
HAL Id: hal-03562151
https://hal.science/hal-03562151v2

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, Thomas Moreau

To cite this version:
Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, Thomas Moreau. A framework for bilevel optimization
that enables stochastic and global variance reduction algorithms. Advances in Neural Information
Processing Systems (NeurIPS), Nov 2022, New Orleans, United States. �hal-03562151v2�

https://hal.science/hal-03562151v2
https://hal.archives-ouvertes.fr

A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms

Mathieu Dagréou
Inria, CEA

Université Paris-Saclay
Palaiseau, France

mathieu.dagreou@inria.fr

Pierre Ablin
CNRS

Université Paris-Dauphine, PSL-University
Paris, France

pierre.ablin@cnrs.fr

Samuel Vaiter
CNRS

Université Côte d’Azur, LJAD
Nice, France

samuel.vaiter@cnrs.fr

Thomas Moreau
Inria, CEA

Université Paris-Saclay
Palaiseau, France

thomas.moreau@inria.fr

Abstract

Bilevel optimization, the problem of minimizing a value function which involves
the arg-minimum of another function, appears in many areas of machine learning.
In a large scale empirical risk minimization setting where the number of samples is
huge, it is crucial to develop stochastic methods, which only use a few samples at a
time to progress. However, computing the gradient of the value function involves
solving a linear system, which makes it difficult to derive unbiased stochastic
estimates. To overcome this problem we introduce a novel framework, in which
the solution of the inner problem, the solution of the linear system, and the main
variable evolve at the same time. These directions are written as a sum, making it
straightforward to derive unbiased estimates. The simplicity of our approach allows
us to develop global variance reduction algorithms, where the dynamics of all
variables is subject to variance reduction. We demonstrate that SABA, an adaptation
of the celebrated SAGA algorithm in our framework, has O(1

T) convergence rate,
and that it achieves linear convergence under Polyak-Łojasciewicz assumption.
This is the first stochastic algorithm for bilevel optimization that verifies either of
these properties. Numerical experiments validate the usefulness of our method.

1 Introduction

Bilevel optimization is attracting more and more attention in the machine learning community thanks
to its wide range of applications. Typical examples are hyperparameters selection [5, 37, 17, 6],
data augmentation [11, 41], implicit deep learning [3] or neural architecture search [32]. Bilevel
optimization aims at minimizing a function whose value depends on the result of another optimization
problem:

min
x∈Rd

h(x) = F (z∗(x), x), such that z∗(x) ∈ arg min
z∈Rp

G(z, x) , (1)

where F and G are two real valued functions defined on Rp × Rd. G is called the inner function, F
is the outer function and h is the value function. Similarly, z is the inner variable and x is the outer
variable. In most cases, the function z∗ can only be approximated by an optimization algorithm,
which makes bilevel optimization problems challenging. Under appropriate hypotheses, the function
h is differentiable, and the chain rule and implicit function theorem give for any x ∈ Rd

∇h(x) = ∇2F (z∗(x), x) +∇2
21G(z∗(x), x)v∗(x) , (2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where v∗(x) ∈ Rp is the solution of a linear system

v∗(x) = −
[
∇2

11G(z∗(x), x)
]−1 ∇1F (z∗(x), x) . (3)

In the light of (2) and (3), it turns out that the derivation of the gradient of h at each iteration is
cumbersome because it involves two subproblems: the resolution of the inner problem to find an
approximation of z∗(x) and the resolution of a linear system to find an approximation of v∗(x). It
makes the practical implementation of first order methods like gradient descent for (1) challenging.

0 100 200 300 400

Iterations

10−12

10−7

10−2

G
ra

d
ie

n
t

n
or

m

SABA

SOBA

Figure 1: Convergence curves of the
two proposed methods on a toy prob-
lem. SABA is a stochastic method that
achieves fast convergence on the value
function.

As is the case in many machine learning problems, we
suppose in this paper that F and G are empirical means:

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

This structure suggests the use of stochastic methods to
solve (1). For single-level problems (that is, classical
optimization problems where one function should be min-
imized), using Stochastic Gradient Descent (SGD; [40, 7])
and variants is natural because individual gradients are
straightforward unbiased estimators of the gradient. In
the bilevel framework, we want to develop algorithms that
make progress on problem (1) by using only a few func-
tions Fj and Gi at a time. However, since ∇h involves
the inverse of the Hessian of G, building such stochastic
algorithms is quite challenging, one of the difficulties being that there is no straightforward unbiased
estimator of ∇h. Still, in settings where m or n are large, where computing even a single evaluation
of F or G is extremely expensive, stochastic methods are the only scalable algorithms.
Variance reduction [26, 13, 42, 15, 12] is a popular technique to obtain fast stochastic algorithms. In
a single-level setting, these methods build an approximation of the gradient of the objective function
using only stochastic gradients. Contrary to SGD, the variance of the approximation goes to 0 as the
algorithm progresses, allowing for faster convergence. For instance, the SAGA method [13] achieves
linear convergence if the objective function satisfies a Polyak-Łojasciewicz inequality, and O(1

T)
convergence rate on smooth non-convex functions [39]. The extension of these methods to bilevel
optimization is a natural idea to develop faster algorithms. However, this idea is hard to implement
because it is hard to derive unbiased estimators of ∇h, let alone variance reduction ones.
Contributions. We introduce a novel framework for bilevel optimization in Section 2, where
the inner variable, the solution of the linear system (3) and the outer variable evolve jointly. The
evolution directions are written as sums of derivatives of Fj and Gi, which allows us to derive
simple unbiased stochastic estimators. In this framework, we propose SOBA, an extension of
SGD (Section 2.1), and SABA (Section 2.2), an extension of the variance reduction algorithm
SAGA [13]. In Section 3 we analyse the convergence of our methods. SOBA is shown to achieve
inft≤T E[∥∇h(xt)∥2] = O(log(T)T− 1

2) with decreasing step sizes. We prove that SABA with
fixed step sizes achieves 1

T

∑T
t=1 E[∥∇h(xt)∥2] = O(1

T). SABA is therefore, to the best of our
knowledge, the first stochastic bilevel algorithm that matches the convergence rate of gradient
descent on h. We also prove that SABA achieves linear convergence under the assumption that
h satisfies a Polyak-Łojasciewicz inequality. To the best of our knowledge, SABA is also the first
stochastic bilevel algorithm to feature such a property. Importantly, these rates match the rates of
the single level counterparts of each algorithm in non-convex setting (SGD for SOBA and SAGA
for SABA). Finally, in Section 4, we provide an extensive benchmark of many stochastic bilevel
methods on hyperparameters selection and data hyper-cleaning, and illustrate the usefulness of our
approach.
Related work. The bilevel optimization problem has a strong history in the optimization community,
taking root in game theory [44]. Gradient-based algorithms to solve (1) can be mainly classified in
two different categories depending on how ∇h is computed, by automatic or implicit differentiation.
Since the solution of the inner problem z∗(x) is approximated by the output of an iterative algo-
rithm, it is possible to use automatic differentiation [45, 30] to approximate ∇h(x). It consists in
differentiating the different steps of the inner optimization algorithm – see [4] for a review – and
has been applied successfully to several bilevel problems arising in machine learning [14, 16]. One

2

of the main drawbacks of this approach is that it requires to store in memory each iterate of the
inner optimization algorithm, although this problem can sometimes be overcome using invertible
optimization algorithms [33] or truncated backpropagation [43].
The use of the implicit function theorem to obtain (2) and (3) is known as implicit differentiation [5].
While the cost of computing exactly (2) can be prohibitive for large scale problems, Pedregosa [37]
showed that we can still converge to a stationary point of the problem by using approximate solutions
of the inner problem and linear system (3), if the approximation error goes to 0 sufficiently quickly.
The complexity of approximate implicit differentiation has been studied in [19]. Ramzi et al. [38]
propose to reuse the computations done in the forward pass to approximate the solution of the linear
system (3) when the inner problem is solved thanks to a quasi-Newton method.
In the last few years, several works have proposed different strategies to solve (1) in a stochastic
fashion. A first set of methods relies on two nested loops: one inner loop to solve the inner problem
with a stochastic method, and one outer loop to update the outer variable with an approximate gradient
direction. In [18, 25, 9] the authors use several SGD iterations for the inner problem and then use
stochastic Neumann approximations to get an estimate solution of the linear system, which provides
them with an approximation of ∇h used to update x. The analysis of this kind of method was
refined by Chen et al. [9], allowing to achieve the same convergence rates as those of SGD. The
convergence of the hypergradient when using stochastic solvers for the inner problem and the linear
system has been studied in [20]. Arbel and Mairal [2] replace the Neumann approximation by SGD
steps to estimate (3). Other authors have proposed single loop algorithms, alternating steps in the
inner and the outer problem. Hong et al. [23] propose to perform Neumann approximations of the
inverse Hessian and use a single SGD step for the inner problem. It was refined in [22] and [46]
where the optimization procedure uses a momentum acceleration. Other variations around this idea
include [24, 27, 10, 21, 29]. We refer to Table 1 in appendix for a detailed comparison of these
methods.
Notation. The set of integers between 1 and n (included) is denoted [n]. For f : Rp × Rd → R,
we denote ∇if(z, x) its gradient w.r.t. the ith variable. The Hessian of f with respect to the first
variable is denoted ∇2

11f(z, x) ∈ Rp×p, and the cross-derivatives matrix is ∇2
21f(z, x) ∈ Rd×p. If v

is a vector, ∥v∥ is its Euclidean norm. If M is a matrix, ∥M∥ is its spectral norm. A function is said
to be L-smooth, for L > 0, if it is differentiable, and its gradient is L-Lipschitz.

2 Proposed framework

Algorithm 1 General framework
Input: initializations z0 ∈ Rp, x0 ∈ Rd,
v0 ∈ Rp, number of iterations T , step size
sequences (ρt)t<T and (γt)t<T .
for t = 0, . . . , T − 1 do

Update z: zt+1 = zt − ρtDt
z ,

Update v: vt+1 = vt − ρtDt
v ,

Update x: xt+1 = xt − γtDt
x ,

where Dt
z, D

t
v and Dt

x are unbiased esti-
mators of Dz(z

t, vt, xt), Dv(z
t, vt, vt)

and Dx(z
t, vt, xt).

end for

In this section, we introduce our framework in which
the solution of the inner problem, the solution of the
linear system (3) and the outer variable all evolve at
the same time, following directions that are written
as a sum of derivatives of Fj and Gi. We define

Dz(z, v, x) = ∇1G(z, x) , (4)

Dv(z, v, x) = ∇2
11G(z, x)v +∇1F (z, x) , (5)

Dx(z, v, x) = ∇2
21G(z, x)v +∇2F (z, x) . (6)

These directions are motivated by the fact that we
have ∇h(x) = Dx(z

∗(x), v∗(x), x), with z∗(x)
the minimizer of G(·, x) and v∗(x) the solution of
∇2

11G(z∗(x), x)v = −∇1F (z∗(x), x). When x is
fixed, we approximate z∗ by doing a gradient descent on G, following the direction −Dz(z, v, x).
Finally, when z and x are fixed, we find v∗ by following the direction −Dv(z, v, x), which corre-
sponds to a gradient descent on v 7→ 1

2 ⟨∇
2
11G(z, x)v, v⟩+ ⟨∇1F (z, x), v⟩. The rest of the paper is

devoted to the study of the global dynamics where the three variables z, v and x evolve at the same
time, following stochastic approximations of Dz, Dv and Dx. The next proposition motivates the
choice of these directions.
Proposition 2.1. Assume that for all x ∈ Rd, G(·, x) is strongly convex. If (z, v, x) is a zero of
(Dz, Dv, Dx), then z = z∗(x), v = v∗(x) and ∇h(x) = 0.

We also note that the computation of these directions does not require to compute the matrices
∇2

11G(z, x) and ∇2
21G(z, x): we only need to compute their product with a vector, which can be

computed at a cost similar to that of computing a gradient.

3

The framework we propose is summarized in Algorithm 1. It consists in following a joint update
rule in (z, v, x) that follows directions Dt

z, D
t
v and Dt

x that are unbiased estimators of Dz, Dv, Dx.
The first and most important remark is that whereas ∇h cannot be written as a sum over samples, the
directions Dz, Dv and Dx involve only simple sums, since their expressions are “linear” in F and G:

Dz(z, v, x)=
1
n

∑n
i=1 ∇1Gi(z, x) , (7)

Dv(z, v, x)=
1
n

∑n
i=1 ∇2

11Gi(z, x)v +
1
m

∑m
j=1 ∇1Fj(z, x) , (8)

Dx(z, v, x)=
1
n

∑n
i=1 ∇2

21Gi(z, x)v +
1
m

∑m
j=1 ∇2Fj(z, x) . (9)

It is therefore straightforward to derive unbiased estimators of these directions. In [29], the authors
considered one particular case of our framework, where each direction is estimated by using the
STORM variance reduction technique (see [12]). Taking a step back by proposing the framework sum-
marized in Algorithm 1 opens the way to potential new algorithms that implement other techniques
that exist in stochastic single level optimization. In what follows, we study two of them.

2.1 First example: the SOBA algorithm

The simplest unbiased estimator is obtained by replacing each mean by one of its terms chosen
uniformly at random, akin to what is done in classical single-level SGD. We call the resulting
algorithm SOBA (StOchastic Bilevel Algorithm). To do so, we choose two independent random
indices i ∈ [n] and j ∈ [m] uniformly and estimate each term coming from G using Gi and each
term coming from F using Fj . This gives the unbiased SOBA directions

Dt
z = ∇1Gi(z

t, xt) ,

Dt
v = ∇2

11Gi(z
t, xt)vt +∇1Fj(z

t, xt) ,

Dt
x = ∇2

21Gi(z
t, xt)vt +∇2Fj(z

t, xt) .

(10a)

(10b)

(10c)

This provides us with a first algorithm, SOBA, where we plug Equations (10a) to (10c) in Algorithm 1.
We defer its analysis to the next section. Importantly, we use different step sizes for the update in
(z, v) and for the update in x. We use the same step size in z and in v since the inner problem and the
linear system have similar conditioning, which is that of ∇2

11G(zt, xt). The need for a different step
size for the outer and inner problem is clear: both problems can have a different conditioning.
An important remark for SOBA is that all the stochastic directions used are computed at the same
point zt, vt and xt with the same indices (i, j). The update of z, v and x can thus be performed
in parallel instead of sequentially, benefiting from hardware parallelism. Moreover, this enables
to share the computations between the different directions. This is the case in hyperparameters
selection where Gi(z, x) = ℓi(⟨z, di⟩) + x

2∥z∥
2, with di a training sample, and ℓi that measures

how good is the prediction ⟨z, di⟩. In this setting, we have ∇1Gi(z, x) = ℓ′i(⟨z, di⟩)di + xz and
∇2

11Gi(z, x)v = ℓ′′i (⟨z, di⟩)⟨v, di⟩di. The prediction ⟨z, di⟩ can thus be computed only once to
obtain both quantities. For more complicated models, where automatic differentiation is used to
compute the different derivatives and Jacobian-vector products, we can store the computational graph
only once to compute at the same time ∇1Gi(z, x),∇2

11Gi(z, x)v and ∇2
21Gi(z, x)v, requiring only

one backward pass, thanks to the R technique [36].
Finally, like all single loop bilevel algorithms, our method updates at the same time the inner and outer
variable, avoiding unnecessary optimization of the inner problem when x is far from the optimum.

2.2 Global variance reduction with the SABA algorithm

In classical optimization, SGD fails to reach optimal rates because of the variance of the gradient
estimator. Variance reduction algorithms aim at reducing this variance, in order to follow directions
that are closer to the true gradient, and to achieve superior practical and theoretical convergence.
In our framework, since the directions Dz, Dv and Dx are all written as sums of derivatives of Fj and
Gi, it is easy to adapt most classical variance reduction algorithms. We focus on the celebrated SAGA
algorithm [13]. The extension we propose is called SABA (Stochastic Average Bilevel Algorithm).
The general idea is to replace each sum in the directions D by a sum over a memory, updating only
one term at each iteration. To help the exposition, we denote y = (z, x, v) the vector of joint variables.
Since we have sums over i and over j, we have two memories for each variable: wt

i for i ∈ [n] and
w̃t

j for j ∈ [m], which keep track of the previous values of the variable y.

4

At each iteration t, we draw two random independent indices i ∈ [n] and j ∈ [m] uniformly and
update the memories. To do so, we put wt+1

i = yt and wt+1
i′ = wt

i′ for i′ ̸= i, and w̃t+1
j = yt and

w̃t+1
j′ = w̃t

j′ for j′ ̸= j. Each sum in the directions D is then approximated using SAGA-like rules:
given n functions ϕi′ for i′ ∈ [n], we define S[ϕ,w]ti = ϕi(w

t+1
i) − ϕi(w

t
i) +

1
n

∑n
i′=1 ϕi′(w

t
i′).

This is an unbiased estimators of the average of the ϕ’s since Ei

[
S[ϕ,w]ti

]
= 1

n

∑n
i=1 ϕi(y

t).

With a slight abuse of notation, we call ∇2
11Gv the sequence of functions (y 7→ ∇2

11Gi(z, x)v)i∈[n]

and ∇2
21Gv the sequence of functions (y 7→ ∇2

21Gi(z, x)v)i∈[n]. We define the SABA directions as

Dt
z = S[∇1G,w]ti ,

Dt
v = S[∇2

11Gv,w]ti + S[∇1F, w̃]
t
j ,

Dt
x = S[∇2

21Gv,w]ti + S[∇2F, w̃]
t
j .

(11a)

(11b)

(11c)

These estimators are unbiased estimators of the directions Dz, Dv and Dx. The SABA algorithm
corresponds to Algorithm 1 where we use Equations (11a) to (11c) as update directions. When taking
a step size γt = 0 in the outer problem, hereby stopping progress in x, we recover the iterations
of the SAGA algorithm on the inner problem. In practice, the sum in S is computed by doing a
rolling average (see Appendix B for precision), and the quantities ϕi(w

t
i) are stored rather than

recomputed: the cost of computing the SABA directions is the same as that of SGD. It requires an
additional memory for the five quantities, of total size n× p+ (n+m)× (p+ d) floats that can be
reduced by using larger batch sizes. Indeed, if bin and bout are respectively the inner and the outer
batch sizes, the memory load is reduced to nb × p + (nb + mb) × (p × d) with nb = ⌈ n

binn
⌉ and

mb = ⌈ m
bout

⌉ which are smaller than the number of samples. This memory load can also be reduced
in specific cases, for instance when G and F correspond to linear models, where the individual
gradients and Hessian-vector products are proportional to the samples. In this case, we only store the
proportionality ratio, reducing the memory load to 3n+ 2m floats. Like for SOBA, the computations
of the new quantities ϕi(w

t+1
i) are done in parallel, thus benefiting from hardware acceleration and

shared computations. Despite this memory load, using SAGA-like variance reduction instead of
STORM as done in [29, 46, 27] has the advantage to bring the variance of the estimate directions to
zero, enabling faster O(1

T) convergence.
In the next section, we show that SABA is fast. It essentially has the same properties as SAGA:
despite being stochastic, it converges with fixed step sizes, and reaches the same rate of convergence
as gradient descent on h.

3 Theoretical analysis

In this section, we provide convergence rates of SOBA and SABA under some classical assumptions.
Note that, unlike most of the stochastic bilevel optimization papers, we work in finite sample setting
rather than the more general expectation setting. Actually, SABA does not make any sense for
functions that don’t have a finite sum structure. However, we stress that SOBA could be studied in a
more general setting to obtain the same bounds as here. Also, the finite sum setting is still interesting
since doing empirical risk minimization is very common in practice in machine learning. The proofs
and the constants in big-O are deferred in Appendix C.

3.1 Background and assumptions

We start by stating some regularity assumptions on the functions F and G.
Assumption 3.1. The function F is twice differentiable. The derivatives ∇F and ∇2F are Lipschitz
continuous in (z, x) with respective Lipschitz constants LF

1 and LF
2 .

Note that the above assumption is typically verified in the machine learning context, e.g., when F is
the ordinary least squares (OLS) loss or the logistic loss.
Assumption 3.2. The function G is three times continuously differentiable on Rp × Rd. For
any x ∈ Rd, G(· , x) is µG-strongly convex. The derivatives ∇G, ∇2G and ∇3G are Lipschitz
continuous in (z, x) with respective Lipschitz constants LG

1 , LG
2 and LG

3 .

Strong convexity and smoothness with respect to z of G are verified when G is a regularized least-
squares/logistic regression with a full rank design matrix, when the data is not separable for the

5

logistic regression. Moreover, the strong convexity ensures the existence and uniqueness of the inner
optimization problem for any x ∈ Rd.
Assumption 3.3. There exists CF > 0 such that for any x we have ∥∇1F (z∗(x), x)∥ ≤ CF .

This assumption, combined with the strong convexity of G(· , x), shows boundedness of v∗. This
assumption holds, for instance, in the case of hyperparameters selection for a Ridge regression
problem. Note that in Assumptions 3.1 and 3.2, we assume more regularity of F and G than in
stochastic bilevel optimization literature (see for instance [18, 23, 25, 2]). It is necessary to get the
smoothness of v∗ which will allow to adapt the proof of Chen et al. [9] and get tight convergence
rates. The following lemma gives us some smoothness properties of the considered directions that
will be useful to derive convergence rates of our methods.
Lemma 3.4. Under the Assumptions 3.1 to 3.3, there exist constants Lz , Lv and Lx such that
∥Dz(z, v, x)∥2 ≤ L2

z∥z − z∗(x)∥2, ∥Dv(z, v, x)∥2 ≤ L2
v(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) and

∥Dx(z, v, x)−∇h(x)∥2 ≤ L2
x(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2).

In first order optimization, a fundamental assumption on the objective function is the smoothness
assumption. In the case of vanilla gradient descent applied to a function f , it allows to get a
convergence rate of ∥∇f(xt)∥2 in O(1/T), i.e. convergence to a stationary point [35]. The following
lemma proved by Ghadimi and Wang [18, Lemma 2.2] ensures the smoothness of h.
Lemma 3.5. Under the Assumptions 3.1 to 3.3, the function h is Lh-smooth for some Lh > 0.

The constant Lh is specified in Appendix C.3. As usual with the analysis of stochastic methods, we
define the expected norms of the directions V t

z = E[∥Dt
z∥2], V t

v = E[∥Dt
v∥2] and V t

x = E[∥Dt
x∥2],

where the expectation is taken over the past. Thanks to variance-bias decomposition, they are the
sum of the variance of the stochastic direction and the squared-norm of the unbiased direction. For
SOBA, we use classical bounds on variances like those found for instance in [23]:
Assumption 3.6. There exists Bz , Bv and Bx such that for all t,
Et[∥Dt

z∥2] ≤ B2
z (1 + ∥Dz(z

t, vt, xt)∥2) and Et[∥Dt
v∥2] ≤ B2

v(1 + ∥Dv(z
t, vt, xt)∥2)

where Et denotes the expectation conditionally to (zt, vt, xt).

For SOBA and SABA, we need to bound the expected norm of Dt
x. For SABA, this assumption

allows to get a the same sample complexity as SAGA for single level problems.
Assumption 3.7. There exists Bx such that for all t, Et[∥Dt

x∥2] ≤ B2
x.

Assumptions 3.6 and 3.7 are verified for instance, if all the Gi and ∇1Gi have at most quadratic
growth, and if F has bounded gradients. They are also verified if the iterates remain in a compact set.
Note that we do not assume that G has bounded gradients, as this would contradict its strong-convexity.
Finally, for the analysis of SABA, we need regularity on each Gi and Fj :

Assumption 3.8. For all i ∈ [n] and j ∈ [m], the functions ∇Gi, ∇Fj , ∇2
11Gi and ∇2

21Gi are
Lipschitz continuous in (z, x).

3.2 Fundamental descent lemmas

Our analysis for SOBA and SABA is based on the control of both δtz = E[∥zt − z∗(xt)∥2] and
δtv = E[∥vt − v∗(xt)∥2], Strong convexity of G and smoothness of z∗(x) and v∗(x) allow to obtain
the following lemma by adapting the proof of Chen et al. [9]. In what follows, we drop the dependency
of the step sizes ρ and γ in t for clarity.

Lemma 3.9. Assume that γ2 ≤ min
(

µGL2
∗

4B2
xL

2
zx
,

µGL2
∗

8B2
xL

2
vx

)
ρ. We have:

δt+1
z ≤

(
1− ρµG

4

)
δtz + 2ρ2V t

z + βzxγ
2V t

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2]

δt+1
v ≤

(
1− ρµG

8

)
δtv + βvzρδ

t
z + 2ρ2V t

v + βvxγ
2V t

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2]

where βzx = βvx = 3L2
∗, βzx =

8L2
∗

µG
, βvx =

16L2
∗

µG
, L∗ is the maximum between the Lipschitz

constants of z∗ and v∗ (see Lemma C.1), βvz = 1
µ3
G
(LF

1 µG + LG
2)

2, Lzx and Lvx are respectively
the smoothness constants of z∗ and v∗.

6

We insist that this result is obtained in general for Algorithm 1 with arbitrary unbiased directions. We
can therefore invoke this lemma for the analysis of both SOBA and SABA. We use the smoothness of
h to get the following lemma, which is similar to [9, Lemma 1].
Lemma 3.10. Let ht = E[h(xt)] and gt = E[∥∇h(xt)∥2]. We have

ht+1 ≤ ht − γ

2
gt − γ

2
E[∥Dx(z

t, vt, xt)∥2] + γ

2
L2
x(δ

t
z + δtv) +

Lh

2
γ2V t

x .

If zt = z∗(xt), vt = v∗(xt), that is δz , δv both cancel and Dx(z
t, vt, xt) = ∇h(xt), we get an

inequality reminiscent of the smoothness inequality for SGD on h.

3.3 Analysis of SOBA

The analysis of SOBA is based on Lemmas 3.5 and 3.9. We have the following theorem, with fixed
step sizes depending on the number of iterations:

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that
Assumptions 3.1 to 3.7 hold. We consider fixed steps ρt = ρ√

T
and γt = ξρt with ρ and ξ precised

in the appendix. Let (xt)t≥1 the sequence of outer iterates for SOBA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O(T− 1
2) .

As opposed to [23], we do not need that the ratio γ
ρ goes to 0, which allows to get a complexity

(that is, the number of call to oracles to have an ϵ-stationary solution) in O(ϵ−2) better than the
Õ(ϵ−

5
2) they have. Also, note that this rate is the same as the one of SGD for non-convex and smooth

objective [8]. We obtain a similar rate using decreasing step sizes:

Theorem 2 (Convergence of SOBA, decreasing step size). Assume that Assumptions 3.1 to 3.7 hold.
We consider steps ρt = ρt−

1
2 and γt = ξρ. Let xt the sequence of outer iterates for SOBA. Then,

inf
t≤T

E[∥∇h(xt)∥2] = O(log(T)T− 1
2) .

As for SGD, SOBA suffers from the need of decreasing step sizes to get actual convergence because of
the variance of the estimation on each directions. On the other hand, the analysis of SABA leverages
the dynamic of all three variables, resulting in fast convergence with fixed step sizes.

3.4 SABA: a stochastic method with optimal rates

In what follows, we denote N = n + m the total number of samples. The following theorem
shows O(N

2
3T−1) convergence for the SABA algorithm in the general case where we only assume

smoothness of h. Our analysis of SABA is inspired by the analysis of single-level SAGA by Reddi
et al. [39].

Theorem 3 (Convergence of SABA, smooth case). Assume that Assumptions 3.1 to 3.3 and 3.7 to
3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on F and G and are
specified in appendix. Let xt the iterates of SABA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O
(
N

2
3T−1

)
.

To prove the theorem, the idea is to control the distance from the memory to the current variables. We
define St = 1

n

∑n
i=1 ∥yt − wt

i∥2 + 1
m

∑m
j=1 ∥yt − w̃t

j∥2 . In appendix, we show that we can find
scalars ϕs, ϕz, ϕv > 0 such that the quantity Lt = ht+ϕsS

t+ϕzδ
t
z+ϕvδ

t
v satisfies Lt+1 ≤ Lt− γ

2 g
t.

Summing these inequalities for t = 1 . . . T and using the fact that Lt is lower bounded demonstrates
the theorem.
Note that the step sizes are constant with respect to the time, but they scale with N− 2

3 . As a
consequence, the sample complexity is O(N

2
3 ϵ−1) which is analogous of the one of SAGA for

7

non-convex single level problems [39]. This is better than the sample complexity of Algorithm 1 with
full batch directions, which is O(Nϵ−1). Hence, with SABA, we get the best of both worlds: the
stochasticity makes the scaling in N of the sample complexity goes from N in full batch mode to
N

2
3 for SABA, and the variance reduction makes the scaling in ϵ goes from ϵ−2 for SOBA to ϵ−1 for

SABA. Our experiments in Section 4 confirm this gain.
Furthermore, if we assume that h satisfies a Polyak-Łojasiewicz (PL) inequality, we recover linear
convergence. Recall that h has the PL property if there exists µh > 0 such that for all x ∈ Rd,
1
2∥∇h(x)∥2 ≥ µh(h(x)− h∗) with h∗ the minimum of h.

Theorem 4 (Convergence of SABA, PL case). Assume that h satisfies the PL inequality and that
Assumptions 3.1 to 3.3 and 3.7 to 3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ′N−1, where ρ′

and ξ depend only on F and G and are specified in appendix. Let xt the iterates of SABA and
c′ ≜ min

(
µh,

1
16P ′

)
with P ′ specified in the appendix. Then,

E[hT]− h∗ = (1− c′γ)T (h0 − h∗ + C0)

where C0 is a constant specified in appendix that depends on the initialization of z, v, x and memory.

The proof is similar to that of the previous theorem: we find coefficients ϕs, ϕz, ϕv such that
Lt = ht + ϕsS

t + ϕzδ
t
z + ϕvδ

t
v satisfies the inequality Lt+1 ≤ (1 − c′γ)Lt, which is then

unrolled. Note that in the case where we initialize z and v with z0 = z∗(x0), v0 = v∗(x0), and
the memories w0

i = w0, w̃0
j = w0 for all i, j, the constant C0 cancels and the bound simplifies to

E[h(xT)]− h∗ ≤ (1− c′γ)T (h(x0)− h∗).
Just like classical variance reduction methods in single-level optimization, this theorem shows that
our method achieves linear convergence under PL assumption on the value function. To the best
of our knowledge, our method is the first stochastic bilevel optimization method that enjoys such
property. We note that the PL hypothesis is more general than µh-strong convexity of h – it is a
necessary condition for strong convexity.
We see here the importance of global variance reduction. Indeed, using variance reduction only
on z and SGD on x would lead to sub-linear convergence in x. This would be the case even with
a perfect estimation of z∗(x). Similarly, using variance reduction only on x and SGD on z would
lead to sub-linear convergence in z, and hence in x. Using global variance reduction with respect
to each variable as we propose here is the only way to achieve linear convergence. We now turn to
experiments, where we find that our method is also promising from a practical point of view.

4 Experiments

Here we compare the performances of SOBA and SABA with competitor methods on different tasks.
The different methods being compared are stocBiO [25], AmiGO [2], FSLA [29], MRBO [46], TTSA
[23], BSA [18] and SUSTAIN [27]. A detailed account of the experiments is provided in Appendix B.

100 200 300 400

Time [sec]

10−4

10−3

10−2

10−1

O
p

ti
m

a
li
ty

h
(x
t
)
−
h
∗

(a) Logistic regression

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(b) Datacleaning

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure 2: Comparison of SOBA and SABA with other stochastic bilevel optimization methods. For
each algorithm, we plot the median performance over 10 runs. In both experiments, SABA achieves
the best performance. The dashed lines are for one loop competitor methods, the dotted lines are for
two loops methods and the solid lines are the proposed methods. Left: hyperparameter selection for
ℓ2 penalized logistic regression on IJCNN1 dataset , Right: data hyper-cleaning on MNIST with
p = 0.5 corruption rate.

8

4.1 Hyperparameters selection

The first task we perform is hyperparameters selection to choose regularization parameters on
ℓ2 logistic regression. Let us denote ((dtraini , ytraini))1≤i≤n and ((dvali , yvali))1≤i≤m the training
and the validation sets. In this case, the inner variable θ corresponds to the parameters of the
model, and the outer variable λ to the regularization. The functions F and G of the problem (1)
are the logistic loss, with ℓ2 penalty for G, that is to say F (θ, λ) = 1

m

∑m
i=1 φ(y

val
i ⟨dvali , θ⟩) and

G(θ, λ) = 1
n

∑n
i=1 φ(y

train
i ⟨dtraini , θ⟩) + 1

2

∑p
k=1 e

λkθ2k where φ(u) = log(1 + e−u). We fit a
binary classification model on the IJCNN11 dataset. Here, n = 49 990, m = 91 701 and p = 22.
The suboptimality gap is plotted in Figure 2a for each method. The lowest values are reached by
AmIGO and SABA, but much quicker for SABA. Moreover, SABA is the only single-loop method
that reaches a suboptimality below 10−3. Among all methods, SOBA is the first to reach it best
value, but this value is also the highest. The gap between SOBA and SABA highlights the benefits of
variance reduction: it gives us a lower plateau and the fixed step sizes enable faster convergence.

4.2 Data hyper-cleaning

The second task we perform is data hyper-cleaning introduced in [16] on the MNIST2 dataset. The data
is patitioned into a training set (dtraini , ytraini), a validation set (dvali , yvali), and a test set. The training
set contains 20000 samples, the validation set 5000 samples and the test set 10000 samples. The
targets y take values in {0, . . . , 9} and the samples x are in dimension 784. Each sample in the training
set is corrupted with probability p: a sample is corrupted when we replace its label yi by a random
label in {0, . . . , 9}. Samples in the validation and test sets are not corrupted. The goal of datacleaning
is to train a multinomial logistic regression on the train set and learn a weight per training sample,
that should go to 0 for corrupted samples. This is formalized by the bilevel optimization problem
(1) with F (θ, λ) = 1

m

∑m
i=1 ℓ(θd

val
i , yvali) and G(θ, λ) = 1

n

∑n
i=1 σ(λi)ℓ(θd

train
i , ytraini) +Cr∥θ∥2

where ℓ is the cross entropy loss and σ is the sigmoid function. The inner variable θ is a matrix of
size 10× 784, and the outer variable λ is a vector in dimension ntrain = 20000.
For the estimated parameters θ during optimization, we report in Figure 2b the test error, i.e., the
percent of wrong predictions on the testing data. We use for this experiment a corruption probability
p = 0.5. In general, the error decreases quickly until it reaches a final value. We observe that
our method SABA outperforms all the other methods by reaching faster its smallest error, which is
smaller than the ones of the other methods. For SOBA, it reaches a lower final error than stocBiO
and BSA. In appendix, we provide other convergence curves, and find that for higher values of p,
SABA is still the fastest algorithm to reach its final accuracy, but the algorithm MRBO can reach a
lower test accuracy. Overall, we find that among all methods, even those that implement variance
reduction (that is FSLA, MRBO, SUSTAIN, SABA), SABA is the one that demonstrates the best
empirical performance.

5 Conclusion

In this paper, we have presented a framework for bilevel optimization that enables the straightforward
development of stochastic algorithms. The gist of our framework is that the directions in Equations (4)
to (6) are all written as simple sums of samples derivatives. We leveraged this fact to propose SOBA,
an extension of SGD to our framework, and SABA, an extension of SAGA to our framework, which
both achieve similar convergence rates as their single level counterparts. Finally, we think that our
framework opens a large panel of potential methods for stochastic bilevel optimization involving
techniques of extrapolation, variance reduction, momentum and so on.

Acknowledgments and Disclosure of Funding

We thank Othmane Sebbouh, Zaccharie Ramzi and Benoît Malézieux for their precious comments.
The authors acknowledge the support of the ANER RAGA BFC. SV acknowledges the support of the
ANR GraVa ANR-18-CE40-0005. This research was supported by DATAIA convergence institute as
part of the " Programme d’Investissement d’Avenir ", (ANR-17-CONV-0003) operated by Inria.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2http://yann.lecun.com/exdb/mnist/

9

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://yann.lecun.com/exdb/mnist/

References

[1] Zeeshan Akhtar, Amrit Singh Bedi, Srujan Teja Thomdapu, and Ketan Rajawat. Projection-Free
Algorithm for Stochastic Bi-level Optimization. preprint ArXiv 2110.11721, 2021.

[2] Michael Arbel and Julien Mairal. Amortized Implicit Differentiation for Stochastic Bilevel
Optimization. In International Conference on Learning Representations (ICLR), 2022.

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in
Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2019.

[4] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in Machine Learning: A survey. Journal of Machine Learning
Research, 18(153):1–43, 2018.

[5] Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural Computation, 12(8):
1889–1900, 2000.

[6] Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort,
and Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter opti-
mization. In International Conference on Machine Learning (ICML), pages 810–821. PMLR,
2020.

[7] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings
of COMPSTAT, pages 177–186. Physica-Verlag HD, Heidelberg, 2010.

[8] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale Machine
Learning. Siam Reviews, 60(2):223–311, 2018.

[9] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the Gap: Tighter Analysis of Alternat-
ing Stochastic Gradient Methods for Bilevel Problems. In Advances in Neural Information
Processing Systems (NeurIPS). Curran Associates, Inc., 2021.

[10] Tianyi Chen, Yuejiao Sun, and Wotao Yin. A Single-Timescale Stochastic Bilevel Optimization
Method. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

[11] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning Augmentation Strategies From Data. In CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 113–123. IEEE, 2019.

[12] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates,
Inc., 2019.

[13] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In Advances in Neural
Information Processing Systems (NeurIPS), volume 28, pages 1646–1654, Montreal, QC,
Canada, December 2014. Curran Associates, Inc.

[14] Justin Domke. Generic methods for optimization-based modeling. In International Conference
on Artificial Intelligence and Statistics (AISTAT), volume 22, pages 318–326. PMLR, 2012.

[15] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-Optimal Non-
Convex Optimization via Stochastic Path Integrated Differential Estimator. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

[16] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning (ICML), pages 1165–1173. PMLR, 2017.

[17] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning (ICML), pages 1568–1577. PMLR, 2018.

10

[18] Saeed Ghadimi and Mengdi Wang. Approximation Methods for Bilevel Programming. preprint
ArXiv 1802.02246, 2018.

[19] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning
(ICML), pages 3748–3758. PMLR, 2020.

[20] Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Convergence properties of stochastic
hypergradients. In International Conference on Artificial Intelligence and Statistics (AISTAT),
pages 3826–3834. PMLR, 2021.

[21] Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized Stochastic Variance-
Reduced Methods for Multi-Task Stochastic Bilevel Optimization. preprint ArXiv 2105.02266,
2021.

[22] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On Stochastic Moving-Average
Estimators for Non-Convex Optimization. preprint ArXiv 2104.14840, 2021.

[23] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A Two-Timescale Framework
for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. preprint ArXiv
2007.05170, 2021.

[24] Feihu Huang and Heng Huang. BiAdam: Fast Adaptive Bilevel Optimization Methods. preprint
ArXiv 2106.11396, 2021.

[25] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning (ICML), pages 4882–4892.
PMLR, 2021.

[26] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NeurIPS), volume 26. Curran
Associates, Inc., 2013.

[27] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum. In
Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2021.

[28] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages
1–6, 2015.

[29] Junyi Li, Bin Gu, and Heng Huang. A Fully Single Loop Algorithm for Bilevel Optimization
without Hessian Inverse. In Proceedings of the Thirty-sixth AAAI Conference on Artificial
Intelligence, AAAI’22, 2022.

[30] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, 16(2):146–160, 1976.

[31] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2018.

[33] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In International Conference on machine learning (ICML),
pages 2113–2122. PMLR, 2015.

[34] Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine Ban-
nier Benjamin Charlier, Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cassio F. Dantas,
Quentin Klopfenstein, Johan Larsson, En Lai, Tanguy Lefort, Benoit Malézieux, Badr Moufad,
Binh T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi, Joseph Salmon, and Samuel Vaiter.
Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

11

[35] IU E. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Number v. 87
in Applied Optimization. Kluwer Academic Publishers, Boston, 2004.

[36] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

[37] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning (ICML), pages 737–746. PMLR, 2016.

[38] Zaccharie Ramzi, Florian Mannel, Shaojie Bai, Jean-Luc Starck, Philippe Ciuciu, and Thomas
Moreau. SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization
and implicit models. In International Conference on Learning Representations (ICLR), 2022.

[39] Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, and Alex Smola. Fast Incremental Method
for Nonconvex Optimization. In 2016 IEEE 55th Conference on Decision and Control (CDC),
IEEE, pages 1971–1977, 2016.

[40] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[41] Cédric Rommel, Thomas Moreau, Joseph Paillard, and Alexandre Gramfort. CADDA: Class-
wise Automatic Differentiable Data Augmentation for EEG Signals. In International Conference
on Learning Representations (ICLR), 2022.

[42] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[43] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated Back-
propagation for Bilevel Optimization. In Artificial Intelligence and Statistics (AISTAT), pages
1723–1732, Okinawa, Japan, 2019.

[44] Heinrich von Stackelberg. Theory of the market economy. Oxford University Press, 1952.

[45] R. Wengert. A simple automatic derivative evaluation program. Communications of the ACM, 7
(8):463–464, 1964.

[46] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably Faster Algorithms for Bilevel Optimization.
In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.,
2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 3 and Section 4

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B

12

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Extensive comparison between stochastic methods for bilevel optimization

We provide here tables summarizing other methods in stochastic bilevel optimization. They are
grouped between methods that are based on two nested loops and methods that use only one loop.
In the following tables, the inner iterations are referred with the variable k and the outer iterations are
referred with the variable t (or T for the total number of iterations).
In the literature, there are three main ways to perform Hessian inversion. The HIA, first proposed in
[18], and SHIA, proposed in [25], procedures used for Hessian inversion are precised in Algorithm 2
and 3. These methods are based on Neumann approximation of the inverse of a matrix. SGD for
Hessian inversion refers to Stochastic Gradient Descent on v 7→ 1

2 ⟨∇
2
11G(z, x)v, v⟩−⟨∇1F (z, x), v⟩.

The complexity refers to the number of call to the oracles to get an ϵ-stationary solution. In these
complexities, the notation Õ hide polynomial factors in log ϵ−1.

Algorithm 2 Hessian Inverse Approximation (HIA)
Input: variables z ∈ Rp, x ∈ Rd, gradient ∇1F (z, x) ∈ Rp, maximum number of iterations b, a
parameter η.
Set v0 = ∇1F (z, x)
Choose p ∈ {0, . . . , b− 1} randomly.
for k = 1, . . . , p do

Sample i ∈ [n]
Update v : vk+1 = (I − η∇2

11G(z, x))vk

end for
Return: bηvp+1

Algorithm 3 Summed Hessian Inverse Approximation (SHIA)
Input: variables z ∈ Rp, x ∈ Rd, gradient ∇1F (z, x) ∈ Rp, maximum number of iterations b, a
parameter η.
Set v0 = ∇1F (z, x)
Set s0 = v0

for k = 0 . . . , b− 1 do
Sample i ∈ [n]
Update v: vk+1 = (I − η∇2

11G(z, x))vk

Update s: sk+1 = sk + vk+1

end for
Return: ηsb

The momentum column refers to the use of STORM [12] momentum in the inner loop or the outer
loop. This momentum can be applied to either the inner or the implicit gradient estimate. If we
consider the current estimate yt = (zt, vt, xt) and the previous estimate yt−1 = (zt−1, vt−1, xt−1),
and we apply STORM to the quantity ϕ(yt) with the memory ϕ̂t, the momentum update rule reads

ϕ̂(t+1) = ηϕ(yt) + (1− η)(ϕ̂t + ϕ(yt)− ϕ(yt−1)) .

Note that this update requires to evaluate the quantity ϕ twice per iteration, once in yt and once in
yt−1. The memory is need to store the previous estimates yt−1 as well as the running estimate of the
gradient ϕ̂.

14

M
et

ho
d

(T
w

o-
lo

op
s)

H
es

si
an

in
ve

rs
io

n
In

ne
rl

oo
p

M
om

en
tu

m
L

R
in

L
R

ou
t

C
om

pl
ex

ity

B
SA [1
8]

H
IA

SG
D

on
in

ne
r

N
o

O
(k

−
1
)

O
(T

−
1
/
2
)

O
(ϵ

−
3
)

st
oc

B
iO

[2
5]

SH
IA

SG
D

on
in

ne
r

N
o

C
on

st
an

t
C

on
st

an
t

Õ
(ϵ

−
2
)

V
R

B
O

[4
6]

SH
IA

SP
ID

E
R

on
in

ne
r

Y
es

(S
PI

D
E

R
)

C
on

st
an

t
C

on
st

an
t

Õ
(ϵ

−
3
/
2
)

A
m

IG
O

[2
]

SG
D

SG
D

on
in

ne
r

N
o

C
on

st
an

t
C

on
st

an
t

O
(ϵ

−
2
)

M
et

ho
d

(O
ne

-l
oo

p)
H

es
si

an
in

ve
rs

io
n

In
ne

rs
te

p
M

om
en

tu
m

L
R

in
L

R
ou

t
C

om
pl

ex
ity

T
T

SA
[2

3]
H

IA
SG

D
N

o
O
(T

−
2
/
5
)

O
(T

−
3
/
5
)

Õ
(ϵ

−
5
/
2
)

SM
B

[2
2]

H
IA

SG
D

w
ith

m
om

en
tu

m
Y

es
C

on
st

an
t

C
on

st
an

t
Õ
(ϵ

−
4
)

M
R

B
O

[4
6]

SH
IA

SG
D

w
ith

ST
O

R
M

Y
es

(S
TO

R
M

)
O
(t

−
1
/
3
)

O
(t

−
1
/
3
)

Õ
(ϵ

−
3
/
2
)

ST
A

B
L

E
[1

0]
D

ir
ec

t
SG

D
N

o
O
(T

−
1
/
2
)

O
(T

−
1
/
2
)

O
(ϵ

−
2
)

SU
ST

A
IN

[2
7]

H
IA

SG
D

w
ith

ST
O

R
M

Y
es

(S
TO

R
M

)
O
(t

−
1
/
3
)

O
(t

−
1
/
3
)

O
(ϵ

−
3
/
2
)

SV
R

B
[2

1]

D
ir

ec
t+

m
om

en
-

tu
m

SG
D

w
ith

m
om

en
tu

m
Y

es
O
(t

−
1
/
3
)

O
(t

−
1
/
3
)

Õ
(ϵ

−
3
)

SB
FW [1
]

H
IA

SG
D

N
o

O
(t

−
1
/
2
)

O
(T

−
3
/
4
)

Õ
(ϵ

−
4
)

FS
L

A
[2

9]
SG

D
w

ith
ST

O
R

M
SG

D
w

ith
ST

O
R

M
Y

es
(S

TO
R

M
)

O
(t

−
1
/
2
)

O
(T

−
1
/
2
)

O
(ϵ

−
2
)

SO
BA

SG
D

st
ep

SG
D

N
o

O
(t

−
1
/
2
)

O
(t

−
1
/
2
)

O
(ϵ

−
1
/
2
)

SA
BA

SA
G

A
st

ep
SA

G
A

N
o

C
on

st
an

t
C

on
st

an
t

O
((
n
+

m
)2

/
3
ϵ−

1
)

Ta
bl

e
1:

C
om

pa
ri

so
n

of
th

e
st

oc
ha

st
ic

bi
le

ve
lo

pt
im

iz
at

io
n

so
lv

er
s

in
th

e
lit

er
at

ur
e.

T
he

co
m

pl
ex

ity
re

pr
es

en
ts

th
e

nu
m

be
ro

fo
ra

cl
e

ca
lls

ne
ce

ss
ar

y
to

at
ta

in
an

ϵ
ac

cu
ra

te
st

at
io

na
ry

po
in

t.

15

B Details on experiments

We provide here additional informations on the experiments.

B.1 Generalities

All the experiments are performed with Python, using the package Benchopt [34]. For each problem,
we use oracles for a function given function f that (f(z, x),∇1f(z, x),∇2

11f(z, x)v,∇2
21f(z, x)v)

avoiding duplicate computation of intermediate results for these quantities.
We find that using mini-batches instead of individual samples to compute the stochastic estimates
allowed for much faster computations, thanks to hardware acceleration and vectorization of the
computations. We use continuous batches to avoid random memory access that slow down the
computations. Concretely, if ib is the index of the current batch and B is the batch-size, the indices
of the corresponding samples are those in the set {ib ×B, . . . , (ib + 1)×B − 1}. By doing so, the
samples in a same batch are contiguous in memory, which facilitates the access. We use a batch-size
of 64 in all experiments.
For the methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps at
each outer iteration as proposed in the papers which introduced these methods. For the approximate
Hessian vector product, we perform 10 steps per outer iteration for each methods using HIA (BSA,
TTSA, SUSTAIN), SHIA (MRBO, stocBiO) or SGD (AmIGO) for the inversion of the linear system.
For the step sizes, they all have the form ρt = α/ta and γt = β/tb. For the pair of exponents
(a, b), we choose the theoretical one from the original papers, that is (1/2, 1/2) for BSA and FSLA,
(1/3, 1/3) for MRBO and SUSTAIN, (0, 0) for SABA, AmIGO and stocBiO, (2/5, 3/5) for TTSA
and SOBA. For (α, β), we perform a grid search (the grid is precised in the subsection dedicated to
each experiment) and we keep for each method, the pair (α, β) that gives the lowest value of h (for
the hyperparameters) or the lowest test accuracy (for the data cleaning task) in median over 10 runs
for each possible pair. When we use HIA or SHIA for the Hessian inversion, we set η = α since the
Hessian inversion problem has the same conditioning as the inner optimization problem.

For the STORM’s momentum parameter in MRBO and SUSTAIN, we take 0.5/t2/3.

For SABA, we have to maintain the estimate S[ϕ,w]it = ϕi(w
t+1
i) − ϕi(w

t
i) +

1
n

∑n
i′=1 ϕi′(w

t
i′)

of 1
n

∑n
i=1 ϕi(y

t) (see Section 2.2 for the notations). The sum inside S is maintain by performing
a rolling mean on the past gradients computed. More precisely, At = 1

n

∑n
i′=1 ϕi′(w

t
i′). To get

At+1, instead of computing the summing all the gradients stored, which has O(n) computational
complexity, we do At+1 = At +

1
n (ϕi(w

t+1
i)− ϕi(w

t
i)), which is equivalent mathematically but has

O(1) computational complexity.

B.2 Hyperparameter selection on a toy problem

The Figure 1 corresponds to the methods SABA et SOBA applied to an hyperparameter selection
problem for a Ridge regression. We generate 1000 samples x1, . . . , x1000 ∈ R10 for N (0, I10). We
generate a parameter β ∼ N (0, I10) and do y = (X ⊙W)β + ϵ where ϵ ∼ N (0, 0.01I10) and the
entries of W have the form Wi,j = 1 + ujvi,j with vi,j ∼ U([0, 1]) and uj ∼ U([0, 1]) if 1 ≤ j ≤ 5
or uj ∼ U([0, 10]) if 6 ≤ j ≤ 10. Then we use 750 pairs (xtrain

i , ytraini)1≤i≤750 as training samples
and the remaining pairs (xval

i , yvali)1≤i≤250 as validation samples. Finally, we solve (1) with

F (θ, λ) =
1

2nval

nval∑
i=1

((xval
i)⊤θ − yvali)2

and

G(θ, λ) =
1

2ntrain

ntrain∑
i=1

((xtrain
i)⊤θ − ytraini)2 +

λ

2
∥θ∥2

with ntrain = 750 and nval = 250.

16

B.3 Hyperparameters selection on IJCNN1

In this experiment, we select the parameters regularization for a multiregularized logistic regression
model precised in Equations (12) and (13) where we have one hyperparameter per feature

F (θ, λ) =
1

m

m∑
i=1

φ(yvali ⟨dvali , θ⟩) and (12)

G(θ, λ) =
1

n

n∑
i=1

φ(ytraini ⟨dtraini , θ⟩) + 1

2
θ⊤ diag(eλ1 , . . . , eλp)θ . (13)

Note that the parametrization in eλ of the penalty instead of λ can be surprising at first glance, but it
is classical in the bilevel optimization literature [37, 25, 20] because it avoids positivity constraints
on λ. In order to choose the select proper parameters (α, β) for each algorithm, we perform a grid
search. We search α in a set of 9 values between 2−5 and 23 spaced on a log scale. For β, we choose
r in a set of 7 values between 10−2 and 10 spaced on a logarithmic scale and we set β = α

r .
For this experiments, we use Just-In-Time (JIT) compilation thanks to the package Numba [28], to
decrease the python overhead in the iteration loop.
To evaluate the value function h, we use L-BFGS [31] to solve compute z∗(xt) and then evaluate the
function h(xt) = F (z∗(xt), xt).
We use Python code with Numba [28] for fast implementation of stochastic methods, and the Python
package Benchopt [34] to perform the benchmark3.

100 200 300 400

Time [sec]

10−4

10−3

10−2

10−1

O
p

ti
m

a
li
ty

h
(x
t
)
−
h
∗

0.0 0.5 1.0 1.5 2.0

Number of calls to oracles ×109

10−4

10−3

10−2

10−1

O
p

ti
m

a
li
ty

h
(x
t
)
−
h
∗

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure B.1: Comparison of SOBA and SABA with other stochastic bilevel optimization methods in
a problem of hyperparameter selection for ℓ2 penalized logistic regression on IJCNN1 dataset. For
each algorithm, we plot the median performance over 10 runs. In both plots, SABA achieves the
best performance. The dashed lines are for one loop competitor methods, the dotted lines are for
two loops methods and the solid lines are the proposed methods. Left: performance in running time,
Right: performance in number of gradient/Hessian-vector products sampled.

B.4 Data hyper-cleaning

For the regularization parameter Cr, we choose Cr = 0.2 after a manual search in order to get the
best final test accuracy.
In this experiment, the selection of the good pair (α, β) is also performed by grid search. The
parameter α is picked in a set of 11 numbers between 10−3 and 100 spaced on a logarithmic scale.
For β, we choose r in a set of 11 values between 10−5 and 1 spaced on a logarithmic scale and we
set β = α

r .
Note that in this case, we could not use JIT from Numba since at the moment of the experiment, the
softmax function coming from Scipy was not compatible with Numba.
We report in Figure B.2 some additional convergence curves with different corruption probabilities
p ∈ {0.5, 0.7, 0.9} (the figure in the main text corresponds to p = 0.5). SABA is always the fastest
algorithm to reach its final accuracy. For p = 0.9 and p = 0.7, the algorithm MRBO reaches an
accuracy roughly 1% smaller than that of SABA, but takes roughly 10 times longer to get there.

3All the code is provided in supplementary materials

17

105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

104 105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(a) p = 0.5

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(b) p = 0.7

10−1 100 101 102 103

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(c) p = 0.9

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure B.2: Datacleaning experiment, with different corruption probability (higher means that more
data are contamined). Top: Performance with respect to the number of gradient/Hessian-vector
product sampled, Bottom: Performance with respect to running time

B.5 Additional experiment: Hyperparameter selection on the covtype dataset

We also perform an additional experiment which consists in selecting the best regularization parameter
for a ℓ2-regularized multinomial logistic regression problem on the covtype dataset4. This dataset
contains 581, 012 samples with p = 54 features and there are C = 7 classes. We used n = 371, 847
train samples, m = 92, 962 samples and ntest = 116, 203 test samples. We fit a multiclass logistic
regression on this dataset, with one hyperparameter per class. This means that, if (dtraini , ytraini)i∈[n]

and (dval, yval)i∈[m] are respectively the training samples and the validation samples, we solve the
Problem (1) with

F (θ, λ) =
1

m

m∑
i=1

ℓ(θdvali , yvali) and

G(θ, λ) =
1

n

n∑
i=1

ℓ(θdtraini , ytraini) +

C∑
c=1

eλc

p∑
i=1

θ2i,c

where θ ∈ Rp×C and λ ∈ RC .
As for the other experiments, we performed and grid search over 63 pairs (α, β) to set the step sizes.
The parameter α is chosen among values between 2−5 and 23 spaced in log scale. For β, we choose
it in a set of values between 10−2 and 10 spaced in log scale. We used a batch size of 64. The
experiment took 525 CPU hours.
We show in Figure B.3 the error on the test samples with respect to the running time and the number
of gradients/Hessian-vector products sampled. We observe that SABA and SOBA achieve the best
performances. The initial gap between the first and the second plot for SABA is due to the overhead
of the initialization of the memory. This gap can be reduced by increasing the batch size.

4https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_
covtype.html

18

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html

10−2 10−1 100 101 102

Time [sec]

30%

35%

40%

T
es

t
er

ro
r

105 106 107 108

Number of calls to oracles

30%

35%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure B.3: Comparison of SOBA and SABA with other stochastic bilevel optimization methods
in a problem of hyperparameter selection for ℓ2 penalized multical logistic regression on covtype
dataset. For each algorithm, we plot the median performance over 10 runs. The dashed lines are
for one loop competitor methods, the dotted lines are for two loops methods and the solid lines
are the proposed methods. Left: performance in running time, Right: performance in number of
gradient/Hessian-vector products sampled.

C Proofs

C.1 Proof of Proposition 2.1

Proof. Let (z, v, x) a zero of (Dz, Dv, Dx). For Dz , this means that ∇1G(z, x) = 0. Since
G(· , x) is strongly convex, z is the minimizer of G(· , x), i.e. z = z∗(x). The fact that (z, v, x)
is a zero of Dv implies that ∇2

11G(z, x)v = −∇1F (z, x). Replacing z by its value, we get v =

−
[
∇2

11G(z∗(x), x)
]−1 ∇1F (z∗(x), x) which is v∗(x) by definition. Putting all together and using

the expression of ∇h(x) given by (2), we get

Dx(z, v, x) = ∇2F (z∗(x), x) +∇21G(z∗(x), x)v∗(x) = ∇h(x) .

On the other hand, Dx(z, v, x) = 0 so ∇h(x) = 0.

C.2 Proof of Lemma 3.4

Proof. Let (z, v, x) ∈ Rp×Rp×Rd. Using the fact that ∇1G(z∗(x), x) = 0 and the LG
1 -smoothness

of G(· , x), we have

∥Dz(z, v, x)∥2 = ∥∇1G(z, x)−∇1G(z∗(x), x)∥2 ≤ L2
G∥z − z∗(x)∥2 .

For Dv , since ∇2
11G(z∗(x), x)v∗(x) = −∇1F (z∗(x), x), we write

∥Dv∥ = ∥(∇2
11G(z, x)v +∇1F (z, x))− (∇2

11G(z∗(x), x)v∗(x) +∇1F (z∗(x), x))∥ (14)

≤ ∥[∇2
11G(z, x)−∇2

11G(z∗(x), x)]v∗(x)∥+ ∥∇2
11G(z, x)[v − v∗(x)]∥ (15)

+ ∥∇1F (z, x)−∇1F (z∗(x), x)∥ .

For the first term, we use the Lipschitz continuity of ∇2
11G:

∥[∇2
11G(z, x)−∇2

11G(z∗(x), x)]v∗(x)∥ ≤ LG
2 ∥z − z∗(x)∥∥v∗(x)∥ .

Then, since G in µG-strongly convex w.r.t. z, ∇1F (z∗(·), ·) is bounded and v∗(x) =
−[∇2

11G(z∗(x), x)]−1∇1F (z∗(x), x), we have

∥[∇2
11G(z, x)−∇2

11G(z∗(x), x)]v∗(x)∥ ≤ LG
2 CF

µG
∥z − z∗(x)∥ . (16)

For the second term, we use the LG
1 -smoothness of G(· , x) and for the third term, we use the

LF
1 -smoothness of F and we finally get

∥Dv∥ ≤
(
LG
2 CF

µG
+ LF

1

)
∥z − z∗(x)∥+ LG

1 ∥v − v∗(x)∥ . (17)

19

Then, taking Lv =
√
2max

(
LG

2 CF

µG
+ LF , LG

1

)
, we get

∥Dv(z, v, x)∥2 ≤ L2
v(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) . (18)

For Dx(z, v, x)−∇h(x) we start by writing

∥Dx(z, v, x)−∇h(x)∥ ≤ ∥∇2F (z, x)−∇2F (z∗(x), x)∥+ ∥∇2
21G(z, x)v −∇2

21G(z∗(x), x)v∗(x)∥
(19)

≤ ∥∇2F (z, x)−∇2F (z∗(x), x)∥+ ∥∇2
21G(z, x)∥∥v − v∗(x)∥ (20)

+ ∥v∗(x)∥∥∇2
21G(z, x)−∇2

21G(z∗(x), x)∥ .

We bound the first term using the fact that ∇2F is LF
1 -Lipschitz continuous. For the second term,

the fact that ∇2
21G is bounded thanks to the Lipschitz continuity of ∇1G(z, ·). For the third term,

we use that ∇2
21G(· , x) is LG

2 -Lipschitz continuous and the same derivation as Equation (16). We
finally get

∥Dx −∇h(x)∥ ≤
(
LF
1 +

CFL
G
2

µG

)
∥z − z∗(x)∥+ LG

1 ∥v − v∗(x)∥ . (21)

Taking Lx =
√
2max

(
LF
1 +

CFLG
2

µG
, LG

1

)
yields

∥Dx(z, v, x)−∇h(x)∥2 ≤ L2
x(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) . (22)

C.3 Smoothness constant of h

From Ghadimi and Wang [18, Lemma 2.2], we get the Lemma 3.10 which states the Lh-smoothness
of h with

Lh = LF
1 +

2LF
1 L

G
2 + C2

FL
G
2

µG
+

LG
11L

G
1 CF + LG

1 L
G
2 CF + (LG

1)
2LF

1

µ2
G

+
(LG

1)
2LG

2 CF

µ3
G

.

C.4 Lemmas on the regularity of z∗ and v∗

We start by showing the Lipschitz continuity of z∗ and v∗.

Lemma C.1. There exists a constant L∗ > 0 such that for any x1, x2 ∈ Rd we have

∥z∗(x1)− z∗(x2)∥ ≤ L∗∥x1 − x2∥, ∥v∗(x1)− v∗(x2)∥ ≤ L∗∥x1 − x2∥ .

Proof. Let x ∈ Rd. The Jacobian of z∗ is given by dz∗(x) =
−[∇2

11G(z∗(x), x)]−1∇2
1,2G(z∗(x), x). Thanks to the µG-strong convexity of G and the

fact that ∇2
21G is bounded, we have ∥dz∗(x)∥ ≤ LG

1

µG
. Thus, z∗ is Lipschitz continuous.

For ∥v∗(x1)− v∗(x2)∥, we start from the definition v∗:

∥v∗(x1)− v∗(x2)∥ = ∥[∇2
11G(z∗(x1), x1)]

−1∇1F (z∗(x1), x1)− [∇2
11G(z∗(x2), x2)]

−1∇1F (z∗(x2), x2)∥
(23)

≤ ∥([∇2
11G(z∗(x1), x1)]

−1 − [∇2
11G(z∗(x2), x2)]

−1∇1F (z∗(x1), x1)∥ (24)

+ ∥[∇2
11G(z∗(x2), x2)]

−1(∇1F (z∗(x2), x2)−∇1F (z∗(x1), x1))∥ .

For the first term, we use that for any invertible matrix A and B we have A−1 − b−1 = A−1(B −
A)B−1 to get

20

∥[∇2
11G(z∗(x1), x1)]

−1 −∇2
11G(z∗(x2), x2)]

−1∥ = ∥[∇2
11G(z∗(x1), x1)]

−1(∇2
11G(z∗(x2), x2)]−

∇2
11G(z∗(x1), x1)])[∇2

11G(z∗(x2), x2)]
−1∥

≤ 1

µ2
G

∥∇2
11G(z∗(x1), x1)−∇2

11G(z∗(x2), x2)∥

≤ LG
2

µ2
G

∥(z∗(x1), x1)− (z∗(x2), x2)∥

≤ LG
2

µ2
G

[∥z∗(x1)− z∗(x2)∥+ ∥x1 − x2∥]

≤ LG
2

µ2
G

[
1 +

LG
1

µG

]
∥x1 − x2∥ .

And then, since ∇1F (z∗(·), ·) is bounded:∥∥([∇2
11G(z∗(x1), x1)]

−1 − [∇2
11G(z∗(x2), x2)]

−1∇1F (z∗(x1), x1)
∥∥ ≤ CFL

G
2

µ2
G

[
1 +

LG
1

µG

]
∥x1−x2∥ .

For the second term, the strong convexity of G(· , x) and the fact that ∇1F is Lipschitz continuous
lead to

∥[∇2
11G(z∗(x2), x2)]

−1(∇1F (z∗(x2), x2)−∇1F (z∗(x1), x1))∥ ≤ 1

µG
∥∇1F (z∗(x2), x2)−∇1F (z∗(x1), x1)∥

(25)

≤ LF
1

µF
∥(z∗(x1), x1)− (z∗(x2), x2)∥

(26)

≤ LF
1

µG
[∥z∗(x1)− z∗(x2)∥+ ∥x1 − x2∥]

(27)

≤ LF
1

µG

[
1 +

LG
1

µG

]
∥x1 − x2∥ .

(28)

Then we get

∥v∗(x1)− v∗(x2)∥ ≤
[
CFL

G
2

µ2
G

[
1 +

LG
1

µG

]
+

LF
1

µG

[
1 +

LG
1

µG

]]
∥x1 − x2∥ . (29)

We conclude by setting

L∗ = max

(
LG
1

µG
,
CFL

G
2

µ2
G

[
1 +

LG
1

µG

]
+

LF
1

µG

[
1 +

LG
1

µG

])
.

In what follows, we denote by Et[·] the expectation conditionally on zt, vt and xt.
We have the smoothness property of z∗ provided in [9, Lemma 2].

Lemma C.2. Under the Assumptions 3.1, 3.2 and 3.3, the function z∗ : Rd → Rp is Lzx-smooth
with

Lzx =
LG
2 (1 + L∗)

µG
+

LG
1 L

G
11(1 + L∗)

µ2
G

. (30)

We establish the same result for v∗. To this, we need more regularity on G and F .

21

Lemma C.3. The function v∗ : Rd → Rp is differentiable and its differential is defined for any
x, ϵ ∈ Rd by:

dv∗(x).ϵ = [∇2
1G(z∗(x), x)]−1[∇2

11F (z∗(x), x)dz∗(x).ϵ+∇2
12F (z∗(x), x).ϵ] (31)

− [∇2
1G(z∗(x), x)]−1[(∇3

111G(z∗(x), x)|dz∗(x).ϵ) + (∇3
112G(z∗(x), x)|ϵ)]

× [∇2
1G(z∗(x), x)]−1∇1F (z∗(x), x)

where for any z, α ∈ Rp and x ∈ Rd, (∇3
111G(z, x)|α) ∈ Rp×p is defined by

(∇3
111G(z, x)|α) =

[
p∑

k=1

∂3G

∂zi∂zj∂zk
(z, x)αk

]
1≤i,j≤p

and for any β ∈ Rd, (∇3
112G(z, x)|β) ∈ Rp×p is defined by

(∇3
112G(z, x)|β) =

[
p∑

k=1

∂3G

∂zi∂zj∂xk
(z, x)βk

]
1≤i,j≤p

.

Moreover, dv∗ is Lvx-Lipschitz continuous.

Proof. Let x, ϵ ∈ Rd. Using the differentiability of ∇2
11G, ∇1F and of the matrix inversion, we have

v∗(x+ ϵ) = [∇2
11G(z∗(x+ ϵ), x+ ϵ)]−1∇1F (z∗(x+ ϵ), ϵ)

= [∇2
11G(z∗(x), x) + (∇3

111G(z∗(x), x)|dz∗(x).ϵ) + (∇3
112G(z∗(x), x)|ϵ) + o(∥ϵ∥)]−1

× (∇1F (z∗(x), x) +∇2
11F (z∗(x), x)dz∗(x).ϵ+∇2

12F (z∗(x), x)ϵ+ o(∥ϵ∥))
=
{
[∇2

11G(z∗(x), x)]−1

−[∇2
11G(z∗(x), x)]−1[(∇3

111G(z∗(x), x)|dz∗(x).ϵ) + (∇3
112G(z∗(x), x)|ϵ)]

×[∇2
11G(z∗(x), x)]−1 + o(∥ϵ∥)

}
× (∇1F (z∗(x), x) +∇2

11F (z∗(x), x)dz∗(x).ϵ+∇2
12F (z∗(x), x)ϵ+ o(∥ϵ∥))

= v∗(x) + [∇2
1G(z∗(x), x)]−1[∇2

11F (z∗(x), x)dz∗(x).ϵ+∇2
12F (z∗(x), x).ϵ]

− [∇2
1G(z∗(x), x)]−1[(∇3

111G(z∗(x), x)|dz∗(x).ϵ) + (∇3
112G(z∗(x), x)|ϵ)][∇2

1G(z∗(x), x)]−1

×∇1F (z∗(x), x) + o(∥ϵ∥)

that proves (31). Now, let x, y, ϵ ∈ Rd with ∥ϵ∥ = 1. Let us denote

A(x, ϵ) = −[∇2
1G(z∗(x), x)]−1[(∇3

111G(z∗(x), x)|dz∗(x).ϵ)+(∇3
112G(z∗(x), x)|ϵ)][∇2

1G(z∗(x), x)]−1

and

B(x, ϵ) = ∇2
11F (z∗(x), x)dz∗(x).ϵ+∇2

12F (z∗(x), x)

so that dv∗(x).ϵ = [∇2
11G(z∗(x), x)]−1B(x, ϵ) +A(x, ϵ)∇1F (z∗(x), x). We have

(dv∗(x)− dv∗(y)).ϵ = [∇2
11G(z∗(x), x)]−1B(x, ϵ) +A(x, ϵ)∇1F (z∗(x), x) (32)

− [∇2
11G(z∗(y), y)]−1B(y, ϵ)−A(y, ϵ)∇1F (z∗(y), y)

= [∇2
11G(z∗(x), x)]−1(B(x, ϵ)−B(y, ϵ)) (33)

+ ([∇2
11G(z∗(x), x)]−1 − [∇2

11G(z∗(y), y)]−1)B(y, ϵ)

+A(x, ϵ)(∇1F (z∗(x), x)−∇1F (z∗(y), y))

+ (A(x, ϵ)−A(y, ϵ))∇1F (z∗(y), y) .

22

We can now bound each term using the regularity assumptions on G and F :

∥[∇2
11G(z∗(x), x)]−1(B(x, ϵ)−B(y, ϵ))∥ ≤ 1

µG

(∥∇2
11F (z∗(x), x)dz∗(x)−∇2

11F (z∗(y), y)dz∗(y)∥

(34)

+ ∥∇2
12F (z∗(x), x)−∇2

12F (z∗(y), y)∥)

≤ 1

µG

(∥∇2
11F (z∗(x), x)−∇2

11F (z∗(y), y)∥∥dz∗(x)∥

(35)

+ ∥dz∗(x)− dz∗(y)∥∥∇2
11F (z∗(y), y)∥

+ LF
2 (∥z∗(x)− z∗(y)∥+ ∥x− y∥)

≤ 1

µG

(LF
2 L∗(1 + L∗) + LzxL

F
1 + LF

2 (1 + L∗))∥x− y∥

(36)
(37)

For the second term:

∥([∇2
11G(z∗(x), x)]−1 − [∇2

11G(z∗(y), y)]−1)B(y, ϵ)∥ ≤ 1

µ2
G

∥∇2
11G(z∗(x), x)−∇2

11G(z∗(y), y)∥∥B(y, ϵ)∥

(38)

≤ 1

µ2
G

∥∇2
11G(z∗(x), x)−∇2

11G(z∗(y), y)∥

(39)

× (∥∇2
11F (z∗(x), x)∥∥dz∗(x)∥+ ∥∇2

12F (z∗(x), x)∥)

≤ (LG
2 + LF

1)(L∗ + 1)

µ2
G

∥x− y∥ (40)

For the third term, we have:

∥A(x, ϵ)(∇1F (z∗(x), x)−∇1F (z∗(y), y))∥ ≤ LF
1 (1 + L∗)

µ2
G

∥(∇3
111G(z∗(x), x)|dz∗(x).ϵ) (41)

+ (∇3
112G(z∗(x), x)|ϵ)∥∥x− y∥

≤ (LF
1 + LG

2)(1 + L∗)

µ2
G

∥x− y∥ (42)

And finally, for the forth term:
∥(A(x, ϵ)−A(y, ϵ))∇1F (z∗(y), y)∥ ≤ CF {∥[∇2

11G(z∗(x), x)]−1∥ (43)

× ∥(∇3
111G(z∗(x), x)|dz∗(x).ϵ) + (∇3

112G(z∗(x), x)|ϵ)∥
× ∥[∇2

11G(z∗(x), x)]−1 − [∇2
11G(z∗(y), y)]−1∥

+ ∥[∇2
11G(z∗(x), x)]−1 − [∇2

11G(z∗(y), y)]−1∥
× ∥(∇3

111G(z∗(x), x)|dz∗(x).ϵ) + (∇3
112G(z∗(x), x)|ϵ)∥

× ∥[∇2
11G(z∗(y), y)]−1∥

+ ∥[∇2
11G(z∗(y), y)]−1∥2

× (∥(∇3
111G(z∗(x), x)|dz∗(x).ϵ)− (∇3

111G(z∗(y), y)|dz∗(y).ϵ)∥
∥(∇3

112G(z∗(x), x)|ϵ)− (∇3
112G(z∗(y), y)|ϵ)∥)}

(44)

≤ CF

{
2
2LG

2 (1 + L∗)

µ3
G

+
LG
3 (1 + L∗)

µ2
G

}
∥x− y∥

Thus v∗ is Lvx-smooth with

Lvx =
LF
2 L∗(1 + L∗) + LzxL

F
1 + LF

2 (1 + L∗)

µG
+2

(LG
2 + LF

1)(L∗ + 1)

µ2
G

+
CFL

G
3 (1 + L∗)

µ2
G

+4
CFL

G
2 (1 + L∗)

µ3
G

.

23

C.5 Proof of Lemma 3.9

We now provide the proof of Lemma 3.9.

Proof. Inequality for δz .
We start by expanding the square:

∥zt+1 − z∗(xt+1)∥2 = ∥zt+1 − z∗(xt)∥2 + ∥z∗(xt+1)− z∗(xt)∥2 (45)

− 2⟨zt+1 − z∗(xt), z∗(xt+1)− z∗(xt)⟩

We study each member, using the unbiasedness of Dt
z and the µG−strong convexity of G(· , xt):

Et[∥zt+1 − z∗(xt)∥2] = Et[∥zt − z∗(xt)∥2]− 2ρEt[⟨Dt
z, z

t − z∗(xt)⟩] + ρ2Et[∥Dt
z∥2] (46)

= ∥zt − z∗(xt)∥2 − 2ρ⟨∇1G(zt, xt), zt − z∗(xt)⟩+ ρ2Et[∥Dt
z∥2] (47)

≤ (1− ρµG)∥zt − z∗(xt)∥2 + ρ2Et[∥Dt
z∥2] . (48)

Taking the total expectation yields

E[∥zt+1 − z∗(xt)∥2] ≤ (1− ρµG)δ
t
z + ρ2V t

z . (49)

The second member is bounded using Lipschitz continuity of z∗:

E[∥z∗(xt+1)− z∗(xt)∥2] ≤ L2
∗E[∥xt+1 − xt∥2] = L2

∗γ
2V t

x .

For the remaining scalar product, we have

−2⟨zt+1 − z∗(xt), z∗(xt+1)− z∗(xt)⟩ = −2[⟨zt − z∗(xt), z∗(xt+1)− z∗(xt)⟩ − ρ⟨Dt
z, z

∗(xt+1)− z∗(xt)⟩] .
(50)

The second term can be bounded using Cauchy-Schwarz inequality, the Lipschitz-continuity of z∗
and Young inequality:

E[ρ⟨Dt
z, z

∗(xt+1)− z∗(xt)⟩] ≤ E[ρ∥Dt
z∥∥z∗(xt+1)− z∗(xt)∥] (51)

≤ ρL∗E[∥Dt
z∥∥xt+1 − xt∥] (52)

≤ ρ2

2
V t
z +

L2
∗
2
∥xt+1 − xt∥2 (53)

≤ ρ2

2
V t
z + L2

∗
γ2

2
V t
x . (54)

For −2⟨zt− z∗(xt), z∗(xt+1)− z∗(xt)⟩, we follow the proof of [9] which consists in making appear
the "unbiased part of z∗(xt+1 − z∗(xt) by a linear approximation. More precisely, we have

⟨zt − z∗(xt), z∗(xt+1)− z∗(xt)⟩ = ⟨zt − z∗(xt),dz∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
A

(55)

⟨zt − z∗(xt), z∗(xt+1)− z∗(xt)− dz∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
B

.

For A, we use the unbiasedness of Dt
x, Cauchy-Schwarz inequality, the Lipschitz continuity of z∗

(Lemma C.1) and the identity ab ≤ ηa2 + b2

η for any η > 0:

−2E[A] = −2γE[⟨zt − z∗(xt),dz∗(xt)Dt
x⟩] (56)

= −2γE[⟨zt − z∗(xt),dz∗(xt)Et[D
t
x]⟩] (57)

= −2γE[⟨zt − z∗(xt),dz∗(xt)Dx(z
t, vt, xt)⟩] (58)

≤ 2γE[∥zt − z∗(xt)∥∥dz∗(xt)Dx(z
t, vt, xt)∥] (59)

≤ 2L∗γE[∥zt − z∗(xt)∥∥Dx(z
t, vt, xt)∥] (60)

≤ 2ηδtz +
2L2

∗
η

γ2E[∥Dx(z
t, vt, xt)∥2] . (61)

24

We take η = ρµG

4 and we get

−2E[A] ≤ ρµG

2
δtz +

8L2
∗

µG

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] . (62)

For B, we use Cauchy-Schwarz inequality, the smoothness of z∗ (Lemma C.2), Young inequality and
the boundedness of Et[∥Dt

x∥2] to get

−2E[B] ≤ 2E[∥zt − z∗(xt)∥∥z∗(xt+1)− z∗(xt)− dz∗(xt)(xt+1 − xt)∥] (63)

≤ LzxE[∥zt − z∗(xt)∥∥xt+1 − xt∥2] (64)

≤ LzxνE[∥zt − z∗(xt)∥2∥xt+1 − xt∥2] + Lzx

ν
E[∥xt+1 − xt∥2] (65)

≤ Lzxνγ
2E[∥zt − z∗(xt)∥2Et[∥Dt

x∥2]] +
Lzxγ

2

ν
V t
x (66)

≤ LzxB
2
xνγ

2δtz +
Lzxγ

2

ν
V t
x . (67)

We take ν = Lzx

L2
∗

and we get

−2E[B] ≤ L2
zxB

2
xγ

2

L2
∗

δtz + L2
∗γ

2V t
x (68)

Now, using γ2 ≤ ρµGL2
∗

B2
xL

2
zx

, we end up with

δt+1
z ≤ (1− ρµG

4
)δtz + 2ρ2V t

z + βzxγ
2V t

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] , (69)

with βzx = 3L2
∗ and βzx =

8L2
∗

µG
.

Inequality for δv . We proceed in a similar way for v:

δt+1
v ≤ E[∥vt+1−v∗(xt)∥2]+E[∥v∗(xt+1)−v∗(xt)∥2]−2E[⟨vt+1−v∗(xt), v∗(xt+1)−v∗(xt)⟩] .

(70)
For the first term, we have

Et[∥vt+1 − v∗(xt)∥2] = ∥vt − v∗(xt)∥2 − 2ρ⟨Dv(z
t, vt, xt), vt − v∗(xt)⟩+ ρ2Et[∥Dt

v∥2] (71)

Now, using that Dv(z
∗(xt), v∗(xt), xt) = 0:

⟨Dv(z
t, vt, xt), vt − v∗(xt)⟩ = ⟨Dv(z

t, vt, xt)−Dv(z
∗(xt), v∗(xt), xt), vt − v∗(xt)⟩ (72)

= ⟨∇2
11G(zt, xt)(vt − v∗(xt)), vt − v∗(xt)⟩ (73)

+ ⟨(∇2
11G(zt, xt)−∇2

11G(z∗(xt), xt))v∗(xt), vt − v∗(xt)⟩
+ ⟨(∇1F (zt, xt)−∇1F (z∗(xt), xt)), vt − v∗(xt)⟩

≥ µG∥vt − v∗(xt)∥2 − LG
2 CF

µG
∥zt − z∗(xt)∥∥vt − v∗(xt)∥ (74)

− LF
1 ∥zt − z∗(xt)∥∥vt − v∗(xt)∥

≥ µG∥vt − v∗(xt)∥2 − ω∥zt − z∗(xt)∥∥vt − v∗(xt)∥ (75)

where ω = LF
1 +

LG
2 CF

µG
. We then use ω∥zt−z∗(xt)∥∥vt−v∗(xt)∥ ≤ 1

2c∥v
t−v∗(xt)∥2+ ω2

2c ∥z
t−

z∗(xt)∥2 with c = µG to get

−⟨Dv(z
t, vt, xt), vt − v∗(xt)⟩ ≤ −1

2
µGδ

t
v +

ω2

2µG
δtz .

We get the overall inequality by taking the total expectation

E[∥vt+1 − v∗(xt)∥2] ≤
(
1− ρµG

2

)
δtv + ρ

ω2

2µG
δtz + ρ2V t

v .

25

We also use Lipschitz on v∗ to bound the other term
E[∥v∗(xt+1)− v∗(xt)∥2] ≤ L2

∗γ
2V t

x .

As previously, the scalar product is bounded by:
−E[⟨vt+1 − v∗(xt), v∗(xt+1)− v∗(xt)⟩] = −E[⟨vt − v∗(xt), v∗(xt+1)− v∗(xt)⟩]− ρE[⟨Dt

v, v
∗(xt+1)− v∗(xt)⟩]

(76)

≤ E[⟨zt − z∗(xt), v∗(xt+1)− v∗(xt)⟩] + ρ2

2
V t
v + L2

∗
γ2

2
V t
x

(77)

We do similar manipulations pour v∗, thanks to Lemma C.3. We have as for z from Lemma C.1 for
any η > 0:

−E[⟨vt − v∗(xt),dv∗(xt)(xt+1 − xt)⟩] ≤ ηδtv +
L2
∗γ

2

η
E[∥Dx(z

t, vt, xt)∥2] . (78)

We take η = ρµG

8 and we get

−E[⟨vt − v∗(xt),dv∗(xt)(xt+1 − xt)⟩] ≤ ρµG

8
δtv +

8L2
∗γ

2

µGρ
E[∥Dx(z

t, vt, xt)∥2] (79)

(80)
Then smoothness of v∗ for any η > 0 gives us

−E[⟨vt − v∗(xt), v∗(xt+1)− v∗(xt)− dv∗(xt)(xt+1 − xt)⟩] ≤ LvxB
2
xν

2
γ2δtv +

Lvx

2ν
γ2V t

x .

(81)

With ν = Lvx

L2
∗

we get

−E[⟨vt − v∗(xt), v∗(xt+1)− v∗(xt)− dv∗(xt)(xt+1 − xt)⟩] ≤ L2
vxB

2
x

2L2
∗

γ2δtv +
L2
∗
2
γ2V t

x . (82)

With the assumption γ2 ⩽ ρµGL2
∗

8L2
vxB

2
x

, we get

δt+1
v ≤

(
1− ρµG

2
+

ρµG

4
+

L2
vxBx

L2
∗

)
δtv + ρβvzδ

t
z + 2ρ2V t

z + 3L2
∗γ

2V t
x +

16L2
∗γ

2

µGρ
E[∥Dx(z

t, vt, xt)∥2]

(83)

≤
(
1− ρµG

8

)
δtv + ρβvzδ

t
z + 2ρ2V t

z + 3L2
∗γ

2V t
x +

16L2
∗γ

2

µGρ
E[∥Dx(z

t, vt, xt)∥2] . (84)

And finally we have

δt+1
v ≤

(
1− ρµG

8

)
δtv + ρβvzδ

t
z + 2ρ2V t

z + βvxγ
2V t

x + βvx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] (85)

with βvz = ω2

2µG
, βvx = 3L2

∗ and βvx =
16L2

∗γ
2

µG
.

C.6 Proof of Lemma 3.10

Proof. We use smoothness of h to get

Et[h(x
t+1)] ≤ h(xt)− γ⟨Dx(z

t, vt, xt),∇h(xt)⟩+ Lh

2
γ2Et[∥Dt

x∥2] (86)

≤ h(xt)− γ

2
(∥∇h(xt)∥2 + ∥Dx(z

t, vt, xt)∥2 − ∥∇h(xt)−Dx(z
t, vt, xt)∥2) + Lh

2
γ2Et[∥Dt

x∥2]
(87)

where the last inequality comes from the identity ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥)2. We take the
total expectation and use the previous Lemma 3.4 to get

ht+1 ≤ ht − γ

2
gt − γ

2
E[∥Dx(z

t, vt, xt)∥2] + γL2
x

2
(δtz + δtv) +

Lh

2
γ2V t

x (88)

26

C.7 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 that we recall here.

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that
Assumptions 3.1 to 3.7 hold. We consider fixed steps ρt = ρ√

T
and γt = ξρt with ρ and ξ precised

in the appendix. Let (xt)t≥1 the sequence of outer iterates for SOBA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O(T− 1
2) .

The values of the differents constants are

ϕ′
z =

1

8βzx

, ϕ′
v = min

(
1

8βvx

,
µGϕ

′
z

32βvz

)
, ρ = min

(
16

µG
,

µG

16L2
zB

2
z

,
µG

32L2
vB

2
v

,
βvz

L2
vB

2
v

)
,

and ξ2 =
µG

4
min

[
min

(
1

L2
zx

,
1

L2
vx

)
L2
∗

B2
xρ

,min (ϕ′
v, ϕ

′
z)

1

2L2
x

]
.

Before, one has to adapt our descent lemmas to the case of SOBA.

Lemma C.4. Assume that the step sizes ρ and γ verify ρ ≤ min
(

µG

16L2
zB

2
z
, µG

32L2
vB

2
v
, βvz

L2
vB

2
v

)
and

γ2 ≤ min
(

ρµGL2
∗

4B2
xL

2
zx
,

ρµGL2
∗

8B2
xL

2
vx

)
. Then it holds

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2ρ2B2

z + βzxγ
2B2

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] (89)

δt+1
v ≤

(
1− ρµG

16

)
δtv + 2βvzρδ

t
z + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(z
t, vt, xt)∥2] . (90)

Proof. From Assumption 3.6 and Lemma 3.4, we have

V t
z ≤ B2

z (1 +Dz(z
t, vt, xt)) ≤ B2

z (1 + L2
zδ

t
z) .

Plugging this into Equation (69) and using V t
x ≤ B2

x yields

δt+1
z ≤

(
1− ρµG

4
+ 2L2

zB
2
zρ

2
)
δtz + 2ρ2B2

z + βzxγ
2B2

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] . (91)

Since by assumption ρ ≤ µG

16L2
zB

2
z

, we have

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2ρ2B2

z + βzxγ
2B2

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] . (92)

For δtv , Assumption 3.3 and Lemma 3.4 provide us

V t
v ≤ B2

v(1 + L2
v(δ

t
z + δtv)) .

Since the assumptions of Lemma 3.9 are verified, we can plug the previous inequality into Equa-
tion (85) to get

δt+1
v ≤

(
1− ρµG

8
+ 2L2

vB
2
vρ

2
)
δtv + (βvzρ+ 2L2

vρ
2B2

v)δ
t
z + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(z
t, vt, xt)∥2]

(93)

which can be simplified using ρ ≤ min
(

µG

32L2
vB

2
v
, βvz

L2
vB

2
v

)
to get finally

δt+1
v ≤

(
1− ρµG

16

)
δtv + 2βvzρδ

t
z + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(z
t, vt, xt)∥2] . (94)

We can now prove Theorem 1.

27

Proof. Consider the Lyapunov function Lt = ht + ϕzδ
t
z + ϕvδ

t
v . Using the Equations (88), (69) and

(85), we can bound Lt+1 − Lt:

Lt+1 − Lt ≤ −γ

2
gt −

(
γ

2
− ϕzβzx

γ2

ρ
− ϕvβvx

γ2

ρ

)
E[∥Dx(z

t, vt, xt)∥2] (95)

−
(
ϕz

µG

8
ρ− L2

x

2
γ − 2ϕvβvzρ

)
δtz

−
(
ϕv

µG

16
ρ− L2

x

2
γ

)
δtv

+

(
Lh

2
+ ϕzβzx + ϕvβvx

)
B2

xγ
2

+ 2(ϕzB
2
z + ϕvB

2
v)ρ

2 .

Let ϕ′
z = ϕz

γ
ρ and ϕ′

v = ϕv
γ
ρ , so that:

Lt+1 − Lt ≤ −γ

2
gt −

(γ
2
− ϕ′

zβzxγ − ϕ′
vβvxγ

)
E[∥Dx(z

t, vt, xt)∥2] (96)

−
(
ϕ′
z

µG

8

ρ2

γ
− L2

x

2
γ − 2ϕ′

vβvz
ρ2

γ

)
δtz

−
(
ϕ′
v

µG

16

ρ2

γ
− L2

x

2
γ

)
δtv

+

(
Lh

2
+ ϕ′

zβzx
ρ

γ
+ ϕvβvx

ρ

γ

)
B2

xγ
2

+ 2

(
ϕ′
zB

2
z

ρ

γ
+ ϕ′

vB
2
v

ρ

γ

)
ρ2 .

In order to get a decrease, ϕ′
z , ϕ′

v , ρ and γ must verify
ϕ′
zβzx + ϕ′

vβvx ≤ 1
2

L2
x

2 γ + 2ϕ′
vβvz

ρ2

γ ≤ ϕ′
z
µG

8
ρ2

γ
L2

x

2 γ ≤ ϕ′
v
µG

16
ρ2

γ

(97)

Let us take ϕ′
z = 1

8βzx

and ϕ′
v = min

(
1

8βvx

,
µGϕ′

z

32βvz

)
. We have

ϕ′
zβzx + ϕ′

vβvx ≤ 1

4
<

1

2

and
L2
x

2
γ + 2ϕ′

vβvz
ρ2

γ
≤ L2

x

2
γ + ϕ′

z

µG

16

ρ2

γ
.

If we impose L2
x

2 γ + ϕ′
z
µG

16
ρ2

γ ≤ ϕ′
z
µG

8
ρ2

γ , this combined with the third condition in Equation (97)

gives the condition L2
x

2 γ2 ≤ min (ϕ′
v, ϕ

′
z)

µG

16 ρ
2. We also have the conditions coming from the

assumptions of C.4, that is

ρ ≤ ρ = min

(
16

µG
,

µG

16L2
zB

2
z

,
µG

32L2
vB

2
v

,
βvz

L2
v

)
(98)

and γ2 ≤ min
(

1
L2

zx
, 1
L2

vx

)
µGL2

∗
4B2

x
ρ. Let us take ρ = ρ√

T
with γ = ξρ where ξ is defined as

ξ2 ≜
µG

4
min

[
min

(
1

L2
zx

,
1

L2
vx

)
L2
∗

B2
xρ

,min (ϕ′
v, ϕ

′
z)

1

2L2
x

]
. (99)

From now, we have

Lt+1 − Lt ≤ −γ

2
gt +

Lh

2
B2

xγ
2 + (ϕ′

zβzx + ϕ′
vβvx)B

2
xργ + 2

(
ϕ′
zB

2
z + ϕ′

vB
2
v

) ρ3
γ

. (100)

28

Summing and telescoping yields

1

T

T∑
t=1

gt ≤ 2L1

Tγ
+ LhB2

xγ + 2 (ϕ′
zβzx + 2ϕ′

vβvx)B
2
xρ+ 4

(
ϕ′
zB

2
z + ϕ′

vB
2
v

) ρ3
γ2

(101)

≤ 2L1

√
Tξρ

+ LhB2
x

ξα√
T

+ (ϕ′
zβzx + 2ϕ′

vβvx)B
2
x

α√
T

+ 4
(
ϕ′
zB

2
z + ϕ′

vB
2
v

) α

ξ2
√
T
(102)
(103)

and so

1

T

T∑
t=1

gt = O
(

1√
T

)
.

C.8 Proof of Theorem 2

Proof. In the decreasing step size case, we take ρt = ρ
√
t and γt = ξρt where ρ is defined in

Equation (98) and ξ is defined in Equation (99). We recall the integral majorization:
T∑

t=1

t−1 ≤ 1 +

∫ T

1

t−1dt = 1 + log(T) .

With such definition of ρt and γt, Equation (100) is still valid for any t ⩾ 1. The only difference is
that the step sizes decrease with t. Hence, by summing and rearranging in Equation (100), we get

T∑
t=1

γtgt ≤ 2L1 +

(
Lh + 2 (ϕ′

zβzx + 2ϕ′
vβvx)B

2
x

1

ξ
+ 4

(
ϕ′
zB

2
z + ϕ′

vB
2
v

) 1

ξ3

) T∑
t=1

(γt)2 (104)

The left-hand-side in Equation (104) can be lower bounded by
T∑

t=1

γtgt ≥
(

inf
t∈[T]

gt
)
ξρ

T∑
t=1

t−
1
2 ≥

(
inf
t∈[T]

gt
)
ξρT

1
2 . (105)

Also we have
T∑

t=1

(γt)2 = ξ2ρ2
T∑

t=1

t−1 ≤ ξ2ρ2(1 + log(T)) . (106)

Plugging Equations (105) and (106) into Equation (104) and rearranging give

inf
t∈[T]

gt ≤ 2L1

ξρ
√
T

+ ξρ

(
Lh + 2 (ϕ′

zβzx + 2ϕ′
vβvx)B

2
x

1

ξ
+ 4

(
ϕ′
zB

2
z + ϕ′

vB
2
v

) 1

ξ3

)
1 + log(T)√

T
(107)

that is to say

inf
t∈[T]

gt = O
(

1√
T

+
log(T)√

T

)
. (108)

C.9 Proof of Theorem 3

In this section, we prove Theorem 3 that we recall here

Theorem 3 (Convergence of SABA, smooth case). Assume that Assumptions 3.1 to 3.3 and 3.7 to
3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on F and G and are
specified in appendix. Let xt the iterates of SABA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O
(
N

2
3T−1

)
.

29

The constants ρ′ and ξ are given by

ρ′ = min

(√
K1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 5
7

,

(
K4

K5

) 1
3

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

)
(109)

and

ξ = min(K1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K4(ρ

′)−1) (110)

where

ϕ′′
z =

1

32βzx

, ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
,

K1 = min

(√
ϕ′′
zµG

32L2
x

,

√
ϕ′′
vµG

48L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβvx

)
,

K2 = min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
,

K3 =

√
ϕ′′
vµG

384ϕ′′
zL

′′
x

, K4 = min

(
1

4Lh
,

L2
x

2LhL′′
x

,

√
Γ′

6LhL′
x

,
1

8P ′ ,
ϕ′′
zµG

32β′
sz

,
ϕ′′
vµG

48β′
sv

)
and

K5 =
15(ϕ′′

zL
′
z + ϕ′′

vL
′
v)

Γ′ .

C.9.1 Control of distance from memory to iterates

We can view our method has having two “parallel” memories for each variable (zti , v
t
i , x

t
i) for

i ∈ 1[n] corresponding to calls in G and (z′tj , v
′t
j , x

′t
j) for j ∈ [m] corresponding to calls to F .

At each iteration, we sample i at random uniformly and do (zt+1
i , vt+1

i , xt+1
i) = (zt, vt, xt) and

(zt+1
i′ , vt+1

i′ , xt+1
i′) = (zti′ , v

t
i′ , x

t
i′) for i′ ̸= i, and similarly for the other memory.

In what follows, we focus on controlling the error between the iterates and the memories. We define
to make things simpler

Et
z =

1

n

n∑
i=1

E[∥zt − zti∥2] , Et
v =

1

n

n∑
i=1

E[∥vt − vti∥2] , Et
x =

1

n

n∑
i=1

E[∥xt − xt
i∥2] ,

and similarly E′t
x , E

′t
v and E′t

x .

Lemma C.5. We have the following inequalities:

Et+1
z ≤

(
1− 1

2n

)
Et

z + ρ2E∥Dt
z∥2 + 2nρ2E[∥Dz(z

t, vt, xt)∥2] ,

Et+1
v ≤

(
1− 1

2n

)
Et

v + ρ2E∥Dt
v∥2 + 2nρ2E[∥Dv(z

t, vt, xt)∥2] ,

Et+1
x ≤

(
1− 1

2n

)
Et

x + γ2E∥Dt
x∥2 + 2nγ2E[∥Dx(z

t, vt, xt)∥2] ,

E′t+1
z ≤

(
1− 1

2m

)
Et

z + ρ2E∥Dt
z∥2 + 2mρ2E[∥Dz(z

t, vt, xt)∥2] ,

E′t+1
v ≤

(
1− 1

2m

)
Et

v + ρ2E∥Dt
v∥2 + 2mρ2E[∥Dv(z

t, vt, xt)∥2] ,

and

E′t+1
x ≤

(
1− 1

2m

)
Et

x + γ2E∥Dt
x∥2 + 2mγ2E[∥Dx(z

t, vt, xt)∥2] .

30

Proof. We provide the detailed proof for Et
z . The approach for the five others is similar.

Let i ∈ [n]. Taking the expectation of ∥zt+1 − zt+1
i ∥2 conditionaly to zt, vt, xt yields

Et[∥zt+1 − zt+1
i ∥2] = 1

n
Et[∥zt+1 − zt∥2] + n− 1

n
Et[∥zt+1 − zti∥2] .

Then, using the fact that Et[D
t
z(z

t, vt, xt)] = Dz(z
t, vt, xt), we have

Et[∥zt+1 − zti∥2] = Et[∥zt+1 − zt∥2] + ∥zt − zti∥2 − 2ρ⟨Dz(z
t, vt, xt), zt − zti⟩ . (111)

We then upper-bound crudely the scalar product by Cauchy-Schwarz and Young inequalities with
parameter β:

Et[∥zt+1 − zti∥2] ≤ Et[∥zt+1 − zt∥2] + ρβ−1∥Dz(z
t, vt, xt)∥2 + (1 + ρβ)∥zt − zti∥2

As a consequence, by taking the total expectation and summing for all i ∈ [n], we find

Et+1
z ≤ ρ2E[∥Dt

z∥2] + ρβ−1

(
1− 1

n

)
E[∥Dz(z

t, vt, xt)∥2] + (1 + ρβ)

(
1− 1

n

)
Et

z .

Finally, we take β = 1
2nρ to obtain

Et+1
z ≤

(
1− 1

2n

)
Et

z + ρ2E∥Dt
z(z

t, vt, xt)∥2 + 2nρ2E[∥Dz(z
t, vt, xt)∥2] . (112)

C.9.2 Bounds on the variances

The following lemma gives us upper-bounds for E[∥Dt
z(z

t, vt, xt)∥2], E[∥Dt
v(z

t, vt, xt)∥2], and
E[∥Dt

x(z
t, vt, xt)∥2].

Lemma C.6. For SABA, there are constants L′
z, L

′
v, L

′
x > 0 such that

E[∥Dt
z(z

t, vt, xt)∥]2 ≤ 2E[∥Dz(z
t, vt, xt)∥2] + 2L′

z(E
t
z + Et

x) ,

E[∥Dt
v(z

t, vt, xt)∥2] ≤ 2E[∥Dv(z
t, vt, xt)∥2] + 2L′

v(E
t
z +Et

x +Et
v +E′t

z +E′t
x) + 2L′′

v(δ
t
z + δtv)

and

E[∥Dt
x(z

t, vt, xt)∥2] ≤ 2E[∥Dx(z
t, vt, xt)∥2]+2L′

x(E
t
z +Et

x+Et
v+E′t

z +E′t
x)+2L′′

x(δ
t
z + δtv) .

Proof. For SABA, if we consider i sampled from [n] at iteration t, we have

Dt
z = ∇1Gi(z

t, xt)−∇1Gi(z
t
i , x

t
i) +

1

n

n∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′) .

Hence we get

Et[∥Dt
z(z

t, vt, xt)∥2] = Et[∥∇1Gi(z
t, xt)−∇1Gi(z

t
i , x

t
i) +

1

n

N∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′)

−∇1G(zt, xt) +∇1G(zt, xt)∥2]
≤ 2∥∇1G(zt, xt)∥2 + 2Et[∥∇1Gi(z

t, xt)−∇1Gi(z
t
i , x

t
i) (113)

+
1

n

N∑
i′=1

∇1Gi′(z
t
i′ , x

t
i′)−∇1G(zt, xt)∥2] .

The second term is the variance of ∇1Gi(z
t, xt)−∇1Gi(z

t
i , x

t
i), which is therefore upper-bounded

by

31

Et[∥[∇1Gi(z
t, xt)−∇1Gi(z

t
i , x

t
i)∥2] =

1

n

n∑
i=1

∥[∇1Gi(z
t, xt)−∇1Gi(z

t
i , x

t
i)∥2

≤ L′
z

n

n∑
i=1

(∥zt − zti∥2 + ∥xt − xt
i∥2) (114)

where the inequality comes from the Lipschitz continuity of each ∇1Gi with L′
z = maxi∈[n] L

Gi
1 .

Then, by plugging (114) into (113) and taking the total expectation, we get

E[∥Dt
z(z

t, vt, xt)∥]2 ≤ 2E[∥Dz(z
t, vt, xt)∥2] + 2L′

z(E
t
z + Et

x) . (115)

Things are quite similar for the other variables, albeit a bit more difficult.
In v, it holds

Et[∥Dt
v(z

t, vt, xt)∥2] =Et[∥∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j) +

1

m

m∑
j′=1

∇1Fj′(z
′t
j′ , x

′t
j′) (116)

+∇2
11Gi(z

t, xt)vt −∇2
11Gi(z

t
i , x

t
i)v

t
i +

1

n

n∑
i′=1

∇2
1Gi′(z

t
i′ , x

t
i′)vi′t

−Dv(z
t, vt, xt) +Dv(z

t, vt, xt)∥2]
≤2[∥Dv(z

t, vt, xt)∥2 (117)

+ 2Et[∥∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j) +

1

m

m∑
j′=1

∇1Fj′(z
′t
j′ , x

′t
j′)

+∇2
11Gi(z

t, xt)vt −∇2
11Gi(z

t
i , x

t
i)v

t
i +

1

n

n∑
i′=1

∇1G
2
i′(z

t
i′ , x

t
i′)v

t
i′

−Dv(z
t, vt, xt)∥2]

(118)

Here, we see that we need to control the variance of ∇1Fj(z
t, xt) − ∇1Fj(z

′t
j , x

′t
j) +

∇2
11Gi(z

t, xt)vt − ∇2
11Gi(z

t
i , x

t
i)v

t
i . Since i and j are independent, this is a sum of two inde-

pendent random variables, hence its variance is the sum of the variances, which is upper-bounded
by

Et[∥∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j)∥2] + Et[∥∇2

11Gi(z
t, xt)vt −∇2

11Gi(z
t
i , x

t
i)v

t
i∥2] .

For Et[∥∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j)∥2] we use the lipschitz continuity of the ∇1Fj :

Et[∥∇1Fj(z
t, xt)−∇1Fj(z

′t
j , x

′t
j)∥2] ≤

[
max
j∈[m]

L
Fj

1

]
Et[∥zt − ztj∥2 + ∥xt − xt

j∥2] (119)

≤
[
max
j∈[m]

L
Fj

1

]
1

m

m∑
j=1

(∥zt − ztj∥2 + ∥xt − xt
j∥2) . (120)

32

The control of Et[∥∇2
11Gi(z

t, xt)vt−∇2
11Gi(z

t
i , x

t
i)v

t
i∥2] is a bit harder without assuming the bound-

ness of v beforehand. But, we can bypass the difficulty by introducing ∇2
11Gi(z

∗(xt), xt)v∗(xt):

Et[∥∇2
11Gi(z

t, xt)vt −∇2
11Gi(z

t
i , x

t
i)v

t
i∥2] ≤ 4{Et[∥∇2

11Gi(z
t, xt)(vt − v∗(xt))∥2] (121)

+ Et[∥(∇2
11Gi(z

t, xt)−∇2
11Gi(z

∗(xt), xt))v∗(xt)∥2]
+ Et[∥(∇2

11Gi(z
∗(xt), xt)−∇2

11Gi(z
t
i , x

t
i))v

∗(xt)∥2]
+ Et[∥∇2

11Gi(z
t
i , x

t
i)(v

∗(xt)− vti)∥2]}

≤ 4((max
i∈[n]

LGi
1)∥vt − v∗(xt)∥2 + (max

i∈[n]
LGi
2)

CF

µG
∥zt − z∗(xt)∥2

(122)

+ (max
i∈[n]

LGi
2)

CF

µG
(∥xt − xt

i∥2 + 2(∥zt − z∗(xt)∥2 + ∥zt − zti∥2))

+ (max
i∈[n]

LGi
1)(∥xt − xt

i∥2 + 2(∥vt − v∗(xt)∥2 + ∥vt − vti∥2))

Let L′
v = 4max

(
2maxi∈[n] L

Gi
1 , 2maxi∈[n] L

Gi
2

CF

µG
,maxj∈[m] L

Fj

1

)
and L′′

v =

4max
(
3maxi∈[n] L

Gi
1), 3maxi∈[n] L

Gi
2)C

F

µG

)
. Taking the total expectation and putting all

together yields

E[∥Dt
v(z

t, vt, xt)∥2] ≤ 2E[∥Dv(z
t, vt, xt)∥2] + 2L′

v(E
t
z + Et

x + Et
v + E′t

z + E′t
x) + 2L′′

v(δ
t
z + δtv) .

(123)
In x we have similarly

E[∥Dt
x(z

t, vt, xt)∥2] ≤ 2E[∥Dx(z
t, vt, xt)∥2] + 2L′

x(E
t
z + Et

x + Et
v + E′t

z + E′t
x) + 2L′′

x(δ
t
z + δtv) .

(124)

We now form St = Et
z + Et

x + Et
v + E′t

z + E′t
v + E′t

x , and letting Γ = min(1
m , 1

n). Note that by
definition, each quantity Et

z is smaller than St.
We will therefore use the cruder bounds on E[∥Dt

z∥2], E[∥Dt
v∥2] and E[∥Dt

x∥2] as follows thanks to
Lemma 3.4 and Lemma C.6

E[∥Dt
z(z

t, vt, xt)∥2] ≤ 2L2
zδ

t
z + 2L′

zS
t , (125)

E[∥Dt
v(z

t, vt, xt)∥2] ≤ 2(L2
v + L′′

v)(δ
t
z + δtv) + 2L′

vS
t (126)

and
E[∥Dt

x(z
t, vt, xt)∥2] ≤ 2E[∥Dx∥2] + 2L′

xS
t + 2L′′

x(δ
t
z + δtv) . (127)

We have the following lemma
Lemma C.7. If 4ρ2(L′

z + L′
v) + 4γ2L′

x ≤ Γ
2 and 4L′′

xγ
2 ≤ ρ2(L2

v + 4L′′
v), it holds

St+1 ≤
(
1− Γ

2

)
St + βszρ

2δtz + βsvρ
2δtv + Pγ2E[∥Dx∥2]

for some Ls, βsz, P > 0.

Proof. It holds following eq. (112) (and omitting the dependencies in (zt, vt, xt) in the direction for
simplicity)

St+1 ≤ (1− Γ)St + E
[
2ρ2(∥Dt

z∥2 + ∥Dt
v∥2) + 2γ2∥Dt

x∥2

+2(m+ n)[ρ2(∥Dz∥2 + ∥Dv∥2) + γ2∥Dx∥2]
]

.

Using the previous bounds (115), (123) and (124), we get

St+1 ≤
(
1− Γ + 4ρ2(L′

z + L′
v) + 4γ2L′

x

)
St + (2(m+ n) + 4)E[ρ2(∥Dz∥2 + ∥Dv∥2)

+ γ2∥Dx∥2] + 4L′′
vρ

2(δtz + δtv) + 4L′′
xγ

2(δtz + δtv) .

33

Next, using 4ρ2(L′
z + L′

v) + 4γ2L′
x ≤ Γ

2 and letting P = (2(m+ n) + 4) we get

St+1 ≤
(
1− Γ

2

)
St+PE[ρ2(∥Dz∥2+∥Dv∥2)+γ2∥Dx∥2]++4L′′

vρ
2(δtz+δtv)+4L′′

xγ
2(δtz+δtv) .

To finish, we use Lemma 3.4 to get

St+1 ≤
(
1− Γ

2

)
St+P [ρ2((L2

z +L2
v)δ

t
z +L2

vδ
t
v)+(4L′′

vρ
2+4L′′

xγ
2)(δtz + δtv)+γ2E[∥Dx∥2]] .

Then, using that 4L′′
xγ

2 ≤ ρ2(L2
v + 4L′′

v), we get the bound, letting Lsz = L2
z + L2

v + 4L′′
v and

Lsv = L2
v + 4L′′

v :

St+1 ≤
(
1− Γ

2

)
St + βszρ

2δtz + βsvρ
2δtv + Pγ2E[∥Dx∥2]

with βsz = 2PLsz , βsv = 2PLsv

C.9.3 Putting it all together

Recall that we denote gt = E[∥∇h(xt)∥2] and ht = E[h(xt)]. In the following lemma, we adapt
Lemma 3.9 and Lemma 3.10 to the SABA algorithm.
Lemma C.8. If

ρ ≤ min

(
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

)
and

γ ≤ min

(√
ρµG

64βzxL′′
x

,

√
L′
z

2L′
xβzx

ρ,

√
ρµG

128βvxL′′
x

,

√
ρβvz

4L′′
xβvx

,

√
L′
v

2L′
xβvx

ρ,
1

4Lh
,

L2
x

2LhL′′
x

)
then it holds

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2L′′

xβzxγ
2δtv + 5L′

zρ
2St + 2βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] , (128)

δt+1
v ≤

(
1− ρµG

16

)
δtv + 3βvzρδ

t
z + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] (129)

and
ht+1 ≤ ht − γ

2
gt − γ

4
E[∥Dx(z

t, vt, xt)∥2] + L2
xγ(δ

t
z + δtv) + LhL′

xγ
2St . (130)

Proof. We start from Lemma 3.9 and plug the bounds of Equations (125) and (126).

δt+1
z ≤

(
1− ρµG

4
+ 4L2

zρ
2 + 4βzxL

′′
xγ

2
)
δtz + 2L′′

xβzxγ
2δtv (131)

+ (4L′
zρ

2 + 2L′
xβzxγ

2)St +

(
2βzxγ

2 + βzx

γ2

ρ

)
E[∥Dx(z

t, vt, xt)∥2]

Since ρ ≤ µG

64L2
z

and γ2 ≤ ρµG

64βzxL′′
x

, we have

−ρµG

4
+ 4L2

zρ
2 + 4βzxL

′′
xγ

2 ≤ −ρµG

8
. (132)

The condition γ2 ≤ L′
z

2L′
xβzx

ρ2 gives us

4L′
zρ

2 + 2L′
xβzxγ

2 ≤ 5L′
zρ

2 . (133)

With ρ ≤ βzx

2βzx
, we get

2βzxγ
2 + βzx

γ2

ρ
≤ 2βzx

γ2

ρ
. (134)

34

We can plug Equations (132), (133) and (134) into Equation (131) and we end up with

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2L′′

xβzxγ
2δtv + 5L′

zρ
2St + 2βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] .

The proof for δtv is quite similar. From Lemma 3.9, Equations (126) and (127).

δt+1
v ≤

(
1− ρµG

8

)
δtv + βvzρδ

t
z + 2ρ2V t

v + βvxγ
2V t

x + βvx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] (135)

≤
(
1− ρµG

8
+ 4(L2

v + L′′
v)ρ

2 + 4L′′
xβvxγ

2
)
δtv + (4(L2

v + L′′
v)ρ

2 + 2L′′
xβvxγ

2 + βvzρ)δ
t
z+

(136)

+
(
4L′

vρ
2 + 2L′

xβvxγ
2
)
St +

(
2βvxγ

2 + βvx

γ2

ρ

)
E[∥Dx(z

t, vt, xt)∥2] .

Using ρ ≤ µG

128(L2
v+L′′

v)
and γ2 ≤ ρµG

128L′′
xβvx

, we get

−ρµG

8
+ 4(L2

v + L′′
v)ρ

2 + 4L′′
xβvxγ

2 ≤ −ρµG

16
. (137)

With γ2 ≤ ρβvz

4L′′
xβvx

and ρ ≤ βvz

8(L2
v+L′′

v)
, we have

4(L2
v + L′′

v)ρ
2 + 2L′′

xβvxγ
2 + βvzρ ≤ 3βvzρ . (138)

The condition γ2 ≤ L′
v

2L′
xβvx

ρ2 yields

4L′
vρ

2 + 2L′
xβvxγ

2 ≤ 5L′
vρ

2 . (139)

With ρ ≤ βvx

2βvx
we get

2βvxγ
2 + βzx

γ2

ρ
≤ 2βvx

γ2

ρ
. (140)

As a consequence of Equations (135), (137), (138), (139) and (140), we have

δt+1
v ≤

(
1− ρµG

16

)
δtv + 3βvzρδ

t
z + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2] .

For the inequality on ht, we start from Equations (88) and (127)

ht+1 ≤ ht − γ

2
gt −

(γ
2
− Lhγ2

)
E[∥Dx(z

t, vt, xt)∥2] (141)

+

(
L2
x

2
γ + LhL′′

xγ
2

)
(δtz + δtv) + LhL′

xγ
2St .

Assuming γ ≤ min
(

1
4Lh ,

L2
x

2LhL′′
x

)
leads

ht+1 ≤ ht − γ

2
gt − γ

4
E[∥Dx(z

t, vt, xt)∥2] + L2
xγ(δ

t
z + δtv) + LhL′

xγ
2St . (142)

We are now ready to prove Theorem 3.

Proof. We consider the Lyapunov function

Lt = ht + ϕsS
t + ϕzδ

t
z + ϕvδ

t
v (143)

for some constants ϕs, ϕz and ϕv .

35

We have

Lt+1 − Lt ≤ −γ

2
gt −

(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2

)
E[∥Dx(z

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2
)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LhL′
xγ

2

)
St .

To get a decrease, ϕz , ϕv and ϕs, ρ and γ must be such that:

2ϕzβzx

γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ2 ≤ γ

4

L2
xγ + 8ϕvβvzρ+ ϕsβszρ

2 ≤ ϕz
µG

8
ρ

L2
xγ + 8ϕzL

′′
xγ

2 + ϕsβsvρ
2 ≤ ϕv

µG

16
ρ

5ϕzL
′
zρ

2 + 5ϕvL
′
vρ

2 + LhL′
xγ

2 ≤ ϕs
Γ

2
.

In order to take into account the scaling of the quantities with respect to N = n + m, we take
ρ = ρ′Nnρ , γ = γ′Nnγ , ϕz = ϕ′

zN
nz , ϕv = ϕ′

vN
nv and ϕs = ϕ′

sN
ns . Since Γ = O(N−1),

P = O(N), βsz = O(N) and βsv = O(N), we also define Γ′ = ΓN , P ′ = PN−1, β′
sz = βszN

−1

and β′
svN

−1. Now, the previous Equations read (after slight simplifications):

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
Nnz+nγ−nρ + ϕ′

sP
′γ′Nns+nγ+1 ≤ 1

4

L2
xγ

′Nnγ + 8ϕ′
vβvzρ

′Nnv+nρ + ϕ′
sβ

′
sz(ρ

′)2N2nρ+ns+1 ≤ ϕ′
z

µG

8
ρ′Nnz+nρ

L2
xγ

′Nnγ + 8ϕ′
zL

′′
x(γ

′)2N2nγ+nz + ϕ′
sβ

′
sv(ρ

′)2Nns+2nρ+1 ≤ ϕ′
v

µG

16
ρ′Nnv+nρ

5ϕ′
zL

′
z(ρ

′)2Nnz+2nρ + 5ϕ′
vL

′
v(ρ

′)2N2nρ+nv + LhL′
x(γ

′)2Nnγ ≤ ϕs
Γ′

2
Nns−1 .

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take nz = nv = 0, nρ = nγ = − 2

3 and ns = − 1
3 . The Equations become

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
+ ϕ′

sP
′γ′ ≤ 1

4

L2
xγ

′N−2/3 + 8ϕ′
vβvzρ

′N−2/3 + ϕ′
sβ

′
sz(ρ

′)2N−2/3 ≤ ϕ′
z

µG

8
ρ′N−2/3

L2
xγ

′N−2/3 + 8ϕ′
zL

′′
x(γ

′)2N−4/3 + ϕ′
sβ

′
sv(ρ

′)2N−2/3 ≤ ϕ′
v

µG

16
ρ′N−2/3

5ϕ′
zL

′
z(ρ

′)2N−4/3 + 5ϕ′
vL

′
v(ρ

′)2N−4/3 + LhL′
x(γ

′)2N−4/3 ≤ ϕ′
s

Γ′

2
N−4/3 .

We can replace the penultimate equation by the stronger

L2
xγ

′N−2/3 + 8ϕ′
zL

′′
x(γ

′)2N−2/3 + ϕ′
sβ

′
sv(ρ

′)2N−2/3 ≤ ϕ′
v

µG

16
ρ′N−2/3

so that we can simplify all the equations by dropping the dependencies in N :

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
+ ϕ′

sP
′γ′ ≤ 1

4

L2
xγ

′ + 8ϕ′
vβvzρ

′ + ϕ′
sβ

′
sz(ρ

′)2 ≤ ϕ′
z

µG

8
ρ′

L2
xγ

′ + 8ϕ′
zL

′′
x(γ

′)2 + ϕ′
sβ

′
sv(ρ

′)2 ≤ ϕ′
v

µG

16
ρ′

5ϕ′
zL

′
z(ρ

′)2 + 5ϕ′
vL

′
v(ρ

′)2 + LhL′
x(γ

′)2 ≤ ϕ′
s

Γ′

2
.

36

Let us take ϕ′
s = 1, ϕ′

z = ϕ′′
z
ρ′

γ′ and ϕ′
v = ϕ′′

v
ρ′

γ′ with ϕ′′
z = 1

32βzx

and ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
.

The equations become

P ′γ′ ≤ 1

8

L2
xγ

′ + β′
sz(ρ

′)2 ≤ ϕ′′
z

µG

16

(ρ′)2

γ′

L2
xγ

′ + 8ϕ′′
zL

′′
xγ

′ρ′ + β′
sv(ρ

′)2 ≤ ϕ′′
v

µG

16

(ρ′)2

γ′

5ϕ′′
zL

′
z

(ρ′)3

γ′ + 5ϕ′′
vL

′
v

(ρ′)3

γ′ + LhL′
x(γ

′)2 ≤ Γ′

2
.

The condition γ′ ≤ 1
8P ′ ensures that the first equation is verified. With γ′ ≤ min

(√
ϕ′′
z µG

32L2
x
ρ′,

ϕ′′
z µG

32β′
sz

)
,

the second equations is verified. With γ′ ≤ min
(√

ϕ′′
vµG

48L2
x
ρ′,

ϕ′′
vµG

48β′
sv
,
√

ϕ′′
vµG

384ϕ′′
zL

′′
xρ

′

)
, the third is

verified. With γ′ ≤
√

Γ′

6LhL′
x

, the last can be simplified:

(5ϕ′′
zL

′
z + 5ϕ′′

vL
′
v)(ρ

′)3 ≤ Γ′

3
γ′ .

Let us write γ′ = ξρ′. If we want that equation does no contradict the previous upper bound on γ′

involving ρ′ and the conditions of Lemma C.8, that is

γ′ ≤ min

(√
ϕ′′
zµG

32L2
x

,

√
ϕ′′
vµG

48L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβvx

)
︸ ︷︷ ︸

K1

ρ′

γ′ ≤ min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′

γ′ ≤

√
ϕ′′
vµG

384ϕ′′
zL

′′
x︸ ︷︷ ︸

K3

1√
ρ′

γ′ ≤ min

(
1

4Lh
,

L2
x

2LhL′′
x

,

√
Γ′

6LhL′
x

,
1

8P ′ ,
ϕ′′
zµG

32β′
sz

,
ϕ′′
vµG

48β′
sv

)
︸ ︷︷ ︸

K4

γ′ ≥ 15(ϕ′′
zL

′
z + ϕ′′

vL
′
v)

Γ′︸ ︷︷ ︸
K5

ρ3

ξ must verify

ξ ≤ K1

ξ ≤ K2(ρ
′)−

1
2

ξ ≤ K3(ρ
′)−

3
2

ξ ≤ K4(ρ
′)−1

ξ ≥ K5(ρ
′)2

which is possible if ρ′ satisfies

ρ′ ≤ min

(√
K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2
)

.

37

Let us take

ρ′ = min

(√
K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

)
(144)

and
ξ = min(K1,K2(ρ

′)−
1
2 ,K3(ρ

′)−
3
2 ,K4(ρ

′)−1) . (145)
Finally, we have

Lt+1 − Lt ≤ −γ

2
gt

and therefore, summing and telescoping yields

1

T

T∑
t=1

gt ≤ L1

γT
=

L0N
2
3

T
.

Since with respect to N we have

L0 = h0 + ϕzδ
0
z + ϕvδ

0
v + ϕsS

0 = O(N−1 + 1 + 1 +N− 1
3) = O(1) ,

we end up with

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O

(
N

2
3

T

)
.

C.10 Proof of Theorem 4

We are now going to prove Theorem 4 that we recall here:

Theorem 4 (Convergence of SABA, PL case). Assume that h satisfies the PL inequality and that
Assumptions 3.1 to 3.3 and 3.7 to 3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ′N−1, where ρ′

and ξ depend only on F and G and are specified in appendix. Let xt the iterates of SABA and
c′ ≜ min

(
µh,

1
16P ′

)
with P ′ specified in the appendix. Then,

E[hT]− h∗ = (1− c′γ)T (h0 − h∗ + C0)

where C0 is a constant specified in appendix that depends on the initialization of z, v, x and memory.

Here, we have

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

 ,

and
ξ = min(K ′

1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K ′

4(ρ
′)−1) .

where P ′ = PN−1, Γ′ = ΓN ,

ϕ′′
z =

1

32βzx

, ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
,

K ′
1 = min

(
µG

64c′
,

√
ϕ′′
zµG

48L2
x

,

√
ϕ′′
vµG

64L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβvx

)
,

K2 = min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
,

K3 =

√
ϕ′′
vµG

512ϕ′′
zL

′′
x

, K ′
4 = min

(
Γ′

6c′
,

1

4Lh
,

L2
x

2LhL′′
x

,

√
Γ′

6LhL′
x

,
1

18P ′ ,
ϕ′′
zµG

48β′
sz

,
ϕ′′
vµG

64β′
sv

)
and

K5 =
20(ϕ′′

zL
′
z + ϕ′′

vL
′
v)

Γ′ .

38

Proof. For simplicity, we assume that h∗ = 0 and so for any x ∈ Rd the PL inequality reads:

1

2
∥∇h(x)∥2 ≥ µhh(x) . (146)

Then, eq. (130) gives

ht+1 ≤
(
1− γµh

2

)
ht − γ

4
E[∥Dx(z

t, vt, xt)∥2] + γL2
x(δ

t
z + δtv) + LhL′

xγ
2St .

We take Lt the Lyapunov function given in Equation (143). We find

Lt+1 − Lt ≤ −γµhh
t −
(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2

)
E[∥Dx(z

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2
)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LhL′
xγ

2

)
St .

We now try to find linear convergence, hence we add to this cLt to get

Lt+1 − (1− c)Lt ≤ −(γµh − c)ht −
(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2 − c

)
E[∥Dx(z

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2 − cϕz

)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2 − cϕv

)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LhL′
xγ

2 − cϕS

)
St .

Hence, the set of inequations for decrease becomes

c ≤ γµh

2ϕzβzx

γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ2 + c ≤ γ

4

L2
xγ + 8ϕvβvzρ+ ϕsβszρ

2 + ϕzc ≤ ϕz
µG

8
ρ

L2
xγ + 8ϕzL

′′
xγ

2 + ϕsβsvρ
2 + ϕvc ≤ ϕv

µG

16
ρ

5ϕzL
′
zρ

2 + 5ϕvL
′
vρ

2 + LhL′
xγ

2 + ϕsc ≤ ϕs
Γ

2
.

We see that it is more convenient to write c = γc′. As previously, we write γ = γ′Nnγ , ρ = ρ′Nnρ ,
ϕz = ϕ′

zN
nz , ϕv = ϕ′

vN
nv , ϕs = ϕ′

sN
ns , P = P ′N , Γ = Γ′N−1, βsx = β′

sxN and βsv = β′
svN .

The equations read:

c′ ≤ µh

2ϕ′
zβzx

γ′

ρ′
Nnz+nγ−nρ + 2ϕ′

vβvx

γ′

ρ′
Nnv+nγ−nρ + ϕ′

sP
′γ′Nns+1+nγ + c′ ≤ 1

4

L2
xγ

′Nnγ + 8ϕ′
vβvzρ

′Nnv+nρ + ϕ′
sβ

′
sz(ρ

′)2Nns+2nρ+1 + ϕ′
zc

′γ′Nnz+nγ ≤ ϕ′
z

µG

8
ρ′Nnρ+nz

L2
xγ

′Nnγ + 8ϕ′
zL

′′
x(γ

′)2Nnz+2nγ + ϕ′
sβ

′
sv(ρ

′)2Nns+1+2nρ + ϕ′
vc

′γ′Nnv+nγ ≤ ϕ′
v

µG

16
ρ′Nnv+nρ

5ϕ′
zL

′
z(ρ

′)2Nnz+2nρ + 5ϕ′
vL

′
v(ρ

′)2Nnv+2nρ + LhL′
x(γ

′)2N2nγ + ϕ′
sc

′γ′Nns+nγ ≤ ϕ′
s

Γ′

2
Nns−1 .

39

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take nz = nv = 0, nρ = − 2

3 , nγ = −1 and ns = − 1
3 . The Equations become

c′ ≤ µh

2ϕ′
zβzx

γ′

ρ′
N− 1

3 + 2ϕ′
vβvx

γ′

ρ′
N− 1

3 + ϕ′
sP

′γ′N− 1
3 + c′ ≤ 1

4

L2
xγ

′N−1 + 8ϕ′
vβvzρ

′N− 2
3 + ϕ′

sβ
′
sz(ρ

′)2N− 2
3 + ϕ′

zc
′γ′N−1 ≤ ϕ′

z

µG

8
ρ′N− 2

3

L2
xγ

′N−1 + 8ϕ′
zL

′′
x(γ

′)2N−2 + ϕ′
sβ

′
sv(ρ

′)2N− 2
3 + ϕ′

vc
′γ′N−1 ≤ ϕ′

v

µG

16
ρ′N− 2

3

5ϕ′
zL

′
z(ρ

′)2N− 4
3 + 5ϕ′

vL
′
v(ρ

′)2N−2 + LhL′
x(γ

′)2N−2 + ϕ′
sc

′γ′N− 4
3 ≤ ϕ′

s

Γ′

2
N− 4

3 .

Now we have to find ρ′, γ′, ϕ′
z , ϕ′

v and ϕ′
s that verifies the following conditions (which are a bit

stronger than thoose in the previous Equations):

c′ ≤ µh

2ϕ′
zβzx

γ′

ρ′
+ 2ϕ′

vβvx

γ′

ρ′
+ ϕ′

sP
′γ′ + c′ ≤ 1

4

L2
xγ

′ + 8ϕ′
vβvzρ

′ + ϕ′
sβ

′
sz(ρ

′)2 + ϕ′
zc

′γ′ ≤ ϕ′
z

µG

8
ρ′

L2
xγ

′ + 8ϕ′
zL

′′
x(γ

′)2 + ϕ′
sβ

′
sv(ρ

′)2 + ϕ′
vc

′γ′ ≤ ϕ′
v

µG

16
ρ′

5ϕ′
zL

′
z(ρ

′)2 + 5ϕ′
vL

′
v(ρ

′)2 + LhL′
x(γ

′)2 + ϕ′
sc

′γ′ ≤ ϕ′
s

Γ′

2
.

As previously, we take ϕ′
s = 1 and we denote ϕ′

z = ϕ′′
z
ρ′

γ′ with ϕ′′
z = 1

32βzx

and ϕ′
z = ϕ′′

z
ρ′

γ′ with

ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
, the equations become

c′ ≤ µh

P ′γ′ + c′ ≤ 1

8

L2
x(γ

′)2 + β′
sz(ρ

′)2γ′ + ϕ′′
zc

′ρ′γ′ ≤ ϕ′′
z

µG

16
(ρ′)2

L2
x(γ

′)2 + 8ϕ′′
zL

′′
xρ

′(γ′)2 + β′
sv(ρ

′)2γ′ + ϕ′′
vc

′ρ′γ′ ≤ ϕ′′
v

µG

16
(ρ′)2

5ϕ′′
zL

′
z(ρ

′)3 + 5ϕ′′
vL

′
v(ρ

′)3 + LhL′
x(γ

′)3 + c′(γ′)2 ≤ Γ′

2
γ′ .

Since c′ ≤ 1
16 and γ′ ≤ 1

16P ′ , the second equation is verified. With γ′ ≤ min
(√

ϕ′′
z µG

48L2
x
ρ′,

ϕ′′
z µG

48βsv

)
and c′ ≤ µGρ′

48γ′ the third is verified. The conditions γ′ ≤ min
(√

ϕ′′
vµG

64L2
x
ρ′,
√

ϕ′′
vµG

512ϕ′′
zL

′′
xρ

′ ,
ϕ′′
vµG

64β′
sv

)
and

c′ ≤ µGρ′

64γ′ ensure that the forth is verified. With γ′ ≤
√

Γ′

8LhL′
x

and c′ ≤ Γ′

8γ′ , the fifth is simplified in

5ϕ′′
zL

′
z(ρ

′)3 + 5ϕ′′
vL

′
v(ρ

′)3 ≤ Γ′

4
γ′ .

40

As in the proof of Theorem 3, let us denote γ′ = ξρ′. To verify this equation and the previous bounds
on γ′ and c′, we need

γ′ ≤ min

(√
ϕ′′
zµG

48L2
x

,

√
ϕ′′
vµG

64L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβzx

)
︸ ︷︷ ︸

K1

ρ′ ,

γ′ ≤ min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′ ,

γ′ ≤

√
ϕ′′
vµG

512ϕ′′
zL

′′
x︸ ︷︷ ︸

K3

1√
ρ′

,

γ′ ≤ min

(
1

4Lh
,

L2
x

2LhL′′
x

,
ϕ′′
zµG

48βsv
,
ϕ′′
vµG

64β′
sv

,
1

16P ′ ,

√
Γ′

8LhL′
x

)
︸ ︷︷ ︸

K4

γ′ ≥ 20(ϕ′′
zL

′
z + ϕ′′

vL
′
v)

20︸ ︷︷ ︸
K5

(ρ′)3 ,

c′ ≤ min

(
µh,

1

16
,

1

16P ′

)
︸ ︷︷ ︸

K6

,

c′ ≤ µG

64︸︷︷︸
K7

1

ξ
,

c′ ≤ Γ′

8︸︷︷︸
K8

1

γ′ .

So, ξ, ρ′ and c′ must verify

ξ ≤ min

(
K1,

K7

c′

)
︸ ︷︷ ︸

K′
1

,

ξ ≤ K2(ρ
′)−

1
2 ,

ξ ≤ K3(ρ
′)−

3
2 ,

ξ ≤ min

(
K4,

K8

c′

)
︸ ︷︷ ︸

K′
4

(ρ′)−1

ξ ≥ K5(ρ
′)2 ,

c′ ≤ min

(
µh,

1

16
,

1

16P ′

)
︸ ︷︷ ︸

K6

,

which is possible if

ρ′ ≤ min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

 .

41

So let us take c′ = min
(
µh,

1
16 ,

1
16P ′

)
= min

(
µh,

1
16P ′

)
,

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

and

ξ = min(K1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K4(ρ

′)−1) .

We have
Lt+1 ≤ (1− c)Lt

therefore, unrolling yields

ht − h∗ ≤ Lt ≤ (1− c′γ)tL0.

D Convergence rates with weaker regularity assumptions

To get our rates, we need stronger assumptions than in the stochastic bilevel optimization literature [18,
23, 25, 2]. In this section, we shortly present the convergence rates we can expect if we replace
Assumptions 3.1 and 3.2 by Assumptions D.1 and D.2.
Assumption D.1. The function F is differentiable. The gradient ∇F is Lipschitz continuous in
(z, x) with Lipschitz constants LF

1 .
Assumption D.2. The function G is twice continuously differentiable on Rp × Rd. For any x ∈ Rd,
G(· , x) is µG-strongly convex. The derivatives ∇G are ∇2G are Lipschitz continuous in (z, x) with
respective Lipschitz constants LG

1 and LG
2 .

With these assumptions, we are not ensured that v∗ is smooth, and so the descent lemmas take the
form of Lemma D.3.
Lemma D.3. Assume that ρ ≤ 2

µG
. We have:

δt+1
z ≤

(
1− ρµG

2

)
δtz + 2ρ2V t

z + 4
L2
∗

µG

γ2

ρ
V t
x

δt+1
v ≤

(
1− ρµG

4

)
δtv + ρβvzδ

t
z + 2ρ2V t

v + 8
L2
∗

µG

γ2

ρ
V t
x

where L∗ is the maximum between the Lipschitz constants of z∗ and v∗ (see Lemma C.1) and
βvz = 1

µ3
G
(LFµG + LG

2)
2.

Proof. Inequality for δz .
Instead of expanding the square as done in the proof of Lemma 3.9 in Equation (45), we use Young’s
inequality for some a > 0

δt+1
z ≤ (1 + a)E[∥zt+1 − z∗(xt)∥2] + (1 + a−1)E[∥z∗(xt+1)− z∗(xt)∥2] . (147)

Treating E[∥zt+1− z∗(xt)∥2] and E[∥z∗(xt+1)− z∗(xt)∥2] as done in the proof of Lemma 3.9 leads
to

δt+1
z ≤ (1 + a)

[
(1− ρµG)δ

t
z + ρ2V t

z

]
+ (1 + a−1)L2

∗γ
2V t

x (148)

In order to keep a decrease in δz , we might want to use a = 1
2ρµG, which gives the bound

δt+1
z ≤

(
1− ρµG

2

)
δtz + 2ρ2V t

z + βzx
γ2

ρ
V t
x (149)

with βzx = 4
L2

∗
µG

. Indeed, this gives (1 + 1
2ρµG)(1 − ρµG) ≤ 1 − 1

2ρµG. We have a ≤ 1 since
ρ ≤ 2

µG
, so (1 + a)ρ2 ≤ 2ρ2. Finally, we also have 1 + a−1 ≤ 2a−1 = 4

ρµG
.

Inequality for δv. As for δz , the difference with the proof of Lemma 3.9 is that we use we use
Young’s inequality for some b > 0 to get

δt+1
v ≤ (1 + b)E[∥vt+1 − v∗(xt)∥2] + (1 + b−1)E[∥v∗(xt+1)− v∗(xt)∥2] . (150)

The remaining part of the proof is similar to the proof of Lemma 3.9.

42

The main difference with Lemma 3.9 is that we have O(γ
2

ρ) in factor of V t
x instead of O(γ2). As a

consequence, we need that the ratio γ
ρ goes to zero to get convergence, as in [23]. This prevent us in

getting rates that match rates of single level algorithms.

Hence, for SOBA, we have to choose γ = O(T− 3
5) and ρ = O(T− 2

5) and we end up with a
convergence rate in O(T− 2

5). For SABA, we get a O((n + m)ϵ−1) sample complexity, which is
actually the sample complexity of SOBA used with full batch estimated directions.

43

	Introduction
	Proposed framework
	First example: the SOBA algorithm
	Global variance reduction with the SABA algorithm

	Theoretical analysis
	Background and assumptions
	Fundamental descent lemmas
	Analysis of SOBA
	SABA: a stochastic method with optimal rates

	Experiments
	Hyperparameters selection
	Data hyper-cleaning

	Conclusion
	Extensive comparison between stochastic methods for bilevel optimization
	Details on experiments
	Generalities
	Hyperparameter selection on a toy problem
	Hyperparameters selection on IJCNN1
	Data hyper-cleaning
	Additional experiment: Hyperparameter selection on the covtype dataset

	Proofs
	Proof of prop:zerosdirections
	Proof of lemma:smoothness
	Smoothness constant of h
	Lemmas on the regularity of z* and v*
	Proof of lemma:coupledinequalities
	Proof of lemma:descentlemma
	Proof of thm:sobafixed
	Proof of thm:decreasingstepsize
	Proof of th:cvgsabasmooth
	Control of distance from memory to iterates
	Bounds on the variances
	Putting it all together

	Proof of th:cvgsabapl

	Convergence rates with weaker regularity assumptions

