souza Cimino et al. “A middleware solution for integrating
and exploring IoT and HPC capabilities”. In: Softw. Pract. Exp. 49.4
(2019), pp. 584–616. doi: 10.1002/spe.2630. url: https://doi.org/
10.1002/spe.2630.

[39] The OSGi Alliance. OSGi Service Platform Core Specification, Release
4.1. http://www.osgi.org/Specifications. 2007.

[40] Thibaud Trolliet et al. “Interest Clustering Coefficient: A New Metric for
Directed Networks Like Twitter”. In: Complex Networks & Their Appli-
cations IX - Volume 2, Proceedings of the Ninth International Conference
on Complex Networks and Their Applications, COMPLEX NETWORKS
2020, 1-3 December 2020, Madrid, Spain. Ed. by Rosa M. Benito et al.
Vol. 944. Studies in Computational Intelligence. Springer, 2020, pp. 597–
609. doi: 10.1007/978-3-030-65351-4_48. url: https://doi.org/
10.1007/978-3-030-65351-4%5C_48.

[41] Thibaud Trolliet et al. “Interest Clustering Coefficient: a New Metric for
Directed Networks like Twitter”. In: CoRR abs/2008.00517 (2020). arXiv:
2008.00517. url: https://arxiv.org/abs/2008.00517.

[42] Akanda Wahid-Ul-Ashraf, Marcin Budka, and Katarzyna Musial. “NetSim
- The framework for complex network generator”. In: Knowledge-Based
and Intelligent Information & Engineering Systems: Proceedings of the
22nd International Conference KES-2018, Belgrade, Serbia, 3-5 Septem-
ber 2018. Ed. by Robert J. Howlett et al. Vol. 126. Procedia Computer Sci-
ence. Elsevier, 2018, pp. 547–556. doi: 10.1016/j.procs.2018.07.289.
url: https://doi.org/10.1016/j.procs.2018.07.289.

36

