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Mathieu Dagréou∗†, Pierre Ablin‡, Samuel Vaiter§, Thomas Moreau†
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Abstract

Bilevel optimization, the problem of minimizing a value function which involves the arg-minimum
of another function, appears in many areas of machine learning. In a large scale setting where the
number of samples is huge, it is crucial to develop stochastic methods, which only use a few samples
at a time to progress. However, computing the gradient of the value function involves solving
a linear system, which makes it difficult to derive unbiased stochastic estimates. To overcome
this problem we introduce a novel framework, in which the solution of the inner problem, the
solution of the linear system, and the main variable evolve at the same time. These directions
are written as a sum, making it straightforward to derive unbiased estimates. The simplicity of
our approach allows us to develop global variance reduction algorithms, where the dynamics of
all variables is subject to variance reduction. We demonstrate that SABA, an adaptation of the
celebrated SAGA algorithm in our framework, has O( 1

T
) convergence rate, and that it achieves

linear convergence under Polyak- Lojasciewicz assumption. This is the first stochastic algorithm for
bilevel optimization that verifies either of these properties. Numerical experiments validate the
usefulness of our method.

1 Introduction

Bilevel optimization is attracting more and more attention in the machine learning community thanks to
its wide range of applications. Typical examples are hyperparameters selection [Bengio, 2000, Pedregosa,
2016, Franceschi et al., 2018, Bertrand et al., 2020], data augmentation [Cubuk et al., 2019], implicit
deep learning [Bai et al., 2019] or neural architecture search [Liu et al., 2018]. Bilevel optimization aims
at minimizing a function whose value depends on the result of another optimization problem, that is:

min
x∈Rd

h(x) = F (z∗(x), x) ,

such that z∗(x) ∈ arg min
z∈Rp

G(z, x) ,
(1)

where F and G are two real valued functions defined on Rp×Rd. G is called the inner function, F is the
outer function and h is the value function. Similarly, z is the inner variable and x is the outer variable.
In most cases, the function z∗ can only be approximated by an optimization algorithm, which makes
bilevel optimization problems challenging theoretically and practically. Under appropriate hypotheses,
the function h is differentiable, and the chain rule and implicit function theorem give for any x ∈ Rd

∇h(x) = ∇2F (z∗(x), x) + ∇2
21G(z∗(x), x)v∗(x) , (2)
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Figure 1: Convergence curves of the two proposed methods on a toy problem. SABA is a stochastic
method that achieves fast convergence on the value function.

where v∗(x) ∈ Rp is the solution of a linear system

v∗(x) = −
[
∇2

11G(z∗(x), x)
]−1 ∇1F (z∗(x), x) . (3)

In the light of (2) and (3), it turns out that the derivation of the gradient of h at each iteration
is cumbersome because it involves two subproblems: the resolution of the inner problem to find an
approximation of z∗(x) and the resolution of a linear system to find an approximation of v∗(x). It
makes the practical implementation of first order methods like gradient descent for (1) challenging.

As is the case in many machine learning problems, we suppose in this paper that F and G are
empirical means:

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

This structure suggests the use of stochastic methods to solve (1). For single-level problems (that is,
classical optimization problems where one function should be minimized), using Stochastic Gradient
Descent (SGD; Robbins and Monro 1951, Bottou 2010) and variants is natural because individual
gradients are straightforward unbiased estimators of the gradient. In the bilevel framework, we want to
develop algorithms that make progress on problem (1) by using only a few functions Fj and Gi at a
time. However, since ∇h involves the inverse of the Hessian of G, building such stochastic algorithms
is quite challenging, one of the difficulties being that there is no straightforward unbiased estimator of
∇h. Still, in settings where m or n are large, where computing even a single evaluation of F or G is
extremely expensive, stochastic methods are the only scalable algorithms.

Variance reduction [Johnson and Zhang, 2013, Schmidt et al., 2017] is a popular technique to obtain
fast stochastic algorithms. In a single-level setting, these methods build an approximation of the
gradient of the objective function using only stochastic gradients. Contrary to SGD, the variance of
the approximation goes to 0 as the algorithm progresses, allowing for faster convergence. For instance,
the SAGA method [Defazio et al., 2014] achieves linear convergence if the objective function satisfies a
Polyak- Lojasciewicz inequality, and O( 1

T ) convergence rate on smooth non-convex functions [Reddi
et al., 2016]. The extension of these methods to bilevel optimization is a natural idea to develop faster
algorithms. However, this idea is hard to implement for the same reasons as before: it is complicated
to derive unbiased estimators of ∇h, let alone variance reduction ones.

Contributions. We introduce a novel framework for bilevel optimization in Section 2,
where the inner variable, the solution of the linear system (3) and the outer variable evolve jointly.
The evolution directions are written as sums of derivatives of Fj and Gi, which allows us to derive
simple unbiased stochastic estimators. In this framework, we propose SOBA, a natural extension of
SGD (Section 2.1), and SABA (Section 3.4), a natural extension of the variance reduction algorithm
SAGA [Defazio et al., 2014].

In Section 3 we analyse the convergence of our methods. SOBA is shown to achieve inft≤T ∥∇h(xt)∥2 =

O(T− 2
5 ) with decreasing step sizes and the ratio between the inner and outer step sizes going to 0. We

2



prove that SABA with fixed step sizes achieves 1
T

∑T
t=1 ∥∇h(xt)∥2 = O( 1

T ). SABA is therefore, to the
best of our knowledge, the first stochastic bilevel algorithm that matches the convergence
rate of gradient descent on h. We also prove that SABA achieves linear convergence under the
assumption that h satisfies a Polyak- Lojasciewicz inequality. To the best of our knowledge, SABA is
also the first stochastic bilevel algorithm to feature such a property. Finally, in Section 4, we provide
an extensive benchmark of many stochastic bilevel methods on hyperparameters selection and data
hyper-cleaning, and illustrate the usefulness of our approach.

Related work. The bilevel optimization problem has a strong history in the optimization
community, taking root in game theory [von Stackelberg, 1952]. Gradient-based algorithms to solve (1)
can be mainly classified in two different categories depending on how the gradient of h is computed, by
automatic differentiation or implicit differentiation

Since the solution of the inner problem z∗(x) is approximated by the output of an iterative algorithm,
it is possible to use automatic differentiation [Wengert, 1964, Linnainmaa, 1976] to approximate ∇h(x).
It consists in differentiating the different steps of the inner optimization algorithm – see [Baydin et al.,
2018] for a review – and has been applied successfully to several bilevel problems arising in machine
learning [Domke, 2012, Franceschi et al., 2017]. One of the main drawbacks of this approach is that it
requires to store in memory each iterate of the inner optimization algorithm, although this problem can
sometimes be overcome using invertible optimization algorithms [Maclaurin et al., 2015] or truncated
backpropagation [Shaban et al., 2019].

The use of the implicit function theorem to obtain (2) and (3) is known as implicit differentia-
tion [Bengio, 2000]. While the cost of computing exactly (2) can be prohibitive for large scale problems,
Pedregosa [2016] showed that we can still converge to a stationary point of the problem by using
approximate solutions of the inner problem and linear system (3), if the approximation error goes
to 0 sufficiently quickly. The complexity of approximate implicit differentiation has been studied by
Grazzi et al. [2020]. Ramzi et al. [2021] propose to reuse the computations done in the forward pass
to approximate the solution of the linear system (3) when the inner problem is solved thanks to a
quasi-Newton method.

In the last few years, several works have proposed different strategies to solve (1) in a stochastic
fashion. A first set of methods relies on two nested loops : one inner loop to solve the inner problem with
a stochastic method, and one outer loop to update the outer variable with an approximate gradient
direction. In [Ghadimi and Wang, 2018, Ji et al., 2021, Chen et al., 2021b] the authors use several SGD
iterations for the inner problem and then use stochastic Neumann approximations to get an estimate
solution of the linear system, which provides them with an approximation of ∇h used to update x.
The convergence of the hypergradient when using stochastic solvers for the inner problem and the
linear system has been studied by Grazzi et al. [2021]. Arbel and Mairal [2021] replace the Neumann
approximation by SGD steps to estimate (3).

Other authors have proposed single loop algorithms, alternating steps in the inner and the outer
problem. Hong et al. [2021] propose to perform a single Neumann approximation of the Hessian and
use a single SGD step for the inner problem. It was refined by [Guo et al., 2021b] and [Yang et al.,
2021] where the optimization procedure uses a momentum acceleration. Other variations around this
idea include [Huang and Huang, 2021, Khanduri et al., 2021, Chen et al., 2021a, Guo et al., 2021a]. We
refer to Table 1 in appendix for a detailed comparison of these methods.

Notation. The set of integers between 1 and n (included) is denoted [n]. For f : Rp × Rd → R,
we denote ∇1f(z, x) its gradient w.r.t. the first variable and ∇2f(z, x) its gradient w.r.t. the second
variable. The Hessian of f with respect to the first variable is denoted ∇2

11f(z, x) ∈ Rp×p, and the
cross-derivatives matrix is ∇2

21f(z, x) ∈ Rd×p. If v is a vector, ∥v∥ is its Euclidean norm. If M is a
matrix, ∥M∥ is its spectral norm. A function is said to be L-smooth, for L > 0, if it is differentiable,
and its gradient is L-Lipschitz.
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2 Proposed framework

In this section, we introduce our framework in which the solution of the inner problem, the solution of
the linear system (3) and the outer variable all evolve at the same time, following directions that are
written as a sum of derivatives of Fj and Gi. We define

Dz(z, v, x) = ∇1G(z, x) , (4)

Dv(z, v, x) = ∇2
11G(z, x)v + ∇1F (z, x) , (5)

Dx(z, v, x) = ∇2
21G(z, x)v + ∇2F (z, x) . (6)

These directions are motivated by the fact that the gradient of the value function is

∇h(x) = Dx(z∗(x), v∗(x), x) , (7)

with z∗(x) the minimizer of G(·, x) and v∗(x) the solution of ∇2
11G(z∗(x), x)v = −∇1F (z∗(x), x). When

x is fixed, we approximate z∗ by doing a gradient descent on G, following the direction −Dz(z, v, x).
Finally, when z and x are fixed, we find v∗ by following the direction −Dv(z, v, x), which corresponds
to a gradient descent on v 7→ 1

2 ⟨∇
2
11G(z, x)v, v⟩ + ⟨∇1F (z, x), v⟩.

The rest of the paper is devoted to the study of the global dynamics where the three variables z, v
and x evolve at the same time, following stochastic approximations of the directions Dz, Dv and Dx.
The next proposition motivates the choice of these directions.

Proposition 2.1. Assume that for all x ∈ Rd, G(·, x) is strongly convex. If (z, v, x) is a zero of
(Dz, Dv, Dx), then z = z∗(x), v = v∗(x) and ∇h(x) = 0.

We also note that the computation of these directions does not require to compute the matrices
∇2

11G(z, x) and ∇2
21G(z, x): we only need to compute their product with a vector, which can be

computed at a cost similar to that of computing a gradient.
The framework we propose is summarized in Algorithm 1. It consists in following a joint update

rule in (z, v, x) that follows directions Dt
z, D

t
v and Dt

x that are unbiased estimators of Dz, Dv, Dx. The
first and most important remark is that whereas ∇h cannot be written as a sum over samples, the
directions Dz, Dv and Dx involve only simple sums, since their expressions are “linear” in F and G:

Dz =
1

n

n∑
i=1

∇1Gi(z, x) , (8)

Dv =
1

n

n∑
i=1

∇2
11Gi(z, x)v +

1

m

m∑
j=1

∇1Fj(z, x) , (9)

Dx =
1

n

n∑
i=1

∇2
21Gi(z, x)v +

1

m

m∑
j=1

∇2Fj(z, x) . (10)

It is therefore straightforward to derive unbiased estimators of these directions.

2.1 First example: the SOBA algorithm

The simplest unbiased estimator is obtained by replacing each mean by one of its terms chosen uniformly
at random, akin to what is done in classical single-level SGD. We call the resulting algorithm SOBA
(StOchastic Bilevel Algorithm). To do so, we choose two independent random indices i ∈ [n] and
j ∈ [m] uniformly and estimate each term coming from G using Gi and each term coming from F using
Fj . This gives the unbiased SOBA directions

Dt
z = ∇1Gi(z

t, xt) ,

Dt
v = ∇2

11Gi(z
t, xt)vt + ∇1Fj(z

t, xt) ,

Dt
x = ∇2

21Gi(z
t, xt)vt + ∇2Fj(z

t, xt) .

(11a)

(11b)

(11c)
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Algorithm 1 General framework

Input: initializations z0 ∈ Rp, x0 ∈ Rd, v0 ∈ Rp, number of iterations T , step size sequences (ρt)t<T

and (γt)t<T .
for t = 0, . . . , T − 1 do

Update z: zt+1 = zt − ρtDt
z ,

Update v: vt+1 = vt − ρtDt
v ,

Update x: xt+1 = xt − γtDt
x ,

where Dt
z, D

t
v and Dt

x are unbiased estimators of Dz(zt, vt, xt), Dv(zt, vt, vt) and Dx(zt, vt, xt).
end for

This provides us with a first algorithm, SOBA, where we plug Equations (11a) to (11c) in Algorithm 1.
We defer its analysis to the next section. Importantly, we use different step sizes for the update in (z, v)
and for the update in x. We use the same step size in z and in v since the inner problem and the linear
system have similar conditioning, which is that of ∇2

11G(zt, xt). The need for a different step size for
the outer and inner problem is clear: both problems can have a drastically different conditioning.

An important remark for SOBA is that all the stochastic directions used are computed at the
same point zt, vt and xt with the same indices (i, j). The update of z, v and x can thus be performed
in parallel instead of sequentially, benefiting from hardware parallelism. Moreover, this enables
to share the computations between the different directions. This is the case in hyperparameters
selection where Gi(z, x) = ℓi(⟨z, di⟩) + x

2∥z∥
2, with di a training sample, and ℓi that measures

how good is the prediction ⟨z, di⟩. In this setting, we have ∇1Gi(z, x) = ℓ′i(⟨z, di⟩)di + xz and
∇2

11Gi(z, x)v = ℓ′′i (⟨z, di⟩)⟨v, di⟩di. The prediction ⟨z, di⟩ can thus be computed only once to obtain
both quantities. For more complicated models, where automatic differentiation is used to compute the
different derivatives and Jacobian-vector products, we can store the computational graph only once
to compute at the same time ∇1Gi(z, x),∇2

11Gi(z, x)v and ∇2
21Gi(z, x)v, requiring only one backward

pass, thanks to the R technique [Pearlmutter, 1994].
Although not obvious at first glance, we find that using the same indices (i, j) to compute all

directions at the same time poses no theoretical or practical issue, compared to a method which would
take new random indexes at each line in Equations (11a) to (11c).

Finally, like all single loop bilevel algorithms, our method updates at the same time the inner and
outer variable, hereby avoiding unnecessary optimization of the inner problem when x is far from the
optimum.

2.2 Global variance reduction with the SABA algorithm

In classical optimization, SGD fails to reach optimal rates because of the variance of the gradient
estimator. Variance reduction algorithms aim at reducing this variance, in order to follow directions
that are closer to the true gradient, and to achieve superior practical and theoretical convergence.

In our framework, since the directions Dz, Dv and Dx are all written as sums of derivatives of Fj

and Gi, it is straightforward to adapt most classical variance reduction algorithms. We focus on the
celebrated SAGA algorithm [Defazio et al., 2014]. The extension we propose is called SABA (Stochastic
Average Bilevel Algorithm). The general idea is to replace each sum in the directions D by a sum over
a memory, updating only one term at each iteration. To help the exposition, we denote y = (z, x, v)
the vector of joint variables. Since we have sums over i and over j, we have two memories for each
variable: wt

i for i ∈ [n] and w̃t
j for j ∈ [m], which keep track of the previous values of the variable w.

At each iteration t, we draw two random independent indices i ∈ [n] and j ∈ [m] uniformly and
update the memories. To do so, we put wt+1

i = yt and wt+1
i′ = wt

i′ for i′ ̸= i, and w̃t+1
j = yt and

w̃t+1
j′ = w̃t

j′ for j′ ̸= j. Each sum in the directions D is then approximated using SAGA-like rules:
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given n functions ϕi′ for i′ ∈ [n], we define

S[ϕ]t = ϕi(w
t+1
i ) − ϕi(w

t
i) +

1

n

n∑
i′=1

ϕi′(w
t
i′) ,

and similarly, given m functions ϕ̃j′ for j′ ∈ [m]:

S̃[ϕ̃]t = ϕ̃j(w̃
t+1
j ) − ϕ̃j(w̃

t
j) +

1

m

m∑
j′=1

ϕ̃j′(w̃
t
j′) .

These are unbiased estimators of the average of the ϕ’s:

Ei

[
S[ϕ]t

]
=

1

n

n∑
i=1

ϕi(y
t), Ej

[
S̃[ϕ̃]t

]
=

1

m

n∑
j=1

ϕ̃j(y
t) .

With a slight abuse of notation, we call ∇2
11Gv the sequence of functions (y 7→ ∇2

11Gi(z, x)v)i∈[n] and
∇2

21Gv the sequence of functions (y 7→ ∇2
21Gi(z, x)v)i∈[n]. We define the SABA directions as

Dt
z = S[∇1G]t ,

Dt
v = S[∇2

11Gv]t + S̃[∇1F ] ,

Dt
x = S[∇2

21Gv]t + S̃[∇2F ] .

(12a)

(12b)

(12c)

These estimators are unbiased estimators of the directions Dz, Dv and Dx. The SABA algorithm
corresponds to Algorithm 1 where we use Equations (12a) to (12c) as update directions. When taking
a step size γt = 0 in the outer problem, hereby stopping progress in x, we recover the iterations of the
SAGA algorithm on the inner problem. In practice, the sums in S and S̃ are computed by doing a
rolling average, and the quantities ϕi(w

t
i) are stored rather than recomputed: the cost of computing the

SABA directions is the same as that of SGD. It requires an additional memory for the five quantities,
of total size n× p+ (n+m) × (p+ d) floats. This memory load can be reduced in specific cases, for
instance when G and F correspond to linear models, where the individual gradients and Hessian-vector
products are proportional to the samples. In this case, we only store the proportionality ratio, reducing
the memory load to 3n+ 2m floats. Like for SOBA, the computations of the new quantities ϕi(w

t+1
i )

are done in parallel, thus benefiting from hardware acceleration and shared computations.
In the next section, we show that SABA is fast. It essentially has the same properties as SAGA:

despite being stochastic, it converges with fixed step sizes, and reaches the same rate of convergence as
gradient descent on h.

3 Theoretical analysis

In this section, we provide convergence rates of SOBA and SABA under some classical assumptions.
The proofs and the constants in big-O are deferred in Appendix C.

3.1 Background and assumptions

We start by stating some regularity assumptions on the functions F and G.

Assumption 3.1. The function F is LF -smooth in (z, x).

Note that the above assumption is typically verified in the machine learning context, e.g., when F
is the ordinary least squares (OLS) loss or the logistic loss.
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Assumption 3.2. The function G is twice continuously differentiable on Rp × Rd. For any x ∈ Rd,
G( · , x) is µG-strongly convex and LG

1 -smooth. For any z ∈ Rp, ∇1G(z, · ) is LG
2 -Lipschitz continuous.

Finally, ∇2
11G is LG

11-Lipschitz and ∇2
21G is LG

21-Lipschitz.

Strong convexity and smoothness with respect to z of G are verified when G is a regularized
least-squares/logistic regression with a full rank design matrix, when the data is not separable for the
logistic regression. Moreover, the strong convexity ensures the existence and uniqueness of the inner
optimization problem for any x ∈ Rd.

Assumption 3.3. There exists a constant CF > 0 such that for any x we have ∥∇1F (z∗(x), x)∥ ≤ CF .

This assumption, combined with the strong convexity of G( · , x), shows boundedness of v∗. This
assumption holds, for instance, in the case of hyperparameters selection for a Ridge regression problem.
Note that Assumptions 3.1 to 3.3 are classical in stochastic bilevel optimization literature: they are
found for instance in [Ghadimi and Wang, 2018, Hong et al., 2021, Ji et al., 2021, Arbel and Mairal,
2021].

The following lemma gives us some smoothness properties of the considered directions that will be
useful to derive convergence rates of our methods.

Lemma 3.4. Under the Assumptions 3.1 to 3.3, there exist Lz, Lv and Lx such that ∥Dz(z, v, x)∥2 ≤
L2
z∥z − z∗(x)∥2, ∥Dv(z, v, x)∥2 ≤ L2

v(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) and ∥Dx(z, v, x) − ∇h(x)∥2 ≤
L2
x(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2).

In first order optimization, a fundamental assumption on the objective function is the smoothness
assumption. In the case of vanilla gradient descent applied to a function f , it allows to get a convergence
rate of ∥∇f(xt)∥2 in O(1/T ), i.e. convergence to a stationnary point Nesterov [2004]. The following
lemma proved by Ghadimi and Wang [2018, Lemma 2.2] ensures the smoothness of h under the previous
assumptions.

Lemma 3.5. Under the Assumptions 3.1 to 3.3, the function h is Lh-smooth for some constant Lh > 0.

The constant Lh is specified in Appendix C.3. As usual with the analysis of stochastic methods, we
define the expected norms of the directions

V t
z = E[∥Dt

z∥2], V t
v = E[∥Dt

v∥2], V t
x = E[∥Dt

x∥2], (13)

where the expectation is taken over the past. Thanks to variance-bias decomposition, they are the sum
of the variance of the stochastic direction and the squared-norm of the unbiased direction. We use
classical bounds on these quantities, to those found for instance in [Hong et al., 2021]:

Assumption 3.6. There exists Bz, Bv and Bx such that for all t, V t
z ≤ B2

z (1 + ∥Dz(zt, vt, xt)∥2),
V t
v ≤ B2

v(1 + ∥Dv(zt, vt, xt)∥2) and V t
x ≤ B2

x.

This assumption is verified for instance, if all the Gi and ∇1Gi have at most quadratic growth, and
if F has bounded gradients. It is also verified if the iterates remain in a compact set. Note that we do
not assume that G has bounded gradients, as this would contradict its strong-convexity.

Finally, for the analysis of SABA, we need regularity on each Gi and Fj :

Assumption 3.7. For all i ∈ [n] and j ∈ [m], the functions ∇Gi, ∇Fj , ∇2
11Gi and ∇2

21Gi are Lipschitz
continuous in (z, x).

3.2 Fundamental descent lemmas

Our analysis for SOBA and SABA is based on the control of the two key quantities

δtz = E[∥zt − z∗(xt)∥2] and δtv = E[∥vt − v∗(xt)∥2], (14)

where the expectation is taken over the past.
Strong convexity of G and Lipschitz continuity of z∗(x) allow to obtain the following lemma, where

we drop the dependency of the step size ρ in t for clarity.
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Lemma 3.8. Assume that ρ ≤ 2
µG

. We have:

δt+1
z ≤

(
1 − ρµG

2

)
δtz + 2ρ2V t

z + 4
L2
∗

µG

γ2

ρ
V t
x

δt+1
v ≤

(
1 − ρµG

4

)
δtv + ρβvzδ

t
z + 2ρ2V t

v + 8
L2
∗

µG

γ2

ρ
V t
x

where L∗ is the maximum between the Lipschitz constants of z∗ and v∗ (see Lemma C.2) and βvz =
1
µ3
G

(LFµG + LG
11)2.

We insist that this result is obtained in general for Algorithm 1 with arbitrary unbiased directions.
We can therefore invoke this lemma for the analysis of both SOBA and SABA. A similar inequality in
z can for instance be found in [Hong et al., 2021]. The assumption on ρ is only here to simplify the
bounds. It is not a strong assumption, since it is for instance implied by the classical assumption for
convergence of the inner problem with x fixed, ρ ≤ (LG

1 )−1. We use the smoothness of h to get the
following lemma.

Lemma 3.9. Let ht = E[h(xt)] and gt = E[∥∇h(xt)∥2]. We have

ht+1 ≤ ht − γ

2
gt +

γ

2
L2
x(δtz + δtx) +

Lh

2
γ2V t

x .

If δz and δv both cancel, we get an inequality reminiscent of the smoothness inequality for SGD on
h.

3.3 Analysis of SOBA

The analysis of SOBA is based on Lemmas 3.5 and 3.8. We have the following theorem, with fixed step
sizes depending on the number of iterations:

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1. We consider fixed steps

ρt = T− 2
5 and γt = T− 3

5 . We assume that T is large enough so that ρt ≤ min( µG

8L2
zB

2
z
, µG

16L2
vB

2
v
, 2
µG

). Let

xt the sequence of outer iterates for SOBA. Then, 1
T

∑T
t=1 E[∥∇h(xt)∥2] = O(T− 2

5 ).

This theorem is proven by plugging Assumption 3.6 in Lemma 3.8 and Lemma 3.9, and then
summing all inequalities. This rate is the same as in [Hong et al., 2021]. In term of complexity, to

get an ϵ-stationary solution, we need to do O(ϵ−
5
2 ) calls to the oracles. In comparison with [Hong

et al., 2021], we have no log ϵ−1 factor in the complexity. Hence, adding the v variable does not change
convergence speed but improves complexity. We obtain a similar rate using decreasing step sizes by
assuming that h is bounded:

Theorem 2 (Convergence of SOBA, decreasing step size). We consider steps ρt = t−
2
5 and γt = t−

3
5 . We

assume that ht is bounded. Let xt the sequence of outer iterates for SOBA. Then, inft≤T E[∥∇h(xt)∥2] =

O(T− 2
5 ).

The main technical difficulty consists in multiplying inequality in Lemma 3.9 by ρt

γt and using an Abel

transform to control the ht term. The boundedness hypothesis happens for instance in hyperparameters
selection or if the iterates remain in a compact set.

However, these results are slightly disappointing because we must assume that the outer step size γt

becomes infinitely small in front of ρt to obtain convergence. In fact, in the proof, we first demonstrate
that zt and vt converge, using only the hypothesis that V t

x is bounded, and never exploiting any other
link between (z, v) and x. Hence, x is treated as noise in the convergence of z and v. On the other
hand, the analysis of SABA leverages the dynamic of all three variable, resulting in fast convergence
with fixed step sizes.
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3.4 SABA: a stochastic method with optimal rates

The following theorem shows O( 1
T ) convergence for the SABA algorithm in the general case where we

only assume smoothness of h. Our analysis of SABA is inspired by the analysis of single-level SAGA
by Reddi et al. [2016].

Theorem 3 (Convergence of SABA, smooth case). Let zt, vt and xt the iterates of SABA, with fixed
step sizes ρ and γ. We suppose ρ ≤ ρ∗ and γ ≤ min(ρξ∗,

1
8Lh ), where ρ∗ and ξ∗ depend only on F and

G and are specified in appendix. Then, 1
T

∑T
t=1 E[∥∇h(xt)∥2] = O( 1

T ).

To prove the theorem, the idea is to control the distance from the memory to the current variables.
We define

St =
1

n

n∑
i=1

∥yt − wt
i∥2 +

1

m

m∑
j=1

∥yt − w̃t
j∥2 .

In appendix, we show that, under the hypotheses of the theorem,we can find scalars ϕs, ϕz, ϕv, ζ > 0
such that the quantity Lt = ht + ϕsS

t + ϕzδ
t
z + ϕvδ

t
v satisfies Lt+1 ≤ Lt − ζgt. Summing these

inequalities for t = 0 . . . T − 1 and using the fact that Lt is lower bounded demonstrates the theorem.
In this setting, the function h is not necessarily convex, hence we recover the same convergence

rate as gradient descent on the function h. To the best of our knowledge, our method is the first
stochastic bilevel optimization method to achieve this (see Table 1 in appendix). This also shows that
the complexity of our method to get an ϵ-stationary solution is O(ϵ−1).

We note that contrary to most stochastic methods, the proposed algorithm converges with fixed
step size, as usual for variance reduction methods. Our theorem indicates that the step size for the
inner problem and the linear system resolution, ρ, should be taken small enough, and then the step
size of the outer problem γ should be taken as a small enough fraction of ρ, while also being smaller
than 1

8Lh , which is 8 times less than the classical 1
Lh step size used for gradient descent on h. The fact

that variance reduction methods cannot take steps as large as gradient descent is well established in
single-level setting [Defazio et al., 2014].

Furthermore, if we assume that h satisfies a Polyak- Lojasiewicz (PL) inequality, we recover linear
convergence. Recall that h has the PL property if there exists µh > 0 such that for all x ∈ Rd,
1
2∥∇h(x)∥2 ≥ µh(h(x) − h∗) with h∗ the minimum of h.

Theorem 4 (Convergence of SABA, PL case). Assume that h satisfies the PL inequality. Let zt, vt

and xt the iterates of SABA, with fixed step sizes ρ and γ. We suppose ρ ≤ ρ′∗ and γ ≤ min(ρξ′∗,
1

8Lh ),
where ρ′∗ and ξ′∗ depend only on F and G and are specified in appendix. Then, E[h(xT )] − h∗ ≤
(1 − γµh

4 )T (h(x0) − h∗ + C0), where C0 is a constant specified in appendix that depends on the
initialization of z, v, x and memory.

The proof is similar to that of the previous theorem: we find coefficients ϕs, ϕz, ϕv such that
Lt = ht + ϕsS

t + ϕzδ
t
z + ϕvδ

t
v satisfies the inequality Lt+1 ≤ (1 − γµh

4 )Lt, which is then unrolled.
Note that in the case where we initialize z and v with z0 = z∗(x0), v0 = v∗(x0), and the memories

w0
i = w0, w̃0

j = w0 for all i, j, the constant C0 cancels and the bound simplifies to E[h(xT )] − h∗ ≤
(1 − γµh

4 )T (h(x0) − h∗).
Just like classical variance reduction methods in single-level optimization, this theorem shows that

our method achieves linear convergence under PL assumption on the value function. To the best of our
knowledge, our method is the first stochastic bilevel optimization method that enjoys such property. We
note that the PL hypothesis is more general than µh-strong convexity of h – it is a necessary condition
for strong convexity.

We see here the importance of global variance reduction. Indeed, using variance reduction only on z
and SGD on x would lead to sub-linear convergence in x (indeed, this would be the case even with a
perfect estimation of z∗(x)). Similarly, using variance reduction only on x and SGD on z would lead
to sub-linear convergence in z, and hence in x. Using global variance reduction with respect to each
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Figure 2: Comparison of SOBA and SABA with other stochastic bilevel optimization methods. For
each algorithm, we plot the median performance over 10 runs. In both experiments, SABA achieves
the best performance. The dashed lines are for one loop competitor methods, the dotted lines are for
two loops methods and the solid lines are the proposed methods. Left: hyperparameter selection for ℓ2

penalized logistic regression on IJCNN1 dataset , Right: data hyper-cleaning on MNIST with p = 0.5
corruption rate.

variable as we propose here is the only way to achieve linear convergence. We now turn to experiments,
where we find that our method is also promising from a practical point of view.

4 Experiments

Here we compare the performances of SOBA and SABA with competitor methods on different tasks.
The different methods being compared are stocBiO [Ji et al., 2021], AmiGO [Arbel and Mairal, 2021],
MRBO [Yang et al., 2021], TTSA [Hong et al., 2021], BSA [Ghadimi and Wang, 2018] and SUSTAIN
[Khanduri et al., 2021].

Each method has an inner and an outer step size. In each experiment, for each algorithm, we
perform an extensive grid search to identify the pair of step-sizes that leads to the fastest convergence.
Moreover, each step size has the decrease rate provided by theory: for instance, for SOBA, the step
sizes are ρt = αt−

2
5 and γt = βt−

3
5 , where α and β are chosen with a grid search. For SABA we use

ρt = α and γt = β where α and β are chosen with a grid search. This procedure is repeated for each
algorithm. We use a large grid search: for the hyperparameter experiment, we loop through 49 pairs
of step-sizes and for the data cleaning experiment we loop through 121 pairs of step-sizes for each
algorithm. Each experiment is repeated with 10 random seeds and the median runs are displayed as
well as 20% − 80% quantiles.

We use Python code with Numba [Lam et al., 2015] for fast implementation of stochastic methods,
and the Python package benchopt1 to perform the benchmark2. A detailed account of the experiments
is provided in Appendix B.

1https://benchopt.github.io/
2Code will be released upon acceptance of the paper
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4.1 Hyperparameters selection

The first task we perform is hyperparameters selection to choose regularization parameters on ℓ2 logistic
regression. Let us denote ((dtraini , ytraini ))1≤i≤n and ((dvali , yvali ))1≤i≤m the training and the validation
sets. In this case, the inner variable θ corresponds to the parameters of the model, and the outer
variable λ to the regularization. The functions F and G of the problem (1) are the logistic loss, with ℓ2

penalty for G, that is to say

F (θ, λ) =
1

m

m∑
i=1

φ(yvali ⟨dvali , θ⟩) , and (15)

G(θ, λ) =
1

n

n∑
i=1

φ(ytraini ⟨dtraini , θ⟩) +
1

2
R(θ, λ) (16)

where R(θ, λ) = θ⊤ diag(eλ1 , . . . , eλp)θ and φ(u) = log(1 + e−u). Note that the parametrization in eλ

of the penalty instead of λ can be surprising at first glance, but it is classical in the bilevel optimization
literature [Pedregosa, 2016, Ji et al., 2021, Grazzi et al., 2021] because it avoids positivity constraints
on λ. We fit a binary classification model on the IJCNN13 dataset. For this dataset, n = 49 990,
m = 91 701 and p = 22.

The suboptimality gap h(λt) − h∗ is plotted in Figure 2 for each method. The lowest values are
reached by AmIGO and SABA, but much quicker for SABA. Moreover, SABA is the only single-loop
method that reaches a suboptimality below 10−3. Among all methods, SOBA is the first to reach it
best value, but this value is also the highest. The gap between SOBA and SABA highlights the benefits
of variance reduction: it gives us a lower plateau and the fixed step sizes enable faster convergence.

4.2 Data hyper-cleaning

The second task we perform is data hyper-cleaning introduced in [Franceschi et al., 2017] on the MNIST4

dataset. The data is paritioned into a training set (dtraini , ytraini ), a validation set (dvali , yvali ), and a test
set. The training set contains 20000 samples, the validation set 5000 samples and the test set 10000
samples. The targets y take values in {0, . . . , 9} and the samples x are in dimension 784. Each sample
in the training set is corrupted with probability p: a sample is corrupted when we replace its label yi
by a random label in {0, . . . , 9}. Samples in the validation and test sets are not corrupted. The goal of
datacleaning is to train a multinomial logistic regression on the train set and learn a weight per training
sample, that should go to 0 for corrupted samples. This is formalized by the bilevel optimization
problem (1) with

F (θ, λ) =
1

m

m∑
i=1

ℓ(θdvali , yvali ) , and

G(θ, λ) =
1

n

n∑
i=1

σ(λi)ℓ(θd
train
i , ytraini ) + Cr∥θ∥2

where ℓ is the cross entropy loss and σ is the sigmoid function. The inner variable θ is a matrix of size
10 × 784, and the outer variable λ is a vector in dimension ntrain = 20000.

For the estimated parameters θ during optimization, we report in Figure 2 the test error, i.e., the
percent of wrong predictions on the testing data. We use for this experiment a corruption probability
p = 0.5. In general, the error decreases quickly until it reaches a final value. We observe that our
method SABA outperforms all the other methods by reaching faster its smallest error, which is smaller
than the ones of the other methods. For SOBA, it reaches a lower final error than stocBiO and BSA.
In appendix, we provide other convergence curves, and find that for higher values of p, SABA is still

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
4http://yann.lecun.com/exdb/mnist/
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the fastest algorithm to reach its final accuracy, but the algorithm MRBO eventually reaches a lower
test accuracy.

5 Conclusion

In this paper, we have presented a framework for bilevel optimization that enables the straightforward
development of stochastic algorithms. The gist of our framework is that the directions in Equations (4)
to (6) are all written as simple sums of samples derivatives. We leveraged this fact to propose SOBA,
an extension of SGD to our framework, and SABA, an extension of SAGA to our framework, which
achieves similar convergence rates as gradient descent on the value function. Finally, we think that
our framework opens a large panel of potential methods for stochastic bilevel optimization involving
techniques of extrapolation, variance reduction, momentum and so on.
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authors acknowledge the support of the ANER RAGA BFC. SV acknowledges the support of the ANR
GraVa ANR-18-CE40-0005. This research was supported by DATAIA convergence institute as part of
the ” Programme d’Investissement d’Avenir ”, (ANR-17-CONV-0003) operated by Inria.

References

Zeeshan Akhtar, Amrit Singh Bedi, Srujan Teja Thomdapu, and Ketan Rajawat. Projection-Free
Algorithm for Stochastic Bi-level Optimization. preprint ArXiv 2110.11721, 2021.

Michael Arbel and Julien Mairal. Amortized Implicit Differentiation for Stochastic Bilevel Optimization.
preprint ArXiv 2111.14580, 2021.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in Neural
Information Processing Systems (NeurIPS). Curran Associates, Inc., 2019.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in Machine Learning: A survey. Journal of Machine Learning Research, 18
(153):1–43, 2018.

Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural Computation, 12(8):
1889–1900, 2000.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
International Conference on Machine Learning (ICML), pages 810–821. PMLR, 2020.
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A Extensive comparison between stochastic methods for bilevel
optimization

We provide here tables summarizing other methods in stochastic bilevel optimization. They are grouped
between methods that are based on two nested loops and methods that use only one loop.

In the following tables, the inner iterations are referred with the variable k and the outer iterations
are referred with the variable t (or T for the total number of iterations).

In the litterature, there are three main ways to perform Hessian inversion. The HIA, first proposed
in [Ghadimi and Wang, 2018], and SHIA, proposed in [Ji et al., 2021], procedures used for Hessian
inversion are precised in Algorithm 2 and 3. These methods are based on Neumann approximation
of the inverse of a matrix. SGD for Hessian inversion refers to Stochastic Gradient Descent on
v 7→ 1

2 ⟨∇
2
11G(z, x)v, v⟩ − ⟨∇1F (z, x), v⟩. The complexity refers to the number of call to the oracles to

get an ϵ-stationary solution. In these complexities, the notation Õ hide polynomial factors in log ϵ−1.

Algorithm 2 Hessian Inverse Approximation (HIA)

Input: variables z ∈ Rp, x ∈ Rd, gradient ∇1F (z, x) ∈ Rp, maximum number of iterations b, a
parameter η.
Set v0 = ∇1F (z, x)
Choose p ∈ {0, . . . , b− 1} randomly.
for k = 1, . . . , p do

Sample i ∈ [n]
Update v : vk+1 = (I − η∇2

11G(z, x))vk

end for
Return: bηvp+1

Algorithm 3 Summed Hessian Inverse Approximation (SHIA)

Input: variables z ∈ Rp, x ∈ Rd, gradient ∇1F (z, x) ∈ Rp, maximum number of iterations b, a
parameter η.
Set v0 = ∇1F (z, x)
Set s0 = v0

for k = 0 . . . , b− 1 do
Sample i ∈ [n]
Update v: vk+1 = (I − η∇2

11G(z, x))vk

Update s: sk+1 = sk + vk+1

end for
Return: ηsb

The momentum column refers to the use of STORM [Cutkosky and Orabona, 2019] momentum in
the inner loop or the outer loop. This momentum can be applied to either the inner or the implicit
gradient estimate. If we consider the current estimate yt = (zt, vt, xt) and the previous estimate

yt−1 = (zt−1, vt−1, xt−1), and we apply STORM to the quantity ϕ(yt) with the memory ϕ̂t, the
momentum update rule reads

ϕ̂(t+1) = ηϕ(yt) + (1 − η)(ϕ̂t + ϕ(yt) − ϕ(yt−1)) .

Note that this update requires to evaluate the quantity ϕ twice per iteration, once in yt and once in
yt−1. The memory is need to store the previous estimates yt−1 as well as the running estimate of the
gradient ϕ̂.
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Method (Two-loops)
Hessian
inversion

Inner loop Momentum LR in LR out Complexity

BSA
[Ghadimi and Wang,

2018]
HIA SGD on inner No O(k−1) O(T−1/2) O(ϵ−3)

stocBiO
[Ji et al., 2021]

SHIA SGD on inner No Constant Constant Õ(ϵ−2)

VRBO
[Yang et al., 2021]

SHIA
Gradient steps

inner/outer
with STORM

Yes
(STORM)

Constant Constant Õ(ϵ−3/2)

AmIGO
[Arbel and Mairal, 2021]

SGD SGD on inner No Constant Constant O(ϵ−2)

Method (One-loop)
Hessian
inversion

Inner step Momentum LR in LR out Complexity

TTSA
[Hong et al., 2021]

HIA SGD No O(T−2/5) O(T−3/5) Õ(ϵ−5/2)

SMB
[Guo et al., 2021b]

HIA
SGD with
momentum

Yes Constant Constant Õ(ϵ−4)

MRBO
[Yang et al., 2021]

SHIA
SGD with
STORM

Yes
(STORM)

O(t−1/3) O(t−1/3) Õ(ϵ−3/2)

STABLE
[Chen et al., 2021a]

Direct SGD No O(T−1/2) O(T−1/2) O(ϵ−2)

SUSTAIN
[Khanduri et al., 2021]

HIA
SGD with
STORM

Yes
(STORM)

O(t−1/3) O(t−1/3) O(ϵ−3/2)

SVRB
[Guo et al., 2021a]

Direct +
momen-

tum

SGD with
momentum

Yes O(t−1/3) O(t−1/3) Õ(ϵ−3)

SBFW
[Akhtar et al., 2021]

HIA SGD No O(t−1/2) O(T−3/4) Õ(ϵ−4)

SOBA SGD step SGD No O(t−2/5) O(t−3/5) O(ϵ−5/2)

SABA
SAGA
step

SAGA No Constant Constant O(ϵ−1)

Table 1: Comparison of the stochastic bilevel optimization solvers in the literature. The complexity
represents the number of oracle calls necessary to attain an ϵ accurate stationary point.
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B Details on experiments

We provide here additional informations on the experiments.

B.1 Generalities

All the experiments are performed with Python code, using the package Benchopt. The API we
developed consists in having the inner and the outer functions wrapped in python classes whose
methods compute the different oracles. One important thing is that we incorporated a method
oracles which, for a given function f defined on Rp × Rd and a vector v ∈ Rp, returns the tuple
(f(z, x),∇1f(z, x),∇2

11f(z, x)v,∇2
21f(z, x)v) avoiding duplicate computation of intermediate results for

these quantities.
We find that using mini-batches instead of individual samples to compute the stochastic estimates

allowed for much faster computations, thanks to hardware acceleration and vectorization of the
computations. We use continuous batches to avoid random memory access that slow down the
computations. Concretely, if ib is the index of the current batch and B is the batch-size, the indices of
the corresponding samples are those in the set {ib ×B, . . . , (ib + 1) ×B − 1}. By doing so, the samples
in a same batch are contiguous in memory, which facilitates the access. We use a batch-size of 64 in all
experiments.

For the methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps at each
outer iteration. For the approximate Hessian vector product, we perform 10 steps per outer iteration
for each methods using HIA (BSA, TTSA, SUSTAIN), SHIA (MRBO, stocBiO) or SGD (AmIGO) for
the inversion of the linear system.

For the step sizes, they all have the form ρt = α/ta and γt = β/tb. For the pair of exponents (a, b),
we choose the theoretical one from the original papers, that is (1/2, 1/2) for BSA, (1/3, 1/3) for MRBO
and SUSTAIN, (0, 0) for SABA, AmIGO and stocBiO, (2/5, 3/5) for TTSA and SOBA. For (α, β), we
perform a grid search (the grid is precised in the subsection dedicated to each experiment) and we keep
for each method, the pair (α, β) that gives the lowest value of h (for the hyperparameters) or the lowest
test accuracy (for the data cleaning task) in median over 10 runs for each possible pair. When we use
HIA or SHIA for the Hessian inversion, we set η = α since the Hessian inversion problem has the same
conditioning as the inner optimization problem.

For the STORM’s momentum parameter in MRBO and SUSTAIN, we take 0.5/t2/3.

B.2 Hyperparameters selection on IJCNN1

In this experiment, we select the parameters regularization for a multiregularized logistic regression
model precised in Equations (15) and (16) where we have one hyperparameter per feature.

In order to choose the select proper parameters (α, β) for each algorithm, we perform a grid search.
We search α in a set of 9 values between 2−5 and 23 spaced on a log scale. For β, we choose r in a set
of 7 values between 2−2 and 2 spaced on a logarithmic scale and we set β = rα.

For this experiments, we use Just-In-Time (JIT) compilation thanks to the package Numba [Lam
et al., 2015], to decrease the python overhead in the iteration loop.

To evaluate the value function h, we use L-BFGS [Liu and Nocedal, 1989] to solve compute z∗(xt)
and then evaluate the function h(xt) = F (z∗(xt), xt).

B.3 Data hyper-cleaning

For the regularization parameter Cr, we choose Cr = 0.1 after a manual search in order to get the best
final test accuracy.

In this experiment, the selection of the good pair (α, β) is also performed by grid search. The
parameter α is picked in a set of 11 numbers between 2−4 and 4 spaced on a logarithmic scale. For β,
we choose r in a set of 11 values between 2−5 and 20 spaced on a logarithmic scale and we set β = rα.
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Figure 3: Datacleaning experiment, with different corruption probability (higher means that more data
are contamined).

Note that in this case, we could not use JIT from Numba since at the moment of the experiment,
the softmax function coming from Scipy was not compatible with Numba.

We report in Figure 3 some additional convergence curves with different corruption probabilities
p ∈ {0.5, 0.7, 0.9} (the figure in the main text corresponds to p = 0.5). SABA is always the fastest
algorithm to reach its final accuracy. For p = 0.9 and p = 0.7, the algorithm MRBO reaches an accuracy
roughly 1% smaller than that of SABA, but takes roughly 10 times longer to get there.
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C Proofs

C.1 Proof of Proposition 2.1

Proof. Let (z, v, x) a zero of (Dz, Dv, Dx). For Dz, this means that ∇1G(z, x) = 0. Since G( · , x)
is strongly convex, z is the minimizer of G( · , x), i.e. z = z∗(x). The fact that (z, v, x) is a zero of Dv im-

plies that ∇2
11G(z, x)v = −∇1F (z, x). Replacing z by its value, we get v = −

[
∇2

11G(z∗(x), x)
]−1 ∇1F (z∗(x), x)

which is v∗(x) by definition. Putting all together and using the expression of ∇h(x) given by (2), we
get

Dx(z, v, x) = ∇2F (z∗(x), x) + ∇21G(z∗(x), x)v∗(x) = ∇h(x) .

On the other hand, Dx(z, v, x) = 0 so ∇h(x) = 0.

C.2 Proof of Lemma 3.4

Proof. Let (z, v, x) ∈ Rp × Rp × Rd. Using the fact that ∇1G(z∗(x), x) = 0 and the LG
1 -smoothness of

G( · , x), we have

∥Dz(z, v, x)∥2 = ∥∇1G(z, x) −∇1G(z∗(x), x)∥2 ⩽ L2
G∥z − z∗(x)∥2 .

For Dv, since ∇2
11G(z∗(x), x)v∗(x) = −∇1F (z∗(x), x), we write

∥Dv∥ = ∥(∇2
11G(z, x)v + ∇1F (z, x)) − (∇2

11G(z∗(x), x)v∗(x) + ∇1F (z∗(x), x))∥ (17)

≤ ∥[∇2
11G(z, x) −∇2

11G(z∗(x), x)]v∗(x)∥ + ∥∇2
11G(z, x)[v − v∗(x)]∥ (18)

+ ∥∇1F (z, x) −∇1F (z∗(x), x)∥ .

For the first term, we use the Lipschitz continuity of ∇2
11G:

∥[∇2
11G(z, x) −∇2

11G(z∗(x), x)]v∗(x)∥ ≤ LG
11∥z − z∗(x)∥∥v∗(x)∥ .

Then, sinceG in µG-strongly convex w.r.t. z, ∇1F (z∗(·), ·) is bounded and v∗(x) = −[∇2
11G(z∗(x), x)]−1∇1F (z∗(x), x),

we have

∥[∇2
11G(z, x) −∇2

11G(z∗(x), x)]v∗(x)∥ ≤ LG
11CF

µG
∥z − z∗(x)∥ . (19)

For the second term, we use the LG
1 -smoothness of G( · , x) and for the third term, we use the

LF -smoothness of F and we finally get

∥Dv∥ ≤
(
LG
11CF

µG
+ LF

)
∥z − z∗(x)∥ + LG

1 ∥v − v∗(x)∥ . (20)

Then, taking Lv =
√

2 max
(

LG
11CF

µG
+ LF , LG

1

)
, we get

∥Dv(z, v, x)∥2 ≤ L2
v(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) . (21)

For Dx(z, v, x) −∇h(x) we start by writing

∥Dx(z, v, x) −∇h(x)∥ ≤ ∥∇2F (z, x) −∇2F (z∗(x), x)∥ + ∥∇2
21G(z, x)v −∇2

21G(z∗(x), x)v∗(x)∥ (22)

≤ ∥∇2F (z, x) −∇2F (z∗(x), x)∥ + ∥∇2
21G(z, x)∥∥v − v∗(x)∥ (23)

+ ∥v∗(x)∥∥∇2
21G(z, x) −∇2

21G(z∗(x), x)∥ .
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We bound the first term using the fact that ∇2F is LF -Lipschitz continuous. For the second term,
the fact that ∇2

21G is bounded thanks to the Lipschitz continuity of ∇1G(z, · ). For the third term, we
use that ∇2

21G( · , x) is LG
21-Lipschitz continuous and the same derivation as Equation (19). We finally

get

∥Dx −∇h(x)∥ ≤
(
LF +

CFL
G
21

µG

)
∥z − z∗(x)∥ + LG

2 ∥v − v∗(x)∥ . (24)

Taking Lx =
√

2 max
(
LF +

CFLG
21

µG
, LG

2

)
yields

∥Dv(z, v, x) −∇h(x)∥2 ≤ L2
x(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) . (25)

C.3 Smoothness constant of h

From Ghadimi and Wang [2018, Lemma 2.2], we get the Lemma 3.9 which states the Lh-smoothness of
h with

Lh = LF +
2LFLG

21 + C2
FL

G
21

µG
+
LG
11L

G
2 CF + LG

2 L
G
21CF + (LG

2 )2LF

µ2
G

+
(LG

2 )2LG
11CF

µ3
G

.

C.4 Proof of Lemma 3.8

We start by a technical lemma.

Lemma C.1. Let µ > 0 and K ≜ {M ∈ Sp(R), µI ⪯ M}. Then, the application f : K → GLp(R)
given by f(M) = M−1 is α-Lipschitz continuous with a constant α = µ−2.

Proof. The map f is differentiable at M ∈ K as an element of GLp(R) and its derivative df(M) is
given by df(M).H = −M−1HM−1. Then we have

∥df(M).H∥ ⩽
∥∥M−1

∥∥2 ∥H∥ ⩽
1

µ2
∥H∥ .

Then the Lipschitz continuity follows.

Then we show the Lipschitz continuity of z∗ and v∗.

Lemma C.2. There exists a constant L∗ > 0 such that for any x1, x2 ∈ Rd we have

∥z∗(x1) − z∗(x2)∥ ≤ L∗∥x1 − x2∥, ∥v∗(x1) − v∗(x2)∥ ≤ L∗∥x1 − x2∥ .

Proof. Let x ∈ Rd. The Jacobian of z∗ is given by dz∗(x) = −[∇2
11G(z∗(x), x)]−1∇2

1,2G(z∗(x), x).

Thanks to the µG-strong convexity of G and the fact that ∇2
21G is bounded, we have ∥dz∗(x)∥ ≤ LG

2

µG
.

Thus, z∗ is Lipschitz continuous.
For ∥v∗(x1) − v∗(x2)∥, we start from the definition v∗:

∥v∗(x1) − v∗(x2)∥ = ∥[∇2
11G(z∗(x1), x1]−1∇1F (z∗(x1), x1) − [∇2

11G(z∗(x2), x2]−1∇1F (z∗(x2), x2)∥
(26)

⩽ ∥([∇2
11G(z∗(x1), x1)]−1 − [∇2

11G(z∗(x2), x2)]−1∇1F (z∗(x1), x1)∥ (27)

+ ∥[∇2
11G(z∗(x2), x2)]−1(∇1F (z∗(x2), x2) −∇1F (z∗(x1), x1))∥ .

For the first term, we use Lemma C.1 and the fact that ∇2
11G is Lipschitz to get
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∥[∇2
11G(z∗(x1), x1)]−1 −∇2

11G(z∗(x2), x2)]−1∥ ≤ 1

µ2
G

∥∇2
11G(z∗(x1), x1) −∇2

11G(z∗(x2), x2)∥

≤ LG
11

µ2
G

∥(z∗(x1), x1) − (z∗(x2), x2)∥

≤ LG
11

µ2
G

[∥z∗(x1) − z∗(x2)∥ + ∥x1 − x2∥]

≤ LG
11

µ2
G

[
1 +

LG
2

µG

]
∥x1 − x2∥ .

And then, since ∇1F (z∗( · ), · ) is bounded:∥∥([∇2
11G(z∗(x1), x1)]−1 − [∇2

11G(z∗(x2), x2)]−1∇1F (z∗(x1), x1)
∥∥ ≤ CFL

G
11

µ2
G

[
1 +

LG
2

µG

]
∥x1 − x2∥ .

For the second term, the strong convexity of G( · , x) and the fact that ∇1F is Lipschitz continuous
lead to

∥[∇2
11G(z∗(x2), x2)]−1(∇1F (z∗(x2), x2) −∇1F (z∗(x1), x1))∥ ≤ 1

µG
∥∇1F (z∗(x2), x2) −∇1F (z∗(x1), x1)∥

(28)

≤ LF

µF
∥(z∗(x1), x1) − (z∗(x2), x2)∥ (29)

≤ LF

µG
[∥z∗(x1) − z∗(x2)∥ + ∥x1 − x2∥]

(30)

≤ LF

µG

[
1 +

LG
2

µG

]
∥x1 − x2∥ . (31)

Then we get

∥v∗(x1) − v∗(x2)∥ ≤
[
CFL

G
11

µ2
G

[
1 +

LG
2

µG

]
+
LF

µG

[
1 +

LG
2

µG

]]
∥x1 − x2∥ . (32)

We conclude by setting

L∗ = max

(
LG
2

µG
,
CFL

G
11

µ2
G

[
1 +

LG
2

µG

]
+
LF

µG

[
1 +

LG
2

µG

])
.

In what follows, we denote by Et[ · ] the expectation conditionally on zt, vt and xt.
We now provide the proof of Lemma 3.8.

Proof. Inequality for δz.
We find for a > 0, using Young’s inequality

δt+1
z ≤ (1 + a)E[∥zt+1 − z∗(xt)∥2] + (1 + a−1)E[∥z∗(xt+1) − z∗(xt)∥2] . (33)

We study each member, using the unbiasedness of Dt
z and the µG−strong convexity of G( · , xt):

Et[∥zt+1 − z∗(xt)∥2] = Et[∥zt − z∗(xt)∥2] − ρEt[⟨Dt
z, z

t − z∗(xt)⟩] + ρ2Et[∥Dt
z∥2] (34)

= ∥zt − z∗(xt)∥2 − ρ⟨∇zG(zt, xt), zt − z∗(xt)⟩ + ρ2Et[∥Dt
z∥2] (35)

≤ (1 − ρµG)∥zt − z∗(xt)∥2 + ρ2Et[∥Dt
z∥2] . (36)
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Taking the total expectation yields

E[∥zt+1 − z∗(xt)∥2] ≤ (1 − ρµG)δtz + ρ2V t
z . (37)

The second member is bounded using Lipschitz continuity of z∗:

E[∥z∗(xt+1) − z∗(xt)∥2] ≤ L2
∗E[∥xt+1 − xt∥2] = L2

∗γ
2V t

x

which gives overall

δt+1
z ≤ (1 + a)

[
(1 − ρµG)δtz + ρ2V t

z

]
+ (1 + a−1)L2

∗γ
2V t

x (38)

In order to keep a decrease in δz, we might want to use a = 1
2ρµG, which gives the bound

δt+1
z ≤

(
1 − ρµG

2

)
δtz + 2ρ2V t

z + βzx
γ2

ρ
V t
x (39)

with βzx = 4
L2

∗
µG

. Indeed, this gives (1 + 1
2ρµG)(1 − ρµG) ≤ 1 − 1

2ρµG. We have a ≤ 1 since ρ ≤ 2
µG

, so

(1 + a)ρ2 ≤ 2ρ2. Finally, we also have 1 + a−1 ≤ 2a−1 = 4
ρµG

.
Inequality for δv. We use a similar technique to get for b > 0

δt+1
v ≤ (1 + b)E[∥vt+1 − v∗(xt)∥2] + (1 + b−1)E[∥v∗(xt+1) − v∗(xt)∥2] . (40)

For the first term, we have

Et[∥vt+1 − v∗(xt)∥2] = ∥vt − v∗(xt)∥2 − ρ⟨Dv(zt, vt, xt), vt − v∗(xt)⟩ + ρ2Et[∥Dt
v∥2] (41)

Now, using that Dv(z∗(xt), v∗(xt), xt) = 0:

⟨Dv(zt, vt, xt), vt − v∗(xt)⟩ = ⟨Dv(zt, vt, xt) −Dv(z∗(xt), v∗(xt), xt), vt − v∗(xt)⟩ (42)

= ⟨∇2
11G(zt, xt)(vt − v∗(xt)), vt − v∗(xt)⟩ (43)

+ ⟨(∇2
11G(zt, xt) −∇2

11G(z∗(xt), xt))v∗(xt), vt − v∗(xt)⟩
+ ⟨(∇1F (zt, xt) −∇1F (z∗(xt), xt)), vt − v∗(xt)⟩

≥ µG∥vt − v∗(xt)∥2 − LG
11CF

µG
∥zt − z∗(xt)∥∥vt − v∗(xt)∥ (44)

− LF ∥zt − z∗(xt)∥∥vt − v∗(xt)∥
≥ µG∥vt − v∗(xt)∥2 − ω∥zt − z∗(xt)∥∥vt − v∗(xt)∥ (45)

where ω = LF +
LG

11CF

µG
. We then use

√
∥zt − z∗(xt)∥∥vt − v∗(xt)∥ ≤ 1

2c∥v
t − v∗(xt)∥2 + 1

2c
−1∥zt −

z∗(xt)∥2 with c = µG

ω to get

−⟨Dv(zt, vt, xt), vt − v∗(xt)⟩ ≤ −1

2
µGδ

t
v +

ω2

2µG
δtz .

We get the overall inequality by taking the total expectation

E[∥vt+1 − v∗(xt)∥2] ≤
(

1 − ρµG

2

)
δtv + ρ

ω2

2µG
δtz + ρ2V t

v

We also use Lipschitz on v∗ to bound the other term

E[∥v∗(xt+1) − v∗(xt)∥2] ≤ L2
∗γ

2V t
x

and we obtain the full inequality by taking b = ρµG

4 in Equation (40)

δt+1
v ≤

(
1 − ρµG

4

)
δtv + ρβvzδ

t
z + 2ρ2V t

v + βvx
γ2

ρ
V t
x (46)

with βzv = ω2

µG
and βvx = 8

L2
∗

µG
.
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C.5 Proof of Lemma 3.9

Proof. We use smoothness of h to get

Et[h(xt+1)] ≤ h(xt) − γ⟨Dx(zt, vt, xt),∇h(xt)⟩ +
Lh

2
γ2Et[∥Dt

x∥2]

We use the previous Lemma 3.4 to get

−⟨Dx(zt, vt, xt),∇h(xt)⟩ ≤ −∥∇h(xt)∥2 + Lx

√
∥zt − z∗(xt)∥2 + ∥vt − v∗(xt)∥2∥∇h(xt)∥ (47)

≤ −1

2
∥∇h(xt)∥2 +

L2
x

2
(∥zt − z∗(xt)∥2 + ∥vt − v∗(xt)∥2) (48)

where the last inequality comes from ab ≤ Lx

2 a
2 + 1

2Lx
b2 with a =

√
∥zt − z∗(xt)∥2 + ∥vt − v∗(xt)∥2

and b = ∥∇h(xt)∥. Finally, taking the total expectation, we get

ht+1 ≤ ht − γ

2
gt +

γL2
x

2
(δtz + δtv) +

Lh

2
γ2V t

x . (49)

C.6 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 that we recall here.

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1. We consider fixed steps

ρt = T− 2
5 and γt = T− 3

5 . We assume that T is large enough so that ρt ≤ min( µG

8L2
zB

2
z
, µG

16L2
vB

2
v
, 2
µG

). Let

xt the sequence of outer iterates for SOBA. Then, 1
T

∑T
t=1 E[∥∇h(xt)∥2] = O(T− 2

5 ).

We start by some manipulations that will be useful to prove both SOBA theorems.

Lemma C.3. Under the assumption that ρt ≤ min
(

µG

8L2
zB

2
z
, µG

16L2
vB

2
z
, 2
µG

)
, it holds

µG

4

T∑
t=0

ρtδtz ≤ δ0z + 2B2
z

T∑
t=0

(ρt)2 + βzxB
2
x

T∑
t=0

(γt)2

ρt
(50)

µG

8

T∑
t=0

ρtδtv ≤ δ0v + 2B2
v

T∑
t=0

(ρt)2 + βvz

T∑
t=0

ρtδtz + βvxB
2
x

T∑
t=0

(γt)2

ρt
(51)

Proof. Assumption 3.6 and Lemma 3.4 give

V t
z ≤ B2

z (1 + L2
zδ

t
z)

and
V t
v ≤ B2

v(1 + L2
v(δtz + δtv)) .

Plugging these inequalities in Lemma 3.8 gives

δt+1
z ≤

(
1 − ρtµG

2
+ 2(ρt)2L2

zB
2
z

)
δtz + 2(ρt)2B2

z + βzx
(γt)2

ρt
B2

x (52)

and

δt+1
v ≤

(
1 − ρtµG

4
+ 2(ρt)2L2

vB
2
v

)
δtv + 2(ρt)2B2

v + ρtβvzδ
t
z + βvx

(γt)2

ρt
B2

x . (53)
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Under the hypothesis that ρt ≤ µG

8L2
zB

2
z

and ρt ≤ µG

16L2
vB

2
v
, these equations simplify to

δt+1
z ≤

(
1 − ρtµG

4

)
δtz + 2(ρt)2B2

z + βzx
(γt)2

ρt
B2

x (54)

and

δt+1
v ≤

(
1 − ρtµG

8

)
δtv + 2(ρt)2B2

v + ρtβvzδ
t
z + βvx

(γt)2

ρt
B2

x . (55)

Next, summing these equations for t = 0 . . . T gives

µG

4

T∑
t=0

ρtδtz ≤ δ0z + 2B2
z

T∑
t=0

(ρt)2 + βzxB
2
x

T∑
t=0

(γt)2

ρt
(56)

and

µG

8

T∑
t=0

ρtδtv ≤ δ0v + 2B2
v

T∑
t=0

(ρt)2 + βvz

T∑
t=0

ρtδtz + βvxB
2
x

T∑
t=0

(γt)2

ρt
. (57)

We are now ready to prove Theorem 1.

Proof. With a fixed step size ρt = ρ = 1

T
2
5

and γt = γ = 1

T
3
5

, the first equation gives

1

T

T∑
t=0

δtz ≤ 4

µG

[
δ0z
Tρ

+ 2B2
zρ+ βzxB

2
x

γ2

ρ2

]
≤ Kz

T
2
5

where Kz = 4
µG

(δ0z + 2B2
z +B2

xβzx) does not depend on T . Note that here we used T
3
5 ≥ T

2
5 .

Next, using Equation (51), we get

1

T

T∑
t=0

δtv ≤ 8

µG

[
δ0v
Tρ

+ 2B2
vρ+

βvzKz

T
2
5

+ βvxB
2
x

(γ)2

ρ2

]
≤ Kv

T
2
5

with Kv = 8
µ (δ0v + 2B2

v + βvzKz + βvxB
2
x).

Finally, summing the equations in x in Lemma 3.9 we obtain

1

T

T∑
t=0

E∥∇h(xt)∥2 ≤ 2

(
h0 − h∗

Tγ
+
L2
x(Kv +Kz)

2

1

T
2
5

+ LhγB2
x

)
≤ Kx

T
2
5

with Kx = 2(h0 − h∗) + L2
x(Kv +Kz) + 2LhB2

x, which shows the advertised result.

C.7 Proof of Theorem 2

Proof. In the decreasing step size case, after enough iterations we have automatically ρt ≤ µG

8L2
zB

2
z

and

ρt ≤ µG

16L2
vB

2
v
, which allows us to use Equations (50) and (51). WLOG, we assume that this happends

at iteration 0. Taking ρt = t−
2
5 , γt = t−

3
5 , we recall the integral majorization for β < 1:

T∑
t=1

t−β ≤
∫ T

0

t−βdt =
T 1−β

1 − β
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and
T∑

t=1

t−1 ≤ 1 +

∫ T

1

t−1dt = 1 + log(T ) .

We use this in Equation (54) to get

T∑
t=0

ρtδtz ≤ 4

µG

[
δ0z +

(
10B2

z + 5βzxB
2
x

)
T

1
5

]
≤ KzT

1
5

where Kz = 4
µG

(δ0z + (10B2
z + 5βzxB

2
x)).

Then, Equation (55) yields

T∑
t=0

ρtδtv ≤ 8

µG

[
δ0v + (βvzKz + 10B2

v + 5βvxB
2
x)T

1
5

]
≤ KvT

1
5

with Kv = 8
µG

(δ0v + βvzKz + 10B2
v + 5βvxB

2
x).

Finally, taking the equation in Lemma 3.9 and multiplying it by ρt

γt gives

ρtgt ≤ ρt

γt
(ht − ht+1) +

L2
x

2
ρt(δtz + δtv) + LhγtρtB2

x .

Summing these equations gives

T∑
t=0

ρtgt ≤
T∑

t=0

t
1
5 (ht − ht+1) +

L2
x

2
(Kv +Kz)T

1
5 + LhB2

x(1 + log(T )) .

We now use an Abel transform to deal with the first sum:

T∑
t=0

t
1
5 (ht − ht+1) =

T∑
t=0

t
1
5ht −

T∑
t=0

t
1
5ht+1 (58)

=

T∑
t=1

t
1
5ht −

T∑
t=1

(t− 1)
1
5ht − T

1
5hT+1 (59)

≤
T∑

t=1

(t
1
5 − (t− 1)

1
5 )ht . (60)

Here, we use the hypothesis that ht is bounded by h∞ to get

T∑
t=0

t
1
5 (ht − ht+1) ≤ h∞T

1
5 .

Finally, we obtain the bound

T∑
t=0

t−
2
5 gt ≤

[
h∞ +

L2
x

2
(Kv +Kz)

]
T

1
5 + LhB2

x(1 + log(T )) ≤ KxT
1
5

with Kx = h∞ +
L2

x

2 (Kv +Kz) + LhB2
x(1 + e5) (because e5 = supx log(x)x−1/5).

We therefore obtain

inf
t≤T

gt ≤

(
T∑

t=1

t−
2
5

)−1 T∑
t=1

t−
2
5 gt ≤ 3

5(T + 1)
3
5

KxT
1
5
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and

inf
t≤T

gt ≤ 3Kx

5(T + 1)
2
5

which shows the advertised result.

C.8 Proof of Theorem 3

In this section, we prove Theorem 3 that we recall here

Theorem 3 (Convergence of SABA, smooth case). Let zt, vt and xt the iterates of SABA, with fixed
step sizes ρ and γ. We suppose ρ ≤ ρ∗ and γ ≤ min(ρξ∗,

1
8Lh ), where ρ∗ and ξ∗ depend only on F and

G and are specified in appendix. Then, 1
T

∑T
t=1 E[∥∇h(xt)∥2] = O( 1

T ).

The constants ρ∗ and ξ∗ are given by

ρ∗ = min

(
4

µG
,

√
κ

8(L′
z + L′

v)
,
µG

32L2
z

,
µG

64L2
v

,
βvz
8L2

v

,

√
L2
x + 2ψvβvz

βsz
,

Lx√
2βsv

,
κ

8(ψzL′
z + ψvL′

v)

)
and

ξ∗ = min

(√
L′
z + L′

v

L′
x

,
Lv√
2Lx

,

√
µG

32βzxL2
x

,

√
µG

64βvxL2
x

,

√
βvz

8βvxL2
x

,

1√
8βzxψz

,
LhL′

xρ̃

2βzxL′
xψz + 2βvxL′

xψv
,

κ

8LhL′
xρ̃
,

1√
4(2P ρ̃3 + 4βzxψz + 4ψvβvx)

)
where

ξ̃ = min

(
1√

8βzxψz

,
LhL′

xρ̃

2βzxL′
xψz + 2βvxL′

xψv
,

κ

8LhL′
xρ̃
,

1√
4(2P ρ̃3 + 4βzxψz + 4ψvβvx)

)
,

ρ̃ = min

(√
L2
x + 2ψvβvz

βsz
,

Lx√
2βsv

,
κ

8(ψzL′
z + ψvL′

v)

)
,

ψv =
16L2

x

µG
, ψz =

8

µG
(L2

x + 2ψvβvz) and κ = min

(
1

n
,

1

m

)
.

C.8.1 Control of distance from memory to iterates

We can view our method has having two “parallel” memories for each variable (zti , v
t
i , x

t
i) for i ∈ 1[n]

corresponding to calls in G and (z′tj , v
′t
j , x

′t
j ) for j ∈ [m] corresponding to calls to F . At each iteration, we

sample i at random uniformly and do (zt+1
i , vt+1

i , xt+1
i ) = (zt, vt, xt) and (zt+1

i′ , vt+1
i′ , xt+1

i′ ) = (zti′ , v
t
i′ , x

t
i′)

for i′ ̸= i, and similarly for the other memory.
In what follows, we focus on controlling the error between the iterates and the memories. We define

to make things simpler

Et
z =

1

n

n∑
i=1

E[∥zt − zti∥2] , Et
v =

1

n

n∑
i=1

E[∥vt − vti∥2] , Et
x =

1

n

n∑
i=1

E[∥xt − xti∥2] ,

and similarly E′t
x , E

′t
v and E′t

x .
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Lemma C.4. We have the following inequalities:

Et+1
z ≤

(
1 − 1

2n

)
Et

z + ρ2E∥Dt
z∥2 + 2nρ2E[∥Dz(zt, vt, xt)∥2] ,

Et+1
v ≤

(
1 − 1

2n

)
Et

v + ρ2E∥Dt
v∥2 + 2nρ2E[∥Dv(zt, vt, xt)∥2] ,

Et+1
x ≤

(
1 − 1

2n

)
Et

x + γ2E∥Dt
x∥2 + 2nγ2E[∥Dx(zt, vt, xt)∥2] ,

E′t+1
z ≤

(
1 − 1

2m

)
Et

z + ρ2E∥Dt
z∥2 + 2mρ2E[∥Dz(zt, vt, xt)∥2] ,

E′t+1
v ≤

(
1 − 1

2m

)
Et

v + ρ2E∥Dt
v∥2 + 2mρ2E[∥Dv(zt, vt, xt)∥2] ,

and

E′t+1
x ≤

(
1 − 1

2m

)
Et

x + γ2E∥Dt
x∥2 + 2mγ2E[∥Dx(zt, vt, xt)∥2] .

Proof. We provide the detailed proof for Et
z. The approach for the five others is similar.

Let i ∈ [n]. Taking the expectation of ∥zt+1 − zt+1
i ∥2 conditionaly to zt, vt, xt yields

Et[∥zt+1 − zt+1
i ∥2] =

1

n
Et[∥zt+1 − zt∥2] +

n− 1

n
Et[∥zt+1 − zti∥2] .

Then, using the fact that Et[D
t
z(zt, vt, xt)] = Dz(zt, vt, xt), we have

Et[∥zt+1 − zti∥2] = Et[∥zt+1 − zt∥2] + ∥zt − zti∥2 − 2ρ⟨Dz(zt, vt, xt), zt − zti⟩ . (61)

We then upper-bound crudely the scalar product by Cauchy-Schwarz and Young inequalities with
parameter β:

Et[∥zt+1 − zti∥2] ≤ Et[∥zt+1 − zt∥2] + ρβ−1∥Dz(zt, vt, xt)∥2 + (1 + ρβ)∥zt − zti∥2

As a consequence, by taking the total expectation and summing for all i ∈ [n], we find

Et+1
z ≤ ρ2E[∥Dt

z∥2] + ηβ−1

(
1 − 1

n

)
E[∥Dz(zt, vt, xt)∥2] + (1 + ρβ)

(
1 − 1

n

)
Et

z .

Finally, we take β = 1
2nρ to obtain

Et+1
z ≤

(
1 − 1

2n

)
Et

z + ρ2E∥Dt
z(zt, vt, xt)∥2 + 2nρ2E[∥Dz(zt, vt, xt)∥2] . (62)

C.8.2 Bounds on the variances

We begin by showing an important boundedness result:

Lemma C.5. Assume that for all t, ρt = ρ < min( µG

8L2
zB

2
z
, µG

16L2
vB

2
v
, 2
µG

) and γt = γ. Then, the sequence

(E[∥vt∥2])t is bounded.
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Proof. The assumption on ρ ensures that Equations (54) and (55) hold. Since ρ is supposed to be
constant, by unrolling Equation (54), we have

δtz ≤
(

1 − ρµG

4

)t
δ0z +K

for K = 4
µG

(
2ρB2

z + βzx
γ
ρB

2
x

)
. Since 0 < ρ < 2

µG
< 4

µG
, 0 <

(
1 − ρµG

4

)
< 1 and then the sequence

(δtz)t is bounded.
From this and Equation (55), we get with the same technique that the sequence (δtv)t is bounded.
We conclude by writing

E[∥vt∥2] ≤ 2(δtv + E[∥v∗(xt)∥2])

which is the sum of two bounded terms.

The following lemma gives us upper-bounds for E[∥Dt
z(zt, vt, xt)∥2], E[∥Dt

v(zt, vt, xt)∥2], and
E[∥Dt

x(zt, vt, xt)∥2].

Lemma C.6. For SABA, there are constants L′
z, L

′
v, L

′
x > 0 such that

E[∥Dt
z(zt, vt, xt)∥]2 ≤ 2E[∥Dz(zt, vt, xt)∥2] + 2L′

z(Et
z + Et

x) ,

E[∥Dt
v(zt, vt, xt)∥2] ≤ 2E[∥Dv(zt, vt, xt)∥2] + 2L′

v(Et
z + Et

x + Et
v + E′t

z + E′t
x )

and
E[∥Dt

x(zt, vt, xt)∥2] ≤ 2E[∥Dx(zt, vt, xt)∥2] + 2L′
x(Et

z + Et
x + Et

v + E′t
z + E′t

x ) .

Proof. For SABA, if we consider i sampled from [n] at iteration t, we have

Dt
z = ∇zGi(z

t, xt) −∇1Gi(z
t
i , x

t
i) +

1

n

n∑
i′=1

∇1G(zti′ , x
t
i′) .

Hence we get

Et[∥Dt
z(zt, vt, xt)∥2] = Et[∥∇1Gi(z

t, xt) −∇1Gi(z
t
i , x

t
i) +

1

n

N∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′) −∇1G(zt, xt) + ∇1G(zt, xt)∥2]

≤ 2∥∇1G(zt, xt)∥2 + 2Et[∥∇1Gi(z
t, xt) −∇1Gi(z

t
i , x

t
i) +

1

n

N∑
i′=1

∇1G(zti′ , x
t
i′) −∇1G(zt, xt)∥2] .

(63)

The second term is the variance of ∇zGi(z
t, xt) −∇zGi(z

t
i , x

t
i), which is therefore upper-bounded by

Et[∥[∇1Gi(z
t, xt) −∇1Gi(z

t
i , x

t
i)∥2] =

1

n

n∑
i=1

∥[∇1Gi(z
t, xt) −∇1Gi(z

t
i , x

t
i)∥2

≤ L′
z

n

n∑
i=1

(∥zt − zti∥2 + ∥xt − xti∥2) (64)

where the inequality comes from the Lipschitz continuity of each ∇1Gi with L′
z = maxi∈[n] LGi

.
Then, by plugging (64) into (63) and taking the total expectation, we get

E[∥Dt
z(zt, vt, xt)∥]2 ≤ 2E[∥Dz(zt, vt, xt)∥2] + 2L′

z(Et
z + Et

x) . (65)

Things are quite similar for the other variables, albeit a bit more difficult.
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In v, it holds

Et[∥Dt
v(zt, vt, xt)∥2] =Et[∥∇1Fj(z

t, xt) −∇1Fj(z
′t
j , x

′t
j ) +

1

m

m∑
j′=1

∇1Fj′(z
′t
j′ , x

′t
j′) (66)

+ ∇2
11Gi(z

t, xt)vt −∇2
11Gi(z

t
i , x

t
i)v

t
i +

1

n

n∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′)

−Dv(zt, vt, xt) +Dv(zt, vt, xt)∥2]

⩽2Et[∥Dv(zt, vt, xt)∥2] (67)

+ 2Et[∥∇1Fj(z
t, xt) −∇1Fj(z

′t
j , x

′t
j ) +

1

m

m∑
j′=1

∇1Fj′(z
′t
j′ , x

′t
j′)

+ ∇2
11Gi(z

t, xt)vt −∇2
11Gi(z

t
i , x

t
i)v

t
i +

1

n

n∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′)

−Dv(zt, vt, xt)∥2]

Here, we see that we need to control the variance of ∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j )+∇2

11Gi(z
t, xt)vt−

∇2
11Gi(z

t
i , x

t
i)v

t
i . Since i and j are independent, this is a sum of two independent random variables,

hence its variance is the sum of the variances, which is upper-bounded by

Et[∥∇1Fj(z
t, xt) −∇1Fj(z

′t
j , x

′t
j )∥2] + Et[∥∇2

11Gi(z
t, xt)vt −∇2

11Gi(z
t
i , x

t
i)v

t
i∥2] .

The Lipschitz continuity of all the ∇Gi, ∇2
11Gi and ∇1Fj , the boundedness of E[∥v∥2] (Lemma C.5)

and taking the total expectation in (63) lead to

E[∥Dt
v(zt, vt, xt)∥2] ≤ 2E[∥Dv(zt, vt, xt)∥2] + 2L′

v(Et
z + Et

x + Et
v + E′t

z + E′t
x ) . (68)

In x we have similarly

E[∥Dt
x(zt, vt, xt)∥2] ≤ 2E[∥Dx(zt, vt, xt)∥2] + 2L′

x(Et
z + Et

x + Et
v + E′t

z + E′t
x ) . (69)

We now form St = Et
z + Et

x + Et
v + E′t

z + E′t
x , and letting κ = min( 1

m ,
1
n ). We have the following

lemma

Lemma C.7. If 2ρ2(L′
z + L′

v) + 2γ2L′
x ≤ κ

2 and 2L2
xρ

2 ≤ ρ2L2
v, it holds

St+1 ≤ (1 − κ

2
)St + βszρ

2δtz + βsvρ
2δtv + 2Pγ2E[∥∇h(xt)∥2]

for some Ls, βsz, P > 0.

Proof. We now form St = Et
z + Et

x + Et
v + E′t

z + E′t
x , and letting κ = min( 1

m ,
1
n ), it holds following

eq. (62) (and omitting the dependencies in (zt, vt, xt) in the direction for simplicity)

St+1 ≤ (1−κ)St+E
[
2ρ2(∥Dt

z∥2 + ∥Dt
v∥2) + 2γ2∥Dt

x∥2 + 2(m+ n)[ρ2(∥Dz∥2 + ∥Dv∥2) + γ2∥Dx∥2]
]
.

Using the previous bounds (65), (68) and (69), we get

St+1 ≤ (1 − κ+ 2ρ2(L′
z + L′

v) + 2γ2L′
x))St + (2(m+ n) + 4)E[ρ2(∥Dz∥2 + ∥Dv∥2) + γ2∥Dx∥2] .
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Next, since ξ2L′
x ≤ L′

z + L′
v and 8ρ2(L′

z + L′
v) ≤ κ, we have 2ρ2(L′

z + L′
v) + 2γ2L′

x ≤ κ
2 and so,

letting P = (2(m+ n) + 4) we get

St+1 ≤
(

1 − κ

2

)
St + PE[ρ2(∥Dz∥2 + ∥Dv∥2) + γ2∥Dx∥2] .

To finish, we use Lemma 3.4 to get

St+1 ≤
(

1 − κ

2

)
St + P [ρ2((L2

z + L2
v)δtz + L2

vδ
t
v) + 2γ2(E[∥∇h(xt)∥2] + L2

x(δtz + δtv))] .

Then, using that 2L2
xγ

2 ≤ ρ2L2
v, we get the bound, letting Ls = L2

z + L2
v:

St+1 ≤
(

1 − κ

2

)
St + βszρ

2δtz + βsvρ
2δtv + 2Pγ2E[∥∇h(xt)∥2]

with βsz = 2PLs, βsv = 2PL2
v

Note that by definition, each quantity Et
z is smaller than St.

We will therefore use the cruder bounds on the E[∥Dt
z∥2] as follows:

E[∥Dt
z(zt, vt, xt)∥2] ≤ 2L2

zδ
t
z + 2L′

zS
t ,

E[∥Dt
v(zt, vt, xt)∥2] ≤ 2L2

v(δtz + δtv) + 2L′
vS

t

and
E[∥Dt

x(zt, vt, xt)∥2] ≤ 4(∥∇h(xt)∥2 + L2
x(δtz + δtv)) + 2L′

xS
t .

C.8.3 Putting it all together

Recall that we denote gt = E[∥∇h(xt)∥2] and ht = E[h(xt)]. In the following lemma, we adapt
Lemma 3.8 and Lemma 3.9 to the SABA algorithm.

Lemma C.8. Under the conditions of Theorem 3, it holds

δt+1
z ≤

(
1 − 1

4
ρµG

)
δtz +

[
4ρ2L′

z + 2βzx
γ2

ρ
L′
x

]
St + 4βzx

γ2

ρ
[gt + L2

xδ
t
v] ,

δt+1
v ≤

(
1 − 1

8
ηµG

)
δtv + 2ρβvzδ

t
z +

[
4ρ2L′

v + 2βvx
γ2

ρ
L′
x

]
St + 4βvx

γ2

ρ
gt

and
γ

4
gt ≤ ht − ht+1 + αL2

x(δtz + δtv) + LhL′
xγ

2St .

Proof. We plug the previous inequalities in the bounds obtained before on the δ quantities (eq. (39)):

δt+1
z ≤

(
1 − 1

2
ρµG + 4ρ2L2

z + 4βzx
γ2

ρ
L2
x

)
δtz +

[
4ρ2L′

z + 2βzx
γ2

ρ
L′
x

]
Sn + 4βzx

γ2

ρ

[
gt + L2

xδ
t
v

]
where βxz = 4

4L2
∗

µG
.

Using that ρ ≤ min
(

µG

64L2
v
, βvz
8L2

v

)
and γ2 ≤ ρ2 min

(
µG

64βvxL2
x
, βvz

8βvxL2
x

)
, we get 4ρ2L2

z + 4βzx
α2

ρ L
2
x ≤

1
4ρµG and therefore

δt+1
z ≤

(
1 − 1

4
ρµG

)
δtz +

[
4ρ2L′

z + 2βzx
γ2

ρ
L′
x

]
St + 4βzx

γ2

ρ
[gt + L2

xδ
t
v] . (70)

30



In v, we have

δt+1
v ≤

(
1 − ρµG

4
+ 4L2

vρ
2 + 4βvxL

2
x

γ2

ρ

)
δtv +

(
βvzρ+ 4L2

vρ
2 + 4βvxL

2
x

γ2

ρ

)
δtz (71)

+

[
4ρ2L′

v + 2βvx
γ2

ρ
L′
x

]
St + 4βvx

γ2

ρ
gt (72)

Then, ρ ≤ µG

32L2
z

and γ2 ≤ ρ2 µG

32βzxL2
x

imply 4L2
vρ

2 + 4βvxL
2
x
γ2

η ≤ ρµ
8 and βvzη ≥ 4L2

vρ
2 + 4βvxL

2
x
γ2

ρ .

So we have

δt+1
v ≤

(
1 − 1

8
ηµG

)
δtv + 2ρβvzδ

t
z +

[
4ρ2L′

v + 2βvx
γ2

ρ
L′
x

]
St + 4βvx

γ2

ρ
gt . (73)

Finally, in x, using Lemma 3.9, we get(γ
2
− 2Lhγ2

)
gt ≤ ht − ht+1 +

(
γL2

x

2
+ 2γ2LhL2

x

)
(δtz + δtv) + LhL′

xγ
2St .

Since 4Lhγ ≤ 8Lhγ ≤ 1, we have

γ

4
gt ≤ ht − ht+1 + γL2

x(δtz + δtv) + LhL′
xγ

2St (74)

We are now ready to prove Theorem 3.

Proof. We consider the Lyapunov function

Lt = ht + ϕsS
t + ϕzδ

t
z + ϕvδ

t
v (75)

for some constants ϕs, ϕz and ϕv.
We have

Lt+1 − Lt ≤
(
γL2

x + βszϕsρ
2 − ϕz

ρµG

4
+ 2ϕvρβvz

)
δtz

+

(
γL2

x + βsvρ
2ϕs + 4L2

xβzxϕz
γ2

ρ
− ϕv

ρµG

8

)
δtv

+

(
LhL′

xγ
2 − κ

2
ϕs + 4ρ2ϕzL

′
z + 2βzx

γ2

ρ
L′
xϕz + 4ρ2L′

vϕv + 2βvx
γ2

ρ
L′
xϕv

)
St

+

(
−γ

4
+ 2ϕsPγ

2 + 4βzxϕz
γ2

ρ
+ 4ϕvβvx

γ2

ρ

)
gt .

We want to find ϕz, ϕv, and ϕs such that there is a decrease, so we want to satisfy at the same time,
denoting ξ = γ

ρ :

ϕz
µG

4
≥ ξL2

x + βszϕsρ+ 2ϕvβvz

ϕv
µG

8
≥ ξL2

x + βsvρϕs + 4L2
xβzxϕzξ

2

κ

2
ϕs ≥ LhL′

xξ
2ρ2 + 4ρ2ϕzL

′
z + 4ρ2L′

vϕv + [2βzxL
′
xϕz + 2βvxL

′
xϕv]ξ2ρ

1

4
≥ 2ϕsPγ + 4βzxϕzξ + 4ϕvβvxξ
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Let us take ϕs = ψsρξ, ϕz = ψzξ and ϕv = ψvξ. The equations become

ψz
µG

4
≥ L2

x + βszψsρ
2 + 2ψvβvz

ψv
µG

8
≥ L2

x + βsvρ
2ψs + 4L2

xβzxψzξ
2

κ

2
ψs ≥ LhL′

xξρ+ 4ρψzL
′
z + 4ρL′

vψv + [2βzxL
′
xψz + 2βvxL

′
xψv]ξ2

1

4
≥ 2ψsρ

2ξ2P + 4βzxψzξ
2 + 4ψvβvxξ

2

Let us take ψv =
16L2

x

µG
, ψz = 8

µG
(L2

x + 2ψvβvz) and ψs = 1. Note that importantly, all these values
are independent of the step sizes. The equations become

L2
x + 2ψvβvz ≥ βszρ

2 (76)

L2
x ≥ βsvρ

2 + 4L2
xβzxψzξ

2 (77)
κ

2
≥ LhL′

xξρ+ 4ρψzL
′
z + 4ρL′

vψv + [2βzxL
′
xψz + 2βvxL

′
xψv]ξ2 (78)

1

4
≥ 2Pρ3ξ2 + 4βzxψzξ

2 + 4ψvβvxξ
2 (79)

These equations are verified since by assumptions

ρ ≤ ρ̃ = min

(√
L2
x + 2ψvβvz

βsz
,

Lx√
2βsv

,
κ

8(ψzL′
z + ψvL′

v)

)

and

ξ ≤ ξ̃ = min

(
1√

8βzxψz

,
LhL′

xη̃

2βzxL′
xψz + 2βvxL′

xψv
,

κ

8LhL′
xη̃
,

1√
4(2P η̃3 + 4βzxψz + 4ψvβvx)

)
.

Now, let us define

ζ =
γ

4
− 2ϕsPγ

2 − 4βzxϕz
γ2

ρ
− 4ϕvβvx

γ2

ρ
.

This quantity is positive thanks to the last inequality (79). We have using the Lyapunov inequality

Lt+1 − Lt ≤ −ζgt

which gives, by summation:

+∞∑
t=1

gt ≤ 1

ζ
L0 < +∞ .

Therefore

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O

(
1

T

)
.
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C.9 Proof of Theorem 4

We are now going to prove Theorem 4 that we recall here:

Theorem 4 (Convergence of SABA, PL case). Assume that h satisfies the PL inequality. Let zt, vt

and xt the iterates of SABA, with fixed step sizes ρ and γ. We suppose ρ ≤ ρ′∗ and γ ≤ min(ρξ′∗,
1

8Lh ),
where ρ′∗ and ξ′∗ depend only on F and G and are specified in appendix. Then, E[h(xT )] − h∗ ≤
(1 − γµh

4 )T (h(x0) − h∗ + C0), where C0 is a constant specified in appendix that depends on the
initialization of z, v, x and memory.

Here, we have

ρ′∗ = min

(
3

√
L2
x + 2ψvβvz

2βsz
, 3

√
L2
x

3βsv
,

√
8ψvL′

z + 8L′
vψv

2c′
, 5

√
1

48ψsP

)
,

ξ′∗ = min

(
3

√
L2
x + 2ψvβvz

2c′ψz
,

√
L2
x

12L2
xβzxψz

,

√
L2
x

3c′ψv
,

√
8ψvL′

z + 8L′
vψv

2LhL′
x

, 5

√
1

48ψsP
,

√
1

96βzxψz
,

√
1

96βvxψv

)
,

c′ =
µh

4
, ψv =

16L2
x

µG
, and ψz =

8

µG
(L2

x + 2ψvβvz)

Proof. For simplicity, we assume that h∗ = 0 and so for any x ∈ Rd the PL inequality reads:

1

2
∥∇h(x)∥2 ≥ µhh(x) . (80)

Then, eq. (74) gives

ht+1 ≤
(

1 − γµh

2

)
ht + γL2

x(δnz + δnv ) + LhL′
xγ

2St .

We take Lt the Lyapunov function given in Equation (75). We find

Lt+1 − Lt ≤
(
γL2

x + βszϕsρ
2 − ϕz

ρµG

4
+ 2ϕvρβvz

)
δtz

+

(
γL2

x + βsvρ
2ϕs + 4L2

xβzxϕz
γ2

ρ
− ϕv

ρµG

8

)
δtv

+

(
LhL′

xγ
2 − κ

2
ϕs + 4ρ2ϕzL

′
z + 2βzx

γ2

ρ
L′
xϕz + 4ρ2L′

vϕv + 2βvx
γ2

ρ
L′
xϕv

)
St

+

(
−γ

4
+ 2ϕsPγ

2 + 4βzxϕz
γ2

ρ
+ 4ϕvβvx

γ2

η

)
× 2µhh

t

provided that ζ = γ
4 − 2ϕsPγ

2 − 4βzxϕz
γ2

ρ − 4ϕvβvx
γ2

ρ > 0.

We now try to find linear convergence, hence we subtract to this cLt to get

Lt+1 − (1 − c)Lt ≤
(
γL2

x + βszϕsρ
2 − ϕz

ρµG

4
+ 2ϕvρβvz + cϕz

)
δtz

+

(
γL2

x + βsvρ
2ϕs + 4L2

xβzxϕz
γ2

ρ
− ϕv

ρµG

8
+ cϕv

)
δtv

+

(
LhL′

xγ
2 − κ

2
ϕs + 4ρ2ϕzL

′
z + 2βzx

γ2

ρ
L′
xϕz + 4ρ2L′

vϕv + 2βvx
γ2

ρ
L′
xϕv + cϕs

)
St

+

(
−γ

4
+ 2ϕsPγ

2 + 4βzxϕz
γ2

ρ
+ 4ϕvβvx

γ2

η
+

c

2µh

)
× 2µhh

t .
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Hence, the set of inequations for decrease becomes

ϕz
µG

4
≥ c

ρ
ϕz + ξL2

x + βszϕsρ+ 2ϕvβvz (81)

ϕv
µG

8
≥ c

ρ
ϕv + ξL2

x + βsvρϕs + 4L2
xβzxϕzξ

2 (82)

κ

2
ϕs ≥ cϕs + LhL′

xγ
2 + 4ρ2ϕzL

′
z + 2βzx

γ2

ρ
L′
xϕz + 4ρ2L′

vϕv + 2βvx
γ2

ρ
L′
xϕv (83)

1

4
≥ c

2µh
+ 2ϕsPγ + 4βzxϕzξ + 4ϕvβvxξ . (84)

We see that it is more convenient to write c = γc′, and we take ϕs = ψsρξ, ϕz = ψzξ and ϕv = ψvξ,

with ψv =
16L2

x

µG
, ψz = 8

µG
(L2

x + 2ψvβvz) and ψs = 1, giving:

L2
x + 2ψvβvz ≥ βszρ

3 + c′ξψz (85)

L2
x ≥ βsvρ

3 + 4L2
xβzxψzξ

2 + c′ξψv (86)

8ψzL
′
z + 8L′

vψv ≥ LhL′
xξ + c′ξρ (87)

1

4
≥ c′

2µh
+ 2Pρ3ξ2 + 4βzxψzξ

2 + 4ψvβvxξ
2 . (88)

We take c′ = µh

4 , so that the last inequality becomes

1

8
≥ 2ψsPρ

3ξ2 + 4βzxψzξ
2 + 4ψvβvxξ

2 .

As a consequence, for ρ < ρ′∗ and ξ < ξ′∗, we get

Lt+1 ≤
(

1 − γµh

4

)
Lt

and we get linear convergence

ht − h∗ ≤
(

1 − γµh

4

)t
L0 .
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