
HAL Id: hal-03561999
https://hal.science/hal-03561999

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Delay Control of Quadrotor Unmanned Aerial
Vehicles: A Multiplicity-Induced-Dominancy Based

Approach
José de Jesus Castillo-Zamora, Islam Boussaada, Amina Benarab, Juan

Escareno

To cite this version:
José de Jesus Castillo-Zamora, Islam Boussaada, Amina Benarab, Juan Escareno. Time-Delay Con-
trol of Quadrotor Unmanned Aerial Vehicles: A Multiplicity-Induced-Dominancy Based Approach.
Journal of Vibration and Control, 2022, �10.1177/10775463221082718�. �hal-03561999�

https://hal.science/hal-03561999
https://hal.archives-ouvertes.fr


Time-Delay Control of Quadrotor Unmanned
Aerial Vehicles: A Multiplicity-Induced-Dominancy

Based Approach

(To appear in: Journal of Vibration and Control)

José J. Castillo-Zamora∗, Islam Boussaada∗, Amina Benarab∗, Juan Escareno †

February 8, 2022

Abstract
The current work exploits the effects of time-delays on the stability of Un-

manned Aerial Vehicles (UAVs). In this regard, the main contribution is a
symbolic/numeric application of the Multiplicity-Induced-Dominancy (MID)
property in the control of UAVs rotorcrafts featuring time-delays. The MID
property is considered to address two of the most representative aerial robotic
platforms: a classical quadrotor vehicle and a quadrotor vehicle endowed
with tilting-rotors. The aforementioned property leads to an effective de-
layed feedback control design (MID tuning criteria), allowing the system to
meet prescribed behavior conditions based on the placement of the rightmost
root of the corresponding closed-loop characteristic function/quasipolynomial.
Lastly, the results of detailed numerical simulations, including the linear and
non-linear dynamics of the vehicle, are presented and discussed to validate
the proposal.

Keywords. Multiplicity-Induced-Dominancy, Quadrotor, Time-Delay Control, Stability,
Unmanned Aerial Vehicles.

1 Introduction
Among the actual technological surge, Unmanned Aerial Vehicles (UAVs) remain as a
popular and challenging topic within the control systems and robotics scientific commu-
nity. Such attractiveness relies on their friendly design and controllability criteria that
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have led to a wide application range such as high-precision weather monitoring, precision
agriculture, swarm-based distributed perception, among others [13,50,54].
The capability of UAVs to perform accurate maneuvers is strongly dependent on the ef-
ficient synthesis and implementation of control-task-oriented algorithms. Several of these
strategies take into consideration quaternion-based modeling approaches [2], image-aimed
stabilization, or the well-known proportional-derivative (PD) and proportional-integral-
derivative (PID) controllers [15,16,59]. In addition, robust control techniques [18,29] and
state observers [14,17,18,21] have been also been used.
Among the variety of issues undermining the aerial systems performance, the study of
time-delay effects remains relatively unexplored. In practice, UAVs’ control systems oper-
ate in presence of time-delays arising from perception processing, decision-making, control
commands and actuators’ delayed dynamics. It has been proved that time-delays induce
oscillatory phenomena rendering the system unstable. Nevertheless, some stabilizing ef-
fects of time-delays can be exploited to improve the system’s performance [48,57].
The stability of aerial vehicles under the influence of time-delays has been addressed in
works as [19,39] which provide a set of parametric stability charts. Meanwhile, [36] consid-
ers the full non-linear dynamics to study the trajectory tracking problem. It is worthwhile
highlighting that a considerable amount of prior works focuses on the communication and
information exchange processes as the main sources of time-delays [3, 31, 46, 55]. In this
regard, the range of solutions to overcome such an issue goes from delay-optimization
approaches [35] to Backstepping and non-linear control [20, 30, 38] yet, a vast variety of
different approaches can be found in the literature, see for instance [25,43–45,48,60].
Amidst the novel techniques regarding time-delay systems analysis, tracking the behavior
of the roots of the characteristic equation, as in [8], has led to an increasing interest on
exploiting the Multiplicity-Induced-Dominancy (MID) property which refers to a special
condition where a given root of the characteristic function matches the spectral abscissa
such that the corresponding spectral value is dominant.
The MID property has already been suggested to solve some low-order cases [27] and
some other phenomena described by linear time-delay differential equations [7, 9–11, 41].
Recent results in this direction provide necessary and sufficient conditions for roots of
maximal multiplicity in reduced-order time-delay systems of retarded [10,41] and neutral
types [6,40]. Nevertheless, the application of such findings on the domain of aerial robots
control, as far as it is concerned to the authors, has not been specifically considered.
The current investigation exploits the effects of the time-delay, due to the latency of
generic indoor-positioning systems, to stabilize two popular rotorcrafts: (i) a classical "+"
quadrotor and (ii) a "+" quadrotor endowing 1-Degree-Of-Freedom (DOF) tilting-rotors.
The MID property defines a tuning criteria of the controllers’ gains such that a non-
oscillatory transient response of the vehicle obeys a prescribed decay rate.
The sequel of the manuscript is outlined in the following manner: Section 2 provides a brief
introduction to time-delay differential equations and the MID property fundamentals. In
Section 3, the dynamics of the quadrotor vehicles is described. Section 4 is devoted to
the conception of the controllers that stabilize the typical quadrotor vehicle. On the other
hand, Section 5 exposes the control strategy adopted to stabilize the UAV endowed with
1-DOF tilting-rotors. Section 6 provides the results of the detailed numerical simulations
carried out to validate the proposals. Lastly, concluding remarks are given in Section 7.
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2 Fundamentals of the MID Property and Time-
Delay Differential Equations

The MID property refers to conditions under which multiple roots of the characteristic
function match the spectral abscissa. Some recent works have shown that a spectral value
of maximal multiplicity of a time-delay system is necessarily real and corresponds to the
spectral abscissa, a property called generic multiplicity-induced-dominancy, or GMID for
short, see for instance [6, 42]. However, in the case of a root of strictly intermediate
multiplicity, one has to seek for conditions on the system’s free parameters (typically the
control parameters) for the MID to hold. These conditions allow to define the admissible
assignment region, see for instance [4, 5, 10].
An extensive literature, regarding the analysis of linear time-delay systems described by
retarded delay differential equations of the form:

F (n)(t) + an−1F (n−1)(t) + . . .+ a0F(t) + φn−1F (n−1)(t− τ) + . . .+ φ0F(t− τ) = 0
(2.1)

is available (see for instance [43]). In such a system representation, F is an unknown
real-valued function, n is a positive integer, ak, φk ∈ IR for k ∈ {0, ..., n− 1} are constant
coefficients, and τ > 0 is a time-delay.
The analysis of (2.1) occurs to be important as it represents linear control systems sub-
jected a control input and a time-delay feedback u(t− τ), such that:

F (n)(t) + a(n−1)Fn−1(t) + . . .+ a0F(t) = u(t− τ) (2.2)

In the time-delay-free scenario, the control input is often established as the following
u(t) = −φn−1F (n−1)(t) − . . . − φ0F(t), assuming that the measurement of F(t) and its
derivatives F (n−1)(t), . . . ,F ′(t) are instantaneously available; thus the roots of the charac-
teristic function can be strategically chosen, according to a desired exponential behavior,
by a proper selection of the coefficients φ0, . . . , φn−1. For some additional insights, a fur-
ther conceptualization and illustrative examples on this matter, one may refer, but may
not limit, to [22,53].
Spectral methods are equally adopted to address systems with time-delays. In this re-
gard, the asymptotic behavior of the solutions depends on the roots of the characteristic
function which, for (2.1), is defined as ∆ : lC → lC for s ∈ lC such that:

∆(s) = sn +
n−1∑
k=0

aks
k + e−sτ

n−1∑
k=0

φks
k (2.3)

Thus σ0 = sup{Re{s}|s ∈ lC,∆(s) = 0} defines the exponential behavior of the solutions
of (2.1). The real number σ0 is named the spectral abscissa of ∆ and it follows that for
every ϵ > 0, there exists a κ < 0 such that for every solution F of (2.1), one has |F(t)| ≤
κe(σ0+ϵ)tmaxϑ∈[−τ,0]|F(ϑ)| [26]. In addition, to ensure the exponential convergence of the
solutions to 0, σ < 0 shall strictly hold. Nevertheless, the analysis of the (asymptotic)
behavior of the solution of (2.1) stands as a challenge since the corresponding characteristic
function ∆ has infinitely many roots.
If ∆ possesses a dominant root with negative real part, then the exponential stability of
(2.1) is equivalent to it. Additionally, it may hold, for some characteristic quasipolynomials
of time-delay systems, that the real roots of maximal multiplicity are dominant which gives
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name to the Multiplicity-Induced-Dominancy (MID) property. Thus, it follows that a root
s0 with multiplicity n ∈ IN satisfies:

∆(s0) = ∆′(s0) = . . . = ∆(n−2)(s0) = ∆(n−1)(s0) = 0 (2.4)

The formal definition of a quasipolynomial is provided below.

Definition 2.1. A quasipolynomial Λ is an entire function Λ : lC → lC which can be written
under the form

Λ(s) =
ι∑

k=0
ϱk(s)eλks (2.5)

where ι is a nonnegative integer, λ0, . . . , λι are pairwise distinct real numbers, and, for
k ∈ {0, . . . , ι}, ϱk is a nonzero polynomial with complex coefficients of degree µk ≥ 0.
The integer D = ι +

∑ι
k=0 µk is called the degree of Λ. When λ0 = 0 and λk < 0 for

k ∈ {1, . . . , ι} in (2.5), Λ is the characteristic function of a linear time-delay system with
delays −λ1, . . . ,−λι.

A set of necessary results and additional on quasipolynomials for the understanding
and analysis of these, are given next:

• The roots of a quasipolynomial do not change when its coefficients are all multiplied
by the same nonzero number, and hence one may always assume, without loss of
generality, that one nonzero coefficient of a quasipolynomial is normalized to 1, such
as the coefficient of the term of highest degree in ϱ0.

• Let Λ be a quasipolynomial of degree D in the form of (2.5). Then any root s0 ∈ lC
of Λ has multiplicity at most D.

• Let Λ : lC → lC and s0 ∈ lC be such that Λ(s0) = 0. It is said that s0 is a dominant
(respectively, strictly dominant) root of Λ if, for every s ∈ lC\{s0} such that Λ(s) = 0,
one has Re{s} ≤ Re{s0} (respectively, Re{s} < Re{s0}).

• The roots of the quasipolynomial ∆ in (2.3) with maximal multiplicity are neces-
sarily dominant and such multiplicity can be attained only in the real axis.

For an extended and detailed treatment of these concerns, the reader is referred to [4, 5,
9, 10,42,45].

3 Quadrotor Model
Let the quadrotor system be depicted in Fig. 3.1. The vision-based tracking system per-
mits to know the position of the vehicle, ξ = [x y z]T ∈ R3, in a conditioned environment.
Such sensing strategy often takes a fraction of time τ > 0 to be executed; this issue is
translated to control terms as a feedback time-delay [28,56].
The dynamics of the vehicle is described w.r.t. an inertial frame OI {xI , yI , zI} and a
body frame Ob {xb, yb, zb} whose origin matches the center of gravity (CoG) of the UAV.
xb, yb, zb define the roll, pitch and yaw axes and the corresponding principal axis of inertia
which are associated to the Euler angles η = [ϕ θ ψ]T ∈ IR3, respectively. The motion of
the aerial vehicle can be described, according to the Newton Euler formulation [15,16], as:

mrξ̈ +mrg = τξ (3.1)
Iω̇ + ω × (Iω) = τω (3.2)
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Figure 3.1: Quadrotor vehicle and vision-based tracking system (scheme conceived
from figures available at freepik.com)

where mr > 0 stands for the mass of the UAV and g = [0 0 g]T ∈ IR3 does for the vector
containing the constant of gravity acceleration g > 0. I = diag([Ix Iy Iz]T ) ∈ IR3×3 is
respectively defined by the moments of inertia about the roll, pitch and yaw axis. For a
given ν ∈ IRn, the function diag : IRn → IRn×n is defined by

diag(ν) =


ν1 0 . . . 0
0 ν2 . . . 0
...

... . . . . . .
0 0 . . . νn

 (3.3)

The angular velocity vector ω = [p q r]T ∈ IR3 is related to the Euler rates η̇ as follows

ω = Wηη̇ and Wη =

1 0 −Sθ
0 Cϕ SϕCθ

0 −Sϕ CϕCθ

 ∈ IR3×3 (3.4)

where C(•) = cos(•) and S(•) = sin(•). Such an abuse of this notation is considered
throughout the sequel of the manuscript.
The translational motion described by (3.1) is provided in terms of the inertial frame.
On the other hand, (3.2) describes the rotational motion of the quadrotor in the body
reference frame.
The actuation of the system stands as the main difference between a typical quadrotor
and a quadrotor endowed with tilting-rotors. In this sense, the translational motion of
the aircraft is driven by the forces comprised in the vector τξ ∈ IR3 which is defined, for
the typical quadrotor, by the rotation matrix Rη ∈ IR3×3 and the forces of the propellers
fi ≥ 0 (with i = 1, 2, 3, 4), as:

τξ = Rη

 0
0

T = f1 + f2 + f3 + f4

 and Rη =

CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ
CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ


(3.5)

For the quadrotor endowed with 1-DOF tilting-rotors, the vector τξ is rewritten in terms
of Rη, fi and the tilt angles α and β ∈ IR as:

τξ = Rη

 (f1 + f3) Sβ
− (f2 + f4) Sα

(f1 + f3) Cβ + (f2 + f4) Cα

 (3.6)
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The rotational states of the aircraft are controlled by the torques in the vector τω ∈ IR3

which, for the typical quadrotor structure, is defined as:

τω =

 τϕ = ℓ (f2 − f4) /2
τθ = ℓ (f3 − f1) /2

τψ = ε (f1 − f2 + f3 − f4)

 (3.7)

where ℓ > 0 denotes the diagonal motor-to-motor distance and ε > 0 is a proportionality
constant that relates the force fi to the corresponding free moment τi such that τi = εfi.
For the quadrotor vehicle equipped with tilting-rotors, τω reads as:

τω =

ℓ (f2 − f4) Cα/2 + ε (f1 + f3) Sβ
ℓ (f3 − f1) Cβ/2 − ε (f2 + f4) Sα
ε [(f1 + f3) Cβ − (f2 + f4) Cα]

 (3.8)

This non-linear description of the vehicles dynamics allows one to proceed to the concep-
tion of the controllers.

4 UAV Control: The Typical Quadrotor Case
Let the typical quadrotor vehicle be firstly addressed. As it can be found in the literature
[15, 19, 28, 39], it is typically assumed that the vehicle operates at low speeds in a quasi-
hover state (ϕ, θ ≈ 0 and, without loss of generality, ψ = 0), such that the Coriolis and
Centripetal effects are neglected. These considerations lead to a linear representation of
(3.1), (3.2), (3.5) and (3.7) of the form:

X(s) = 1
mrs2 θ(s)T (s), Y (s) = − 1

mrs2ϕ(s)T (s), Z(s) = 1
mrs2 (T (s) −mrg) ,

ϕ(s) = 1
Ixs2 τϕ(s), θ(s) = 1

Iys2 τθ(s), ψ(s) = 1
Izs2 τψ(s)

(4.1)
which corresponds to a description of the system in the frequency domain where s = σ+jω
with σ, ω ∈ IR.
From (4.1), it is immediate to observe that the Z(s) and ψ(s) motions are decoupled, yet
the X(s) dynamics is coupled to that of θ(s) and the Y (s) motion is related to that of
ϕ(s). In this regard, let the thrust T (s) be used as the control input to drive the system
to a desired height Zd(s) and τψ(s) does the proper to keep the yaw angle at 0. These
control inputs are respectively defined, as:

T (s) = mr (Cz (s)Ez(s) + g) and τψ(s) = IzCψ (s)Eψ(s) (4.2)

where the z error reads as Ez(s) = Zd(s) − e−τsZ(s) since the translational states of the
quadrotor are subjected to a feedback time-delay τ due to the inherent latency of the
vision-based tracking system, and the ψ error stands as Eψ(s) = −ψ(s) since ψd(s) = 0.
The linear controllers Cz(s) and Cψ(s) correspond to PD controllers of the form:

Cz(s) = kpz + kdzs and Cψ(s) = kpψ + kdψs (4.3)

with kpz , kpψ ∈ IR defined as the proportional gains and kdz , kdψ ∈ IR standing as the
derivative gains. The aforementioned control gains are tuned, as exposed in the sequel of
the manuscript, by means of the MID property since a time-delay affects the corresponding
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Figure 4.1: Block diagram representation of the typical quadrotor closed-loop system

dynamics.
Regarding the translational motion of the vehicle, let one consider that, for a large enough
time, T (s) → Tc = mrg as Z(s) → Zd(s) [39, 58]. The latter allows one to rewrite the
equations of motion for X(s) and Y (s) in (4.1) as:

X(s) = 1
mrs2 θ(s)Tc and Y (s) = − 1

mrs2ϕ(s)Tc (4.4)

It is thus considered that θ(s) and ϕ(s) act as the control inputs for the corresponding
DOF, such that the reference values are defined by linear PD controllers, Cx(s) and Cy(s),
as follows

θd(s) = mr

Tc
Cx(s)Ex(s) and ϕd(s) = −mr

Tc
Cy(s)Ey(s) (4.5)

with

Cx(s) = kpx + kdxs, Cy(s) = kpy + kdys (4.6)
Ex(s) = Xd(s) − e−τsX(s), Ey(s) = Yd(s) − e−τsY (s) (4.7)

where the proportional gains correspond to kpx , kpy ∈ IR, and the derivative gains are
denoted by kdx , kdy ∈ IR. Moreover, the reference values in (4.5) are achieved by the
action of the linear PD controllers:

Cθ(s) = kpθ + kdθs and Cϕ(s) = kpϕ + kdϕs (4.8)

such that:

τθ(s) = IyCθ(s)Eθ(s) and τϕ(s) = IxCϕ(s)Eϕ(s) (4.9)

with Eθ(s) = θd(s) − θ(s) and Eϕ(s) = ϕd(s) − ϕ(s). The proportional gains kpθ , kpϕ ∈ IR
as well as the derivative gains kdθ , kdϕ ∈ IR are tuned in such a manner that the rotational
dynamics is stable and faster than that of translation [58].
To synthesize the previous establishments, the X(s), Z(s) and ψ(s) closed-loop systems
are depicted in Fig. 4.1 where the dynamics of the plant is highlighted in red and the
inner dynamics is surrounded by a black dashed box. Notice that the Y (s) dynamics is
omitted since it follows the same structure as that of X(s).
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4.1 MID-Property-Based Controllers Analysis
According to Fig. 4.1, the closed-loop transfer functions of each DOF can be computed
such that the characteristic functions correspond to:

∆x (s) = s2
[
s2 + Cθ(s)

]
+ e−τsCx(s)Cθ(s) (4.10)

∆y (s) = s2
[
s2 + Cϕ(s)

]
+ e−τsCy(s)Cϕ(s) (4.11)

∆z (s) = s2 + e−τsCz(s) (4.12)
∆ψ (s) = s2 + Cψ(s) (4.13)

Regarding (4.13), no time-delay effect is present thus, the exponential behavior of the
solutions can be tuned by the proper placement of the roots of the polynomial. In this
sense, it is enough that such roots rely on the left-plane of the complex space, moreover,
a non-oscillatory stable system’s response is achieved if the roots are real, see for instance
[58]. The latter is comprised in Proposition 4.1 below.

Proposition 4.1. For the closed-loop dynamics described by (4.13), a non-oscillatory
stable system’s response is achieved and guaranteed if the controller’s gains satisfy:

kdψ = sψ,1 + sψ,2 and kpψ = sψ,1sψ,2 (4.14)

with sψ,2 > sψ,1 > 0.

Proof. The proof is provided by the substitution of the gains given in (4.14) into (4.13)
leading to:

s2 + (sψ,1 + sψ,2) s+ sψ,1sψ,2 = (s+ sψ,1) (s+ sψ,2) = 0 (4.15)

such that the roots of the system are located at s = −sψ,1 and s = −sψ,2.

It must be noticed that Proposition 4.1 can be applied to stabilize the inner-loop
dynamics highlighted in black in Fig. 4.1 as the existence of negative real roots of the
characteristic function of the open-loop system is essential to exploit the MID property.
Regarding the translational dynamics where the time-delay effect is found, the analysis of
the Z(s) dynamics is provided at first place, afterwards, the X(s) dynamics of the vehicle
is studied.
The following result, which is a direct consequence of [10], permits to characterize an
assignable spectral value guaranteeing σ−stability as well as the corresponding controller’s
gains.

Proposition 4.2. For the quasipolynomial in (4.12), the following assertions hold:

(a) The multiplicity of any given root of the quasipolynomial function is bounded by 4.

(b) For a positive delay τ , the quasipolynomial in (4.12) admits a real spectral value at
s = s0z with algebraic multiplicity 3 if and only if:

s0z = −2 +
√

2
τ

(4.16)

and the controller’s gains satisfy:

kpz = eτs0z s2
0z (s0zτ + 1) and kdz = −eτs0z s0z (s0zτ + 2) (4.17)
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Proof. The first statement of the proposition is a direct assimilation of the results pre-
sented at [9]. On the other hand, if s0z is a root with multiplicity at least 2, it follows
that: ∆z(s0z) = ∆′

z(s0z) = 0. By solving these equations for the control gains, the in
(4.17) are obtained. The root s0z reaches a multiplicity 3 if and only if:

∆′′
z(s0z) = 2 + e−τs0z

[
τ2 (kdzs0z + kpz) − 2τkdz

]
= 0 (4.18)

The substitution of (4.17) into (4.18) leads to (4.16). To prove that s0z is the dominant
root, one may exploit the result from [10, Theorem 4.2].

Let one proceed to study the quasipolynomial in (4.10). In this regard, and due to the
complexity of the expressions, a useful proposition based on a symbolic/numerical analysis
is provided next.

4.2 Symbolic/Numeric Analysis of the MID-Based Controller
Firstly, to study the behavior of the system whose characteristic function corresponds to
the quasipolynomial provided in (4.10), one must ensure that the delay-free part of the
quasipolynomial has only real roots which occurs if:

k2
dθ
> 4kpθ > 0 (4.19)

which is equivalent to Proposition (4.1). This condition over the gains kpθ and kdθ is taken
into consideration to exploit the MID property as numerically/symbolically established
next.

Proposition 4.3. For the quasipolynomial in (4.10), the following assertions hold:

(a) The multiplicity of any given root of the quasipolynomial function is bounded by 7.

(b) For a given positive delay τ , an arbitrary root s0x with algebraic multiplicity 4 is a
dominant root of (4.10) if s0x ∈ IS, where

IS =
{
s0x : − 3

10 τ < s0x < 0
}

(4.20)

and the controllers’ gains kpθ , kdθ , kpx and kdx satisfy:

kpθ = λs2
0x , kdθ = −s0x

9

(
n2λ

2 − n1λ+ n0
d2λ2 − d1λ+ d0

)
(4.21)

kpx =
s2

0xe
τs0x

C2
θ (s0x)

{
Cθ (s0x) (τs0x + 1)

[
s2

0x + Cθ (s0x)
]

+ s2
0x [Cθ (s0x) + kpθ ]

}
(4.22)

kdx = −s0xe
τs0x

C2
θ (s0x)

{
Cθ (s0x) (τs0x + 2)

[
s2

0x + Cθ (s0x)
]

+ s2
0x [Cθ (s0x) + kpθ ]

}
(4.23)

where λ is defined as the only positive real root of the following algebraic equation

p3λ
3 + p2λ

2 + p1λ+ p0 = 0 (4.24)
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with

p3 = 27
(
s2

0xτ
2 + 4s0xτ + 2

)4
(4.25)

p2 = −10s9
0xτ

9 − 243s8
0xτ

8 − 2352s7
0xτ

7 − 12090s6
0xτ

6 − 36360s5
0xτ

5 − 65916s4
0xτ

4

−72288s3
0xτ

3 − 47736s2
0xτ

2 − 17280s0xτ − 2592 (4.26)

p1 =
(
s3

0xτ
3 + 12s2

0xτ
2 + 36s0xτ + 24

) (
s3

0xτ
3 + 18s2

0xτ
2 + 54s0xτ + 24

) (
s4

0xτ
4 + 8s3

0xτ
3+

24s2
0xτ

2 + 24s0xτ + 12
)

(4.27)

p0 = −
(
s4

0xτ
4 + 8s3

0xτ
3 + 24s2

0xτ
2 + 24s0xτ + 12

) (
s3

0xτ
3 + 12s2

0xτ
2 + 36s0xτ + 24

)2

(4.28)

and

n2 = 11s12
0xτ

12 + 309s11
0xτ

11 + 3738s10
0xτ

10 + 25938s9
0xτ

9 + 115452s8
0xτ

8 + 348192s7
0xτ

7

+731016s6
0xτ

6 + 1077408s5
0xτ

5 + 1105920s4
0xτ

4 + 771120s3
0xτ

3 + 347328s2
0xτ

2

+90720s0xτ + 10368 (4.29)

n1 =
(
s3

0xτ
3 + 12s2

0xτ
2 + 36s0xτ + 24

) (
2s6

0xτ
6 + 39s5

0xτ
5 + 249s4

0xτ
4 + 744s3

0xτ
3

+1116s2
0xτ

2 + 756s0xτ + 180
)

(
s4

0xτ
4 + 8s3

0xτ
3 + 24s2

0xτ
2 + 24s0xτ + 12

)
(4.30)

n0 = 2
(
s3

0xτ
3 + 6s2

0xτ
2 + 12s0xτ + 6

) (
s4

0xτ
4 + 8s3

0xτ
3 + 24s2

0xτ
2 + 24s0xτ + 12

)
(
s3

0xτ
3 + 12s2

0xτ
2 + 36s0xτ + 24

)2
(4.31)

d2 = 3
(
2s3

0xτ
3 + 9s2

0xτ
2 + 12s0xτ + 6

) (
s2

0xτ
2 + 4s0xτ + 2

)4
(4.32)

d1 = (s4
0xτ

4 + 16s3
0xτ

3 + 63s2
0xτ

2 + 84s0xτ + 30)(s4
0xτ

4 + 8s3
0xτ

3 + 24s2
0xτ

2 + 24s0xτ + 12)
(s2

0xτ
2 + 4s0xτ + 2)2 (4.33)

d0 = (s0xτ + 2)(s3
0xτ

3 + 12s2
0xτ

2 + 36s0xτ + 24)(s4
0xτ

4 + 8s3
0xτ

3 + 24s2
0xτ

2 + 24s0xτ + 12)
(s2

0xτ
2 + 4s0xτ + 2)2 (4.34)

Proof. The first statement of the proposition is a direct assimilation of the results pre-
sented at [9], see also [42]. Furthermore, (4.21)-(4.23) are found as in Proposition 4.2. In
this regard, if s0x is a root with multiplicity at least 2, it follows that:

∆x(s0x) = s2
0x

(
s2

0x + kdθs0x + kpθ

)
+ e−τs0x (kdxs0x + kpx) (kdθs0x + kpθ) = 0 (4.35)

∆′
x(s0x) = s0x

(
4s2

0x + 3kdθs0x + 2kpθ
)

− e−τs0x [τ (kdxs0x + kpx) (kdθs0x + kpθ)

− (2kdθkdxs0x + kpxkdθ + kpθkdx)] = 0 (4.36)

By solving (4.35) and (4.36) for the control gains kpx and kdx , the in (4.22) and (4.23) are
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obtained. Moreover, the root s0x reaches a multiplicity 4 if and only if:

∆′′
x(s0x) = 2

(
6s2

0x + 3kdθs0x + kpθ

)
+

e−τs0x
{
τ2 (kdxs0x + kpx) (kdθs0x + kpθ) − 2τ (2kdθkdxs0x + kpxkdθ + kpθkdx)

+2kdxkdθ} = 0 (4.37)
∆′′′
x (s0x) = 6 (4s0x + kdθ) −

e−τs0x
{
τ3 (kdxs0x + kpx) (kdθs0x + kpθ) + 3τ2 (2kdθkdxs0x + kpxkdθ + kpθkdx)

−6τkdxkdθ} = 0 (4.38)

The substitution of (4.22) and (4.23) into the equations above, and the use of the
CellDecomposition routine from the RootFinding[Parametric] package of computer
algebra system Maple [33], led to (4.21) yet, one must analyse with detail the results
concerning the in (4.21) and (4.24). For these ends, let one adopt the change of variable
ς = s0xτ throughout (4.24)-(4.34) yielding to rewrite the expressions as follows:

p⋆3λ
3 + p⋆2λ

2 + p⋆1λ+ p⋆0 = 0 (4.39)

p⋆3 = 27
(
ς2 + 4ς + 2

)4
(4.40)

p⋆2 = −10ς9 − 243ς8 − 2352ς7 − 12090ς6 − 36360ς5 − 65916ς4 − 72288ς3 − 47736ς2

−17280ς − 2592 (4.41)

p⋆1 =
(
ς3 + 12ς2 + 36ς + 24

) (
ς3 + 18ς2 + 54ς + 24

) (
ς4 + 8ς3 + 24ς2 + 24ς + 12

)
(4.42)

p⋆0 = −
(
ς4 + 8ς3 + 24ς2 + 24ς + 12

) (
ς3 + 12ς2 + 36ς + 24

)2
(4.43)

n⋆2 = 11ς12 + 309ς11 + 3738ς10 + 25938ς9 + 115452ς8 + 348192ς7 + 731016ς6 + 1077408ς5

+1105920ς4 + 771120ς3 + 347328ς2 + 90720ς + 10368 (4.44)

n⋆1 =
(
ς3 + 12ς2 + 36ς + 24

) (
2ς6 + 39ς5 + 249ς4 + 744ς3 + 1116ς2 + 756ς + 180

)
(
ς4 + 8ς3 + 24ς2 + 24ς + 12

)
(4.45)

n⋆0 = 2
(
ς3 + 6ς2 + 12ς + 6

) (
ς4 + 8ς3 + 24ς2 + 24ς + 12

) (
ς3 + 12ς2 + 36ς + 24

)2
(4.46)

d⋆2 = 3
(
2ς3 + 9ς2 + 12ς + 6

) (
ς2 + 4ς + 2

)4
(4.47)

d⋆1 = (ς4 + 16ς3 + 63ς2 + 84ς + 30)(ς4 + 8ς3 + 24ς2 + 24ς + 12)(ς2 + 4ς + 2)2 (4.48)

d⋆0 = (ς + 2)
(
ς3 + 12ς2 + 36ς + 24

) (
ς4 + 8ς3 + 24ς2 + 24ς + 12

) (
ς2 + 4ς + 2

)2
(4.49)

As previously mentioned, to exploit the results of [4, 12], the non-delayed part of the
quasipolynomial must have only real roots which is guaranteed if (4.19) holds, thus it
follows that λ > 0 as s2

0x > 0 and, from (4.39)-(4.49), that

n⋆2λ
2 − n⋆1λ+ n⋆0

d⋆2λ
2 − d⋆1λ+ d⋆0

> 18
√
λ (4.50)

To ensure the existence of a given λ satisfying the condition above, some restrictions over
ς (consequently over τ and s0x) must be established. In this regard, the analysis of the
polynomial in (4.39) can be performed in any mathematical software that allows the treat-
ment of symbolic and numerical computations. In the current case of study, Maple and
its package RootFinding[Parametric] were used.
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The aforementioned Maple package divides the space of parameters into two parts: the
discriminant variety and its complement. The discriminant variety is referred as a general-
ization of the discriminant of a univariate polynomial and contains those parameter values
leading to non-generic solutions, meanwhile, its complement can be expressed as a finite
union of open cells such that the number of real solutions of the system is constant on
each cell. In this manner, all parameter values leading to generic solutions of the system
can be described. The underlying techniques used are Gröbner bases, polynomial real root
finding, and cylindrical algebraic decomposition, see for instance [32, 34, 47, 49]. Further
details of the package and its implementation are available at [24, 37]. Thus, considering
(4.50) and the fact that λ > 0, the cell decomposition of (4.39) provides three ς intervals
where the conditions holds. These intervals are defined by the projection polynomials:

φ1 (ς) = ς12 − 78ς10 − 120ς9 + 2772ς8 + 13824ς7 + 8208ς6 − 105408ς5 − 357696ς4

−546048ς3 − 456192ς2 − 207360ς − 41472 (4.51)
φ2 (ς) = ς2 + 4ς + 2, φ3 (ς) = ς3 + 9ς2 + 18ς + 6 (4.52)

and their real roots, such that

ςφ1,1 ≈ −0.8478574488 < ς < ςφ2,2 ≈ −0.5857864376 (4.53)
ςφ2,2 ≈ −0.5857864376 < ς < ςφ3,3 ≈ −0.4157745568 (4.54)

ςφ3,3 ≈ −0.4157745568 < ς < 0 (4.55)

where ςφi,j denotes the j − th real root of the projection polynomial φi (ς) (considering
that the real roots are arranged in increasing order). For instance, only the conditions
over ς that ensure the existence of a proper λ have been given thus, one shall investigate
the dominancy of the corresponding roots within the intervals.
As suggested in [4,5,9], if the quasipolynomial in (4.10) possesses a root of multiplicity at
least 4, an integral representation can be adopted. The computation of the control gains
as previously performed, allows one to establish a negative real root of multiplicity 4 thus,
the substitution of (4.21)-(4.23) into (4.10) yields to:

∆x (s; s0x , τ) = (s− s0x)4
(

1 +
w 1

0
e−(s−s0x )τυ τR3,x (s0x ; τυ)

3! dυ

)
(4.56)

such that:

R3,x (s0x ; τυ) = s0x

[
s3

0xτ
3υ3

(
1 + λ− 1

9
n2λ

2 − n1λ+ n0
d2λ2 − d1λ+ d0

)

+6s2
0xτ

2υ2
(

2 + λ− 1
6
n2λ

2 − n1λ+ n0
d2λ2 − d1λ+ d0

)
+

6s0xτυ

(
6 + λ− 1

3
n2λ

2 − n1λ+ n0
d2λ2 − d1λ+ d0

)
+ 2

(
12 − 1

3
n2λ

2 − n1λ+ n0
d2λ2 − d1λ+ d0

)]
(4.57)

The results in [12] provide a necessary and sufficient condition for the dominancy of a given
multiple root (of maximal multiplicity) in the first-order case. The main idea of the cited
work is used in the current case of study to get sufficient conditions for the dominancy of
the quadruple root at s0x , such that if:∣∣∣∣τR3,x (s0x ; τυ)

3!

∣∣∣∣ ≤ 1 ∀ 0 < υ < 1 (4.58)
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Figure 4.2: (left) Behavior of R⋆
3,x(ς; υ) within the interval 0 < υ < 1. Numerical

evidence of the dominancy of the root s0x within the intervals in (4.53)-(4.55) with
τ = 0.1 [s]: (Center) Spectral distribution of the roots. (Right) Time-domain solu-
tion.

holds, s0x is the dominant root of (4.10). Nevertheless, to keep the consistency of the
proof, one may rewrite (4.58) in terms of ς as follows:∣∣∣R⋆3,x (ς; υ)

∣∣∣ ≤ 1 ∀ 0 < υ < 1 (4.59)

with

R⋆3,x (ς; υ) = 1
6

[
ς4υ3

(
1 + λ− 1

9
n⋆2λ

2 − n⋆1λ+ n⋆0
d⋆2λ

2 − d⋆1λ+ d⋆0

)
+ 6ς3υ2

(
2 + λ− 1

6
n⋆2λ

2 − n⋆1λ+ n⋆0
d⋆2λ

2 − d⋆1λ+ d⋆0

)

+6ς2υ

(
6 + λ− 1

3
n⋆2λ

2 − n⋆1λ+ n⋆0
d⋆2λ

2 − d⋆1λ+ d⋆0

)
+ 2ς

(
12 − 1

3
n2λ

2 − n⋆1λ+ n⋆0
d⋆2λ

2 − d⋆1λ+ d⋆0

)]
(4.60)

Due to the high order of the polynomials involved in the definition of R⋆3,x (ς; υ), an
analytic analysis of its behavior results complex and computationally expensive, instead,
a numerical analysis implies less computational resources and can provide enough and
sufficient information to validate the proposal. In this regard, Fig. 4.2 exposes the plots
of R⋆3,x (ς; υ) for a given ς within each of the intervals in (4.53)-(4.55) such that υ varies
from 0 to 1 in order to verify (4.59).

The results depicted in Figs. 4.2 show that for a given ς within the intervals in
(4.53) and (4.54), the condition in (4.59) does not hold. On the other hand, for a given
ς within the interval in (4.55), one can obtain a bound over ς such that (4.59) holds.
By solving R⋆3,x (ς; υ = 0) = 1, one finds that the aforementioned condition is satisfied if
0 > ς > −0.3109805570 which ends the proof.

Notice that the numerical study revealed that for any ς within the intervals in (4.53)-
(4.55), the dominancy of s0x holds (as illustrated in Fig. 4.2) yet, the analytic extension
of the proof implies a further and more complex analysis that comprehends the definition
of more inequalities and conditions over the integral.

5 UAV Control: The Tilting-Rotors Case
The analysis of the quadrotor endowed with tilting-rotors takes into consideration the
prescribed linearized conditions established in Section 4, additionally, the small-angle ap-
proximation is extended to the tilt angles of the rotors β, α, i.e. Cβ ≈ 1, Sβ ≈ β, Cα ≈ 1
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and Sα ≈ α. In this regard, the dynamic model in (3.1), (3.2), (3.6) and (3.8) is linearized
such that the corresponding representation in the frequency domains reads as:

X(s) = 1
mrs2 ((Fp1(s) + Fp3(s))β(s)) , Y (s) = 1

mrs2 (− (Fp2(s) + Fp4(s))α(s))

Z(s) = 1
mrs2 (T (s) −mrg) , ψ(s) = 1

Izs2 τψ(s), ϕ(s) = 1
Ixs2 (τϕ(s) + ρϕ(s)) ,

θ(s) = 1
Iys2 (τθ(s) + ρθ(s))

(5.1)

It has been assumed that the rotational dynamics is faster than that of translation such
that for a large enough time, ϕ(s)T (s), θ(s)T (s) → 0 since ϕ(s), θ(s), ψ(s) → 0. Addition-
ally, the influence of the free-moments ε (Fp1(s) + Fp3(s))β(s) and −ε (Fp2(s) + Fp4(s))α(s)
is considered as a disturbance and denoted instead as ρϕ(s) and ρθ(s), respectively. In
addition, it can be appreciated that the 6 DOFs of the current quadrotor vehicle are de-
coupled which permits a separate treatment. Additionally, the linearization holds if the
vehicle operates at ϕ, θ, ψ ≈ 0 thus, the attitude controllers must keep the vehicle at such
operational point.
As in Section 4, the Z(s) and ψ(s) dynamics is addressed firstly as they provide valuable
information used in the sequel of the procedure. Thus, let T (s) and τψ(s) be used as the
respective control inputs for Z(s) and ψ(s) in (5.1). Regarding the ϕ(s) and θ(s) motions
of the vehicle, the corresponding control inputs τϕ(s) and τθ(s) are defined as

τϕ(s) = IxC∗
ϕ(s)Eϕ(s) and τθ(s) = IyC∗

θ (s)Eθ(s) (5.2)

where

C∗
ϕ(s) = kdϕs+ kpϕ +

kiϕ
s

and C∗
θ (s) = kdθs+ kpθ + kiθ

s
(5.3)

correspond to linear PID controllers with gains kpϕ , kpθ , kdϕ , kdθ , kiϕ , kiθ > 0 since the
presence of disturbances could be neutralized by the effects of the integral term. These
controllers can be tuned by means of spectral methods.
As in Section 4, it is assumed that τψ(s) → 0 and T (s) → Tc = mrg thus, from the in (3.5)
and (3.7), Fp1(s) +Fp3(s) → Tc/2 and Fp2(s) +Fp4(s) → Tc/2. The latter is translated to
(5.1) as follows:

X(s) = Tc
2mrs2β(s) and Y (s) = − Tc

2mrs2α(s) (5.4)

These assumptions lead to define α(s) and β(s) as the control inputs that drive the trans-
lational states of the system such that:

α(s) = −2mr

Tc
Cy(s)Ey(s) and β(s) = 2mr

Tc
Cx(s)Ex(s) (5.5)

with Cx(s), Cy(s), Ex(s) and Ey(s) being linear PD controllers and the error signals as in
(4.6)-(4.7).
The dynamics of the servomotors are neglected since, according to the results reported in
the literature (see for instance [1,23,51,52]), it is relatively faster than that of the overall
aircraft. Thus, the α(s) and β(s) angles are assumed to be instantaneously tracked.
Lastly, the X(s) and θ(s) closed-loop dynamics of the quadrotor with tilting-rotors is
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Figure 5.1: Block diagram representation of the quadrotor with tilting-rotors closed-
loop system

depicted as block diagrams in Fig. 5.1. The diagram blocks regarding the Z(s) and ψ(s)
dynamics coincide with those of the typical quadrotor vehicle shown in Fig. 4.1.

From Fig. 5.1, and recalling that the effect of the time-delay τ affects only the trans-
lational motion, one can find that the characteristic quasipolynomials of the concerned
degrees of freedom are:

∆x(s : kpx , kdx , τ) = s2 + e−τsCx(s), ∆y(s : kpy , kdy , τ) = s2 + e−τsCy(s),
∆z(s : kpz , kdz , τ) = s2 + e−τsCz(s) (5.6)

Since the three characteristic quasipolynomials above have the form of that in (4.12),
Proposition 4.2 is used to tune the controllers’ gains.

6 Simulation Results
The actual section provides the results validating the proposed control scheme and tuning
criteria. In this regard, a set of detailed numerical simulations, including the full non-
linear dynamics and the linearized one, was conducted. The parameters of the vehicles
are listed in Table 1a meanwhile, the translational references to be achieved and tracked
can be found as:

xd(t) =



0 0 ≤ t < 20
20−t

10 20 < t < 30
t−30

5 − 1 30 < t < 40
1 − t−40

10 40 < t < 50
0 50 < t ≤ 70

yd(t) =



0 0 ≤ t < 10
1 10 < t < 20

1 − t−20
5 20 < t < 30

−1 30 < t < 40
t−40

5 − 1 40 < t < 50
0 50 < t ≤ 70

zd(t) =


2 0 ≤ t < 30

2 − t−30
10 30 < t < 40

1 40 < t < 60
0 60 < t ≤ 70

(6.1)

where xd(t), yd(t) and zd(t) (given in [m]) denote the corresponding references and t ≥ 0
stands for the time (in seconds [s]).
The study was conducted within the MATLAB/Simulink® 2018b environment, running
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on an equipment with an 8GB RAM and an Inter® Core™ i5-8250 CPU @ 1.60 GHz &
1.80 GHz processor. Finally, the simulations took into consideration a time-delay τ of 0.1
[s]. Further details concerning the controllers’ gains and the behavior of each system are
provided in the upcoming subsections.

6.1 Simulation results: The Typical Quadrotor Case
With base on Proposition 4.2, the controller of the altitude (z) was tuned. The rightmost
root was found to be s0z ≈ −5.85786437. On the other hand, for the x and y controllers,
Proposition 4.3 was used such that s0x = s0y = −2. The results of the tuning criteria led to
the control gains summarized in Table 1b where the gains denoted by a ⋆ where computed
(for comparison purposes) with base on the results at [19] such that it was considered that
σx,y,z = s0x,y,z to apply the σ-stability criteria. In this matter, it is worth highlighting that
with the given control gains sϕ,1 = sθ,1 ≈ −9.515844632 and sϕ,2 = sθ,2 ≈ −1.135739338
such that sθ,1 < s0x < sθ,2 (respectively sϕ,1 < s0y < sϕ,2) thus, the overall dynamics of
the system can be considered to be slightly faster than that of the inner loop but still
bounded. The results of the numerical simulation depicted throughout Fig. 6.1 suggest
that such difference is acceptable since the UAV achieves and successfully tracks the desired
references.
In Fig. 6.1, the left-column results correspond to the vehicle’s translational motion, while

Table 1: Definition of the vehicle’s parameters and control gains

(a) Parameters of the UAVs

Parameter Nominal value
mr 0.675 kg
Ix, Iy 0.271 kg m2

Iz 0.133 kg m2

ℓ 0.45 m
g 9.81 m/s2

ε 0.34 m
(b) Control gains: Typical quadrotor

DOF kp kd
x, y 1.658539 1.842677
z 7.91223 4.611587
ϕ, θ 10.80751 10.65158
ψ 10 15

⋆ x, y 2.8 2.15
⋆ z 8.1 3.64

(c) Control gains: Quadrotor endowed with titling rotors

DOF kp kd ki
x, y, z 7.91223 4.611587
ϕ, θ 10 15 0.5
ψ 10 15

⋆ x, y, z 8.1 3.64
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Figure 6.1: Motion of the typical quadrotor vehicle: Left) Translational states.
Right) Rotational states.

the right-column plots exhibit the UAV’s rotational behavior. In this regard, the black
signals stand for the reference values, the black noisy signals correspond to the response of
the non-linear system and the orange lines describe the behavior of the linearized system.
The signals in green depict the behavior of the vehicle whose controllers were tuned with
base on the results of [19].

As it can be appreciated in Fig. 6.1, the vehicle reaches the desired translational ref-
erences, moreover, the performance of the non-linear system matches that of the vehicle
whose dynamics is provided by the linear model. Nevertheless, one may pay special atten-
tion to the z motion as the behavior of the vehicle differs; in this sense, the vehicle with
non-linear dynamics experiences some disturbances related to the real couplings existing
due to the inherent nature of the UAV, however, the vehicle converges to the reference
value in a relatively short time. Regarding the rotational motion of the quadrotor, de-
picted in Fig. 6.1, it comes to be evident to relate the corresponding peaks on the signals
to the corresponding translation DOFs at which they are coupled, such that a change in
the desired orientation occurs as the translational desired behavior changes.
In comparison with previous results (see for instance [19, 39, 44, 55, 58, 61]) and the ones
depicted in green in Fig. 6.1, the vehicle operates with no overshoot or oscillation during
the transient phase. The latter occurs as the real part of the dominant roots, for the case
depicted in green, is lesser than the corresponding σ yet, these roots have an imaginary
component since it is impossible, by the approach in [19], to know the exact location of the
dominant roots meanwhile, the MID tuning criteria proposed in this work allows one to
place the dominant roots exactly over the real axis. A similar behavior can be appreciated
in the response of the quadrotor with tilting rotors.
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Figure 6.2: Motion of the quadrotor vehicle endowed with tilting-rotors: Left) Trans-
lational states. Right) Rotational states.

6.2 Simulation results: The Tilting-Rotors Case
As discussed in Section 5, to tune the controllers regarding this quadrotor, Proposition 4.2
was used thus, the control gains in Table 1c were found. The results of the simulation are
depicted throughout Fig. 6.2 such that the translational motion is described by the plots at
the left, and the plots at the right column depict the rotational states of the corresponding
vehicle. The response of the servomotors is also depicted in the corresponding figures.

In comparison with the typical quadrotor vehicle, the translational states of the system
seem to follow a similar behavior than that previously obtained, nevertheless, Fig. 6.2
shows the existence of a coupling between the three DOFs, in this sense, one may recall
the considerations assumed during the linearization and controllers conception such that
the couplings are related to the tilting-rotors and the rotational dynamics.
Regarding the rotational motion of the system, depicted in Fig. 6.2, it can be appreciated
that the states of the system remain near to 0 [deg] as the servomotors’ action permits
to decouple the rotational and translational motions, at some point and under specific
constrains. Nonetheless, the yaw angle seems to present a large deviation from the desired
value due to the influence of the servomotors actuation which was neglected during the
conception of the controllers yet, the orientation tends to be stabilized with no considerable
consequence.

7 Concluding Remarks and Future Work
In this manuscript, the MID property has been exploited to tune stabilizing controllers
of two representative aerial robotic systems. It has been shown by detailed numerical
simulations that, by means of the MID property, the effects of the time-delayed feedback
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that degrade the translational’s motion of the vehicles can be mitigated since a proper
assignment of the rightmost root of the characteristic function can be performed. As a
consequence, the system’s convergence rate is guaranteed to follow a prescribed behavior
such that a fast non-oscillatory response is appreciated. Specific conditions and their cor-
responding proofs were introduced and detailed, leading to the control gains with respect
to the time-delay value. The latter could equally serve as a tuning methodology proposal
whether a time-delay can be induced in the feedback loop. Nonetheless, the experimental
validation of the approach remains as a part of the upcoming work.
To the best of the authors’ knowledge, a similar analytical and/or symbolic/numerical
method to accurately determine the gains of the controllers for quadrotors, under the
conditions herein considered, is not available in current related literature.
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