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Abstract. We address concurrent games with a qualitative notion of
time with parity objectives. This setting allows to express how potential
controllers interact with their environment and more specifically includes
relevant features: transient states where the environment will eventually
act, controller avoiding of an environment action either by an immediate
controller action or by masking it, etc. In order to solve the controller
synthesis in this framework, we design a linear-time building of a timeless
turn-based game and show a close connection between strategies of the
controller in the two games. Thus we reduce the synthesis problem to a
standard problem of turn-based game with parity objectives establishing
as a side effect that pure memoryless strategies are enough for winning.
Moreover we introduce permissiveness for safety and reachability games
as a criterion to choose between winning strategies and prove that one
can compute a most permissive strategy (when it exists) in linear time.

1 Introduction

Games and controller synthesis. Finite games on graphs [13] are widely
recognized as an adequate formalism to address problems such as controller
synthesis on discrete event systems, originally expressed and studied within the
theory of supervision [14,12,9]. The control problem can indeed be expressed
as a game between two players representing respectively the controller and the
environment. A controller for the system can be synthesized as a winning strategy
for the controller player, when it exists.

Real-time controller synthesis. For real-time systems, a strict turned-based
game is an unnatural model, since the controller and the environment may play
concurrently leading to concurrent games [5,8,7]. Adding quantitative delays
before playing actions is a way to select which action should be played. This
results in formalisms called (concurrent) timed games [11,6], for which tools like
UPPAAL-Tiga are available [4]. Nevertheless, the algorithmics of timed games
is costly, and for instance, the mere existence of a controller is an EXPTIME-
complete problem [10] and the resulting strategies can be very large [1]. Fur-
thermore from a modelling point of view, often the exact timing constraints are
unknown and indeed not needed to ensure the existence of a winning strategy.

Qualitative time concurrent games. To overcome these issues the authors
of [2,3] have introduced a model of qualitative time concurrent game with the

1



following features: actions of the environment may occur immediately or require
some non null unknown delay and transient states where when the controller
chooses not to (or cannot) play, an action of the environment is guaranteed to
eventually occur. Then they have designed polynomial time (ad-hoc) algorithms
synthesising (when it exists) a controller for reachability and safety goals.

Our contribution. Our contribution is threefold. First we extend the model
of [2] by allowing some actions of the environment to be blocked by the con-
troller and considering parity objectives. Then we design a linear-time building
of a timeless turn-based game and show a close (but not one-to-one) connection
between strategies of the controller in the two games. Thus we reduce the syn-
thesis problem to a standard problem of turn-based game with parity objectives
establishing as a side effect that pure memoryless strategies are enough for win-
ning. Finally we introduce permissiveness for safety and reachability games as a
criterion to choose between winning strategies and prove that one can compute
a most permissive strategy (when it exists) in linear time.

Organisation.We illustrate by a relevant example the interest of our framework
in Section 2. Section 3 gives the basic definitions and terminology used in this
paper. Section 4 provides the translation to turn-based games and establishes the
connections between strategies. Section 5 introduces the notion of permissiveness
and shows how to compute most permissive strategies. Finally, we conclude in
section 6.

2 A motivating example

A device driver is the interface between the hardware device and the application
or the operating system. Being executed with supervisor privileges, any error in a
driver may have a serious impact on the integrity of the entire system. A specific
driver (as opposed to a generic driver) is a driver dedicated to an application,
i.e., with a smaller memory footprint.

In the context of driver synthesis, the environment is both the hardware
device and the application using the driver. Then uncontrollable actions are
interrupts that are triggered by the hardware and the requests made by the
application.

Let us consider an analog-to-digital converter (ADC) inspired by the one of
the MPC5xx microcontrollers family. An ADC cell has multiplexed acquisition
channels (only one channel at a time). In order to allow the conversion of several
channels, the conversions are combined into a conversion chain.

There are two types of conversion: normal or injected. In a normal conversion,
it is possible to make a chain of conversion uniquely (oneShot) or continuously
(scan). In oneShot mode, the cell stops acquisition at the end of the conversion,
while in scan mode it repeats the chain ad infinitum (until a stop action is
performed).

If one wants to make a oneShot acquisition in the middle of a conversion in
scan mode, it is possible to use the injected conversions. An injected conversion
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is analogous to a software interrupt (inject) that can be maskable, i.e., it can
be disabled. When an injected conversion is started, any conversion in progress
is interrupted. The injected conversion is then carried out. At the end of the
injected conversion, the chain which was interrupted resumes where it had been
stopped (see Figure 1 for channel CH5). If a conversion is interrupted twice by
two injected conversions, then it is lost and the scan goes to the next one (see
Figure 1 for channel CH6).

Scan
chain

Convert
CH3

Convert
CH5

Inject
CH2

Convert
CH2

Convert
CH5

Convert
CH6

Inject
CH1

Convert
CH1

Convert
CH6

Inject
CH4

Convert
CH4

Convert
CH8

Convert
CH3

Fig. 1: Conversion chain Scan for channels 3,5,6,8 with some injected conversions.

A conversion takes a non-null time that is not known precisely. At the end
of a conversion the hardware generates an interrupt EOC (end of conversion).
This interruption is ineluctable, i.e., it is guaranteed to happen eventually.

Finally, the converter can sleep or be awake but if a conversion request occurs
while sleeping, the driver must return an error to the application. Let us take
stock of what we need to model:

– controllable actions of the driver
– uncontrollable actions of the environment where:

• some uncontrollable actions take a non-null time and cannot happen
immediately (oneShot, scan, eoc);

• some uncontrollable actions are guaranteed to happen eventually. The
input state of such a transition is then a transient state (oneShot, scan,
eoc);

• some uncontrollable actions are maskable (inject): they can be disabled
by the controller.

3 Definitions

The following definitions introduce a kind of concurrent game between the con-
troller (denoted by C) and the environment (denoted by U). In all states q ∈ Q,
C (resp. U) selects an action in AvailC(q) ⊆ AC (resp. AvailU (q) ⊆ AU ). As
seen in Definition 2, it selects a qualitative delay for performing its action and
it can block a subset of the maskable actions of the environment (Am

U ). C may
also be inactive while the environment has to act in transient states (QT ). Thus
in all q ∈ QT , an unmaskable action is available, i.e. AvailU (q) \Am

U ̸= ∅.

Definition 1 (Game structure). A game structure is a tuple
G = (Q,AC , AvailC , AU , AvailU , δ) where:
– Q = QT ⊎ QI is a set of states partitioned in transient states QT and idle

states QI with q0 ∈ Q, the initial state;
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– AC is the set of actions of the controller and AvailC : Q → 2AC defines its
available actions depending on states.

– AU is the set of actions of the environment with AC ∩AU = ∅ and AvailU :
Q → 2AU defines its available actions depending on states. AU includes the
set of avoidable actions Aa

U and the set of maskable actions Am
U .

– δ : Q×AC ∪AU → Q is the transition function such that δ(q, a) is defined if
and only if a ∈ AvailC(q)∪AvailU (q). For all q ∈ QT , AvailU (q) \Am

U ̸= ∅.

Example 1. The game structure of the case study presented in Section 2 is de-
picted in Figure 2. We use the following graphical notations: Idle (resp. tran-
sient) states states are represented by (resp. double) circles, controller (resp.
environment) transitions are represented by solid (resp. dashed) arrows, avoid-
able transitions start with a small circle and maskable actions are written in
TrueType font.

q0start q1

qerr

q2 q3

q4

i1

i2

q5q6q7os1os2

i3i4

Convert

eoc

Wakeup

Sleep

oneShot,
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Error
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scan
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Next Sample

Convert
eoc

inject

inject

inject Convert

eoc

Current SampleConvert

eoc

injectinjectinject

Convert

eoc

Am
U = {inject}

Fig. 2: Game structure of the case study

Given a current state q, the controller decides whether it intends to act (0 or
0) or not (ε), which action it intends to perform, when it will act (immediately:
0; or later: 0) and which actions it will block.

Definition 2 (Decision). Let G be a game structure and q ∈ Q. Then the set
of decisions of the controller Dec(q) is defined as follows. (γ, τ, B) ∈ Dec(q) if:
– the action γ ∈ AvailC(q) ∪ {ε} where ε denotes inaction;
– the delay τ ∈ {0,0, ε} fulfills τ = ε iff γ = ε;
– the actions to be masked B ⊆ Am

U ∩AvailU (q).

Given a state q and a decision d of the controller, the next state to be reached
may be either (1) q itself if it is idle and the controller is inactive, either (2) the
state reached by the action selected by the controller (if any), or (3) a state
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reached by an environment action that has not be preempted by the action of
the controller played without delay or masked by the controller.

Definition 3 (Play transitions). Let G be a game structure, q ∈ Q and d =
(γ, τ, B) ∈ Dec(q), the set of play transitions Next(q, d) is defined by:

– If γ = ε and q ∈ QI then q
d,ε
==⇒ q ∈ Next(q, d);

– If γ ̸= ε then q
d,γ
==⇒ δ(q, γ) ∈ Next(q, d);

– For all a ∈ AvailU (q) \ (Aa
U ∪B), q

d,a
==⇒ δ(q, a) ∈ Next(q, d);

– If τ ̸= 0 then for all a ∈ AvailU (q) ∩Aa
U \B, q

d,a
==⇒ δ(q, a) ∈ Next(q, d).

By construction, Next(q, d) is never empty: if γ ̸= ε then q
d,γ
==⇒ δ(q, γ) ∈

Next(q, d) else if q ∈ QI then q
d,ε
==⇒ q ∈ Next(q, d) else there is some a ∈

AvailU (q) \Am
U such that q

d,a
==⇒ δ(q, a) ∈ Next(q, d).

A play is a finite or infinite sequence of play transitions such that the source
of a non initial transition is the destination of the transition that precedes it.

Definition 4 (Play). Let G be a game structure. Then r = (qn
dn,an
====⇒ qn+1)n∈N

where for all n ∈ N, dn ∈ Dec(qn) and qn
dn,an
====⇒ qn+1 ∈ Next(qn, dn) is an

infinite play. A finite play r is a finite prefix of an infinite play, ending in a
state denoted Last(r). R (resp. R) denotes the set of infinite (resp. finite) plays.
The empty play is denoted by λ with Last(λ) = q0.

A strategy of the controller restricts the underlying transition system of the
concurrent game by selecting a decision for all finite plays allowed by the strategy.
Thus this mapping is inductively defined, simultaneously with its domain.

Definition 5 (Strategy). A controller strategy sC is a partial mapping from
R to

⋃
q∈Q Dec(q) with its domain denoted Dom(sC) inductively defined by:

– λ ∈ Dom(sC);

– for all r ∈ Dom(sC), sC(r) ∈ Dec(Last(r)) and for all Last(r)
sC(r),a
=====⇒ q ∈

Next(Last(r), sC(r)), r(Last(r)
sC(r),a
=====⇒ q) ∈ Dom(sC).

A play r = (qn
dn,an
====⇒ qn+1)n∈N complies with sC if for all n, dn = sC((qm

dm,am
=====⇒

qm+1)m<n). The outcome of sC , denoted by Outcome(sC), is the set of infinite
plays complying with it.

Any decision of a positional (also called memoryless) strategy sC only de-
pends on the last state of the play. For such a strategy, given some q ∈ Q, sC(q)
denotes the decision of sC for any finite play with last state q.

A goal W for the controller is a subset of Qω. W.r.t. W , a strategy sC is

winning for q0 if for all plays (qn
dn,an
====⇒ qn+1)n∈N complying with sC , (qn)n∈N ∈
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W . A parity goal Wµ is defined by a mapping µ from Q to N. Let s = (qn)n∈N
define mµ(s) = max(i | ∀n ∃n′ ≥ n i = µ(qn′)). Then s ∈ Wµ iff mµ(s) is even.
Parity goals include several kinds of goals like safety and reachability goals. A
game is a pair (G,W ).

4 From concurrent games to turn-based games

A turn-based game interpretation. In order to apply the theory and algorithms
of parity turn-based games, we propose below a linear-time translation of a
concurrent game structure G into a turn-based one Ĝ such that given some
parity goal W : (1) the controller has a winning strategy for (G,W ) iff it has a

winning strategy (Ĝ,W ) and (2) from a positional winning strategy in (Ĝ,W ),
one can build in linear time a positional winning strategy in (G,W ).

Definition 6. Ĝ = (Q̂,→), a turn-based game structure is defined by:

– Q̂ = Q̂C ⊎ Q̂U , the set of states with q0 ∈ Q̂C , the initial state;
– →⊂ Q̂× Q̂ the transition relation fulfilling: ∀q ∈ Q̂ ∃q′ ∈ Q̂ q → q′.

We denote Own the mapping from Q̂ to {C,U} defined for all q ∈ Q̂ by

Own(q) = C if and only if q ∈ Q̂C . (qn)n∈N ∈ Q̂ω is an infinite play of Ĝ if

for all n ∈ N, qn → qn+1. A sequence (qm)m≤n ∈ Q̂∗Q̂C is a finite play if for all
m < n, qm → qm+1. Note that we only define finite plays ending in states owned
by C, as only those will be useful to define strategies for C.

Definition 7 (Strategy). A strategy sC of Ĝ is a partial mapping from the set

of of finite plays to Q̂ with its domain denoted Dom(sC) inductively defined by:
– q0 ∈ Dom(sC);

– for all ρ = (qm)m≤n ∈ Dom(sC), sC(ρ) ∈ Q̂ with qn → sC(ρ)

and for all ρ′′ = ρsC(ρ)ρ
′, such that sC(ρ)ρ

′ ∈ Q̂∗
U Q̂C ρ′′ ∈ Dom(sC).

A play ρ = (qn)n∈N complies with sC if for all n, such that qn ∈ Q̂C , qn+1 =
sC((qm)m≤n). The outcome of sC , denoted Outcome(sC), is the set of infinite
plays complying with it.

Let Ŵ ⊆ Q̂ω be a goal, sC is winning in (Ĝ, Ŵ ), if Outcome(sC) ⊆ Ŵ .

In order to obtain a canonical translation we assume an enumeration order
of AC and AU . It should be be clear that the results hold whatever the chosen
order. According to this order, define for all q ∈ Q:

– maskable uncontrollable actions:
AvailU (q) ∩Am

U = {αq
1, . . . , α

q
ℓq
};

– unavoidable maskable uncontrollable actions:
(AvailU (q) ∩Am

U ) \Aa
U = {αq

1, . . . , α
q
kq
} with kq ≤ ℓq;

– unmaskable uncontrollable actions:
AvailU (q) \Am

U = {βq
1 , . . . , β

q
nq
};

6



– unavoidable unmaskable uncontrollable actions:
AvailU (q) \ (Aa

U ∪Am
U ) = {βq

1 , . . . , β
q
mq

} with mq ≤ nq;

– controllable actions:
AvailC(q) = {γq

1 , . . . , γ
q
pq
}.

In order to avoid handling particular cases, Definition 8 assumes that for all q,
kq ≥ 1, nq ≥ 1, and pq ≥ 1. Afterwards, we explain how to adapt the translation
when this is not the case. Let us first informally describe how the turn-based
version Ĝ of game G is specified:

– The states of G are also states of Ĝ and belong to the controller. In such a
state q, the controller has three choices (see Figure 3):
• either it decides to (try to) play immediately going to state (qC0 , α

q
1);

• either it decides to (try to) play not immediately going to state (qC
0
, αq

1);

• or it decides to be inactive, going to state (qCε , α
q
1).

q

(qC0 , α
q
1)

(qC
0

, α
q
1)

(qCε , α
q
1)

Fig. 3

– From state (qC0 , α
q
1), the controller successively either lets the environment

the availability of action αq
1 by going to (qUε , α

q
1) or masks this action by going

to (qC0 , α
q
2). After all maskable unavoidable actions have been enumerated

(and masked or not played), in qU0 the environment can play any unavoidable
and unmaskable action or, by going in qC0 , let the controller play an action
(see Figure 4).

– The situation from state (qC
0
, αq

1) is similar to the previous one except that

the controller first enumerates all the maskable actions and in qU
0

the envi-
ronment can play any unmaskable action (see Figure 5).

– The situation from state (qCε , α
q
1) is similar to the previous one except that

in qUε , if q is transient the environment must play some unmaskable action
while if q is idle it can decide to be inactive going back to q (see Figure 6).
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(qC0 , α
q
1) (qU0 , α

q
1) (qC0 , α

q
2) (qC0 , α

q
kq

) (qU0 , α
q
kq

) qU0

δ(q, α
q
1) δ(q, α

q
kq

)

qC0

δ(q, β
q
1)

δ(q, β
q
mq )

δ(q, γ
q
1 )

δ(q, γ
q
pq )

. . . ...

...

Fig. 4

(qC
0

, α
q
1) (qU

0
, α

q
1) (qC

0
, α

q
2) (qC

0
, α

q
ℓq

) (qU
0

, α
q
ℓq

) qU
0

δ(q, α
q
1) δ(q, α

q
ℓq

)

qC
0

δ(q, β
q
1)

δ(q, β
q
nq )

δ(q, γ
q
1 )

δ(q, γ
q
pq )

. . . ...

...

Fig. 5

Definition 8. Let G be a game structure. Then Ĝ = (Q̂, Own,→), a turn-based
game structure, is defined as follows:

– Q̂ = Q ∪ {qyx | q ∈ Q ∧ ((x ∈ {0,0} ∧ y ∈ {C,U}) ∨ (x = ε ∧ y = U))}
∪ {(qyx, α

q
i )) | q ∈ Q∧y ∈ {C,U}∧(x = 0∧(i ≤ kq))∨(x ∈ {0, ε}∧(i ≤ ℓq))};

– Q̂C = Q ∪ {qCx }q,x ∪ {(qCx , z)}q,x,z, Q̂U = Q ∪ {qUx }q,x ∪ {(qUx , z)}q,x,z;
– → is defined by for all q ∈ Q and all x ∈ {0,0, ε}, q → (qCx , α

q
1) and:

Case of immediate play controller choice.
• For all q and i ≤ kq, (q

C
0 , α

q
i ) → (qU0 , α

q
i ) and (qU0 , α

q
i ) → δ(q, αq

i );
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(qCε , α
q
1) (qUε , α

q
1) (qCε , α

q
2) (qCε , α

q
ℓq

) (qUε , α
q
ℓq

) qUε

δ(q, α
q
1) δ(q, α

q
ℓq

)

q

δ(q, β
q
1)

δ(q, β
q
nq )

. . . ...

when q is idle

Fig. 6

• For all q and i < kq, (q
C
0 , α

q
i ) → (qC0 , α

q
i+1) and (qU0 , α

q
i ) → (qC0 , α

q
i+1);

• For all q, (qC0 , α
q
kq
) → qU0 and (qU0 , α

q
kq
) → qU0 ;

• For all q and i ≤ mq, q
U
0 → δ(q, βq

i ) and qU0 → qC0 ;
• For all q and i ≤ pq, q

C
0 → δ(q, γq

i ).
Other Cases (x ∈ {0, ε}).
• For all q and i ≤ ℓq, (q

C
x , α

q
i ) → (qUx , α

q
i ) and (qUx , α

q
i ) → δ(q, αq

i );
• For all q and i < ℓq, (q

C
x , α

q
i ) → (qCx , α

q
i+1) and (qUx , α

q
i ) → (qCx , α

q
i+1);

• For all q, (qCx , α
q
ℓq
) → qUx and (qUx , α

q
ℓq
) → qUx ;

• For all q and i ≤ nq, q
U
x → δ(q, βq

i );
• qU

0
→ qC

0
and for all q ∈ Q and i ≤ pq, q

C
0
→ δ(q, γq

i );

• When q ∈ QI, qUε → q.

Let us explain how to address the particular cases. For instance when ℓq=0, the
three transitions outgoing from q target the states qU0 , q

U
0

and qUε . The other
particular cases are similarly handled.

Example 2. Figure 7 partly illustrates this translation for the game structure
of Figure 2, starting from transient state q0. In all figures illustrating Ĝ, states
owned by the controller are represented by circles while states owned by the
environment are represented by rectangles.

Correspondence between plays. We want to establish a correspondence between
plays of G and plays of Ĝ. With this aim, we introduce connecting paths of Ĝ.

Definition 9. A connecting path of Ĝ is a path from some q ∈ Q to some q′ ∈ Q
that does not visit in between other states of Q.

Let ρ be a connecting path. We denote src(ρ) the source state of ρ and
dst(ρ) its destination state. Given two connecting paths ρ, ρ′ such that q, the
target state of ρ, is the source state of ρ′, ρρ′ denotes the concatenation of ρ and
ρ′ without the repetition of q. As usual, this operation is extended to finite or
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AvailU (q0) \ Am
U = {oneShot, scan}

AvailC(q0) = {Wakeup}

kq0 = 0, ℓq0 = 0,mq0 = 0, nq0 = 2

β
q0
1 = β

q0
m+1 = oneShot

β
q0
2 = βq0

n = scan

γ
q0
1 = Wakeup

δ(q0, β
q0
1 ) = δ(q0, β

q0
2 ) = qerr, δ(q0, γ

q0
1 ) = q1

q0

q U
00

q C
00

qerr

q1

q U
0
0

q C
0
0

q U
0ε

Fig. 7: The controller choices from q0

countable paths. Observe that any infinite play of Ĝ is a countable concatenation
of connecting paths.

The following lemma lists all possible connecting paths. We omit its proof as
it straightforwardly comes from examination of the local structure of Ĝ. Observe
that we associate an action with a connecting path.

Lemma 1. Let q ∈ Q. Then all connecting paths starting from q can be concisely
specified (with an associated action aρ) as follows:
– ρ(q, y, B, αq

i ), the path that (1) starts from q to (qCy , α
q
1), (2) goes to (qUy , α

q
i )

avoiding the set {(qUy , α
q
j) | α

q
j ∈ B}, and (3) reaches δ(q, αq

i ). aρ = αq
i ;

– ρ(q, y, B, βq
i ), the path that (1) starts from q to (qCy , α

q
1), (2) goes to qUy

avoiding the set {(qUy , α
q
j) | α

q
j ∈ B}, and (3) reaches δ(q, βq

i ). aρ = βq
i ;

– ρ(q, y, B, γq
i ), the path that (1) starts from q to (qCy , α

q
1), (2) goes to qCy

avoiding the set {(qUy , α
q
j) | α

q
j ∈ B}, and (3) reaches δ(q, γq

i ). aρ = γq
i ;

– when q is idle, ρ(q, ε, B, ε), the path that (1) starts from q to (qCε , α
q
1), (2)

goes to qUε avoiding the set {(qUy , α
q
j) | α

q
j ∈ B}, and (3) returns to q. aρ = ε.

We now relate play transitions of G to connecting paths of Ĝ.

Definition 10. Let e = q
d,a
==⇒ q′ with d = (γ, τ, B) be a play transition of G.

Then the connecting path ê is defined as follows:
– If a = αq

i for some αq
i then ê = ρ(q, τ, B′, αq

i ) with B′ = {αq
j | j < i} ∩B;

– If a = βq
i for some βq

i then ê = ρ(q, τ, B, βq
i )

– If a = γq
i for some γq

i then ê = ρ(q, τ, B, γq
i );

– If a = ε then ê = ρ(q, τ, B, ε);

We now extend in a natural way the correspondence between transitions to
plays.

Definition 11 (Relation between plays). Let r = (en)n≤N (resp. r = (en)n∈N)

be a finite (resp. infinite) play of G. Then r̂ a finite (resp. infinite) play of Ĝ, is
defined by r̂ = (ên)n≤N (resp. r̂ = (ên)n∈N).
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Correspondence between strategies. Let G be a concurrent game structure and
ρ = (qn)n∈N ∈ Q̂ω. Define π(ρ) as (qα(n))n∈N where α is a strictly increasing
mapping from N to N with the range of α being {n | qn ∈ Q}. This means, π
extracts the subsequence of states from the original game from any play in the
turn-based game. Let W be a goal of G. Then Ŵ ⊆ Q̂ω, a goal of Ĝ, is defined
by Ŵ = {ρ | π(ρ) ∈ W}.

In order to obtain a correspondence between strategies, we focus on trans-
lating a decision d ∈ Dec(q) in G into a local positional strategy d̂ of Ĝ. Given
a state q and a decision d = (γ, τ, B) induced by a strategy in G, the ‘local’

corresponding strategy in Ĝ consists in allowing exactly the connecting paths
ê such that e ∈ Next(q, d). Thus, (1) in q the strategy selects (qCτ , α

q
1), (2) in

all states (qCτ , α
q
i ), it selects (q

U
τ , α

q
i ) if α

q
i /∈ B and avoids it otherwise, and (3)

when γ ̸= ε, it selects in qCτ the state δ(q, γ).

Definition 12 (From decisions to local strategies). Let q ∈ Q and d =

(γ, τ, B) ∈ Dec(q). The partial mapping d̂ : Q̂ → Q̂ is defined as follows:

– d̂(q) = (qCτ , α
q
1);

– for all (defined) (qCτ , α
q
i ) if α

q
i /∈ B then d̂(qCτ , α

q
i ) = (qUτ , α

q
i );

– for all (defined) (qCτ , α
q
i ) if α

q
i ∈ B and (i, τ) /∈ {(kq,0), (ℓq,0), (ℓq, ε)}

then d̂(qCτ , α
q
i ) = (qCτ , α

q
i+1);

– for all (defined) (qCτ , α
q
i ) if α

q
i ∈ B and (i, τ) ∈ {(kq,0), (ℓq,0), (ℓq, ε)}

then d̂(qCτ , α
q
i ) = qUτ ;

– If γ ̸= ε then d̂(qCτ )) = δ(q, γ).

Definition 13. Let d ∈ Dec(q). A connecting path ρ starting from q complies

with d if for all transitions q1 → q2 of ρ with q1 ∈ Q̂C , q2 = d̂(q1).

By examining all possible cases, one gets the following lemma.

Lemma 2. Let q ∈ Q and d = (γ, τ, B) ∈ Dec(q). Then:

Next(q, d) = {q
d,aρ
===⇒ dst(ρ) | ρ is a connecting path with src(ρ) = q complying with d}

Example 3. Let us consider the example of Figure 2. Figure 8 shows the result
of the decision d = (γq2

1 ,0, {αq2
1 }) = (Next Sample,0, {inject}) from q2.

α
q2
1 = α

q2
k

= inject

β
q2
1 = β

q2
m = stop

γ
q2
1 = Next Sample

δ(q2, β
q2
1 ) = q1

δ(q2, γ
q2
1 ) = q3

q2 q U
20

q C
20

q1 q3

Fig. 8: The connecting paths from q2 complying with d =
(Next Sample,0, {inject})

Given the decisions selected by a strategy sC of G and applying the corre-
sponding local strategies, one gets a strategy ŝC of Ĝ. The next definition is
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sound since, by induction and using Lemma 2, for every finite play ρ that com-
plies with ŝC and ends in Q, there is some rρ that complies with sC such that
ρ = r̂.

Let q ∈ Q, τ ∈ {0,0, ε}, α ∈ Am
U such that (qUτ , α) ∈ Q̂ and B ⊆ Am

U ∩
AvailU (q). Then (qUτ , α)↓B denotes (qUτ , α) if α /∈ B and the empty word of Q̂∗

otherwise.

Definition 14. Let sC be a controller strategy of G. Then ŝC , a controller strat-
egy of Ĝ is defined by induction on the length of ρ = r̂ρ where rρ is a finite play
of G complying with sC and ending in some q ∈ Q as follows when denoting
sC(r) by d = (γ, τ, B).

– ŝC(ρ) = d̂(q);

– for all (defined) (qCτ , α
q
i ), ŝC(ρ(q

C
τ , α

q
1)(q

U
τ , α

q
1)↓B . . . (qCτ , α

q
i )) = d̂(qCτ , α

q
i )

– If γ ̸= ε then ŝC(ρ(q
C
τ , α

q
1)(q

U
τ , α

q
1)↓B . . . (qCτ , α

q
kq
)(qUτ , α

q
kq
)↓Bq

U
τ q

C
τ )) = d̂(qCτ )).

Let ρ∗ = ρρ′ where ρ′ is a a connecting path complying with d and associated

action aρ′ . Then rρ∗ = rρ(Last(rρ)
d,aρ′
===⇒ dst(ρ′)).

Applying inductively Lemma 2, one immediately gets the next proposition
and corollary:

Proposition 1. Let sC be a controller strategy of G. Then:
Outcome(ŝC) = {r̂ | r ∈ Outcome(sC)}

Corollary 1. Let Goal ⊆ Qω be a goal and sC be a winning strategy for Goal
in G. Then ŝC is a winning strategy for Goal in Ĝ.

In order to get the converse result we exploit the fact that positional strategies
are sufficient for turn-based parity games.

Definition 15. Let sC be a positional controller strategy of Ĝ. Then sC is a
positional controller strategy of G defined as follows. Let q ∈ Q and denote
sC(q) = (γ, τ, B).
– If sC(q) = (qC0 , α

q
1) and sC(q

C
0 ) = δ(a, γq

i ) then
γ = γq

i , τ = 0 and B = {i ≤ kq | sC((qC0 , α
q
i )) ̸= (qU0 , α

q
i )};

– If sC(q) = (qC
0
, αq

1) and sC(q
C
0
) = δ(a, γq

i ) then

γ = γq
i , τ = 0 and B = {i ≤ ℓq | sC((qC0 , α

q
i )) ̸= (qU

0
, αq

i )};
– If sC(q) = (qCε , α

q
1) then

γ = ε, τ = ε and B = {i ≤ ℓq | sC((qC0 , α
q
i )) ̸= (qU

0
, αq

i )};

Observe that sC(q) is an item of Dec(q), say d, and that sC restricted to the

subset of states of Q̂ related to q can be viewed as a local strategy, say d′. By
construction, d′ = d̂. Thus applying inductively Lemma 2, one immediately gets
the next proposition and corollary:

Proposition 2. Let sC be a positional controller strategy of Ĝ. Then:
Outcome(sC) = {r̂ | r ∈ Outcome(sC)}.

12



Corollary 2. Let Goal ⊂ Qω be a parity goal and sC be a winning positional
strategy for Goal in Ĝ. Then sC is a winning positional strategy for Goal in G.

Combining corollaries 1 and 2, one gets:

Theorem 1. Let G be a concurrent game, Goal ⊆ Qω be a parity goal.
– Let sC be a controller strategy. Then sC is a winning strategy for Goal if

and only if ŝC is a winning strategy for Goal;
– If there is a winning strategy for G, there is a positional one, i.e. s′C where

s′C is any positional winning strategy of Ĝ.

5 Permissivity of the controller

Permissivity is a criterion that has to be taken into account for choosing between
possible controllers. In our context and due to the results of the previous section,
we limit ourselves to positional controllers. First we introduce an order between
controller decisions. In words, a decision d′ is more permissive than d if (1)
either d′ is inactive or intends to play the same action as d, (2) the delay before
acting of d′ is greater or equal than the delay before acting of d, and (3) the set
of actions masked by d′ is a subset of actions masked by d. Here permissivity
should be interpreted as the controller avoiding to restrict the behaviour of the
environment.

Definition 16. Let q be a state and d = (γ, τ, B) and d′ = (γ′, τ, B) be two
decisions, one says that d′ is more (or equally) permissive than d denoted by
d ⪯ d′ if: γ′ = γ or γ′ = ε, τ ≤ τ ′ and B′ ⊆ B.

Assuming that there exists a winning strategy for q0, our goal is to define
and synthesise a maximally permissive winning strategy for q0 w.r.t. safety and
reachability goals. As explained later we introduce slightly different notions of
maximally permissive winning strategy depending on the kind of goal. Observe
that in the next definition, we do not care about losing states of the game since
winning strategies do not enter losing states.

Definition 17. Let sC and s′C be positional winning controller strategies of
(G, Goal) where Goal is a safety goal. Then s′C is more permissive than sC w.r.t.
Goal, denoted sC ⪯ s′C , if for all q winning state of (G, Goal), sC(q) ⪯ s′C(q).
Additionally, sC ≺ s′C if sC ⪯ s′C and s′C ⪯̸ sC .
sC is a maximally permissive winning strategy w.r.t. Goal if there is no s′C such
that sC ≺ s′C .

The synthesis of a maximally permissive winning strategy w.r.t. a safety goal
is easy. Since it is enough to stay in the winning states, maximally permissive
decisions can be combined without any restriction to get a maximally permissive
winning strategy.

Theorem 2. Let G be a concurrent game and Goal be a safety goal. Once the
winning states of (Ĝ, Goal) have been computed, a maximally permissive winning
strategy of (G, Goal) for q0 can be computed in linear time.

13



Proof. We compute for all q, winning state of (G, Goal) (and thus of (Ĝ, Goal)),
a most permissive decision. Since we deal with a safety goal, any combination of
decisions works. A maximally permissive decision for q is computed as follows.
– If (qCε , α

q
1) is winning then define B = {αq

i | i ≤ ℓq∧δ(q, αq
i ) is not winning}.

By construction, (ε, ε,B) is a maximally permissive decision;
– If (qCε , α

q
1) is not winning and (qC

0
, αq

1) is winning then define

B = {αq
i | i ≤ ℓq ∧ δ(q, αq

i ) is not winning}. The set {γq
i | i ≤ pq ∧

δ(q, γq
i ) is winning} is not empty since (qC

0
, αq

1) is winning. Pick some γq
i

inside. By construction, (γq
i ,0, B) is a maximally permissive decision;

– If (qCε , α
q
1) and (qC

0
, αq

1) are not winning then (qC0 , α
q
1) is winning. Define

B = {αq
i | i ≤ kq ∧ δ(q, αq

i ) is not winning}. The set {γq
i | i ≤ pq ∧

δ(q, γq
i ) is winning} is not empty since (qC0 , α

q
1) is winning. Pick some γq

i

inside. By construction, (γq
i ,0, B) is a maximally permissive decision.

⊓⊔

The definition of a maximally permissive winning strategy w.r.t. a reacha-
bility goal is more involved since we want to take into account the delay before
reaching the target state qf assumed w.l.o.g. to be absorbing (i.e., its only out-
going transition is a self-loop).

Definition 18. Let G be a concurrent game structure and Goal be a reachability
goal defined by an absorbing target state qf . Let sC be a positional winning
strategy and q ∈ Q be a winning state. Then delaysC (q), the delay of q ̸= qf
w.r.t. sC is defined by:

delaysC (q) = max(n | (qm
dm,am
=====⇒ qm+1)1≤m<ncomplying to sC , q = q1, ∀i qi ̸= qf )

By convention, delaysC (qf ) = 0.
The minimal delay of a q, denoted delay∗(q) is defined by:

delay∗(q) = min(delaysC (q) | sC is a winning strategy)

We also restrict the constraint for maximality for decisions of a strategy sC
to states visited by sC : a state q is visited by sC if there is a finite play complying
to sC starting in q0 and ending in q.

Definition 19. Let sC and s′C be positional winning controller strategies of
(G, Goal) where Goal is a reachability goal defined by an absorbing target state
qf . Then s′C is more permissive than sC w.r.t. Goal, denoted sC ⪯ s′C , if for all
q state visited by sC , sC(q) ⪯ s′C(q) and delays′C (q) ≤ delaysC (q).

sC ≺ s′C if sC ⪯ s′C and s′C ⪯̸ sC .
sC is a maximally permissive winning strategy w.r.t. Goal if there is no s′C such
that sC ≺ s′C .

Let us informally explain how the proof of the next theorem proceeds to
synthesise a maximally permissive winning strategy. If q0 = qf we are done.
Otherwise define Q0 = {qf} and Q1 to be the set of states q ̸= qf for which there
is a decision d such that all the transitions of Next(q, d) lead to Q0. Observe that
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this set is non empty. Otherwise q0 could not be a winning state. For such q select
d maximally permissive among these kinds of decisions. If q0 ∈ Q1 we are done.
We iterate this process until q0 is found. Assume Q0, . . . , Qi have been built with
q0 /∈

⊎
j≤i Qj . Define Qi+1 to be the set of states q /∈

⊎
j≤i Qj for which there

is decision d such that all the transitions of Next(q, d) lead to
⊎

j≤i Qj . Observe
that this set is non empty. Otherwise q0 could not be a winning state. For such
q select d maximally permissive among these kinds of decisions. Since Q is finite
this process must stop with q0 belonging to some Qi∗ .

Theorem 3. Let G be a concurrent game structure and Goal be a reachabil-
ity goal defined by an absorbing target state qf . Then a maximally permissive
winning strategy of (G, Goal) for q0 can be computed in linear time.

Proof. As explained we proceed by iteratively building disjoint sets of states
Q0, Q1, . . . as long as q0 does not belong to these states. Furthermore we associate
decisions with every state belonging to these sets, that define the strategy sC .
We set Q0 = {qf} and since qf is absorbing, the associated decision is (ε, ε, ∅).
Assume that Q0, Q1, . . . , Qi have been built with q0 /∈

⊎
j≤i Qj . For sake of

readability, we write Q′ =
⊎

j≤i Qj . Let q /∈ Q′.

– If q is transient and for all k ≤ nq, δ(q, β
q
k) ∈ Q′ then q ∈ Qi+1 and defining

B = {αq
k | k ≤ ℓq ∧ δ(q, αq

k) /∈ Q′}, (ε, ε,B) is the decision associated with q;
– Else if for all k ≤ nq, δ(q, β

q
k) ∈ Q′ and there exists γq

p such that δ(q, γq
p) ∈ Q′

then q ∈ Qi+1 and defining B = {αq
k | k ≤ ℓq ∧ δ(q, αq

k) /∈ Q′}, (γq
p ,0, B) is

the decision associated with q;
– Else if for all k ≤ mq, δ(q, β

q
k) ∈ Q′ and there exists γq

p such that δ(q, γq
p) ∈ Q′

then q ∈ Qi+1 and defining B = {αq
k | k ≤ kq ∧ δ(q, αq

k) /∈ Q′}, (γq
p ,0, B) is

the decision associated with q.
By construction, for all q ∈ Q, one has q ∈ Qi if and only if delay∗(q) = i.
Furthermore delaysC (q) = delay∗(q). Assume there exists a winning strategy s′C
such that sC ≺ s′C . Since sC achieves the minimality of delay for states visited
by sC , there must exist a state q visited by sC that belongs to some Qi such that
s′C(q) is strictly more permissive than sC(q). By definition of sC(q), this implies
that there exists a state q′′ /∈

⊎
j<i Qj which is the destination of a transition of

Next(q, d). Thus delays′C (q) > delaysC (q), establishing a contradiction.
In order to obtain a linear time algorithm, one proceeds as follows. In the sequel
i denotes the current iteration when the sets Q0, Q1, . . . , Qi−1 have been built.
Here Q′ denotes Q′ =

⊎
j≤i Qj .

– Initially one builds a “reverse graph” whose vertices are the states and there

is an edge q′
βq
k−→ q (resp. q′

γq
p−→ q) with k ≤ mq (resp. p ≤ pq) if δ(q, β

q
k) = q′

(resp. δ(q, γq
p) = q′).

– At beginning of the ith iteration, the set Qi has already been computed using
the variables described below.

– One associates a counter cq and a boolean bq with every state q and a boolean
bq with every idle state q. Boolean bq is true if there exists some action γq

p

such that δ(q, γq
p) ∈ Q′ and cq is the size of the set {k ≤ mq, δ(q, β

q
k) /∈ Q′}.
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A state q belongs to Qi if (1) it does not belong to Q′, (2) its counter cq is
null, and (3) either it is transient or its boolean bq is true.

– The ith iteration consists in two stages for all q ∈ Qi. First one determines
sC(q) using the rules described above. Then one updates the counters and

the booleans using the edges of the reverse graph: for all q
βq′
k−−→ q′, cq′ is

decremented and if there exists some q
γq′
p−−→ q′ bq′ is set to true. If q′ satisfies

the three conditions w.r.t. iteration i+ 1, it enters the set Qi+1.

It is routine to check that this procedures operates in linear time. ⊓⊔

6 Conclusion

We have introduced a model of qualitative time concurrent game between a con-
troller and an environment. We have designed a linear-time translation from such
a game to an untimed turn-based game and shown that given any parity goal,
the concurrent game is winning for the controller if and only if the turn-based
game is winning for it. This allows us, taking as input a positional winning strat-
egy of the turn-based game, to build in linear time a positional winning strategy
in the original game. Furthermore we have introduced a notion of permissivity
for strategies and we have established that one can compute in linear time a
maximally permissive winning strategy for safety and reachability goals. For fu-
ture work, we want to design an algorithm for computing in polynomial time a
maximally permissive winning strategy for repeated reachability goals. We also
plan to modify the notion of delay for reachability goals by integrating the delay
of actions when computing a maximally permissive winning strategy for reacha-
bility. Finally our notion of qualitative delay for actions could be refined in order
to take into account more precise (but still qualitative) information.
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