
HAL Id: hal-03561972
https://hal.science/hal-03561972

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Algorithm for Single-Source Shortest Paths
Enumeration in Parameterized Weighted Graphs

Bastien Sérée, Loïg Jezequel, Didier Lime

To cite this version:
Bastien Sérée, Loïg Jezequel, Didier Lime. An Algorithm for Single-Source Shortest Paths Enumer-
ation in Parameterized Weighted Graphs. Language and Automata Theory and Applications, Sep
2021, Milan, Italy. pp.279-290, �10.1007/978-3-030-68195-1_22�. �hal-03561972�

https://hal.science/hal-03561972
https://hal.archives-ouvertes.fr

An algorithm for single-source shortest paths
enumeration in parameterized weighted graphs

Bastien Sérée1,3, Löıg Jezequel2,3, and Didier Lime1,3

1 École Centrale de Nantes
2 Université de Nantes

3 LS2N, UMR CNRS 6004, Nantes, France
firstname.lastname@ls2n.fr

Abstract. We consider weighted graphs with parameterized weights
and we propose an algorithm that, given such a graph and a source
node, builds a collection of trees, each one describing the shortest paths
from the source to all the other nodes of the graph for a particular zone
of the parameter space. Moreover, the union of these zones covers the
full parameter space: given any valuation of the parameters, one of the
trees gives the shortest paths from the source to all the other nodes of
the graph when the weights are computed using this valuation.

Keywords: Shortest paths, weighted graphs, parameterized graphs

1 Introduction

For many real-world systems and problems there are natural discrete-event ab-
stractions, which can be modelled by a graph or a derived formalism. In many
cases, we can also identify resources that need to be optimized (distance, mem-
ory, energy, time, etc.) and then (extensions of) weighted graphs are a formalism
of choice.

One of the most basic problems is to find optimal paths, for which the accu-
mulated weight (also often called cost) is minimal.

When addressing systems that are not well-known, maybe because we are
in the early phases of a design process, one way to cope with this uncertainty
is to use parameters for the weights. The interesting problems are parameter
synthesis problems, in which one tries to find the values of parameters such that
some path is optimal, or such that a target vertex can be reached within a given
bound on the accumulated weight, etc.

Surprisingly, those problems have not been studied in detail for the setting
for which cost themselves are parameters. Parametric timed automata (PTA) [1]
allow clocks to be tested against parameters, which may allow simulation of
parametric weights to some extent. The optimal time reachability problem has
recently been studied for PTA [2]. Similarly, the bounded-cost reachability prob-
lem has been addressed for a formalism related to PTA called parametric time
Petri nets in [7]. In [3], the authors do extend PTA with parametric weights on
edges, but the topology of the systems considered is always that of a tree.

2 B. Sérée, L. Jezequel, and D. Lime

Much differently, the parametric one-counter machines of [4] should allow
one to model a parametric cost, however, the parameter synthesis problems are
not addressed in that article.

Finally, in [6] the authors consider graphs in which weights are expressed
as a function of a single parameter. They partition the real numbers in a finite
way, such that for two parameter values in a given partition, the optimal paths
from a given source vertex to all other vertices are the same, and exhibit the
corresponding trees those paths form. Such parameteric graphs, with a single pa-
rameter, were later studied in [8] (directly improving [6]), and in [5] for example.
Extending the results of [6] to parameterized graphs with multiple parameters
makes the problem more complex since one needs to partition the n-dimensional
real space (where n is the number of parameters). This is the subject of our
work. To the best of our knowledge, this has not been done prior to this paper.
The algorithm that we propose is exponential in the number of vertices and is
polynomial in the number of edges, and in the number of parameters of the
considered graph.

This article is organised as follows: in Section 2 we introduce the basic no-
tations and definitions; in Section 3 we informally present our algorithm on a
comprehensive example; in Section 4, we give the algorithm together with the
associated proofs of correctness, completeness, and termination, as well as the
complexity; in Section 5 we conclude.

2 Definitions

For all (a, b, i) ∈ N, we denote by i ∈ Ja, bK any integer i such that a ⩽ i ⩽ b.

2.1 Parametric graphs

Definition 1 (Parametric graph). A parametric graph with n parameters is
a tuple G = (V,E, f, (λi)

n
1 , (Λi)

n
1) where V is a set of vertices, E ⊆ V × V is

a set of edges, f : E → R is a non-parametric cost function, and for every
i ∈ J1, nK, λi is a parameter, and Λi : E → {0, 1} is a parametric cost function.

The parameters can take any value in R. With a slight abuse of notations,
we denote by λi not only the parameters but also their values. We also write−→
λ = (λ1 . . . λn). All the following definitions are written for a parametric graph
G = (V,E, f, (λi)

n
1 , (Λi)

n
1).

Definition 2 (Edge cost). The cost of an edge e ∈ E is:

c(e) = f(e)−
n∑

i=1

λiΛi(e).

A Path p in G is a sequence of edges p = e0e1e2 . . . ek such that ∀i ∈
J0, kK, ei = (vi, vi+1). In such a path v0 is the initial vertex and vk+1 is the
terminal vertex. The integer k is called the length of p.

Single-source shortest paths enumeration in parameterized graphs 3

Definition 3 (Path cost). Let p = e0e1 . . . ek be a path of G, the cost of p is:

c(p,
−→
λ) =

k∑
j=0

c(ej) =
k∑

j=0

(
f(ej)−

n∑
i=1

λiΛi(ej)

)
=

k∑
j=0

f(ej)−
n∑

i=1

λi

k∑
j=0

Λi(ej).

We call path of minimal cost for
−→
λ ∈ Rn a path of G such that there is no

other path of G with the same initial and terminal vertices, and with a strictly

lower path cost for
−→
λ .

Finally, we call a cycle a path where the initial vertex and the terminal vertex

are the same. And we call a negative cycle for
−→
λ ∈ Rn a cycle with a negative

cost for
−→
λ .

2.2 Trees over parametric graphs

In the following we suppose that there is a distinguished vertex s in the graph
G, from which we will search for paths of minimal cost toward all other vertices.
As we are interested in paths from s to each vertex, in the following we assume
that the graphs we consider are such that these paths exist.

Definition 4 (Tree). We define a tree of G rooted at s (or with source s) as
any tuple T = (VT , ET , fT , (λT,i)

n
1 , (ΛT,i)

n
1) such that VT = V , ET ⊆ E is such

that for all v ∈ V \ {s}, |{(u, v) : (u, v) ∈ ET }| = 1, {(u, s) : (u, s) ∈ ET } = ∅
and there is no cycle in T , fT = f|ET

, ∀i, λT,i = λi, and ∀i, ΛT,i = ΛT,i|ET
.

Notice that, in such a tree, there are always |V | − 1 edges. Moreover, there
is exactly one path from s to each vertex.

s

u1

u2

u3

u4

1− λ1

2− λ1

3− λ1

21

3
2− λ1

3

(a) - A graph G

s

u1

u2

u3

u4

1− λ1

2− λ1

2

3

(b) - A tree T of G

Fig. 1. A graph G and an example of a tree T of G.

In Figure 1, we have represented an example of a graph with one parameter,
λ1 (a) and a tree T of G rooted at s (b).

In all the following definitions T is a tree rooted at s.

4 B. Sérée, L. Jezequel, and D. Lime

Definition 5 (Distance). Let v be a vertex of G, the distance d(T, v,
−→
λ) is

the cost of the unique path from s to v in T .

Definition 6 (Partial distances). Let v be a vertex of G and let e0e1 · · · ek be
the unique path from s to v in T . The partial non-parametric distance between
s and v in T is

df (T, v) =

k∑
j=0

f(ej).

The partial parametric distances between s and v are the

dΛi(T, v) =

k∑
j=0

Λi(ej),

for all i ∈ J1, nK.

Notice that d(T, v,
−→
λ) = df (T, v)−

n∑
i=1

λidΛi
(T, v).

Definition 7 (Tree of minimal distances). We say that T is a tree of min-

imal distances for
−→
λ ∈ Rn if for all v ∈ V , the unique path from s to v in T is

a path of minimal cost
−→
λ from s to v in G.

Moreover, if S ⊆ Rn, T is a tree of minimal distances for all
−→
λ ∈ S, we say

that T is a tree of minimal distances on S.

Definition 8 (Neighbour). Let e = (u, v) be an edge in E, the neighbour of
T generated by e is the tuple N(T, e) = (VN , EN , fN , (λN,i)

n
1 , (ΛN,i)

n
1) where:

– VN = V
– EN = (ET \ {(u′, v) : (u′, v) ∈ ET }) ∪ {e}, fN = f|EN

– ∀i, λN,i = λi

– ∀i, ΛN,i = Λi|EN

In other words, N(T, e) is obtained from T by deleting the only edge e′ =
(u′, v′) such that v′ = v and adding e.

Notice that for all e ∈ ET , N(T, e) = T and that, for (u, v) ∈ E \ET , an edge
(u′, v) does not necessarily exist in T , since T is rooted at s. Indeed an edge e
such that e = (u, s) will not be in T (as T is a tree rooted at s) and can generate
neighbours as any edge. In particular, this means that the neighbour of a tree is
not necessarily a tree.

As an example, consider G from Figure 1 and let e = (s, u3), e1 = (u1, u3)
and e2 = (u4, u3). Figure 1 (b) represents a tree T rooted at s, Figure 2 (a)
represents N(T, e1), which is also a tree, and Figure 2 (b) represents N(T, e2),
illustrating the fact that a neighbour of a tree is not necessarily a tree itself.

The following proposition specifies in which case a neighbour of a tree is
actually a tree. Its proof is omitted due to space constraints

Single-source shortest paths enumeration in parameterized graphs 5

s

u1

u2

u3

u4

1− λ1 3− λ1

2

3

(a) - A neighbour of T

s

u1

u2

u3

u4

1− λ1

2

3

3

(b) - Another neighbour of T

Fig. 2. Some neighbours of the tree T of Figure 1.

Proposition 1. Let e = (u, v) ∈ E be an edge, N(T, e) is a tree if and only if
v is not on the unique path from s to u in T .

Before giving other properties of trees and their neighbours, we have to take
a few notations. For an edge e = (u, v) ∈ E we note:
∆f (T, e) = df (T, u) + f(e)− df (T, v),
∀i ∈ J1, nK, ∆Λi(T, e) = dΛi(T, u) + Λi(e)− dΛi(T, v).

These deltas represent the differences in distance from s to v between T and
its neighbour generated by e. ∆f is the difference in the non-parametric part of
the distance. Each ∆Λi

represents the difference of the number of occurrences
of the corresponding parameter λi. Notice that for any e ∈ ET , one always has
∆Λi

(T, e) = 0.
For example in Figure 1, with the same notations as before, ∆f (T, e1) =

df (T, u1) + f(e1) − df (T, u3) = 1 + 3 − 2 = 2, and ∆Λ1
(T, e1) = dΛ1

(T, u1) +
Λ1(e1)− dΛ1(T, u3) = 1 + 1− 1.

Proposition 2. Let e = (u, v) be an edge not in T . If N(T, e) is a tree then ∀w ∈
V, d(T,w,

−→
λ) = d(N(T, e), w,

−→
λ) if and only if ∆f (T, e)−

n∑
i=1

λi∆Λi
(T, e) = 0.

Proposition 3. Let e = (u, v) be an edge. If N(T, e) is not a tree then N(T, e)

has a cycle of cost 0 if and only if
−→
λ is such that ∆f (T, e)−

n∑
i=1

λi∆Λi
(T, e) = 0.

The proofs of these propositions are omitted due to space constraints.

2.3 Constraints and zones associated to trees

Definition 9 (Constraint). Let e ∈ E \ET be an edge, the constraint associ-
ated with e is

CT,e = ∆f (T, e)−
n∑

i=1

λi∆Λi
(T, e).

6 B. Sérée, L. Jezequel, and D. Lime

Definition 10 (Zone). Let Ec ⊆ E \ ET be a set of edges such that ∀ec ∈
Ec,∃i ∈ J1, nK, ∆Λi

(T, ec) > 0. The zone defined by the constraints associated to

the edges in Ec is the set S such that:
−→
λ ∈ S if and only if ∀ec ∈ Ec, ∆f (T, ec)−

n∑
i=1

λi∆Λi
(T, ec) ≥ 0.

We can notice that zones are convex by construction.

Definition 11 (Active constraint). Let Ec ⊆ E \ ET be a set of edges such
that ∀ec ∈ Ec,∃i ∈ J1, nK, ∆Λi(T, ec) > 0. Let ec ∈ Ec be an edge. Let S be the
zone defined by the constraints associated to the edges in Ec. Let S/ec be the zone
defined by the constraints associated to the edges in Ec \ {ec}. The constraint
CT,ec is said to be active if and only if S/ec ̸= S.

3 Presentation of our algorithm for minimal distances

In section 3, we propose an algorithm which, given a graph G returns a list of
trees and a list of disjoint zones. Each tree T is associated with one zone S, such
that T is a tree of minimal distances on S. Moreover, the union of the returned
zones is the zone of Rn for which there is no negative cycle in G. In this section,
we demonstrate how this algorithm works on the example of Gex, a parametric
graph with two parameters presented in Figure 3.

s

u2

u1

e0 : 2− λ2

e1 : 1− λ1
e
2 : −

5−
λ
1

e5 : 10− λ1 − λ2

e3
: −
λ1

e4 : 1− λ1

Fig. 3. Graph Gex

The first step of the algorithm consists in finding the zone ZnoCycle for which
the concept of minimal distances makes sense, that is the values of λ1 and λ2

for which there is no negative cycle. Here, the only cycle is e5e5e5 So, the
only possible negative cycle is when the cost of e5 is negative, therefore, when
10− λ1 − λ2 < 0. Hence, we have ZnoCycle = {(λ1, λ2) ∈ R2 : λ1 + λ2 ⩽ 10}.

The goal will be to cover ZnoCycle with zones associated to trees of minimal
distances. For that the algorithm enumerates zones, associated with trees, going
from one zone to another by considering the neighbours of the associated tree.
The algorithm begins by computing a first tree T0. This tree is a tree of minimal
distances for a particular pair (λ1,init, λ2,init), where −λ1,init = −λ2,init = 1 +

Single-source shortest paths enumeration in parameterized graphs 7∑
e∈E

|f(e)|. Here we have (λ1,init, λ2,init) = (−20,−20) and T0 is represented in

Figure 4.

s

u2

u1
e1 : 1− λ1

e
2 : −

5−
λ
1

Fig. 4. T0

(λ1,init, λ2,init)

S0

Zcycle<0

λ1

λ2

Fig. 5. (λ1,init, λ2,init) and S0

Now look at the constraints associated with the neighbours of T0 to charac-
terize the associated zone S0. The active constraints also tell which trees will be
considered next. Here, the edges that generate neighbours are e0, e3, e4 and e5.
So, one has to look at the constraints C0, C3, C4 and C5 associated respectively
with N(T0, e0), N(T0, e3), N(T0, e4) and N(T0, e5).

We have C0 : 1 + λ1 − λ2 = 0, C3 : 6 − λ1 = 0, C4 : 7 − λ1 = 0 and
C5 : 10−λ1−λ2 = 0. Among these constraints, C0, C3 and C5 are active. Thus,
we take S0 = {(λ1, λ2) ∈ R2 : 1 + λ1 − λ2 ⩾ 0, 6 − λ1 ⩾ 0, 10 − λ1 − λ2 ⩾ 0},
as represented in Figure 5.

As N(T0, e0) and N(T0, e3) are associated with active constraints and have
not been considered yet, they are added in a list of trees to be considered later,
called listToDo. N(T0, e5) is not added to listToDo because it is not a tree. The
pair (T0, S0) is added to a list called listExplored. This list will be returned by
the algorithm at the end of its computation.

From now on, the algorithm iteratively considers the trees of listToDo. As-
sume, for example, that it begins with N(T0, e0) = T1, represented in Figure 6.
The edges that generate neighbours are e1, e3, e4 and e5. The associated con-
straints are C1 : −1 − λ1 + λ2 = 0, C3 : 7 − λ2 = 0, C4 : 8 − λ2 = 0 and
C5 : 10 − λ1 − λ2 = 0. Among them, C1, C3, and C5 are active. From that
we can define S1, represented in Figure 7.. As N(T1, e1) = T0 has already been
considered, only N(T1, e3) is added to listToDo (recall that N(T1, e5) is not a
tree). (T1, S1) is added to listExplored.

At the moment, listToDo = {N(T0, e3), N(T1, e3)} and listExplored =
{(T0, S0), (T1, S1)}. Assume that the algorithm considers N(T0, e3) = T2 next.
This tree is represented in Figure 8. The constraints used to define S2 are the
ones associated with e0, e2 and e5. e4 is not considered because ∆Λ1T2, e4 =

8 B. Sérée, L. Jezequel, and D. Lime

s

u2

u1

e0 : 2− λ2

e
2 : −

5−
λ
1

Fig. 6. T1

S0

S1

Zcycle<0

λ1

λ2

Fig. 7. S0 and S1

∆Λ2
T2, e4 = 0. All constraints are active. The zone S2 is represented in Fig-

ure 9. No tree is added to listToDo as N(T2, e0) = N(T1, e3), which is already
in listToDo and N(T2, e2) = T0, which has already been considered. (T2, S2) is
added to listExplored.

s

u2

u1
e1 : 1− λ1

e3
: −
λ1

Fig. 8. T2

S0
S2

S1

Zcycle<0

λ1

λ2

Fig. 9. S0, S1 and S2

Then, it remains to consider N(T1, e3) = T3, represented in Figure 10. Three
constraints are considered, this time associated with e1, e2 and e5. All these
constraints are active. The obtained S3 is represented in Figure 11. No tree is
added to listToDo because all neighbours either have already been considered
or are not trees. (T3, S3) is added to listExplored.

At that point, the algorithm terminates because S0∪S1∪S2∪S3 = ZnoCycle.
It returns listExplored. Note that listToDo is empty.

4 Formal presentation of our algorithm

In this section, we formalize the algorithm that has been presented on the ex-
ample in the previous section. We then prove that this algorithm is correct.

Single-source shortest paths enumeration in parameterized graphs 9

s

u2

u1

e0 : 2− λ2

e3
: −
λ1

Fig. 10. T3

S0
S2

S1

S3

Zcycle<0

λ1

λ2

Fig. 11. S0, S1, S2, and S3

4.1 The algorithm

Algorithm 1 is an algorithm that, given a parametric graph G and a vertex s,
returns a list of pairs (T, S) such that every T is a tree of minimal distances on
S and that the union of all S in the list is equal to the zone such that there is

no negative cycle in G. In this algorithm,
−→
λ init is the n-components vector so

that each component is equal to −
(
1 +

∑
e∈E

|f(e)|
)
.

Algorithm 1 trees of minimal distances of G = (V,E, f, (λi)
n
1 , (Λi)

n
1)

1: let listExplored = ∅.
2: let T0 be a tree of minimal distances for

−→
λ init

3: let listToDo = {T0}
4: while listToDo ̸= ∅ do
5: choose a tree T in listToDo (and delete it from listToDo)
6: let Neighbours be the set of all possible edges e such that ∃i ∈ J1, nK,

∆Λi(T, e) > 0.
7: let S be the zone defined by the constraints associated to the edges of

Neighbours
8: let Active be the subset of Neighbours containing the edges giving active con-

straints
9: for each edge e in Active such that N(T, e) is a tree do

10: let TN = N(T, e)
11: if TN /∈ listToDo and TN /∈ listExplored then
12: add TN to listToDo
13: end if
14: end for
15: add (T, S) to listExplored
16: end while
17: return listExplored

10 B. Sérée, L. Jezequel, and D. Lime

In the following, we will refer to the zone where there are no negative cycles
as ZnoCycle and the union of the zones in listExplored as Zexplored.

Algorithm 1 starts by computing T0 (the tree from which the space will be

explored) as a tree of minimal distances for
−→
λ init. This initial tree is chosen to

ensure that the algorithm will cover ZnoCycle by only exploring toward greater
λi, i ∈ J1, nK as proven in the next section. T0 is added to listToDo which is the
list of the trees the algorithm needs to consider.

For each tree T , the algorithm begins by enumerating all the edges e that
can generate a neighbour. From the associated constraints it characterizes S, a
zone where T is a tree of minimal distances. Then the algorithm does two things:
(1) it adds to listToDo all the neighbour trees that have not been considered
yet (those that are not already in listToDo or in listExplored) and (2) it adds
the new result to the returned list by adding T and S to listExplored. We can
notice that the zones in listExplored are disjoint by construction.

When listToDo is empty the algorithm returns listExplored.
Notice that when there is only one parameter this algorithm is equivalent

to the algorithm presented in [6] as constraints have a better form that make
computing active constraints equivalent to look for a maximum. So it is possible
to do a more efficient exploration because of the fact that there is only one
dimension.

4.2 Proof of the algorithm

A first Lemma expresses that – with the value that has been chosen for
−−→
λinit –

it is not necessary to consider all the neighbours of each tree in the main loop
of the algorithm. It is sufficient to consider neighbours with increasing number
of occurrences of (at least) one parameter, as enforced by line 6 of Algorithm 1.

Lemma 1. Let S0 be the first zone computed by the algorithm. ∀
−→
λ ∈ ZnoCycle,

∃
−→
λ′ ∈ Rn and

−→
λS0

∈ S0 such that (1) ∃i ∈ J1, nK, λ′
i ⩾ λi,S0

and (2) for all trees

T of minimal distances for
−→
λ′ , T is also a tree of minimal distances for

−→
λ .

Proof is omitted due to space constraints
A second lemma exhibits a loop invariant that will be instrumental in showing

the correctness of the results of the algorithm.

Lemma 2 (loop invariant). Let ZnotExplored = ZnoCycle \ Zexplored, at each
loop of the while loop we have:

1: Zexplored∪ZnotExplored = ZnoCycle (in particular there is no
−→
λ ∈ Zexplored

such that there is a negative cycle in G for
−→
λ)

2: for all (T, S) ∈ ListExplored, T is a tree of minimal distances for all
−→
λ ∈ S.

Proof is omitted due to space constraints
Building on the two above lemmas, we give our main theorem, that states

that the proposed algorithm terminates and returns correct results.

Single-source shortest paths enumeration in parameterized graphs 11

Theorem 1. The algorithm terminates and returns ListReturned such that

for all (T, S) ∈ ListReturned, T is a tree of minimal length for all
−→
λ ∈ S,⋃

(T,S)∈ListReturned

S = ZnoCycle and for all (T, S) and (T ′, S′) in ListReturned

such that S ̸= S′, S ∩ S′ = ∅.

Proof. If the algorithm does not terminate it means that there is an infinite loop.

As we consider a new tree in each loop and there is a finite number of (pos-
sible) trees it is impossible to have an infinite loop so the algorithm does ter-
minate. We also need that Zexplored = ZnoCycle at the end of the algorithm,
i.e. when listToDo is empty. If it is not the case it means that the algorithm
has missed one or more zones and this is only possible if there is some zones

such that
−→
λ ∈ Rn, ∄

−→
λ′ ∈ Rn and

−→
λS0 ∈ S0 such that ∃i ∈ J1, nK, λ′

i ⩾ λi,S0 .
Which is impossible by Lemma 1 so the algorithm terminates and we have⋃
(T,S)∈ListReturned

S = ZnoCycle.

For each (T, S) ∈ ListReturned we also have that T is a tree of minimal

length for all
−→
λ ∈ S and

⋃
(T,S)∈ListReturned

S = ZnoCycle by the loop invariant.

4.3 Complexity

We conclude the presentation of Algorithm 1 by giving its worst-case complexity.

Theorem 2. The worst case complexity of Algorithm 1 is exponential in the
number |V | of vertices and is polynomial in the number |E| of edges and in the
number n of parameters. Moreover it is logarithmic in the largest constant value
M appearing in the constraints.

The proof of this theorem is omitted due to space constraints and shows that
this complexity is O(|V ||V |−1(|E| − |V |)3n3 log(M)).

5 Conclusion

We have proposed an algorithm to find the optimal paths from a single source
to all other vertices in a weighted graph in which weights involve an arbitrary
number of real-valued parameters. Since those paths change with the values of
the parameters, the result of our algorithm is a finite set of trees, each with a zone
of the parameter space on which it is optimal. Those zones cover the parameter
space for which there are no negative cost cycles in the graph. This algorithm
generalizes a previous work by Karp and Orlin in which only one parameter was
considered [6].

Further work includes implementing the algorithm, and evaluating its effi-
ciency on real-world case-studies.

12 B. Sérée, L. Jezequel, and D. Lime

References

1. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In ACM Symposium on Theory of Computing, pages 592–601, 1993.

2. Étienne André, Vincent Bloemen, Laure Petrucci, and Jaco van de Pol. Minimal-
time synthesis for parametric timed automata. In Tomáš Vojnar and Lijun Zhang,
editors, TACAS, Part II, volume 11428 of Lecture Notes in Computer Science, pages
211–228. Springer, 2019.

3. Étienne André, Didier Lime, Mathias Ramparison, and Marielle Stoelinga. Paramet-
ric analyses of attack-fault trees. In Jörg Keller and Wojciech Penczek, editors, 19th
International Conference on Application of Concurrency to System Design (ACSD
2019), Aachen, Germany, June 2019. IEEE Computer Society.

4. Daniel Bundala and Joël Ouaknine. On parametric timed automata and one-counter
machines. Inf. Comput., 253:272–303, 2017.

5. Sourav Chakraborty, Eldar Fischer, Oded Lachish, and Raphael Yuster. Two-phase
algorithms for the parametric shortest path problem. In Jean-Yves Marion and
Thomas Schwentick, editors, 27th International Symposium on Theoretical Aspects
of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France, volume 5 of
LIPIcs, pages 167–178. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

6. Richard M. Karp and James B. Orlin. Parametric shortest path algorithms with an
application to cyclic staffing. Discrete Applied Mathematics, 3(1):37–45, 1981.

7. Didier Lime, Olivier H. Roux, and Charlotte Seidner. Parameter synthesis for
bounded cost reachability in time Petri nets. In Susanna Donatelli and Stefan
Haar, editors, 40th International Conference on Application and Theory of Petri
Nets and Concurrency (Petri Nets 2019), volume 11522 of Lecture Notes in Com-
puter Science, pages 406–425, Aachen, Germany, June 2019. Springer.

8. Neal Young, Robert Tarjan, and James Orlin. Faster parametric shortest path and
minimum balance algorithms. Networks, 21(2):205–221, 1991.

	An algorithm for single-source shortest paths enumeration in parameterized weighted graphs

