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Abstract

In this paper, we focus on a problem that requires the location of recharging stations and the routing

of electric vehicles in a goods distribution system. The goods are disseminated from a depot and

distributed to the customers via a heterogeneous fleet of electric vehicles with limited capacity.

Differently from the classical vehicle routing problem, the vehicles have battery restrictions that

need to be recharged at some stations if a trip is longer than their range. The problem reduces

to finding the optimal locations of the recharging stations and their number to minimize the total

cost, which includes the routing cost, the recharging cost, and the fixed costs of opening stations

and operating vehicles. We propose a novel mathematical formulation and an efficient Benders

decomposition algorithm embedded into a two-phase general framework to solve this environmental

logistics problem. Phase I solves a restricted problem to provide an upper bound for the original

problem which is later solved in Phase II. Between the two phases, an intermediate processing

procedure is introduced to reduce the computations of the Phase II problem. This is achieved by

a combination of the Phase I upper bound and several lower bounds obtained via exploiting the

underlying network structure. Our approach solves the problem in a general setting with non-

identical stations and vehicles by allowing multiple visits to the stations and partial recharging.

The computational study provides both managerial and methodological insights.

Keywords: Recharging Station Location, Electric Vehicle Routing, Environmental Logistics,

Integer Programming, Benders Decomposition

1. Introduction

The transport sector is responsible, to a large extent, for energy consumption and greenhouse1

gas emissions. According to the European Environment Agency (2018), the energy consumption2
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of road transport increases by 32% from 1990 to 2016 in the EEA-33. To tackle environmental3

and energy challenges, several countries are considering the prospect of carbon neutrality over the4

next 30 years, with the objective of discouraging the sale of vehicles emitting greenhouse gases.5

The implementation of such a strategy has already begun with the introduction of low-emission6

zones (LEZ), where vehicles with higher emissions either cannot enter the area or have to pay a7

high penalty. For instance, the traffic pollution charge in London LEZ is £100 per day for larger8

vans and minibuses and rises to double this amount for lorries, buses, and coaches. Vehicles with9

alternative fuels, such as electric vehicles (EVs) and hydrogen vehicles, provide credible solutions10

for achieving the carbon neutrality target.11

Unlike the hydrogen vehicle, which is currently at the experimental stage, and consequently12

having an exorbitant cost, the EV has reached an industrial maturity that makes it competitive13

compared to the combustion vehicle. However, as indicated by Davis and Figliozzi (2013) and Sassi14

and Oulamara (2017), EVs are still facing weaknesses related to their availability, purchase price,15

and battery management. From a logistics point of view, there are still weaknesses that are worth16

pointing at. These include17

(i) The limited choice of light duty EVs offered by the car industry. These vehicles are mainly18

needed in the last-mile logistics.19

(ii) The limited EV driving range. For instance, for light duty EVs, the range is between 120km20

and 180km. Note that the range can depend on topology of the road as well as weather and driving21

conditions.22

(iii) The long charging time. The time to fully charge a vehicle can take up to 8 hours depending23

on the capacity of the battery pack and chargers’ level.24

(iv) The lack of availability of charging infrastructures in existing road networks.25

Although all these weaknesses are manageable in practice, the cost of EV presents a barrier to26

their extensive use. An opportunity to reduce the vehicle’s price is focusing on the development27

of those markets that are ready to adopt such a green-based strategy. Such markets allow a large-28

scale production of EVs which can consequently lead to the reduction of vehicle costs. Last-mile29

logistics provide this opportunity to speed up the market penetration of EVs. In such markets, an30

EV has the advantage of meeting the requirement of low-emission zones that are mainly located31

in city centers. Here, the distances covered in last-mile logistics are either within its range or it32

requires one charging session along the route only. Furthermore, even though the acquisition cost33

for EVs is usually higher than the combustion engine vehicles, this difference can be offset at the34

operational cost of EV usage. This is because a high utilization of EVs favors their TCO (Total35

Cost Ownership) since their operating costs (maintenance, tax, fuel, and depreciation) are low36

compared to those of their counterparts.37

In this paper, we consider a goods distribution system that utilizes EVs. This is a system where38

the operating companies have access to their own recharging stations (private) or subscribe to a39

contract that warrants access (without queuing restrictions) to certain recharging stations which40
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have to be selected. Similar business models are considered by Yang and Sun (2015) for battery41

swap stations and by Schiffer and Walther (2017a,b) for recharging stations. In these types of42

business models, the operators need to decide on both the location and the routing aspects. As43

location and routing decisions are interdependent, they need to be handled simultaneously to44

operate an overall system in the most profitable way (Salhi and Rand, 1989). It may be argued45

that it is difficult to integrate operational decisions such as routing into strategic decisions like46

locating facilities. Though this is a critical issue, studies dealing with this dilemma showed that47

an intelligent way of incorporating the results of the integration can be very useful. For instance,48

Salhi and Nagy (1999) conduct a robustness analysis leading to a conclusion that integrated models49

constantly provide higher quality solutions and they are as reliable as ‘locate first - route second’50

methods.51

In our study, we consider a heterogeneous fleet of vehicles to depart from a single depot. We52

also assume there is a sufficient number of charging stations and electrical grid capacity. This is to53

ensure that all vehicles are fully charged before their departure from the depot. However, we may54

need to recharge them during their trips if the total energy consumption to visit certain customers55

is larger than the battery capacity. Once a station is opened, it might be visited multiple times by56

any vehicle. As we allow partial recharging, the vehicles do not need to be fully recharged. Besides,57

we do not impose any restrictions on the types of stations or vehicles. In other words, we allow the58

use of heterogeneous vehicles and stations that might have different location-dependent costs. The59

problem is to decide on the number and location of stations, the number of vehicles needed, the60

amount of recharging needed for each vehicle, and the route(s) for visiting all the customers. The61

objective is to minimize the total cost which includes the variable cost of routing and recharging62

as well as the fixed costs of opening stations and operating vehicles.63

In this study, we develop an exact method based on a new formulation which utilizes disag-64

gregated commodity flows to express sub-tour elimination and capacity restrictions (Yaman, 2006;65

Baldacci et al., 2008; Salhi et al., 1992; Salhi and Rand, 1993). There are several applications66

in the literature where flow based formulations with capacity constraints are successfully solved67

using a Benders decomposition approach. These include the hub location-routing problem stud-68

ied by de Camargo et al. (2013) and network design problems by Fortz and Poss (2009), Botton69

et al. (2013), and Calik et al. (2017). See also other relevant Benders decomposition applications70

for the location of EV recharging stations in car sharing systems (Çalık and Fortz, 2019), under71

probabilistic travel range (Lee and Han, 2017), and with plug-in hybrid EVs (Arslan and Karaşan,72

2016); in the survey by Costa (2005) for fixed-charge network design problems; and in the book73

by Birge and Louveaux (2011) for stochastic programming problems. This motivates us to apply74

a Benders decomposition algorithm leading to very successful results for solving the small size in-75

stances which are shown to be challenging by the preceding study of Schiffer and Walther (2017b).76

To the best of our knowledge, the heterogeneous fleet feature which makes the problem relatively77

much more challenging to handle by exact or heuristic methods has not been considered within the78
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location routing framework of combined recharging station location and EV routing problems. The79

mathematical models introduced by Schiffer and Walther (2017) for the homogeneous fleet vari-80

ants cannot be utilized or easily adapted to solve the heterogeneous fleet variants. Given that the81

models for homogeneous variants have difficulty in solving even small instances with 5 customers,82

there is a clear need for more efficient exact methods which can solve relatively larger instances83

(e.g. 10-15 customers) and enable performance evaluations of heuristic methods to be developed84

in the future.85

Our methodological contributions are twofold:86

- to propose a new mixed integer programming formulation for this strategic electric location-87

routing problem and88

- to develop a Benders decomposition algorithm embedded in a novel two-phase framework to89

solve the problem to proven optimality by making use of several lower and upper bounds.90

The model and the algorithm developed are applicable to both versions of the problem with limited91

and unlimited number of vehicles.92

The rest of the paper is organized as follows: Section 2 gives an informative review on the93

related works. In Section 3, we provide the notation used throughout the paper and present94

our mathematical formulation. In Section 4, we propose our Benders decomposition algorithm95

followed by Sections 5 and 6 describing the implementation and the intermediate reduction process,96

respectively. In Section 7, we provide the setting and present the results of our computational study.97

We conclude in Section 8 with a summary of our findings and a highlight of some future research98

directions.99

2. Related work100

Location of recharging stations can be seen as a facility location problem. The purpose is101

then to decide on the optimal number and locations of facilities given the position of customers102

to serve. In this vein, He et al. (2016) present a case study in Beijing, China. Their objectives103

are to incorporate the local constraints of supply and demand on public EV charging stations104

into facility location models, and to compare the optimal locations from three different location105

models: the set covering model, the maximal covering location model, and the p-median model.106

Liu and Wang (2017) address the optimal location of multiple types of charging facilities, including107

dynamic wireless charging facilities and different levels of plug-in charging stations. Their tri-level108

program first treats the model as a black-box optimization, which is then solved by an efficient109

approximation model.110

However, as raised in Salhi and Rand (1989), facility location and routing decisions are interde-111

pendent and should be tackled simultaneously. In the general case where both vehicles and depots112

are capacitated, the problem is known as the capacitated location routing problem (CLRP). The113

aim here is to i) define which depots must be opened, ii) assign each serviced node (customer)114
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to one and only one depot and, iii) route the vehicle to serve the nodes, in such a way that the115

sum of the depot cost and the total routing cost is minimized. Many papers appeared in the sub-116

ject and more particularly during the last decade, as shown in surveys by Nagy and Salhi (2007);117

Prodhon and Prins (2014), and Schneider and Drexl (2017). To solve this NP-hard problem to118

proven optimality, branch-and-cut (Belenguer et al., 2011) and set partitioning based (Akca et al.,119

2009; Contardo et al., 2013) algorithms are available in the literature. Additionally, several new120

efficient metaheuristics are proposed. These include a cooperative Lagrangean relaxation-granular121

tabu search heuristic by Prins et al. (2007), an adaptive large-neighborhood search (ALNS) by122

Hemmelmayr et al. (2012), and a three-phase matheuristic by Contardo et al. (2014). Other stud-123

ies cover a multiple ant colony optimization algorithm (Ting and Chen, 2013) and a two-phase124

hybrid heuristic (Escobar et al., 2013). Very recently, a tree-based search algorithm by Schneider125

and Löffler (2017) and a Genetic Algorithm by Lopes et al. (2016) are proposed.126

The integration of the location of recharging stations with the routing decision, also called127

electric location-routing problem (ELRP), is relatively recent though it can lead to massive envi-128

ronmental benefits. To the best of our knowledge, the first study of simultaneous vehicle routing129

and charging station location for commercial EVs is presented in a conference paper in 2012 by130

Worley et al. (2012). Then, Yang and Sun (2015) introduce the interesting battery swap station131

location-routing problem, where the charge is completely fulfilled at each stop. The authors develop132

two heuristic approaches. The problem is revisited by Hof et al. (2017) who adapt an interesting133

and powerful adaptive variable neighborhood search (AVNS) heuristic originally dedicated to the134

vehicle routing problem (VRP) with intermediate depots. Recently, Zhang et al. (2019) introduce135

a battery swap station location-routing problem with stochastic demand and solve this problem by136

developing a hybrid algorithm combining binary particle swarm optimization and variable neigh-137

borhood search. Another relevant study by Yıldız et al. (2016) introduces a branch and price138

algorithm for routing and refueling station location problem.139

The first paper dealing with partial recharge may come from Felipe et al. (2014), and is dedicated140

to a Green Vehicle Routing Problem (G-VRP). In G-VRP the fleet is composed of Alternative Fuel141

Vehicles (AFV) where, in addition to the routing of each EV, the amount of energy recharged and142

the technology used must also be determined. However, the location aspect is not considered.143

Constructive and improving heuristics are embedded in a Simulated Annealing framework. The144

partial recharging policies are then reused showing that they may considerably improve the routing145

decisions as noted by Keskin and Çatay (2016). Thus, Schiffer and Walther (2017b) extend the146

problem by including the location of charging stations which leads to the electric location routing147

problem with time windows and partial recharging (ELRP-TWPR). The authors focus on a problem148

with a single type of vehicle and multiple visits to the stations. They propose a mathematical149

formulation based on Miller-Tucker-Zemlin type constraints, supported by several preprocessing150

steps to eliminate the arcs that violate time windows, capacity, and battery restriction constraints.151

The Location Routing Problem with Intraroute Facilities which is a generalization of the ELRP-152
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TWPR is explored by Schiffer and Walther (2017a) where large instances are solved using an ALNS153

which is enhanced by local search and dynamic programming components. A lower bounding154

procedure integrated to this ALNS algorithm by Schiffer et al. (2018) provides improved results155

for solving the ELRP-TWPR.156

Our problem can be considered as a generalization of the electric vehicle routing problem157

(EVRP) with location decisions or an electric location-routing problem (ELRP) with a heteroge-158

neous fleet, multi-type stations, multi-visit, and partial recharging. The EVRP literature is not159

extensively discussed here except those papers considering the location decisions. However, we160

refer the reader to Pelletier et al. (2016) for an overview on the EVRP studies. In the next section161

we provide the notation and a mathematical formulation of the problem.162

3. Notation and Problem Formulation (PF)163

Consider a given network with a set of customer locations and a set of potential charging station164

locations, from which we are required to select a subset of stations. Each customer should be served165

by a vehicle originating from the depot and each vehicle can perform a single trip. The vehicles166

have a battery restriction and they have to visit one or more among the selected charging stations167

before the battery is depleted if a trip longer than their range is to be traversed. In addition, we168

have a fleet of heterogeneous vehicles with a limited number of vehicles of each type. Note that all169

our methods remain applicable to the special case with unlimited number of vehicles which is in170

practice equivalent to the case where the number of vehicles for each type is equal to the number171

of customers. We first provide the notation and a scheme for allowing multiple visits which is then172

followed by the new formulation.173

3.1. Notation174

In this section, we list the parameters and the decision variables as follows:175

Parameters:176

G = (N,A): the given network.177

A: the arc set.178

N = I ∪ J ∪ {0}: the set of all nodes179

I: the set of customer locations180

J : the set of potential locations for charging stations181

0: the depot node182

K: the set of vehicles183

di > 0: the demand of client i ∈ I184

cij : the routing cost of traversing arc (i, j) ∈ A185

eij : the energy consumption on arc (i, j) ∈ A expressed in kWh186
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fj : the fixed cost of opening a charging station at node j ∈ J187

rk: the unit cost of recharging of vehicle k ∈ K188

vk: the fixed cost of operating vehicle k ∈ K189

Qk: the load capacity of vehicle k ∈ K190

βk: the battery capacity of vehicle k ∈ K expressed in kWh.191

Decision variables:192

yj = 1 if station j ∈ J is open, 0 otherwise193

xkij = 1 if arc (i, j) is traversed by vehicle k ∈ K, 0 otherwise194

zkj is the amount of energy recharged at station j ∈ J for vehicle k ∈ K195

bkij is the battery level of vehicle k ∈ K at node i ∈ N before leaving for node j ∈ N expressed196

in kWh197

lkij is the cumulative load of vehicle k ∈ K at node i ∈ N before leaving for node j ∈ N .198

In the remaining of this paper, we assume I ⊂ J but all the methods can be easily adapted to199

the case where I \ J 6= ∅ by simply defining yj and zkj variables for all j ∈ I ∪ J, k ∈ K and setting200

yj = zkj = 0,∀j ∈ I \ J . For convenience, we define dj = 0 for j ∈ N \ I.201

3.2. A novel mechanism that caters for multiple visits202

In order to allow multiple visits to a station, we perform the following interesting and powerful203

modification on our input network. For each potential station, we create as many dummy copies204

as the number of customers (Steps 2-3 in Algorithm 1). If this potential station is also a demand205

node, the demand of the first copy is identical to the demand of the potential station whereas the206

demand of the remaining copies is set to zero. Similarly, the fixed cost of the first copy is identical207

to the fixed cost of the station whereas it is set to zero for the remaining copies (Step 4). The arc208

set of the modified network includes all the arcs of the original network. Additionally, all distinct209

node pairs in the modified network are connected via a direct arc except the pairs which are the210

copies of the same station (Step 5). Finally, we define an arc set for each vehicle which contains211

all arcs in the modified network whose energy consumption is not greater than the range of the212

vehicle and the total demand of its endpoints is not greater than the freight capacity of the vehicle213

(Step 6).214

Algorithm 1: Network modification215

Step 1: Let |I| be the number of demand nodes.216

Step 2: Create |I| copies of each station.217

Step 3: Form set JA
j = {j1, j2, . . . , j|I|} for each j ∈ J and JA =

⋃
j∈J J

A
j .218

Step 4: For each j ∈ J , set fj1 = fj ; dj1 = dj and fji = dji = 0, i = 2, . . . , |I| where219

j1, . . . , j|I| ∈ JA
j .220
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Step 5: Let NE = JA ∪ {0} and AE = A ∪ {(i, j) : i, j ∈ NE ; i 6= j;¬(i, j ∈ JA
l for some221

l ∈ J)}.222

Step 6: Define Ak = {(i, j) ∈ AE : eij ≤ βk; di + dj ≤ Qk} for k ∈ K.223

3.3. Mathematical formulation PF224

The following is a commodity flow formulation of the problem:

min
∑
k∈K

∑
(i,j)∈Ak

cijx
k
ij +

∑
k∈K

∑
j∈JA

rkz
k
j +

∑
j∈JA

fjyj +
∑
k∈K

∑
(0,i)∈Ak

vkx
k
0i (1)

s.t. yi ≤ yj , i ∈ JA
j : i 6= j (2)∑

i∈JA

xk0i ≤ 1, k ∈ K (3)

∑
k∈K

∑
(j,i)∈Ak

xkji = 1, i ∈ JA : di > 0 (4)

∑
(j,i)∈Ak

xkji ≤ yi, i ∈ JA : di = 0, k ∈ K

(5)∑
(i,j)∈Ak

xkij −
∑

(j,i)∈Ak

xkji = 0, i ∈ JA, k ∈ K (6)

∑
(i,j)∈Ak

(lkij − dixkij) =
∑

(j,i)∈Ak

lkji, i ∈ JA, ∀k ∈ K (7)

∑
j∈JA

lk0j = 0, k ∈ K (8)

lkij ≤ Qkxkij , k ∈ K, (i, j) ∈ Ak (9)∑
(i,j)∈Ak

eijx
k
ij −

∑
j∈JA

zkj ≤ βk, k ∈ K (10)

∑
(i,j)∈Ak

bkij =
∑

(j,i)∈Ak

(bkji − ejixkji) + zki , i ∈ I ∪ JA, k ∈ K (11)

zkj ≤ βkyj , j ∈ JA, k ∈ K (12)

zkj ≤ βk
∑

(i,j)∈Ak

xkij , j ∈ JA, k ∈ K (13)

bk0j = βkxk0j , k ∈ K, (0, j) ∈ Ak (14)

bkij ≤ βkxkij , k ∈ K, (i, j) ∈ Ak (15)

bkij ≥ eijxkij , k ∈ K, (i, j) ∈ Ak (16)

yj ∈ {0, 1}, j ∈ JA (17)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ Ak (18)

lkij ≥ 0, k ∈ K, (i, j) ∈ Ak (19)
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bkij ≥ 0, k ∈ K, (i, j) ∈ Ak (20)

zkj ≥ 0, j ∈ JA, k ∈ K. (21)

The objective function (1) minimizes the total sum of routing costs, charging costs, fixed costs of225

opening stations, and fixed cost of using vehicles. If a zero-demand copy of a station is opened,226

Constraints (2) force the original copy of this node to be opened and therefore, ensure that the costs227

of the stations are counted in the objective function. By Constraints (3), we restrict the number of228

trips by each vehicle to at most one. Constraints (3)-(9) together ensure that each client is served229

by a unique vehicle that starts its trip at the depot and the capacities of vehicles are respected.230

Constraints (5) ensure that a zero-demand copy of any station is visited only if that station is231

open. We ensure the elimination of sub-tours for each vehicle trip via the load (flow) preservation232

constraints (7)-(9). Note that Constraints (9) also ensure that the vehicle freight capacities are233

always respected. Battery restriction on the vehicles are imposed by Constraints (10) and (11).234

Constraints (12) and (13) avoid recharging of a vehicle at a node that has no station and that is235

not visited by that vehicle, respectively.236

We initialize the battery level for each vehicle to 100% by Constraints (14). For each arc-237

vehicle pair, Constraints (15) restrict the amount of battery level with full battery level if the238

arc is traversed by the vehicle and set it to zero otherwise; Constraints (16) make sure that the239

battery level is larger than the energy consumption on the arc that will be traversed by the vehicle.240

Finally, Constraints (17)-(21) represent the binary and non-negativity restrictions on the decision241

variables.242

4. Benders Decomposition Algorithm (BDA)243

Our mathematical formulation can be solved by using a Benders decomposition (Benders, 1962)244

framework that we briefly described here. The details of our algorithm are presented next. The245

classical Benders decomposition method aims to solve a mixed integer program (MIP) with a group246

of integer variables and a group of continuous variables by decomposing the MIP into a master247

problem (MP) with all integer variables and a series of subproblems with continuous variables.248

For each feasible solution of MP, a subproblem (SP) is constructed by fixing the values of all the249

integer variables in the MIP to the value obtained from the master problem. Each extreme ray250

and extreme point of the dual of this SP provides a so called feasibility and an optimality cut,251

respectively, for the MP. Since the full enumeration of the extreme points and extreme rays is252

impractical, the cutting plane procedures are usually employed for the generation and the addition253

of these cuts.254

The classical Benders decomposition method could suffer from slow convergence especially if255

the subproblem is large in size. On the other hand, the method would perform relatively efficiently256

if the subproblem can be decomposed further into smaller and easy-to-solve subproblems as in257
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multi-commodity, multi-period, or multi-scenario problems (Birge and Louveaux, 2011). Moti-258

vated by this fact, we aim to further decompose our problem into |K| smaller problems, each one259

corresponding to a single vehicle trip. For this purpose, we decide to keep y, x, l variables in the260

master problem and z, b variables in the subproblems. The separation method for the optimality261

cuts plays a crucial role in efficient Benders implementations. To speed up our implementation,262

we adopt the recently developed high-performing strategy of Çalık and Fortz (2019) and modify263

our formulation accordingly to obtain only feasibility cuts from the dual subproblems. In order264

to achieve this, we introduce an additional non-negative decision variable wk, ∀k ∈ K and make a265

slight modification to our model to ensure that wk takes value
∑

j∈JA

zkj , ∀k ∈ K. Moreover, we set266

xkij = 0 for (i, j) /∈ Ak. The modified formulation (PF2), as given in what follows, is defined by267

Constraints (2)-(21) and (22)-(24):268

(PF2) min
∑
k∈K

∑
i∈NE

∑
j∈NE :i 6=j

cijx
k
ij +

∑
k∈K

rkw
k +

∑
j∈JA

fjyj +
∑
k∈K

∑
i∈JA

vkx
k
0i (22)

s.t. wk =
∑
j∈JA

zkj , ∀k ∈ K (23)

wk ≥ 0, ∀k ∈ K (24)

(2)− (21).

When solving PF2 in a Benders fashion, we employ a branch-and-cut framework which keeps

y, x, l, w variables in the master problem (MP) and z, b variables in the subproblems.

(MP ) min (22)

s.t. (2)− (9), (17)− (19), (24)

wk ≥
∑
i∈NE

∑
j∈NE :j 6=i

eijx
k
ij − βk, ∀k ∈ K. (25)

Let (y,x, l,w) be the vector of variable values in the solution obtained from the master problem.

One can easily observe that if wk = 0, then, no recharging is needed for the corresponding vehicle

trip and (y,x, l,w) is feasible for PF2. On the other hand, if wk > 0, we construct and solve

the dual of the subproblem SPk(y,x, l,w) for every k ∈ K. Note that when wk > 0, an optimal

solution to the original problem should satisfy Equation (32), which is helpful in the following

mathematical manipulations leading to an efficient implementation.

SPk(y,x, l,w) min 0 (26)

s.t.
∑
j∈JA

zkj = wk, (27)

10



zkj ≤ βkyj , ∀j ∈ JA (28)

zkj ≤ βk
∑

i∈NE :i 6=j

xkij , ∀j ∈ JA (29)

∑
j∈NE :j 6=i

bkij =
∑

j∈NE :j 6=i

(bkji − ejixkji) + zki , ∀i ∈ JA (30)

bk0j = βkxk0j , ∀j ∈ JA (31)

bkj0 = ejox
k
j0, ∀j ∈ JA (32)

bkij ≤ βkxkij , ∀i, j ∈ NE : i 6= j (33)

bkij ≥ eijxkij , ∀i, j ∈ NE : i 6= j (34)

bkij ≥ 0, ∀i, j ∈ NE : i 6= j (35)

zkj ≥ 0, ∀j ∈ JA (36)

Note that Constraints (10) of PF is ensured by Constraints (25) and (27) as
∑

j∈JA

zkj = wk ≥269 ∑
i∈NE

∑
j∈NE :j 6=i

eijx
k
ij−βk, ∀k ∈ K. Moreover, we can replace equality (27) with inequality

∑
j∈JA

zkj ≥270

wk due to Lemma 4.1.271

Lemma 4.1. If (28)-(36) is non-empty and wk > 0, then
∑

j∈JA

zkj =
∑

i∈NE

∑
j∈NE :j 6=i

eijx
k
ij − βk.272

Proof. zki =
∑

j∈NE :j 6=i

bkij −
∑

j∈NE :j 6=i

(bkji − ejixkji), ∀i ∈ JA by (30). Moreover,
∑

i∈JA

βkxk0i = βk and

bkj0 = ejox
k
j0 since wk > 0.∑

i∈JA

zki =
∑
i∈JA

∑
j∈NE :j 6=i

bkij −
∑
i∈JA

∑
j∈NE :j 6=i

(bkji − ejixkji)

=
∑
i∈JA

bki0 −
∑
i∈JA

bk0i +
∑
i∈JA

∑
j∈JA:i 6=j

(bkij − bkji) +
∑
i∈JA

∑
j∈NE :j 6=i

ejix
k
ji

=
∑
i∈JA

eki0x
k
i0 −

∑
i∈JA

βkxk0i +
∑
i∈JA

∑
j∈NE :j 6=i

ejix
k
ji

=
∑
i∈NE

∑
j∈NE :j 6=i

ejix
k
ji − βk

273

After elimination of equality constraints and a few mathematical manipulations on the remain-

ing subproblem, we obtain the following SPk in canonical maximization form for each k ∈ K:

max 0 (37)

s.t. −
∑
j∈J

zkj ≤ −wk, (38)

11



zkj ≤ βkyj , ∀j ∈ JA (39)

zkj ≤ βk
∑

i∈JA:i 6=j

xkij , ∀j ∈ JA (40)

zkj +
∑

i∈JA:i 6=j

bkij −
∑

i∈JA:i 6=j

bkji ≤ ekj0xkj0 − βkxk0j +
∑

i∈NE :i 6=j

eijx
k
ij , ∀j ∈ JA (41)

− zkj −
∑

i∈JA:i 6=j

bkij +
∑

i∈JA:i 6=j

bkji ≤ βkxk0j − ej0xkj0 −
∑

i∈NE :i 6=j

eijx
k
ij , ∀j ∈ JA (42)

bkij ≤ βkxkij , ∀i, j ∈ JA : i 6= j (43)

− bkij ≤ −eijxkij , ∀i, j ∈ JA : i 6= j (44)

bkij ≥ 0, ∀i, j ∈ JA : i 6= j (45)

zkj ≥ 0, ∀j ∈ JA (46)

Let α, δj , πj , γj , ρj , φij , εij be the dual variables associated with constraints (38)-(44), respec-

tively. Then, we can write the equivalent dual problem Dk(y,x, l,w) for each k ∈ K as follows:

Dk(y,x, l,w) min − wkα+
∑
j∈JA

βkyjδj +
∑
i∈NE

∑
j∈JA:i 6=j

βkxkijπj

+
∑
j∈JA

ej0x
k
j0γj −

∑
j∈JA

βkxk0jγj +
∑
i∈NE

∑
j∈JA:i 6=j

eijx
k
ijγj

+
∑
j∈JA

βkxk0jρj −
∑
j∈JA

ej0x
k
j0ρj −

∑
i∈NE

∑
j∈JA:i 6=j

eijx
k
ijρj

+
∑
i∈JA

∑
j∈JA:i 6=j

βkxkijφij −
∑
i∈JA

∑
j∈JA:i 6=j

eijx
k
ijεij (47)

s.t. − α+ δj + πj + γj − ρj ≥ 0, ∀j ∈ JA (48)

− γi + γj + ρi − ρj + φij − εij ≥ 0, ∀i, j ∈ JA : i 6= j

(49)

α ≥ 0, (50)

δj , γj , πj , ρj ≥ 0, ∀j ∈ JA (51)

φij , εij ≥ 0, ∀i, j ∈ JA : i 6= j

(52)

In order to avoid solving the same dual problem twice (once for detecting unboundedness and274

once for obtaining a feasibility cut), we solve a bounded dual problem instead. This will imply275

unboundedness of Dk(y,x, l,w) if the optimal value is negative (see Lemma 4.2). To do so, we276

bound variables α, γj , ρj ,∀j ∈ JA, and εij ,∀i, j ∈ JA : i 6= j by 1 from above. Let us refer to this277

bounded dual problem as DB
k (y,x, l,w). If the optimal value of DB

k (y,x, l,w) is negative valued,278

we add the feasibility cut (53) to MP to cut the current solution (y,x, l,w).279
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− αw +
∑
j∈JA

βkδjyj +
∑
i∈NE

∑
j∈JA:i 6=j

βkπjx
k
ij +

∑
j∈JA

ej0γjx
k
j0 −

∑
j∈JA

βkγjx
k
0j +

∑
i∈NE

∑
j∈JA:i 6=j

eijγjx
k
ij

+
∑
j∈JA

βkρjx
k
0j −

∑
j∈JA

ej0ρjx
k
j0 −

∑
i∈NE

∑
j∈JA:i 6=j

eijρjx
k
ij

+
∑
i∈JA

∑
j∈JA:i 6=j

βkφijx
k
ij −

∑
i∈JA

∑
j∈JA:i 6=j

eijεijx
k
ij ≥ 0 (53)

Lemma 4.2. If the optimal value of DB
k (y,x, l,w) is negative, then Dk(y,x, l,w) is unbounded.280

Proof. Let ψ be an optimal solution to DB
k (y,x, l,w) and let g(ψ) < 0 be the value of this solution.281

For any positive constant υ, υψ is a feasible solution for Dk(y,x, l,w). Then, for an arbitrarily282

large υ, g(υψ) = υg(ψ) < 0 will be an arbitrarily small solution value for Dk(y,x, l,w) which283

implies that Dk(y,x, l,w) is unbounded.284

285

5. Implementation Details - General Framework286

The general framework of our algorithm mainly consists of two phases. In Phase I, we solve287

the problem with at most one visit to each station. This is done by including only one copy of288

each station in BDA models MP and Dk(), k ∈ K. We refer to the BDA solving this restricted289

problem as BDA1. In the second phase, we focus on the general problem that allows multiple290

visits to stations. Between the two phases, we perform an intermediate reduction procedure (See291

Section 6) to decrease the size of the problem in Phase II. The aim is to cut as much as possible292

without eliminating any potential solution that is better than the one in Phase I. We provide a293

brief summary of the general framework in Section 5.3. For clarity of presentation, we use the294

notation ‘BDA’ throughout the paper to refer to both the algorithm and the formulation.295

Through our preliminary experiments, we observed that our algorithm has a better convergence296

behavior if we introduce a high quality initial feasible solution to our master problem. In order to297

achieve this, we first perform a ‘Step 0’ process where we solve our BDA formulation via a CPLEX298

option that allows stopping after finding the first integer feasible solution. We also introduce299

a partial warm start solution to CPLEX by opening all potential stations. In our experiments,300

CPLEX usually finds a solution with all stations opened. We then improve this solution by closing301

some of the stations. This removal process is a greedy approach based on checking the energy302

consumption between three consecutive stations and then closing the intermediate one if the battery303

level is sufficient to go from the first one to the third one. Finally, we introduce the set of open304

stations of this improved solution as a partial warm start solution for our Phase I problem and305

solve BDA1 with the valid inequalities given next in Section 5.1.306
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5.1. Valid Inequalities for Phase I307

Let NV
min be a lower bound on the number of vehicles needed for any feasible solution. We can308

obtain such a lower bound by solving a bin packing problem (BPP) as follows. Define sk = 1 if309

vehicle k is used, 0 otherwise and aik = 1 if the request of customer i is provided by vehicle k,310

otherwise. Constraints (55) assign each customer to a vehicle while Constraints (56) ensure that311

these assignments respect the capacities of vehicles.312

(BPP ) NV
min = min

∑
k∈K

sk (54)

s.t.
∑
k∈K

aik = 1, ∀i ∈ I (55)∑
i∈I

diaik ≤ Qksk, ∀k ∈ K (56)

sk ∈ {0, 1}, ∀k ∈ K (57)

aik ∈ {0, 1}, ∀i ∈ N, k ∈ K. (58)

We can detect the infeasibility due to insufficient freight capacity by solving BPP. Our preliminary313

experiments revealed that introducing Constraint (59), which enforces using at least NV
min vehicles,314

usually reduces the solving time. This observation has led us to include this constraint in our315

computations for every model of Phase I and Phase II.316

∑
k∈K

∑
j∈JA

xk0j ≥ NV
min (59)

When we solve BDA to optimality with at most one visit to each station (BDA1), we include317

the following sets of valid inequalities to our master problem:318

∑
k∈K

∑
j:(i,j)∈Ak

xkij ≤ 1, i ∈ JA : di > 0 (60)

∑
j:(i,j)∈Ak

xkij −
∑

j:(0,j)∈Ak

xk0j ≤ 0, i ∈ NE ,∀k ∈ K (61)

∑
i∈JA

xki0 ≤ 1, ∀k ∈ K (62)

∑
j:(j,i)∈Ak

xkij ≤ yi, i ∈ JA : di = 0,∀k ∈ K (63)

yi ≤
∑
k∈K

∑
j∈NE

xij , ∀i ∈ JA : di = 0 (64)
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yj ≤
∑
k∈K

∑
i∈NE

xij , ∀j ∈ JA : dj = 0 (65)

wk ≤
∑
j∈JA

βkyj ∀k ∈ K. (66)

Constraints (60) restrict the number of arcs entering a demand node to at most one. Constraints319

(61) ensure that an arc is visited by a vehicle only if that vehicle leaves the depot. Constraints320

(62) make sure that each vehicle enters the depot at most once. Constraints (63) forbid leaving321

a zero-demand copy of a station if it is not open while Constraints (64) and (65) forbid opening322

zero-demand station copies if they are not visited by any vehicle. Constraints (66) limit the total323

recharging for each vehicle by full battery charging times the number of open stations.324

Even though most of these constraints are implied by the original constraints, their inclusion325

improves the time performance of our algorithm considerably.326

Let (y1,x1, l
1
,w1) be the solution with value Z1 that we obtain from Phase I. After the327

intermediate process which will be explained in Section 6, we proceed to Phase II to solve a328

reduced problem via BDA with the valid inequalities of Section 5.2 below. We introduce y1 as a329

partial warm start solution to the Phase II problem.330

5.2. Valid Inequalities for Phase II331

When we apply BDA for the last time with all possible copies of potential stations, in addition332

to the valid inequalities (59),(61)-(66), we also introduce the following set of valid inequalities to333

break the symmetry between the copies of stations:334

∑
i:(i,j)∈Ak

xkij ≤
∑

i:((j−1),i)∈Ak

xk(j−1)i, ∀k ∈ K, j is the mth copy of some j1 : dj1 > 0,m ≥ 3 (67)

∑
i:(i,j)∈Ak

xkij ≤
∑

i:((j−1),i)∈Ak

xk(j−1)i, ∀k ∈ K, j is the mth copy of some j1 : dj1 = 0,m ≥ 2. (68)

Constraints (67) and (68) make sure that an additional copy of any station is visited by a335

vehicle only if the preceding copy is visited by the same vehicle. Exceptionally, the second copy336

(the first non-original copy), might be visited by a vehicle not serving the original copy if it is a337

demand node.338

5.3. General framework339

Below we give a brief summary of the general framework of our algorithm:340

Step 0: Solve BDA1 to obtain a feasible solution (y0,x0, l
0
,w0) (not necessarily optimal).341

Close the redundant stations of (y0,x0, l
0
,w0) in a greedy manner and obtain (y,x, l,w).342
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Step 1: Phase I: Solve BDA1∪(59)-(66) with partial warm start y to obtain the optimal solution343

(y1,x1, l
1
,w1).344

Step 2: Apply the intermediate process (see Section 6) to reduce the size of BDA∪(59)-(68).345

Step 3: Phase II: Solve the reduced BDA∪(59)-(68) with partial warm start y1 to obtain the346

optimal solution.347

6. Intermediate Reduction Process348

Creating multiple copies of stations leads to a large-size formulation and excessive solving times.349

We develop a two phase method that solves our Benders formulation initially for a single copy of350

each station. Based on the value Z1 of the solution obtained at this stage, we apply an intermediate351

processing procedure that checks the availability of a solution with multiple copies of stations that352

has a smaller objective value than Z1. This is an iterative procedure that proceeds by increasing353

the number of copies considered, say m, one by one and applies lower bound checking steps.354

The aim of this procedure is to check whether there exists a solution of BDA with exactly m355

copies for some station j whose cost is lower than Z1.356

Lemma 6.1. Let ZLB
(m,j,k) be a lower bound on the cost when exactly m copies of station j is visited357

by vehicle k. If ZLB
(m,j,k) ≥ Z1,∀j, k, then, there exists no solution with m copies of any station358

whose value is less than Z1.359

Proof. Any feasible solution to a minimization problem provides an upper bound. Therefore,360

the value of any feasible solution as described in Lemma 6.1 has to be greater than or equal to361

ZLB
(m,j,k) ≥ Z

1.362

Lemma 6.2. If there exists some lower bound ZLB
(m,j,k) such that ZLB

(m′,j,k) ≥ Z
LB
(m,j,k), ∀m

′ ≥ m and363

if Lemma 6.1 holds for such ZLB
(m,j,k) of m for all j, k, then, there exist no solution with more than364

or equal m copies of any station whose value is less than Z1.365

Proof. ZLB
(m′,j,k) ≥ ZLB

(m,j,k) ≥ Z1, ∀j, k,m′ such that m′ ≥ m by Lemma 6.1. Then, there exists no366

solution with m′ copies of any station whose value is less than Z1.367

Below we give the details on how we obtain a lower bound that satisfies Lemma 6.2.368

Let us consider a potential station j. If we use exactly m copies of this station, it means that369

we visit at least m − 1 different customers with some vehicle k. This leads to a partial network370

structure as 0 . . . j . . . i1 . . . j . . . i2 . . . . . . im−1 . . . j . . . 0.371

Let Em and Rm be the amount of energy consumption and the amount of recharging needed,372

respectively, when we visit station j exactly m times by some vehicle k1. Now, we consider two373

cases:374

Case 1: all customers are visited by k1.375
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Case 2: some customers are visited by other vehicle(s).376

For any of Case 1 or Case 2, the following observation holds:377

Observation:378

(i) Em > Ebase
m = (m− 1)βk1 + ej0 and Rm > Rbase

m = (m− 2)βk1 + ej0 if m is even.379

(ii) Em > Ebase
m = (m− 1)βk1 and Rm > Rbase

m = (m− 2)βk1 if m is odd.380

In Figure 1, we illustrate this observation for m = 2 and m = 3. In this figure, if E2 ≤ βk1 + ej0,381

we would not need to visit j twice. Similarly, if E3 ≤ 2βk1 , it would be redundant to visit j three382

times.383

(a) m = 2

(b) m = 3

Figure 1: Illustration of minimal energy consumption and recharging need for visiting m copies of j with vehicle k
for m = 2, 3.

We further check whether Em and Rm values are much larger than Ebase
m and Rbase

m , respectively.384

This is performed as follows:385

Figure 2: Calculation of minimal energy consumption EC
m on the partial network for visiting m = 3 copies of j with

vehicle k1

.

In Case 1, we calculate the minimal possible energy consumption on such a partial network.386

More explicitly, we define EC
m = e0j + eji1 + ei1j + eji2 + ei2j + . . .+ ejim−1 + ej0 where i1, . . . , im−1387

are m− 1 closest customers to j (e.g. see Figure 2). For this particular case, we can further obtain388

a lower bound on the total energy consumption by constructing a 1-tree obtained via a minimum389

spanning tree (MST) which spans the union set of all customers and m copies of j and that is390

connected to the depot node with two minimal arcs. Let the energy consumption on this 1-tree391

be ET
m and Em = max{EC

m, E
T
m, E

base
m }. We obtain a lower bound C on the total routing cost392

similarly. Then, R = max{Em − βk1 , 0, Rm} gives us the amount of recharging needed for this393

partial network and ZLB = R × rk1 + C + fj + vk1 gives us a lower bound on the cost of routing394

all customers by vehicle k via visiting j m times or more.395
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When we look at Case 2, we investigate all possible vehicle combinations that need to be396

considered by iteratively increasing the number of additional vehicles. If we find a combination397

with k vehicles whose lower bound is less than Z1, we do not check the combinations with more398

than k vehicles. Let us assume that in addition to k1, we use K∗ = {k2, . . . , kl}. This means that399

we are visiting a different customer by each additional vehicle. Therefore, we add 0 . . . ikh . . . 0 as400

a connected component to our partial network for each vehicle kh ∈ K∗ where ikh is the closest401

customer to depot which is not served by preceding vehicles. Let E(kh) and R(kh) denote the402

total energy consumption and the amount of recharging needed, respectively, for the connected403

component for vehicle kh ∈ K∗. In a similar fashion to that of Case 1, we calculate the total404

energy consumption EC
m(K∗) = Em +

∑
kh∈K∗ E(kh), the amount of recharging needed RC

m(K∗) =405

R +
∑

kh∈K∗ R(kh), the total routing cost and hence a lower bound ZLB1
K∗ on the total cost with406

the corresponding vehicle combination.407

In order to obtain another lower bound ZLB2
K∗ from the 1-tree constructed with the total energy408

consumption ET
m(K∗), this time, we use β =

∑
k∈K∗∪k1 β

k as the total battery available in our409

calculation for the amount of recharging needed, that is, Rm(K∗) = max{max{EC
m(K∗), ET

m(K∗)}−410

β, 0} and r = mink∈K∗∪k1 rk as the unit recharging cost. Our bound ZLB
K∗ for the corresponding411

combination is defined as ZLB
K∗ = max{ZLB1

K∗ , Z
LB2
K∗ }. See Figures 3, 4, and 5 for sample 1-tree412

constructions for visiting two copies of j with 1, 2, and 3 vehicles, respectively. When k vehicles413

are used, additional k − 1 copies of the depot are created and added to the set of nodes to find an414

MST. The 1-tree is then constructed by connecting this MST to the remaining (original) copy of415

the depot via two minimal arcs. Note that there do not exist any arcs between the copies of the416

same stations or the depot. The 1-trees constructed in this manner provide a lower bound for the417

shortest-length Hamiltonian cycles as in Figure 6, which also provide a lower bound on the lengths418

of corresponding VRP tours.

Figure 3: Construction of the 1-tree for obtaining LB2 when visiting m = 2 copies of j with one vehicle.

419

If min{ZLB, ZLB
K∗ } ≥ Zm−1 for every (k1,K

∗) combination, then, the value of any solution420

visiting j no less than m times will be no better than Zm−1. So, in further iterations, we do not421

need more than m − 1 copies of j. If this holds for all stations, we can terminate the iterative422
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Figure 4: Construction of the 1-tree for obtaining LB2 when visiting m = 2 copies of j with two vehicles.

Figure 5: Construction of the 1-tree for obtaining LB2 when visiting m = 2 copies of j with three vehicles.

Figure 6: Illustrative Hamiltonian cycles for calculating the 1-tree lower bound LB2 on the cost of visiting m = 2
copies of j with 1,2, or 3 vehicles
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checking procedure and solve our algorithm BDA with at most m− 1 copies for each station.423

Additional speed-up mechanism:424

When solving BDA for this last time, we further apply variable fixing by using the information425

we obtained from this iterative procedure. More explicitly, if it is decided that we do not need426

more than l copies at a given station j, we fix all y values to zero for all those copies of j. Similarly,427

if we decided that visiting more than l copies of station j with vehicle k1 is not optimal, then we428

set all x variables of those copies to zero for vehicle k1.429

7. Computational Study430

7.1. Experimental setting and data instances431

In order to test our methods, we generated problem instances based on the data set provided by432

Schneider et al. (2014) for EVRP. This data set has 36 different instances with 5, 10, and 15 cus-433

tomers (12 instances for each customer size). The number of potential stations vary between 7 and434

22. From these instances, we retrieved the demand and network information (node coordinates).435

In the remainder of the paper, we will refer to these instances as ‘networks’ for clarity reasons.436

The vehicle freight capacities are equal to 200 in the original data. We introduced additional levels437

of capacities (80, 100), especially, to test relatively smaller instances. Similarly, for the battery438

capacities, we conducted tests for low, medium, and high capacities (10, 16, 22 kWh) to avoid439

extremely loose values on the tests of small problems (Sassi and Oulamara, 2017).440

In our experiments, we use IBM ILOG CPLEX 12.8 in a Java environment. We run our tests441

on a server with Intel(R) Xeon(R) CPU E5-2640 v3 at 2.60 GHz processor and 16 cores. For each442

experiment, we set a memory limit of 16 GB and a time limit of 3600 seconds for instances with443

|I| = 5 and 10800 seconds for the others. BDA and PF run using a single thread.444

We assume that the system will be equipped with fast charging facilities. Note that as there are445

no time windows or maximum travelling restrictions, introducing slow and fast charging facilities in446

each potential station would lead to optimal solutions with only cheaper type of charging facilities.447

As we do not have data on location-dependent fixed station costs for the instance networks, we448

utilize a single type of stations in our experiments. The lifetime of a charging facility is estimated449

to be 3 years and it is 5 years for the vehicles. When we calculate the fixed costs of opening450

stations and purchasing/leasing vehicles, we divide their costs by the number of days within their451

lifetime. We approximately obtain fj = 8 e as the fixed cost of opening stations and vk =16, 26,452

and 36 e as the fixed cost of low, medium, and high capacity vehicles, respectively. Let lij be the453

distance between nodes i, j ∈ N ; then, we set cij = lij×0.03 (cents/km), rk = r = 0.07 (cents/km)454

for k ∈ K, eij = lij × 135 (Wh/km). In order to better tackle the precision issues of CPLEX, we455

multiplied all the cost values by 100.456

We conduct experiments on instances with heterogeneous fleets of 2, 3, and 4 vehicles of three457

different types, see Table 1. In order to observe the value of using heterogeneous fleets compared to458
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Table 1: Freight capacity, battery capacity, and cost values for the three vehicle types considered.

Vehicle type 1 2 3

Qk 80 100 200
βk 10 16 22
vk 16 26 36

homogeneous fleets, we also conduct experiments with homogeneous fleets of 1, 2, 3, and 4 vehicles459

for each vehicle type. For each network, we test the problem with heterogeneous fleets shown460

in Table 2 as well as the homogeneous fleets generated. Certain network-fleet combinations are461

infeasible and we exclude them from our computational analysis.

Table 2: Heterogeneous fleets tested for each network of Schneider et al. (2014).

Fleet ID Fleet size Vehicle types available Fleet ID Fleet size Vehicle types available
K2V1-2 2 1,2 K4V1-1-1-2 4 1,1,1,2
K2V1-3 2 1,3 K4V1-1-1-3 4 1,1,1,3
K2V2-3 2 2,3 K4V1-1-2-2 4 1,1,2,2

K3V1-1-2 3 1,1,2 K4V1-2-2-2 4 1,2,2,2
K3V1-1-3 3 1,1,3 K4V1-1-3-3 4 1,1,3,3
K3V1-2-2 3 1,2,2 K4V1-1-2-3 4 1,1,2,3
K3V1-2-3 3 1,2,3 K4V1-2-2-3 4 1,2,2,3
K3V1-3-3 3 1,3,3 K4V1-2-3-3 4 1,2,3,3
K3V2-2-3 3 2,3,3

462

7.2. Analysis463

We perform two types of analysis: (1) performance analysis of the model and the algorithm in464

Section 7.2.1 and (2) managerial insights for selecting the fleet types in Section 7.2.2.465

For simplicity, we provide average results for each network type in Table 3 but the detailed466

results can be found in the supplementary document. For illustration, we also display the results467

in Figures 7-11.468

In these figures and tables, NS and NV show the number of stations opened and the number469

of vehicles used, respectively. The value ‘g’ represents the gap provided by CPLEX at the end470

of the time limit (0.00 if the problem is solved to proven optimality) for the corresponding model471

solved. Similarly, ‘t(s)’ represents the total time spent in seconds for the corresponding model or472

algorithm if it includes additional processes. The value of the best solution obtained from a model473

is given under ‘Obj’. The selected vehicle types are indicated with their Qk values. For example,474

[80,100] indicates that the corresponding solution selects one vehicle of type 1 and one vehicle of475

type 2.476

7.2.1. Methodological observations and insights477

Among 204 instances of |I| = 5 (|N | ∈ {8, 9}), our formulation PF can solve all but ten instances478

to optimality within one hour. The average time spent by PF on these instances is 523.93 seconds,479
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Table 3: Average solution, gap, and solving time values for BDA and PF.

BDA Phase I BDA Phase II PF
Net. ID |I| |J | Obj g t(s) Obj g t(s) NS NV Obj g t(s)
c101C5

5

7 7127.48 0.00 1.32 7127.48 0.00 1.51 0.41 2.12 7127.48 0.00 446.07
c103C5 7 4259.00 0.00 1.14 4259.00 0.00 1.42 0.00 1.35 4259.00 0.00 170.53
c206C5 8 8553.95 0.00 2.55 8553.95 0.00 2.56 0.29 2.35 8553.96 0.00 819.52
c208C5 7 5713.57 0.00 0.83 5713.57 0.00 1.03 0.18 1.35 5713.57 0.00 47.77
r104C5 7 4214.04 0.00 1.09 4214.04 0.00 1.20 0.00 1.35 4214.04 0.00 182.98
r105C5 7 4233.90 0.00 0.87 4233.90 0.00 1.01 0.00 1.35 4233.90 0.00 72.56
r202C5 7 3948.66 0.00 0.92 3948.66 0.00 1.03 0.00 1.59 3948.66 0.00 27.56
r203C5 8 6675.67 0.00 2.31 6675.67 0.00 2.28 0.06 2.12 6675.67 0.00 494.06

rc105C5 8 7421.29 0.00 2.59 7421.29 0.00 2.80 0.06 2.12 7421.28 0.02 1077.36
rc108C5 8 20738.84 0.00 1.97 20738.84 0.00 2.68 0.65 2.47 20738.84 0.06 815.56
rc204C5 8 5219.75 0.00 2.61 5219.75 0.00 2.88 0.00 2.00 5219.82 0.05 1548.00
rc208C5 7 5860.37 0.00 0.62 5860.37 0.00 0.77 0.18 1.35 5860.37 0.06 585.22

Average 0.00 1.57 0.00 1.76 0.15 1.79 0.02 523.93
c101c10

10

14 18721.65 0.00 346.81 17880.34 0.00 259.39 0.81 2.88
c104c10 13 20193.80 0.00 259.55 20146.89 0.00 235.76 0.82 2.82
c202c10 14 8208.00 0.00 164.15 8208.00 0.00 215.44 0.56 2.38
c205c10 12 14160.13 0.00 182.23 14160.13 0.00 374.76 0.59 2.47
r102c10 13 6936.08 0.00 22.18 6936.08 0.00 20.87 0.06 2.12
r103c10 12 4247.15 0.00 7.56 4247.15 0.00 9.23 0.00 1.35
r201c10 13 5895.34 0.00 237.09 5895.34 0.00 215.06 0.00 2.13
r203c10 14 9780.68 0.00 151.44 9780.68 0.00 189.97 0.24 2.53

rc102c10 13 27920.23 0.00 28.69 26254.23 0.00 32.92 1.31 3.00
rc108c10 13 36706.26 0.00 320.01 36133.71 0.00 735.61 1.18 2.94
rc201c10 13 14250.35 0.00 368.28 14250.35 0.00 352.18 0.47 2.59
rc205c10 13 32217.30 0.00 175.72 31550.95 0.00 840.48 1.35 2.82
Average 0.00 188.53 0.00 286.73 0.62 2.50

c103c15

15

19 16455.88 0.07 5622.99 15546.37 0.06 4679.68 0.81 2.88
c106c15 17 8316.83 0.01 1606.37 8316.83 0.01 1698.20 0.06 2.29
c202c15 19 33255.84 0.09 4389.71 30922.17 0.06 4295.05 1.31 3.00
c208c15 18 16909.28 0.08 4809.75 16396.69 0.06 4625.89 0.81 2.94
r102c15 22 9356.76 0.03 3650.76 9356.76 0.04 4458.27 0.38 2.56
r105c15 20 9618.99 0.07 5267.99 9618.99 0.07 5524.17 0.25 2.63
r202c15 20 17991.78 0.11 4650.14 15944.78 0.09 5091.58 1.20 2.87
r209c15 19 10064.97 0.02 1237.37 9981.06 0.00 1050.26 0.31 2.56

rc103c15 19 30891.86 0.17 6556.05 30072.29 0.22 7016.98 1.38 3.00
rc108c15 19 44373.32 0.16 4815.57 41028.85 0.28 5865.23 1.60 3.00
rc202c15 19 33912.00 0.16 6017.79 34087.56 0.18 7061.24 1.44 3.25
rc204c15 21 28632.75 0.22 8130.34 19652.83 0.17 9054.50 1.46 3.31
Average 0.10 4658.65 0.10 4833.38 0.90 2.85
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which is much larger compared to that of BDA. On the other hand, we observe that our algorithm480

BDA can solve all the instances with |I| = 5 to optimality requiring a few seconds only. In fact,481

BDA is relatively faster than PF in every single instance.482

For larger problems (|I| = 10, 15), optimality could not be guaranteed with PF within the483

time limit. In fact, PF could not even find a feasible solution for many instances. Based on these484

observations, for larger problems, we present the results for BDA only.485

For the networks with 10 customers and up to 14 potential stations (|N | ∈ {13, 15}), BDA486

solves all Phase I instances to optimality in 188.53 seconds on average. The algorithm reaches487

either the time or memory limit before proven optimality in Phase II for 6 out of 200 instances488

in this category. These are instances either with fleet type K4V1-1-1-2 or K4V1-1-2-2, which are489

challenging also for larger instances with 15 customers, as observed in Figure 7. Figure 7 compares490

the average solving times (Phase I, Phase II, and Phase I+Phase II) and gaps across fleet types.491

In this figure, Phase I gaps and times are better indicators for challenging instances as Phase II492

gaps and solving times are not available due to memory limit for some instances. BDA is able to493

solve 65% of the instances with |I| = 15 (|N | ∈ {18, 19, 20, 21, 22, 23}) to proven optimality within494

the time limits. The average gap is 0.10.

Figure 7: Average BDA solving time (Phase I, Phase II, and Phase I+Phase II) and gaps per heterogeneous fleet.

495

A common pattern we observe with the instances reaching the memory limit is that (1) their496

fleets consist of four vehicles with either one type 3 vehicle and three type 1 vehicles or only type497

1 and type 2 vehicles and (2) Phase I solution uses all four vehicles. The intermediate processing498

procedure cannot reduce the Phase II problem sufficiently due to high level of degeneracy and499

low-cost and low-capacity vehicles in the fleet.500

Overall, the algorithm is able to provide very high quality solutions within three hours. It501
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solves 88% of all instances to optimality. The average gap among all instances is 0.03 only.502

For several instances, Phase I and Phase II costs are not identical. We interpret this as follows:503

• If Phase II problem does not reach proven optimality within the time limit and Phase I504

cost is less than Phase II cost, this indicates the benefit of solving a restricted version when505

the original problem is too difficult to solve within the available time and computational506

resources.507

• If neither Phase I nor Phase II problems reach proven optimality within the time limit and508

Phase I cost is less than Phase II cost, either a solution using multiple copies of a station is509

found in Phase II, which is not feasible for Phase I problem, or Phase I solution helps Phase510

II problem in finding a better-quality solution faster.511

Below are some further observations and future research directions for developing algorithms512

with improved performance.513

• The algorithm needs more time to reach proven optimality as the size of the fleet increases.514

This is often because the dual bound is too weak and the majority of the time is spent515

for closing the gap. The dual bounds can be strengthened by using good valid inequalities.516

However, valid inequalities might also make the formulation heavier and more difficult to find517

feasible solutions. Therefore, it is in general more efficient to decompose the problem into518

smaller problems with smaller fleet configurations and solve them iteratively by updating the519

fleet configurations at each step. Obviously, there will be a trade-off between the number520

of small fleet configurations and the size of each configuration as in most decomposition521

methods.522

• The focus in this paper was on heterogeneous-fleet problems with a limited number of vehicles.523

For solving instances with homogeneous fleets, the efficiency of the algorithm can be improved524

by updating the intermediate process. A similar improvement-procedure update would also525

be helpful in solving the instances with an unlimited number of vehicles of each type.526

7.2.2. Managerial insights527

Figure 8 compares the average cost, number of stations opened and the number of vehicles528

used for each given heterogeneous fleet. As expected, the average cost in general decreases as the529

fleet size increases. In this Figure, most significant drops in cost occur when the fleet has a type-3530

vehicle and another vehicle of type 2 or type 3. These are also the instances where the optimal or531

best known solutions open fewer number of stations. The highest number of stations are opened532

with fleets K2V1-2, K3V1-1-2, and K4V1-1-1-2 which have relatively smaller total freight capacity533

and total range. Thus, solutions to these instances also use more vehicles on average.534
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Figure 8: Average cost, number of stations opened and number of vehicles used for each heterogeneous fleet type.

It is, indeed, interesting to note that small vehicles result in higher costs, an observation which535

is not that obvious. This is because they require potentially more charging and more stations to536

be opened which incur very high costs.537

Figure 9 shows the results of an analysis from another perspective where we calculate the538

averages over all fleet types for each network. In this figure, we can clearly observe that the539

number of stations needed changes a lot depending on the network type. This is then reflected540

in the cost. We also observe that the average cost for a smaller-network instance, for example,541

rc108c5, can be much higher than the cost for a larger-network instance, for example, c106c15.542

Figure 9: Average cost, number of stations opened and number of vehicles used for each network type (heterogeneous
fleets).

Moreover, we compare the average cost, number of opened stations and vehicles used with543
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Figure 10: A comparison of homogeneous and heterogeneous fleet: average cost, number of opened stations and
vehicles used for each network size.

homogeneous and heterogeneous fleets of at least two vehicles in Figure 10. We observe that the544

average cost is much higher when using homogeneous fleets compared to heterogeneous ones, it545

is indeed twice as much for instances with |I| = 5. The average number of stations opened with546

homogeneous fleets is also larger for each network group. And in general, a similar conclusion can547

be made for the average number of vehicles used.548

In Figure 11, we also show the average cost per homogeneous fleet, including the fleets with a549

single vehicle. Similar to previous observations, the average cost is lower when the fleet contains550

larger vehicles.551

Figure 11: Average cost for each homogeneous fleet.

Below we provide some further key observations:552

• For the majority of the instances where |I| = 5 and all types of vehicles are present in the553

heterogeneous fleet, medium-size vehicles (type 2) are not selected in the optimal solutions.554
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This is not the case with larger networks.555

• When the fleets are homogeneous, no instance uses four vehicles of type 3 and only four556

instances, two from networks rc202c15 and rc204c15 each, use three type 3 vehicles.557

• When solving the instances with fleets of at least two vehicles, we observe that the optimal558

solutions serving all the demand via a single vehicle only uses the largest vehicle type (type559

3). Although there exist several instances where it is feasible to serve all demand with a560

single vehicle of type 1 or type 2, such solutions are suboptimal and solutions with lower cost561

can be obtained using multiple vehicles.562

8. Conclusion and Future Research Directions563

In this paper, we introduce an electric location-routing problem with heterogeneous fleet and564

partial recharging. We initially propose a new mixed integer programming formulation for this565

problem. This is a formulation with three-index binary routing variables where the sub-tour elimi-566

nation is enhanced via a group of load (flow) preservation constraints. We further utilize additional567

non-negative continuous variables to satisfy battery restrictions and energy-related constraints.568

We test our formulation on small problem instances from the literature. Although the formu-569

lation is able to solve instances with 5 customers and up to 8 potential stations to optimality, we570

observe that its performance is limited when it comes to solving larger problems.571

As we aim to solve this problem to optimality, we further develop a two-phase algorithm based572

on the Benders decomposition of our formulation. The first phase solves a restricted version of573

the problem that allows at most one visit to each station. By using the information obtained, the574

second phase problem, which is the generalized problem allowing multiple visits to any station,575

is reduced in size, making it relatively easier compared to the case with no a priori processing.576

This enhancement step allows us to solve 88% of all the instances with up to 15 customers and 22577

potential stations to optimality. The average optimality gap over all other instances is negligible,578

just 0.03. In summary, our approach obtains very high quality solutions within the time limit.579

We observe through our experimental study that the problem is usually harder to solve when580

the vehicle capacities are smaller. We also found that using small vehicles results in higher costs.581

Though the main focus of this study is to present an exact method with proven optimality,582

this approach can be easily combined with additional procedures leading to powerful matheuristics583

to obtain near optimal solutions for larger instances, see Salhi (2017). This problem can also584

be tackled by powerful metaheuristics whose performance can be evaluated using lower bounds585

obtained from the proposed method.586

The current problem can be extended to cater for several deterministic and stochastic variants587

that are worth exploring. These include the consideration of time windows, multiple depots and/or588

additional location decisions for the selection of depots, as well as periodicity or uncertainty in the589
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customer demand. Moreover, the model and the algorithm we propose in this paper can be easily590

modified to solve the problem variants where vehicle-dependent energy consumption and routing591

costs are considered.592
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