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We consider weighted graphs with parameterized weights and we propose an algorithm that, given such a graph and a source node, builds a collection of trees, each one describing the shortest paths from the source to all the other nodes of the graph for a particular zone of the parameter space. Moreover, the union of these zones covers the full parameter space: given any valuation of the parameters, one of the trees gives the shortest paths from the source to all the other nodes of the graph when the weights are computed using this valuation.

Introduction

For many real-world systems and problems there are natural discrete-event abstractions, which can be modelled by a graph or a derived formalism. In many cases, we can also identify resources that need to be optimized (distance, memory, energy, time, etc.) and then (extensions of) weighted graphs are a formalism of choice.

One of the most basic problems is to find optimal paths, for which the accumulated weight (also often called cost) is minimal.

When addressing systems that are not well-known, maybe because we are in the early phases of a design process, one way to cope with this uncertainty is to use parameters for the weights. The interesting problems are parameter synthesis problems, in which one tries to find the values of parameters such that some path is optimal, or such that a target vertex can be reached within a given bound on the accumulated weight, etc.

Surprisingly, those problems have not been studied in detail for the setting for which cost themselves are parameters. Parametric timed automata (PTA) [START_REF] Alur | Parametric real-time reasoning[END_REF] allow clocks to be tested against parameters, which may allow simulation of parametric weights to some extent. The optimal time reachability problem has recently been studied for PTA [START_REF] André | Minimaltime synthesis for parametric timed automata[END_REF]. Similarly, the bounded-cost reachability problem has been addressed for a formalism related to PTA called parametric time Petri nets in [START_REF] Lime | Parameter synthesis for bounded cost reachability in time Petri nets[END_REF]. In [START_REF] André | Parametric analyses of attack-fault trees[END_REF], the authors do extend PTA with parametric weights on edges, but the topology of the systems considered is always that of a tree.

Much differently, the parametric one-counter machines of [START_REF] Bundala | On parametric timed automata and one-counter machines[END_REF] should allow one to model a parametric cost, however, the parameter synthesis problems are not addressed in that article.

Finally, in [START_REF] Karp | Parametric shortest path algorithms with an application to cyclic staffing[END_REF] the authors consider graphs in which weights are expressed as a function of a single parameter. They partition the real numbers in a finite way, such that for two parameter values in a given partition, the optimal paths from a given source vertex to all other vertices are the same, and exhibit the corresponding trees those paths form. Such parameteric graphs, with a single parameter, were later studied in [START_REF] Young | Faster parametric shortest path and minimum balance algorithms[END_REF] (directly improving [START_REF] Karp | Parametric shortest path algorithms with an application to cyclic staffing[END_REF]), and in [START_REF] Chakraborty | Two-phase algorithms for the parametric shortest path problem[END_REF] for example. Extending the results of [START_REF] Karp | Parametric shortest path algorithms with an application to cyclic staffing[END_REF] to parameterized graphs with multiple parameters makes the problem more complex since one needs to partition the n-dimensional real space (where n is the number of parameters). This is the subject of our work. To the best of our knowledge, this has not been done prior to this paper. The algorithm that we propose is exponential in the number of vertices and is polynomial in the number of edges, and in the number of parameters of the considered graph.

This article is organised as follows: in Section 2 we introduce the basic notations and definitions; in Section 3 we informally present our algorithm on a comprehensive example; in Section 4, we give the algorithm together with the associated proofs of correctness, completeness, and termination, as well as the complexity; in Section 5 we conclude.

Definitions

For all (a, b, i) ∈ N, we denote by i ∈ a, b any integer i such that a ⩽ i ⩽ b.

Parametric graphs Definition 1 (Parametric graph). A parametric graph with n parameters is

a tuple G = (V, E, f, (λ i ) n 1 , (Λ i ) n 1 ) where V is a set of vertices, E ⊆ V × V is a set of edges, f : E → R
is a non-parametric cost function, and for every i ∈ 1, n , λ i is a parameter, and Λ i : E → {0, 1} is a parametric cost function.

The parameters can take any value in R. With a slight abuse of notations, we denote by λ i not only the parameters but also their values. We also write -→ λ = (λ 1 . . . λ n ). All the following definitions are written for a parametric graph

G = (V, E, f, (λ i ) n 1 , (Λ i ) n 1 ).
Definition 2 (Edge cost). The cost of an edge e ∈ E is:

c(e) = f (e) - n i=1 λ i Λ i (e).
A Path p in G is a sequence of edges p = e 0 e 1 e 2 . . . e k such that ∀i ∈ 0, k , e i = (v i , v i+1 ). In such a path v 0 is the initial vertex and v k+1 is the terminal vertex. The integer k is called the length of p. Definition 3 (Path cost). Let p = e 0 e 1 . . . e k be a path of G, the cost of p is:

c(p, - → λ ) = k j=0 c(e j ) = k j=0 f (e j ) - n i=1 λ i Λ i (e j ) = k j=0 f (e j ) - n i=1 λ i k j=0 Λ i (e j ).
We call path of minimal cost for -→ λ ∈ R n a path of G such that there is no other path of G with the same initial and terminal vertices, and with a strictly lower path cost for -→ λ . Finally, we call a cycle a path where the initial vertex and the terminal vertex are the same. And we call a negative cycle for -→ λ ∈ R n a cycle with a negative cost for -→ λ .

Trees over parametric graphs

In the following we suppose that there is a distinguished vertex s in the graph G, from which we will search for paths of minimal cost toward all other vertices. As we are interested in paths from s to each vertex, in the following we assume that the graphs we consider are such that these paths exist.

Definition 4 (Tree). We define a tree of G rooted at s (or with source s) as any tuple

T = (V T , E T , f T , (λ T,i ) n 1 , (Λ T,i ) n 1 ) such that V T = V , E T ⊆ E is such that for all v ∈ V \ {s}, |{(u, v) : (u, v) ∈ E T }| = 1, {(u, s) : (u, s) ∈ E T } = ∅ and there is no cycle in T , f T = f |E T , ∀i, λ T,i = λ i , and ∀i, Λ T,i = Λ T,i|E T .
Notice that, in such a tree, there are always |V | -1 edges. Moreover, there is exactly one path from s to each vertex. In Figure 1, we have represented an example of a graph with one parameter, λ 1 (a) and a tree T of G rooted at s (b).
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In all the following definitions T is a tree rooted at s.

Definition 5 (Distance).

Let v be a vertex of G, the distance d(T, v, -→ λ ) is the cost of the unique path from s to v in T . Definition 6 (Partial distances). Let v be a vertex of G and let e 0 e 1 • • • e k be the unique path from s to v in T . The partial non-parametric distance between s and v in T is

d f (T, v) = k j=0 f (e j ).
The partial parametric distances between s and v are the

d Λi (T, v) = k j=0 Λ i (e j ),
for all i ∈ 1, n . Notice that d(T, v, - → λ ) = d f (T, v) - n i=1 λ i d Λi (T, v).
Definition 7 (Tree of minimal distances). We say that T is a tree of minimal distances for

- → λ ∈ R n if for all v ∈ V , the unique path from s to v in T is a path of minimal cost - → λ from s to v in G.
Moreover, if S ⊆ R n , T is a tree of minimal distances for all -→ λ ∈ S, we say that T is a tree of minimal distances on S.

Definition 8 (Neighbour)

. Let e = (u, v) be an edge in E, the neighbour of T generated by e is the tuple

N (T, e) = (V N , E N , f N , (λ N,i ) n 1 , (Λ N,i ) n 1 )
where:

-V N = V -E N = (E T \ {(u ′ , v) : (u ′ , v) ∈ E T }) ∪ {e}, f N = f |E N -∀i, λ N,i = λ i -∀i, Λ N,i = Λ i|E N
In other words, N (T, e) is obtained from T by deleting the only edge e ′ = (u ′ , v ′ ) such that v ′ = v and adding e.

Notice that for all e ∈ E T , N (T, e) = T and that, for (u, v) ∈ E \ E T , an edge (u ′ , v) does not necessarily exist in T , since T is rooted at s. Indeed an edge e such that e = (u, s) will not be in T (as T is a tree rooted at s) and can generate neighbours as any edge. In particular, this means that the neighbour of a tree is not necessarily a tree.

As an example, consider G from Figure 1 and let e = (s, u 3 ), e 1 = (u 1 , u 3 ) and e 2 = (u 4 , u 3 ). Figure 1 (b) represents a tree T rooted at s, Figure 2 (a) represents N (T, e 1 ), which is also a tree, and Figure 2 (b) represents N (T, e 2 ), illustrating the fact that a neighbour of a tree is not necessarily a tree itself.

The following proposition specifies in which case a neighbour of a tree is actually a tree. Its proof is omitted due to space constraints Proposition 1. Let e = (u, v) ∈ E be an edge, N (T, e) is a tree if and only if v is not on the unique path from s to u in T .

Before giving other properties of trees and their neighbours, we have to take a few notations. For an edge e = (u, v) ∈ E we note:

∆ f (T, e) = d f (T, u) + f (e) -d f (T, v), ∀i ∈ 1, n , ∆ Λi (T, e) = d Λi (T, u) + Λ i (e) -d Λi (T, v).
These deltas represent the differences in distance from s to v between T and its neighbour generated by e. ∆ f is the difference in the non-parametric part of the distance. Each ∆ Λi represents the difference of the number of occurrences of the corresponding parameter λ i . Notice that for any e ∈ E T , one always has ∆ Λi (T, e) = 0.

For example in Figure 1, with the same notations as before, ∆ f (T, e 1 ) = 

d f (T, u 1 ) + f (e 1 ) -d f (T, u 3 ) = 1 + 3 -2 = 2, and ∆ Λ1 (T, e 1 ) = d Λ1 (T, u 1 ) + Λ 1 (e 1 ) -d Λ1 (T, u 3 ) = 1 + 1 -1.
- → λ is such that ∆ f (T, e) - n i=1 λ i ∆ Λi (T, e) = 0.
The proofs of these propositions are omitted due to space constraints.

Constraints and zones associated to trees

Definition 9 (Constraint). Let e ∈ E \ E T be an edge, the constraint associated with e is

C T,e = ∆ f (T, e) - n i=1 λ i ∆ Λi (T, e).
Definition 10 (Zone). Let E c ⊆ E \ E T be a set of edges such that ∀e c ∈ E c , ∃i ∈ 1, n , ∆ Λi (T, e c ) > 0. The zone defined by the constraints associated to the edges in E c is the set S such that:

- → λ ∈ S if and only if ∀e c ∈ E c , ∆ f (T, e c ) - n i=1 λ i ∆ Λi (T, e c ) ≥ 0.
We can notice that zones are convex by construction.

Definition 11 (Active constraint).

Let E c ⊆ E \ E T be a set of edges such that ∀e c ∈ E c , ∃i ∈ 1, n , ∆ Λi (T, e c ) > 0.
Let e c ∈ E c be an edge. Let S be the zone defined by the constraints associated to the edges in E c . Let S /ec be the zone defined by the constraints associated to the edges in E c \ {e c }. The constraint C T,ec is said to be active if and only if S /ec ̸ = S.

3 Presentation of our algorithm for minimal distances

In section 3, we propose an algorithm which, given a graph G returns a list of trees and a list of disjoint zones. Each tree T is associated with one zone S, such that T is a tree of minimal distances on S. Moreover, the union of the returned zones is the zone of R n for which there is no negative cycle in G. In this section, we demonstrate how this algorithm works on the example of G ex , a parametric graph with two parameters presented in Figure 3. The first step of the algorithm consists in finding the zone Z noCycle for which the concept of minimal distances makes sense, that is the values of λ 1 and λ 2 for which there is no negative cycle. Here, the only cycle is e 5 e 5 e 5 . . . . So, the only possible negative cycle is when the cost of e 5 is negative, therefore, when 10 -λ 1 -λ 2 < 0. Hence, we have

Z noCycle = {(λ 1 , λ 2 ) ∈ R 2 : λ 1 + λ 2 ⩽ 10}.
The goal will be to cover Z noCycle with zones associated to trees of minimal distances. For that the algorithm enumerates zones, associated with trees, going from one zone to another by considering the neighbours of the associated tree. The algorithm begins by computing a first tree T 0 . This tree is a tree of minimal distances for a particular pair (λ 1,init , λ 2,init ), where -λ 1,init = -λ 2,init = 1 + e∈E |f (e)|. Here we have (λ 1,init , λ 2,init ) = (-20, -20) and T 0 is represented in Now look at the constraints associated with the neighbours of T 0 to characterize the associated zone S 0 . The active constraints also tell which trees will be considered next. Here, the edges that generate neighbours are e 0 , e 3 , e 4 and e 5 . So, one has to look at the constraints C 0 , C 3 , C 4 and C 5 associated respectively with N (T 0 , e 0 ), N (T 0 , e 3 ), N (T 0 , e 4 ) and N (T 0 , e 5 ).

We have C 0 : 1 + λ 1 -λ 2 = 0, C 3 : 6 -λ 1 = 0, C 4 : 7 -λ 1 = 0 and C 5 : 10 -λ 1 -λ 2 = 0. Among these constraints, C 0 , C 3 and C 5 are active. Thus, we take S 0 = {(λ 1 , λ 2 ) ∈ R 2 : 1 + λ 1 -λ 2 ⩾ 0, 6 -λ 1 ⩾ 0, 10 -λ 1 -λ 2 ⩾ 0}, as represented in Figure 5.

As N (T 0 , e 0 ) and N (T 0 , e 3 ) are associated with active constraints and have not been considered yet, they are added in a list of trees to be considered later, called listT oDo. N (T 0 , e 5 ) is not added to listT oDo because it is not a tree. The pair (T 0 , S 0 ) is added to a list called listExplored. This list will be returned by the algorithm at the end of its computation.

From now on, the algorithm iteratively considers the trees of listT oDo. Assume, for example, that it begins with N (T 0 , e 0 ) = T 1 , represented in Figure 6. The edges that generate neighbours are e 1 , e 3 , e 4 and e 5 . The associated constraints are C 1 : -1 -λ 1 + λ 2 = 0, C 3 : 7 -λ 2 = 0, C 4 : 8 -λ 2 = 0 and C 5 : 10 -λ 1 -λ 2 = 0. Among them, C 1 , C 3 , and C 5 are active. From that we can define S 1 , represented in Figure 7.. As N (T 1 , e 1 ) = T 0 has already been considered, only N (T 1 , e 3 ) is added to listT oDo (recall that N (T 1 , e 5 ) is not a tree). (T 1 , S 1 ) is added to listExplored.

At the moment, listT oDo = {N (T 0 , e 3 ), N (T 1 , e 3 )} and listExplored = {(T 0 , S 0 ), (T 1 , S 1 )}. Assume that the algorithm considers N (T 0 , e 3 ) = T 2 next. This tree is represented in Figure 8. The constraints used to define S 2 are the ones associated with e 0 , e 2 and e 5 . Then, it remains to consider N (T 1 , e 3 ) = T 3 , represented in Figure 10. Three constraints are considered, this time associated with e 1 , e 2 and e 5 . All these constraints are active. The obtained S 3 is represented in Figure 11. No tree is added to listT oDo because all neighbours either have already been considered or are not trees. (T 3 , S 3 ) is added to listExplored.

At that point, the algorithm terminates because S 0 ∪ S 1 ∪ S 2 ∪ S 3 = Z noCycle . It returns listExplored. Note that listT oDo is empty.

Formal presentation of our algorithm

In this section, we formalize the algorithm that has been presented on the example in the previous section. We then prove that this algorithm is correct. 4.1 The algorithm Algorithm 1 is an algorithm that, given a parametric graph G and a vertex s, returns a list of pairs (T, S) such that every T is a tree of minimal distances on S and that the union of all S in the list is equal to the zone such that there is no negative cycle in G. In this algorithm, -→ λ init is the n-components vector so that each component is equal to

-1 + e∈E |f (e)| . Algorithm 1 trees of minimal distances of G = (V, E, f, (λ i ) n 1 , (Λ i ) n 1 )
1: let listExplored = ∅.

2: let T0 be a tree of minimal distances for

-→ λ init 3: let listT oDo = {T0} 4: while listT oDo ̸ = ∅ do 5:
choose a tree T in listT oDo (and delete it from listT oDo)

6:
let Neighbours be the set of all possible edges e such that ∃i ∈ 1, n , ∆Λ i (T, e) > 0.

7:

let S be the zone defined by the constraints associated to the edges of Neighbours In the following, we will refer to the zone where there are no negative cycles as Z noCycle and the union of the zones in listExplored as Z explored .

Algorithm 1 starts by computing T 0 (the tree from which the space will be explored) as a tree of minimal distances for -→ λ init . This initial tree is chosen to ensure that the algorithm will cover Z noCycle by only exploring toward greater λ i , i ∈ 1, n as proven in the next section. T 0 is added to listT oDo which is the list of the trees the algorithm needs to consider.

For each tree T , the algorithm begins by enumerating all the edges e that can generate a neighbour. From the associated constraints it characterizes S, a zone where T is a tree of minimal distances. Then the algorithm does two things:

(1) it adds to listT oDo all the neighbour trees that have not been considered yet (those that are not already in listT oDo or in listExplored) and ( 2) it adds the new result to the returned list by adding T and S to listExplored. We can notice that the zones in listExplored are disjoint by construction.

When listT oDo is empty the algorithm returns listExplored.

Notice that when there is only one parameter this algorithm is equivalent to the algorithm presented in [START_REF] Karp | Parametric shortest path algorithms with an application to cyclic staffing[END_REF] as constraints have a better form that make computing active constraints equivalent to look for a maximum. So it is possible to do a more efficient exploration because of the fact that there is only one dimension.

Proof of the algorithm

A first Lemma expresses that -with the value that has been chosen for --→ λ initit is not necessary to consider all the neighbours of each tree in the main loop of the algorithm. It is sufficient to consider neighbours with increasing number of occurrences of (at least) one parameter, as enforced by line 6 of Algorithm 1.

Lemma 1. Let S 0 be the first zone computed by the algorithm. ∀

- → λ ∈ Z noCycle , ∃ - → λ ′ ∈ R n and -→ λ S0 ∈ S 0 such that (1) ∃i ∈ 1, n , λ ′ i ⩾ λ i,S0 and (2 
) for all trees T of minimal distances for -→ λ ′ , T is also a tree of minimal distances for -→ λ .

Proof is omitted due to space constraints A second lemma exhibits a loop invariant that will be instrumental in showing the correctness of the results of the algorithm.

Lemma 2 (loop invariant). Let Z notExplored = Z noCycle \ Z explored , at each loop of the while loop we have:

1: Z explored ∪Z notExplored = Z noCycle (in particular there is no -→ λ ∈ Z explored such that there is a negative cycle in G for -→ λ ) 2: for all (T, S) ∈ ListExplored, T is a tree of minimal distances for all -→ λ ∈ S.

Proof is omitted due to space constraints Building on the two above lemmas, we give our main theorem, that states that the proposed algorithm terminates and returns correct results. Proof. If the algorithm does not terminate it means that there is an infinite loop.

As we consider a new tree in each loop and there is a finite number of (possible) trees it is impossible to have an infinite loop so the algorithm does terminate. We also need that Z explored = Z noCycle at the end of the algorithm, i.e. when listT oDo is empty. If it is not the case it means that the algorithm has missed one or more zones and this is only possible if there is some zones such that -→ λ ∈ R n , ∄ -→ λ ′ ∈ R n and -→ λ S0 ∈ S 0 such that ∃i ∈ 1, n , λ ′ i ⩾ λ i,S0 . Which is impossible by Lemma 1 so the algorithm terminates and we have For each (T, S) ∈ ListReturned we also have that T is a tree of minimal length for all -→ λ ∈ S and

(T,S)∈ListReturned S = Z noCycle by the loop invariant.

Complexity

We conclude the presentation of Algorithm 1 by giving its worst-case complexity. 

Conclusion

We have proposed an algorithm to find the optimal paths from a single source to all other vertices in a weighted graph in which weights involve an arbitrary number of real-valued parameters. Since those paths change with the values of the parameters, the result of our algorithm is a finite set of trees, each with a zone of the parameter space on which it is optimal. Those zones cover the parameter space for which there are no negative cost cycles in the graph. This algorithm generalizes a previous work by Karp and Orlin in which only one parameter was considered [START_REF] Karp | Parametric shortest path algorithms with an application to cyclic staffing[END_REF].

Further work includes implementing the algorithm, and evaluating its efficiency on real-world case-studies.
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