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Abstract. Automated brain tumor segmentation is challenging given
the tumor’s variability in size, shape, and image intensity. This paper
focuses on the fusion of multimodal information coming from different
Magnetic Resonance (MR) imaging sequences. We argue it is important
to exploit all the modality complementarity to better segment and later
determine the aggressiveness of tumors. However, simply concatenating
the multimodal data as channels of a single image generates a high vol-
ume of redundant information. Therefore, we propose a supervoxel-based
approach that regroups pixels sharing perceptually similar information
across the different modalities to produce a single coherent oversegmenta-
tion. To further reduce redundant information while keeping meaningful
borders, we include a variance constraint and a supervoxel merging step.
Our experimental validation shows that the proposed merging strategy
produces high-quality clustering results useful for brain tumor segmen-
tation. Indeed, our method reaches an ASA score of 0.712 compared
to 0.316 for the monomodal approach, indicating that the supervoxels
accommodate well tumor boundaries. Our approach also improves by
11.5% the Global Score (GS), showing clusters effectively group pixels
similar in intensity and texture.
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1 Introduction

Identifying the edges of brain tumors and observing their evolution is critical to
accurately assess disease progression and thus better guide the patient’s treat-
ment plan [9].

There is a multiplicity of brain imaging techniques, starting from the dif-
ferent Magnetic Resonance Imaging (MRI) sequences, providing complementary
information about brain tumors. However, multi-modality makes tumor segmen-
tation, i.e., delineating the tumor’s edges and quantifying the tumor’s size, more
complex. Commonly used sequences include T1, T2, FLAIR, and T1-weighted
contrast-enhanced (T1CE). The visibility of glioma in the various sequences
(modalities) is different. In the T1CE image, regions of the brain are similar
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to the tumor Edema region. In the T1CE, the active and necrotic regions of a
tumor can be clearly distinguished. The intensities of edema and tumor regions
are higher in the T2 sequence images and the FLAIR images, whereas the in-
tensities of CerebroSpinal Fluid (CSF) are higher in the T2 and lower in FLAIR
images. To sum up, one modality can present weak tumor edges but strong tu-
mor features, while another may have strong edges but weak features. Many of
the existing algorithms for brain tumor analysis focus on a single modality (e.g.,
a specific MRI sequence), limiting the available information to be exploited for
segmentation.

Conversely, multimodal information can make the delineation and quantifi-
cation more accurate, thanks to the modalities’ complementarity. However, si-
multaneous processing different MRI sequences comprised of millions of voxels
induces a significant increase in computational time. To tackle this problem,
we propose to oversegment the original sequences with the idea to process su-
pervoxels with similar information instead of the individual pixels. The concept
of superpixel was originally introduced in [1] as a small homogeneous group
of neighboring pixels. Hereafter, we refer to a supervoxel as an extension of a
superpixel in the 3-D multi-modal setting.

We propose a two-stage unsupervised supervoxel-based approach. The first
stage, performs an over-segmentation of the multimodal image with a supervoxel
approach that approximates the boundaries of tumors and other objects in the
multimodal image. The supervoxels are computed using an adaptation of the
Scalable Simple Linear Iterative Clustering (SSLIC) algorithm [13]. Our adap-
tion adds on a local regularity coefficient based on the variance [6] within the
SSLIC algorithm. The coefficient increases the spatial constraint for supervox-
els having high-intensity variances, and reduces it in areas with lower variances.
Thereby, it allows supervoxel boundaries to capture perceptible objects with lim-
ited intensity variations. The second stage fuses multimodal supervoxels with a
merging algorithm inspired by Fu et al. [5] to reduce the supervoxels’ redundancy
and their number prior to any classification task.

We evaluated our method on the publicly available multimodal BraTS 2020
dataset, which is a standard brain tumor segmentation benchmark [16]. Ex-
periments show that the proposed merging produces highly accurate clusters
compared to traditional monomodal approaches, thanks to the complementarity
between modalities. We also demonstrate that using the local regularity co-
efficient allows generating more regular clusters on textures, better guiding the
merging procedure. In the resulting segmentation after merging, the redundancy
is reduced by a factor of 35 and the obtained supervoxels adhere very well to
tumors boundaries.

2 Related work

Brain tumor and lesion segmentation is often formulated as a pixel-wise seman-
tic segmentation problem addressed with supervised learning approaches [4].
Among them, Convolutional Neural Networks (CNNs) have emerged as the cur-
rent best-performing methods [15] taking different forms: 2D CCNs [18, 2], 3D
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CNNs [3], or extended to Fully convolutional [12] or multimodal approaches [23].
Despite their good performance, pixel-wise methods suffer from high computa-
tional complexity due to the significant number of redundant pixels, particularly
when dealing with multimodal images. This complexity affects both classical and
learning-based algorithms. In the case of CNNs, multimodal images may require
higher capacity networks, prone to overfitting if the training dataset is small. In
this work, we take a step aside from pixel-wise semantic segmentation and focus
on the unsupervised early fusion of multimodal information.

Compared to pixels, superpixels are more consistent with human visual cog-
nition, contain less redundancy, and reduce noise. Superpixels generally allow to
significantly improve the speed compared to pixel-based algorithms by analyz-
ing pixels clusters [7].These properties are useful for computationally expensive
tasks, such as brain tumor segmentation in multi-sequence MRI images. Most
superpixel-based algorithms cluster the image into a high number of redundant
superpixels (called oversegmentation) by adding cuts to a graph or growing from
predefined seeds [24] . Superpixel methods combined with conventional machine
learning approaches have been used for brain tumor segmentation, demonstrat-
ing to be fast and robust to noise, initialization, and intensity non-uniformity
[10, 20]. However, these approaches neglect multimodal information in the su-
perpixel step. Ignoring multimodality leads to of lack of adherence with weak
boundaries, as noticed by Wang et al. [25]. Therefore, we opt for combining
multimodal acquisitions, taking advantage of the complementary information to
detect more detailed tumors structures and better adhere to borders.

Regarding other multimodal methods for brain tumor segmentation, Rahim-
pour et al. [19] compare early and late CNN fusion, favoring late fusion as it
does not need an initial registration step. In our work, we opt for an early but
unsupervised fusion which assumes pre-registered modalities. Soltaninejad et al.
[22] also proposed an early multimodal fusion approach to produce supervoxel
boundaries across multiple MR sequences, enforcing adherence to weak struc-
tures boundaries. However, similar to the monomodal case, the algorithm results
in a large number of redundant superpixels, which unnecessarily increases com-
putation time and can lead to a higher false-positive rate. For this reason, we
propose two contributions to reduce supervoxels redundancy in the multimodal
case. First, a variance constraint inspired by the work of Giraud et al. [6], pro-
posed in the context of natural images to better account for textured regions;
and second, a supervoxel merging step.

Outside the brain tumor segmentation literature, there has been interest in
superpixel and supervoxel merging approaches. Luengo et al. [14] proposed a
method that achieves high segmentation performance while reducing the num-
ber of redundant superpixels in the image, based on an iterative splitting and
merging algorithm. Focusing on the scale, Fu et al. [5] introduced a multiscale ap-
proach for superpixel merging in the RGB color space. The method uses multiple
features to calculate a dissimilarity score between pairs of superpixels, including
color, texture, and common border length. Moreover, it simplifies the merging
graph to accelerate the merging procedure. For these two reasons, which are
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relevant in our multimodal MRI case, we rely on Fu’s multiscale approach for
supervoxel merging. Our experimental validation shows qualitatively and quan-
titatively the pertinence of our two contributions: the variance constraint and
the merging approach. Our approach combining multimodal supervoxels, the
variance constraint, and the merging step, improves tumor boundary adherence
and significantly reduces supervoxel redundancy.

3 Methods

Let multiple images of the same anatomy be acquired with different modalities
and then registered to form the multimodal image I = [I1, I2, . . . , IM ]. I is a 3-D
volume whose every voxel contains an M-dimensional vector. Our goal is to find a

single partition S of non-overlapping supervoxels Si, such that, S =
n⋃
i=1

Si taking

into account intensities and borders in all modalities. To this end, we propose a
two-steps method. First, an initial oversegmentation is performed with the SSLIC
algorithm [13], refined with a variance constraint to better model the texture.
As a result we obtain an initial supervoxel clustering (See Section 3.1). However,
the oversegmentation can lead to a substantial number of supervoxels even for
a small tumor. This creates a burden for later tasks, such as classification. To
reduce the final number of supervoxels, a second step is necessary. Inspired by the
work of Fu et al. [5], we construct a graph G over the oversegmentation and merge
similar vertices to obtain a more meaningful segmentation (See Section 3.2).

3.1 Oversegmentation based on Supervoxels

Supervoxels are irregular image blocks composed of adjacent voxels with simi-
lar texture, intensity, and brightness features. Currently, there are two common
types of supervoxel segmentation algorithms. The first one is based on graph
theory and the second on Gradient Ascent. To the later category belongs the
well-known Simple Linear Iterative Clustering (SLIC) approach [1] and its ITK
version [8]. We rely on SSLIC with multimodal features [13] to obtain a first over-
segmentation of the image. By multimodal features we mean that each voxel is
characterized by an M-dimensional vector containing the intensities for that pixel
across all modalities. First, an initial clustering is given and then the clustering
is improved iteratively until convergence (refer to [13] for details).

We propose an adaption of the SSLIC algorithm (SSLICV ar), that modu-
lates the supervoxel compactness according to the supervoxels feature variance.
Initially introduced by Giraud et al. [6] in the context of natural imaging in
2D, we bring this constraint to the medical image analysis field, extending it for
the M-dimensional case. The standard SSLIC framework [13] only requires the
number of superpixels and a single parameter m. In our adapted version, each
supervoxel Si has a different parameter mi setting its shape regularity (i.e com-
pactness). This parameter is computed according to the mean feature (luminance
in our case) variance per supervoxel across modalities:
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mi = m ∗ exp

(
σ2
i (Fmod)

ε

)
(1)

where σ2
i (Fmod) is the luminance variance within the supervoxel Si in a modality,

. is the mean operator and ε is a scaling parameter. At the output of this step,
we have an oversegmentation of our 3D multimodal volume I.

3.2 Supervoxels Merging

The oversegmentation produced by the supervoxel-based method already reduces
some redundant information. However, the SSLIC approach is sensitive to the
seeds initialization, which constraints the final number of clusters. Flat objects
in the image, such as tumors exhibiting low texture and small intensity variation,
are still composed of redundant supervoxels. With the aim of further reducing
the redundancy, we use a method inspired from the work of Fu et al. [5] and
apply it in the context of multimodal MRI. The oversegmentation is transformed
into a Region Adjacency Graph (RAG) G = {V, E}, with the set of vertices V =
{v1, v2, ..., vn} and n the number of supervoxels. Edges E represent connections
between adjacent supervoxels and their weights denote the dissimilarity based
on the intensity and texture features. The dissimilarity of two supervoxels i and
j, named wi,j , is defined as Eq. 2.

wi,j = exp

(
−

(α·Dc(i,j)+β·Dt(i,j)
α+β )2

γ

)
, (2)

where Dc(i, j) and Dt(i, j) are the intensity and texture dissimilarities, α and
β their respective adjustable weights, and γ governs how close to each other
features are. More specifically,

Dc(i, j) =

√√√√ M∑
mod=1

∆Ymod(i, j), (3)

where ∆Ymod(i, j) = (Y imod − Y
j
mod)2 and Y imod, Y jmod are the average luminance

values in the ith and jth supervoxels respectively. Dt(i, j) is the texture dissim-
ilarity computed in [5] as :

Dt(i, j) =

√√√√ M∑
mod=1

∆Hmod(i, j), (4)

where ∆Hmod(i, j) is the Manhattan distance between the histograms of super-
voxels i and j as in [5]. The distance measures were normalized in a range of [0; 1]
to be efficiently combined. Some brain tissues, as is the case of tumors, have lower
textures and high intensity, which can result in an imbalance between intensity
and texture features. Because of these complex cases, the adjustable weights
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from Eq. 2 were manually adjusted to better split the dissimilarity between nor-
mal and tumor tissues as defined in Section 4.3. Once the dissimilarity measures
over supervoxels and graph weights are computed, the supervoxel merging algo-
rithm takes place to reduce information redundancy and achieve finer clustering.
However, the Region Adjacency Graph (RAG) connects each supervoxel to all
its neighbors. So, it is very computationally expensive to directly start merging
the nodes with high similarity since the number of edges and nodes is still too
large. To accelerate the merging process, a Nearest Neighbor Graph (NNG) [17]
is determined based on the RAG. The NNG efficiently determines paired super-
voxels that are the most similar. Here, the NNG is calculated using the Kruskal
algorithm [11], which significantly reduces the number of edges and overall the
search space, allowing for a more computationally efficient merging. The merg-
ing algorithm is iteratively computed until no edges in the NNG have weights
inferior to a given threshold T which is defined as in Eq. 5:

T =

∑
j(min ej − σ(ej))

n
, (5)

with ej one of the edges connected to supervoxel i, that is, ej ∈ {wij}, j ∈ Ni
and σ denotes the standard deviation.

4 Experiments

4.1 Experimental setup

Experiments are performed on the publicly available multimodal BraTS 2020
dataset, which is a standard brain tumor segmentation benchmark [16]. The
dataset is composed of real brain MRI exams including T1, T1CE, T2, and
FLAIR sequences, acquired from 19 institutions for 369 subjects. The ground
truth is provided for each exam in form of contours manually delineated by
experts. Three tumor subregions were annotated: contrast-enhancing tumor,
non-enhancing/necrosis combined, and edema. Images are 3D volumes with a
size of [155 × 240 × 240] (DxWxH) and an isotropic resolution of 1mm. The
sequences from the dataset are co-registered to the same anatomical shape and
skull-stripped by the BraTS maintainer. Images are cropped to remove the back-
ground area at the edges and normalized independently for each modality be-
tween [0; 1].

4.2 Quality assessment methods

We use several reference (using ground-truth) and no-reference segmentation
assessment metrics to evaluate the performance of the proposed unsupervised
segmentation method in delineating tumor tissues and keeping meaningful vox-
els disparities. The Achievable Segmentation Accuracy (ASA) score is computed
in the tumor’s region to assess the accuracy of the supervoxels boundaries with
respect to the ground truth. The wVar and Moran’ Index (MI) quantify re-
spectively the disparity within and between clusters. More precisely, the wVar
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assesses the luminance disparity of within each cluster, while MI is a spatial
autocorrelation measure characterizing the degree of similarity among supervox-
els. Since the SSLIC oversegmentation is highly redundant, MI is an effective
measure to show the advantage of the merging approach. The best value for
wVar and MI is 0 which indicates the absence of redundancy. The Global Score
(GS) is defined as the average of wVar and MI and is used as a final metric
with ASA. We also use the number of supervoxels in the image (Supervoxel
count) to quantify the improvement brought by the merging algorithm. For the
no-reference metrics, in the monomodal setting, the final results are computed
as an average through all modalities for all subjects. In the multimodal setting,
the final results correspond to the average across all subjects. Since the wVar et
MI scores provide one measure per modality, we keep the minimal value for each
supervoxel across modalites. The evaluation is done in this way to put forward
the discriminative power of the different modalities. The other scores (ASA and
count) directly provide a single measurement per subject.

4.3 Implementation details

SSLIC and merging algorithms are dependent on input parameters. The quality
of the output clustering with SSLIC depends on the parameters K and m. K is
the number of supervoxels, which in our case is defined as the smallest desired
isotropic supervoxel size K = [10, 10, 10]. As multimodal images are normalized
independently between [0, 1], the compactness factor m is defined at 0.1. This
value better balances intensity and spatial features as spatial features are not
normalized to the range [0, 1]. The variance parameter ε used to balance the
influence of the variance on the local compactness is set to 0.01. The hyperpa-
rameters α, β, γ have been empirically defined at 0.5, 0.1, and 0.1 to balance
feature importance. Several orders of values have been tested to retain the pa-
rameter set with higher ASA. The parameters used in the histogram texture
similarity are set to 32 for the number of bins, 8 for the number of angles, and
10 for the histogram bin size. The whole process takes around 40s for an image
of shape [4× 155× 240× 240] with the first axis corresponding to the number of
modalities M . The SSLIC algorithm and the feature extraction were computed
on 12 threads with 32 GB of memory.

4.4 Experimental results

In our experiments, we assess the benefit of exploiting multimodal information
in computing supervoxels, the effectiveness of including variance as a regularity
coefficient in the SSLIC and the impact of the merging algorithm relying on
colors and textures features on the segmentation accuracy. To this end, we com-
pare 4 unsupervised segmentation methods applied in both the monomodal and
the multimodal settings: SSLIC applied without (SSLIC) or with (SSLICV ar)
the adaptive local variance regularity coefficient, SSLIC followed by the merg-
ing step without (SSLICMerged) or with the adaptive local variance regularity
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Fig. 1. The first column is an axial cross-section over 3 MRI sequences : T1 (A),
T1 CE (B), T2 (C). The second column (D, E, and F) are the supervoxels computed
using Mono SSLIC on the 3 modalities independently. The third column corresponds
to the result of the merging procedure applied on the previously computed super-
voxels on each modality (Mono SSLICMerged). In the last column, J corresponds to
the resulting segmentation of Multi SSLIC computed on the 3D volume I composed
of the different modalities, K is the result of SSLIC computed on I with the local
regularity coefficient (Multi SSLICV ar) and L is the proposed method including mul-
timodal SSLIC followed by the merging procedure with the local regularity coefficient
(Multi SSLICV ar Merged). The ground-truth overlay is represented by green, red, and
yellow (Edema, necrosis, and active tumor).

Fig. 2. (TOP) Original multimodal images zoomed in around the tumor region.
Modalities are T1 (A), T1CE (B), T2 (C), and the ground truth (D).
(Bottom) Multi SSLIC, Multi SSLICMerged, Multi SSLICV ar and
Multi SSLICV ar Merged (E-H). Blue and red squares show local adaptive regu-
larity influence on supervoxel homogeneity and compactness. The ground-truth
overlay is represented by green, red, and yellow (Edema, necrosis, and active tumor).
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Table 1. Performance measurements computed with our own implementation of the
scores added to superpixel benchmark [24]

Monomodal Method ASA wVar MI GS Supervoxel count

Mono SSLIC .625 .314 .398 .356 8629.770

Mono SSLICV ar .676 .346 .362 .354 8233.930

Mono SSLICMerged .290 .314 .220 .267 204.625

Mono SSLICV ar Merged .316 .348 .318 .333 203.904

Multimodal Method ASA wVar MI GS Supervoxel count

Multi SSLIC .687 .493 .417 .455 8626.370

Multi SSLICV ar .648 .505 .383 .444 8163.21

Multi SSLICMerged .673 .483 .337 .409 301.417

Multi SSLICV ar Merged .712 .458 .349 .403 298.42

coefficient (SSLICV ar Merged, ours). The former methods are applied both in
monomodal (Mono) and multimodal (Multi) settings.

Fig. 1 and 2 show some qualitative results of applying the 4 segmentation
methods to one subject with 4 modalities FLAIR, T1, T1CE, and T2. To further
illustrate the performance of the proposed approaches, we report in Table 1
several quality metrics computed on the segmentations obtained in both the
monomodal and multimodal settings.

The Benefit of Multimodality As depicted in Fig. 1 J, applying the segmen-
tation on multimodal images successfully takes into account the heterogeneous
information from different modalities to cluster the image. On the contrary, in
Fig. 1 D-F (results generated from Mono SSLIC), the clusters do not adhere
completely to the ground truth tumor boundaries on the T1 and T2 modalities,
since the complete information concerning the tumor is not fully present and
multimodal information can not be efficiently exploited. In Fig. 1 G-I, we show
the results of the merging applied independently on the three modalities with
ground-truth overlay. It is clear that the T2 modality gives more information
about Edema tissue whereas T1CE further characterizes the tumor’s tissue. A
more accurate clustering of the tumor can be seen in Fig. 1 J-L.

As shown in Table 1, the multimodal approaches i.e. Multi SSLICV ar and
Multi SSLICV ar Merged perform better in terms of ASA compared to the the
monomodal approaches. Multimodal clustering exploits all the available infor-
mation from different modalities and produces an accurate segmentation. We
found that the best performing approach is the Multi SSLICV ar Merged which
improves the clustering accuracy by 5.2% for the ASA Score and 25% for the GS
with multimodal information. Indeed, all modalities give different complemen-
tary information about tissues. Thereby, using all available information to merge
supervoxels while keeping important tissue properties, such as tumors texture,
improves qualitative results as well as ASA, and GS scores.
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Impact of locally adapting the Superpixel Regularity Including variance
inside the SSLIC algorithm allows to automatically adapt the regularity coef-
ficient to highly textured supervoxel s and high-intensity supervoxels without
manually adapting m. This makes the supervoxels more homogeneous as well
as more compact, resulting in a better final clustering accuracy as shown in
the Fig. 2. Blue and red squares in Fig. 2 F and H (Multi SSLICMerged and
Multi SSLICV ar Merged), show the influence of using the local regularity coef-
ficient on the compactness of the merged supervoxels. The resulting supervoxels
are more compact and differ from their neighbors. We can see in the red square of
Fig. 2 H that supervoxels have been correctly computed with more compactness
and have been merged into a bigger supervoxel. Furthermore, from the quanti-
tative results in Table 1, we can see that the local adaptive regularity coefficient
∗V ar improves the results in terms of accuracy (ASA) and GS for the methods
applied in both monomodal and multimodal settings (excepts for Multi SSLIC
and Multi SSLICV ar). The variance of the supervoxel is an important factor
to take into account in the segmentation algorithm. The MI is almost the same
for both Multi SSLICMerged and Multi SSLICV ar Merged demonstrating the
robustness of the merging step to variance’s disparity accross supervoxels.

Performance of the Merging algorithm In the monomodal setting, in a
modality where tumor tissues are not distinct, merging similar neighboring su-
pervoxels reduces the tumor boundary accuracy. For example, in Fig. 1 H, su-
pervoxels computed independently on the T1CE modality are not accurately
merged since this modality highlights only the active tumor while other tumor
tissues are not visible. This results in a poor ASA score for T1CE, therefore pe-
nalizing the final average ASA score. As such, computing the average ASA across
modalities highlights the lack of the multimodal discriminant power (making use
of visible tumors parts in all modalities). The merging approach applied in the
multimodal setting is capable of reducing the number of supervoxels by a factor
of 35 (column ”Supervoxel count” in Table. 1) and decreasing the redundancy
(MI) by 0.21% in average compared to the initial oversegmentation). The texture
homogeneity inside the merged supervoxels has been kept which demonstrates
that our algorithm merges similar supervoxels. It is also interesting to note the
wVar obtained on the results of applying Mono SSLIC or Mono SSLICMerged

is approximately similar. This can be explained by the fact that the clustering
was initially correct for the Mono SSLIC step without merging.

5 Conclusion

In this work, we proposed a novel approach of merging supervoxels in a mul-
timodal setting towards brain tumor classification. We showed that our meth-
ods applied on multimodal images are capable of exploiting the complementar-
ity between different modalities producing very accurate clusters compared to
traditional monomodal approaches. Our approach Multi SSLICV ar Merged im-
proved the clustering accuracy by 5.2% for the ASA Score and 25% for the GS.
The redundancy of supervoxels is also reduced by a factor of 35, decreasing the
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computational time, and making the resulting oversegmentation more suitable
to be combined with a neural network classifier. Several open questions remain
to be tackled in a future work. First, one drawback of the proposed approach
is its dependency on prior registration of multiple modalities. Bipartite Graph
Matching [21] seems to be an efficient way to alleviate this constraint. Moreover,
taking into account radiomics and deep features in the computation of the super-
voxels could also improve the adherence of initial over-segmentation or merged
supervoxels to contrasted tissues, therefore resulting in more homogeneous final
clustering.
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