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Control of Real-time Systems with Integer
Parameters

Aleksandra Jovanović, Didier Lime, Olivier H. Roux

Abstract—We consider the problem of synthesizing controllers
for real-time systems where some timing features are not known
with precision. We model the plant as a parametric timed
automaton (PTA), i.e., a finite automaton equipped with real-
valued clocks constraining its behavior, in which the timing
constraints on these clocks can make use of parameters. The most
general problem we study then consists in synthesizing both a
controller and values for the parameters such that some control
location of the automaton is reachable.

It is however well-known that most non-trivial problems on
parametric timed automata are undecidable and the classical
techniques for the verification (and a fortiori for the control) of
timed systems do not terminate in that setting.

We therefore provide a restriction on the use of parameters to
ensure the decidability of the control problems. Since in classical
timed automata, real-valued clocks are always compared to inte-
gers for all practical purposes, we search for parameter values as
bounded integers. Hence we solve undecidability and termination
issues, we provide terminating symbolic synthesis procedures, and
our method retains most of the practical usefulness of PTA for
the modeling of real-time systems.

Index Terms—Timed Automata, Control, Game Theory, Pa-
rameters, Synthesis.

I. INTRODUCTION

Designing real-time systems is a challenging issue and
formal models and reasoning are key elements in attaining
this objective. In this context, timed automata (TA) [1] are
a powerful and popular modeling formalism. They extend
finite automata with timing constraints, in which clocks are
compared to integer constants that model timing features of
the system.

This formalism, however, requires complete knowledge of
the system. It is thus difficult to use it in early design stages
when the whole system is not fully characterized. Even when
all timing constraints are known, if the environment changes
or the system is proven wrong, the whole controller synthesis
process must be carried out again. Additionally, considering a
wide range of values for constants allows for a more flexible
and robust design.

Parametric reasoning is, therefore, particularly relevant for
timed models, since it allows designers to use parameters
instead of concrete timing values.

Parametric timed automata [2] extend timed automata [1]
to overcome the limits of checking the correctness of the
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systems with respect to concrete timing constraints. The cen-
tral problem for verification purposes, reachability-emptiness,
which asks whether there exists a parameter valuation such
that the automaton has an accepting run, is undecidable [2].
This naturally led to the search for subclasses of the formalism
for which some problems would be decidable. L/U automata
[3] use each parameter either as a lower bound or as an
upper bound on clocks. The reachability-emptiness problem
is decidable for this model, but state-space exploration, which
would allow for explicit synthesis of all the suitable parameter
valuations, still might not terminate [4].

Control of timed systems.

The introduction of automata-based formalism into the field
of control was motivated by the inadequacy of models based
on continuous mathematics (differential equations) to describe
certain classes of systems. A decision to open a gate or to turn
left or right are discrete and most naturally modeled with a
finite automaton.

Instead of verifying the correctness of a system, we have
here the problem of synthesizing a model for the controller.
It consists in computing a controller which, based on the
current state of the system, restricts the choices of the system,
ensuring that the desired property is satisfied. This problem is
often modeled as the synthesis of a winning strategy for the
controller in a two-player game against the environment.

More precisely, two players, the controller and the envi-
ronment, take actions from their own set and thus make the
game progress. In each state, both players choose, at the same
time and independently of each other, a move (a delay or an
action). The next state of the system is then determined from
both those actions, possibly non-deterministically.

A formalism that is commonly used to describe such sys-
tems in a timed framework is timed game automata (TGA, [5]),
that explicitly represents the moves of both players, in terms
of controllable and uncontrollable edges. They are extended
timed automata that distinguish between the actions of the
two players, describing at the same time both the controller
and the environment.

The (reachability) control problem for TGA is the problem
of determining the strategy for the controller such that, no
matter what the environment does, the system ends up in the
desired location. This problem is known to be decidable [5].
The introduction of this formalism has been followed by the
development of efficient algorithms [6] and tool support [7],
successfully applied to several industrial case studies (e.g. [8],
[9]).
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Control of Parametric timed systems.

In [10], we have introduced a formalism for timed games
extended with parameters, called parametric timed game au-
tomata (PGA). In this setting, the most basic problem is:
“does there exist values for the parameters such that there
exists a controller, such that some control location is reachable
whatever the environment does?”, which we will call the para-
metric control problem. As the PGA formalism extends PTA,
this problem is undecidable. We have nonetheless extended the
backward fixed-point algorithm for solving timed games with
reachability objectives of [5] to the parametric setting [10].
This provides a semi-algorithm, which allows to obtain the
set of symbolic constraints on the parameters together with
the set of winning states for the controller. The termination,
however, is not guaranteed.

Our contribution.

We propose to use a restriction scheme proposed in [4]
for PTA: since in classical timed game automata, real-valued
clocks are always compared to integers for all practical
purposes, we solve undecidability and termination issues by
computing parameters as bounded integers. Due to the finite
number of parameters values, parameter synthesis can be
trivially carried out by an explicit enumeration, but our main
contribution is to symbolically compute the resulting set of
parameter valuations, without that enumeration. The result
is thus given as a symbolic constraint on parameters. The
symbolic algorithm is based on the computation of the integer
hull of the parametric symbolic states. It builds on the forward
exploration of the state-space and backward propagation of
winning states of [10], and adds the integer hull operator
there to restrict the explored state space to integer parameters,
and ensure termination when they are bounded. Surprisingly,
we do not have to apply an integer hull in the backwards
computation, in order to obtain the correct integer solution.
This saves a lot of computational efforts since that operation
is quite expensive.

A preliminary version of this work was published in [11].
The present article develops this work, unifies it with the
backward fixed-point semi-algorithm for solving timed games
proposed in [10] and gives full proofs for all the results.

Organization of the Paper.

The rest of the paper is organized as follows. Section II
provides definitions about PGA, the problems we are consider-
ing, and recalls some negative decidability results. The semi-
algorithm for computing the whole state-space of a PTA is
recalled in Section III. In Section IV we motivate and present a
new restriction scheme for the parameter synthesis, we give the
complexity of the parametric control problem in this setting,
we give the bounded integer parameter synthesis algorithm
and we prove its correctness, completeness and termination.
We present the execution of the algorithm on an example
in Section V and we discuss in section VI the performance
of the proposed approach implemented in our tool ROMÉO,
illustrated on a small but realistic case-study. We conclude
with section VII.

II. PARAMETRIC TIMED GAME AUTOMATA

1) Preliminaries: R is the set of real numbers and R≥0 is
the set of non-negative real numbers. Q is the set of rational
numbers. Z the set of integers. Let V ⊆ R. A V -valuation on
some finite set X is a function from X to V . We denote by
V X the set of V -valuations on X .

Let X be a finite set of variables modeling clocks and let
P be a finite set of parameters.

A parametric clock constraint γ is an expression of the form
γ ::= xi v p | −xi v p | γ∧γ, where xi, xj ∈ X , v∈ {≤, <
}, and p is a linear expression of the form k0+k1p1+...+knpn
with k0, ...kn ∈ Z and p1, ...pn ∈ P .

For V ⊆ R, since set X is finite, and given an arbitrary
order on its elements, a V -valuation wc on X = {x1, . . . , xn}
can be seen as the vector (wc(x1), . . . , wc(xn)) of R|X|.

The set of valuations on clocks and parameters that satisfy
a parametric clock constraint can then be seen as a convex
polyhedron of R|X∪P |. We use this remark extensively in
the subsequent definitions to consider (parametric) clock con-
straints as sets.

Let us consider a parametric clock constraint γ. For any
parameter valuation wp, we note wp(γ) the linear constraint
on clocks obtained by replacing each parameter pi by its value
wp(pi). Similarly, for any clock valuation wc, we note wc(γ)
the linear constraint on parameters obtained by replacing each
clock xi by its value wc(xi).

Note that by valuating both parameters and clocks in γ, we
obtain wp(wc(γ)) = wc(wp(γ)) that can be seen as a boolean
and takes its value in {true, false}.

We denote by G(X,P ) the set of parametric constraints
over X , and by G′(X,P ) a set of parametric constraints over
X of the form γ′ ::= xi v p | γ′ ∧ γ′.

For a valuation wc on X and t ∈ R≥0, we write wc + t for
the valuation assigning wc(x)+ t to each x ∈ X . For R ⊆ X ,
wc[R] denotes the valuation assigning 0 to each x ∈ R and
wc(x) to each x ∈ X\R. Finally, we define the null valuation
0X on X by ∀x ∈ X, 0X(x) = 0.

A. Parametric Timed Games

Definition 1: A Parametric Timed Automaton (PTA) is a
tuple A = (L, l0, X,Σ, P, E, Inv), where L is a finite set of
locations, l0 ∈ L is the initial location, X is a finite set of
clocks, Σ is a finite alphabet of actions, P is a finite set of
parameters, E ⊆ L × Σ × G(X,P ) × 2X × L is a finite set
of edges, and Inv : L 7→ G′(X,P ) is a function that assigns
a (parametric) invariant to each location.

If (l, a, γ,R, l′) ∈ E then there is an edge from l to l′ with
action a, (parametric) guard γ and set of clocks to reset R.

For any Q-valuation wp on P , the structure wp(A) obtained
from A by replacing each constraint γ by wp(γ) is a timed
automaton with invariants (TA) [1], [12]. The behavior of a
PTA A is described by the behavior of all timed automata
obtained by considering all possible valuations of parameters.

Definition 2 (Semantics of a (P)TA): Given a parameter
valuation wp, and a PTA A, the concrete semantics of wp(A),
is the labeled transition system (Q, q0,→) over Σ ∪ R≥0

where:
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• Q = {(l, wc) ∈ L×RX≥0 | wc(wp(Inv(l))) is true }
• q0 = {(l0, 0X) ∈ Q}
• delay: (l, wc)

t−→ (l, wc + t) with t ≥ 0, iff ∀t′ ∈
[0, t], (l, wc + t′) ∈ Q

• action: (l, wc)
a−→ (l′, w′c) with a ∈

Σ, iff (l, wc), (l
′, w′c) ∈ Q, there exists an

edge (l, a, γ,R, l′) ∈ E, such that w′c =
wc[R] and wc(wp(γ)) is true.

A finite run of PTA A, for a given a parameter valuation wp,
is a sequence of alternating delay and action transitions in the
semantics of wp(A), ρ = q1a1q2...an−1qn, where ∀i ∈ [1..n−
1], qi ∈ Q, ai ∈ Σ ∪ R≥0, and qi

a−→ qi+1. Infinite runs are
defined similarly. We denote by Runs(wp(A)) the set of runs
starting in the initial state of wp(A), and by Runs(q, wp(A))
the set of runs starting in q. The last state of a finite run ρ
is denoted by last(ρ). A state q is said to be reachable in
A if there exists a finite run ρ ∈ Runs(wp(A)), such that
last(ρ) = q.

We now go one step further and define Parametric Timed
Game Automata to model our control problems.

Definition 3: A Parametric (Timed) Game Automaton
(PGA) G is a parametric timed automaton with its set of
actions Σ partitioned into controllable (Σc) and uncontrollable
(Σu) actions.

As for PTA, for any PGA G and any rational valuation
on parameters wp, the structure wp(G), obtained by replacing
each constraint γ by wp(γ), is a timed game automaton [5],
[6] (TGA). Note that a TGA can also be seen as a PGA with
an empty set of parameters.

We formalize our reachability control problem as a timed
game, in which the controller player has to reach some
distinguished location in a PGA:

Definition 4 (Parametric Timed Game): A (reachability)
parametric timed game is a pair (G, lgoal) where G is a PGA
and lgoal is a location of G.

A timed game (i.e. without parameters) is a parametric
timed game (G, lgoal) in which G is a TGA.

In a TGA, two players, the controller and the environment,
choose at every instant one of the available actions from their
own sets, according to their strategy, and the game progresses.
Since the game is symmetric, we give only the definition for
the controller playing with actions from Σc. At each step, a
strategy tells the controller to either delay in a location (delay),
or to take a particular controllable action.

At a given instant, if one player chooses to take an action
and the other to delay, then the action is taken. If both
choose an action then the result is the non-deterministic choice
between the two actions. Finally, if both choose to delay, then
nothing happens and we consider the next (different) instant
such that one of the player chooses not to delay.

For reachability timed games, one can consider two seman-
tics for uncontrollable actions: either they can only spoil the
game and it is up to the controller to do some controllable
action to win, or, if at some state s only an uncontrollable
action is enabled but forced by time to happen leading to a
winning state then, the state s is winning. The usual semantics
[5], [6], [13] is the first one where uncontrollable actions
cannot help to win and is the one we consider in this paper.

Definition 5 (Strategy): A strategy F over wp(G) is a partial
function from Runs(wp(G)) to Σc∪{delay} such that for every

finite run ρ, if F(ρ) ∈ Σc then last(ρ)
F(ρ)−−−→ q for some state

q = (l, wc), and if F(ρ) = delay, then there exists some d > 0
such that for all 0 ≤ d′ ≤ d, there exists some state q such
that last(ρ)

d′−→ q and F(ρ
d′−→ q) = delay.

Since we focus on control problems for which the control
objective (given a parameter valuation) is to reach a particular
location of timed automata, [5] proves that to win, the con-
troller needs only strategies that are memoryless and constant
on regions (as defined in [1]). The former means that for a
strategy F and a run ρ, F(ρ) only depends on last(ρ). The
latter means that even if players are allowed to choose their
actions at any instant, with such a strategy, they will not change
their mind until either an action has happened or a sufficient
duration has passed that makes one of the clock go from a
non-integer value to an integer value, or from an integer value
to a non-integer value. We assume nothing on the strategies
of the environment.
Outcome defines the restricted behavior of wp(G), when

the controller plays some strategy F , with respect to all the
possible strategies of the environment.

Definition 6 (Outcome): Let G be a PGA, wp be a parameter
valuation, and F be a strategy over wp(G). The outcome
Outcome(q,F) of F from state q is the subset of runs in
Runs(q, wp(G)) defined inductively as:

• the run with no action q ∈ Outcome(q,F)

• if ρ ∈ Outcome(q,F) then ρ′ = (ρ
δ−−→ q′) ∈

Outcome(q,F) if ρ′ ∈ Runs(q, wpG)) and one of the
following three condition holds:

1) δ ∈ Σu,
2) δ ∈ Σc and δ = F(ρ),
3) δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t. last(ρ)

δ′−−→
q′′ ∧ F(ρ

δ′−−→ q′′) = delay.
• for an infinite run ρ, ρ ∈ Outcome(q,F), if all the finite

prefixes of ρ are in Outcome(q,F).

As we are interested in reachability games, we consider
only the runs in the outcome that are “long enough” to have
a chance to reach the goal location: a run ρ ∈ Outcome(q,F)
is maximal if it is has an infinite number of action tran-
sitions or there is no delay d and no state q′ such that
ρ′ = (ρ

d−−→ q′) ∈ Outcome(q,F) and F(ρ′) ∈ Σc (the
only possible actions from last(ρ) are uncontrollable actions).
MaxOut(q,F) denotes the set of maximal runs for a state q
and a strategy F .

Definition 7 (Winning strategy, state, game): Let G =
(L, l0, X,Σ

c ∪ Σu, P, E, Inv) be a PGA and (G, lgoal) a
parametric timed game. Let v be a parameter valuation.

A strategy F in the non-parametric game (wp(G), lgoal) is
winning from state q if for all runs ρ ∈ MaxOut(q,F), there
is some state (lgoal, wc) in ρ.

A state q is winning if there exists a winning strategy from
q.

The timed game (wp(G), lgoal) is winning if its initial state
is winning.
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The parametric timed game (G, lgoal) is winning if there
exists some parameter valuation wp such that (wp(G), lgoal)
is winning.

In the non-parametric case, the (reachability) control (resp.
synthesis) problem is that of the existence (resp. computation)
of a strategy such that, no matter what happens in the envi-
ronment, the system ends-up in the desired location (for short
we say this location is enforceable). The control problem is
known to be decidable [5] and there exists efficient symbolic
algorithms for the computation of winning states and strategies
[6]. We now extend these problems to account for parameters.

Parametric control problem:

INPUTS: A PGA G and a location lgoal of G.
PROBLEM: Is the parametric timed game (G, lgoal)

winning?
Parametric synthesis problem:

INPUTS: A PGA G and a location lgoal of G.
PROBLEM: Compute the set of valuations v of the

parameters and the corresponding winning
strategies for (wp(G), lgoal) to be winning.

The emptiness problem for PTA, i.e. the existence, for a
PTA A, of a parameter valuation v such that some location is
reachable in wp(A) is undecidable [2].

Now remark that in a game in which all transitions are
controllable, we trivially have that there exists a winning
strategy for the controller to enforce the reachability of some
location if and only if that location is reachable. We can
therefore check the reachability problem using the control
problem, and the following theorem holds:

Theorem 1 ( [10]): The parametric control problem for PGA
is undecidable.

We have proposed in [10] subclasses of PGA, for which
the parametric control problem is decidable. These classes are
however severely restricted in their use of parameters. These
restrictions are inspired by those defining L/U automata, which
to the best of our knowledge are yet the less restrictive subclass
of PTA for which the parametric control problem is decidable.
Since PGA extend PTA there is little hope that we can do much
better than L/U games in terms of syntactic subclasses. Also,
even the L/U restriction is not enough in general to ensure
the termination of the computation of the whole parametric
state-space.

To solve this problem without heavy syntactic restrictions,
we have propose (as in [4]) to restrict the problem of parameter
synthesis to the search for bounded integer parameter values.
This makes all the problems decidable, since we can enumerate
all the possible valuations.

Lifting either one of the two assumptions (boundedness or
integer) leads to undecidability [4].

To avoid an explicit enumeration of all the possible values
of parameters we will propose an efficient symbolic method
to find the solution. This has the additional advantage of
giving the set of parameter valuations as a symbolic constraint
between parameters. As a consequence to this negative result
we now investigate restrictions to the PGA formalism to make
the control problem decidable.

III. A SYMBOLIC STATE SPACE ABSTRACTION OF
PARAMETRIC TIMED GAMES

For timed reachability games, a winning strategy for the
controller can be synthesized using a well-known backward
fixed-point algorithm for solving timed games [5]. The algo-
rithm is based on the time and action predecessor operators
[5], [14], that compute the set of winning states, starting from
the goal location. In [5], the authors only use a backwards
computation. In order to extend this algorithm to the integer
parametric case, we need to compute forward the whole
reachable state space, then compute backwards the winning
states.

In this section, we present the forward computation of the
state space w.r.t. our bounded integer approach.

A. State space of a PGA

In order to represent the infinite state space of PGA, we
need an abstraction. We use here an extension of the classical
symbolic states abstraction of TA and TGA [15].

Definition 8 (Parametric symbolic state): A symbolic state
of a parametric timed (game) automaton G, with set of clocks
X and set of parameters P , is a pair (l, Z) where l is a location
of A and Z is a set of valuations v on X ∪ P .

Given a valuation v on X ∪P , we define its projection v|P
on P as the restriction of v to P such that v|P (x) = v(p) for
all p ∈ P . We define similarly the projection v|X on X .

Given a set Z of valuations on X ∪ P and v a valuation
on X ∪P , we define v|P (Z) = {v′|X |v

′ ∈ Z and v′|P = v|P }.
The definition of v|X(Z) is symmetric.

Given an arbitrary order on clocks and variables, their R-
valuations can be seen as points in the |X ∪ P |-dimensional
space R|X∪P |. Valuation sets that be reached by a given
sequence of edges can be represented by convex polyhedra [4].

For the computation of the state space, we define the
following parametric extensions of the classical operations on
valuation sets [4]:
• future: Z↗ = {v′ | ∀p ∈ P, v′(p) = v(p) and ∀x ∈
X, v′(x) = v(x) + d, d ≥ 0};

• reset of the clock variables in set R ⊆ X: Z[R] =
{v[R] | v ∈ Z}.

We also need the following operators on symbolic states.
• initial symbolic state of PTA A =

(L, l0,Σ, X, P,E, Inv): Init(A) = (l0, {v ∈
RX∪P | v|X = 0X}↗ ∩ Inv(l0);

• successor by some edge e = (l, a, γ,R, l′):
Succ((l, Z), e) = (l′, (Z ∩ γ)[R]↗ ∩ Inv(l′))

Valuations in the initial symbolic states must be such that
all clocks are initially equal to 0 and then we saturate with
delay while the invariant is satisfied.

For the symbolic successor, we take valuations that satisfy
the guard, then we apply resets, and finally we saturate with
delay while the invariant is satisfied.

We extend the Succ operator to arbitrary sets of states by
defining, for any set of states S and any location l, the subset
Sl of S containing the states with location l. Sl is therefore
a symbolic state (l, Z) for some set of valuations Z. Then
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we define Succ(S, e) as Succ(Sl, e), with l being the source
location of edge e.

From [10], we know that the reachable state-space of the
PGA G can then be computed by the following fixed-point
(when it exists):

S0 = ∅ and Sn+1 = Init(G) ∪
⋃
e∈E

Succ(Sn, e)

The final fixed-point set is noted S∗.
The obvious problem with this approach is that the fixed-

point computation of S∗ might not terminate.
We now restrict the problem of parameter synthesis to the

search for bounded integer parameter values. To avoid an
explicit enumeration of all the possible values of parameters,
and following the approach of [4], we now modify the sym-
bolic computation of S∗ so that it still preserves the integer
parameter valuations.

B. Integer points and integer hulls

For the sake of the simplicity of the presentation, we
henceforth consider that all polyhedra representing valuation
sets over X∪P are topologically closed, i.e., all the constraints
describing them are non-strict. We invite the reader to refer to
[4, Section IV.C] for the explanation of how to compute the
integer hull for non-necessarily closed polyhedra.

Let V be a set such that Z ⊆ V . A V -valuation on some
set Y is an integer valuation if ∀x ∈ Y, v(x) ∈ Z. Given a
set Z of V -valuations, we denote by IntVects(Z) the set of
integer valuations in Z.

The convex hull of a set Z of V -valuations, denoted by
Conv(Z), is the intersection of all the convex sets of V -
valuations that contain Z.

The integer hull of a set Z of V -valuations, denoted by
IH(Z) is defined as the convex hull of the integer valuations
in Z: IH(Z) = Conv(IntVects(Z)).

If D is not convex, then IH(D) can contain strictly more
integer valuations than D. Yet, if D can be expressed as a
finite union of convex sets D =

⋃
i Zi, then we can define

an extension of the integer hull, which we call integer shape,
by IS(D) =

⋃
i IH(Zi). We then have an important property:

IntVects(IS(D)) = IntVects(D).

C. (Bounded) Integer parameter state space

For the computation of S∗, as in [4] for the algorithm
for the reachability-synthesis for PTA, we now replace all
the occurrences of operator Succ with ISucc((l, Z), e) =
IH(Succ((l, Z), e)).

The reachable integer parameter state-space of the PGA G
can then be computed by the following fixed-point

S0 = ∅ and Sn+1 = Init(G) ∪
⋃
e∈E

ISucc(Sn, e)

The final fixed point is noted IS∗.
It is easy to see, that all the symbolic states computed by

Succ (and therefore ISucc) have convex valuations sets that
can actually be represented by convex polyhedra. Actually,

as shown in [3], these polyhedra have a special form, called
parametric zone, that has the important following property:
for any integer parameter valuation, the polyhedron obtained
by replacing the parameter variables in the parametric zone by
their values is a convex polyhedron on clock variables (usually
called zone) with integer vertices (see [4], Property 3).

Therefore, by using the ISucc instead of Succ in the com-
putation of the whole state-space S∗, we ensure termination
and obtain a subset IS∗ of S∗ such that IntVects(IS∗) =
IntVects(S∗), provided we know a bound on the possible
values for the parameters (from which we can derive a bound
on the values of the clocks, see [4]).

IV. INTEGER PARAMETER SYNTHESIS FOR CONTROL

The well-known backward fixed-point algorithm for solving
timed games [5] is based on the time and action predecessor
operators [5], [14], that compute the set of winning states,
starting from the goal location.

In this section, we will apply our bounded integer approach
to parameter synthesis for parametric timed games, and show
that surprisingly we do not have to apply the integer hull
computation when back propagating the winning states.

We first recall some results of [10] on the parametric time
and action predecessor operators, and their use in devising a
semi-algorithm to solve parametric reachability games.

A. A semi-algorithm to solve parametric reachability games

For the backward computation of winning states, we need
the following operators:
• past: Z↙ = {v′ | ∃v ∈ Z s.t. ∀p ∈ P, v′(p) =
v(p) and ∀x ∈ X, v′(x) = v(x)− d, d ≥ 0}

• inverse reset of clocks in set R ⊆ X: Z[R]−1 =
{v′ | ∃v ∈ Z s.t. ∀p ∈ P, v′(p) = v(p) and ∀x ∈
X, v(x) = 0 if x ∈ R and v′(x) = v(x) if x 6∈ R}

• predecessor by edge e = (l, a, γ,R, l′):
Pred((l′, Z), e) = (l, Z[R]−1 ∩ γ ∩ Inv(l)).

The predecessor by an edge operation is extended by union
to define controllable and uncontrollable action predecessors
(predecessors by edge):
• controllable predecessors: cPred((l′, Z)) =⋃

c∈Σc Pred((l′, Z), c)
• uncontrollable predecessors: uPred((l′, Z)) =⋃

u∈Σu Pred((l′, Z), u)

We also need to define a safe-timed predecessors (Predt)
operator. Let S1, S2 ⊆ S, both having the same location, and
where S is the set of states in the semantics of a PGA. A
state (l, v) ∈ S is in Predt(S1, S2) if from (l, v) we can reach
(l, v′) ∈ S1 by time elapsing and along the path from (l, v) to
(l, v′) avoid S2, formally:
Predt(S1, S2) = {(l, v) | ∃d ≥ 0 s.t.
(l, v)

d−→ (l, v′), (l, v′) ∈ S1 and Post[0,d](l, v) ⊆ S\S2}
where Post[0,d](l, v) = {(l, v′) ∈ S | ∃t ∈

[0, d] s.t. (l, v)
t−→ (l, v′), v′(x) = v(x) + t, if x ∈ X; v′(x) =

v(x) if x ∈ P} is the future operator limited to a maximum
time elapsing of d time units.
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This corresponds intuitively to the states that can reach S1

by delay, without going through any state in S2 along the
path. Safe-timed predecessor operator can also be expressed
as follows:

Lemma 2 ( [6]): For any two symbolic states S1 and S2,
such that S2 is convex:

Predt(S1, S2) = (S↙1 \S
↙
2 ) ∪ ((S1 ∩ S↙2 )\S2)↙

Also, the following distribution law holds:
Lemma 3 ( [6]): For any two symbolic states S1 =

⋃
i S1i

and S2 =
⋃
j S2j :

Predt(
⋃
i

S1i,
⋃
j

S2j) =
⋃
i

⋂
j

Predt(S1i, S2j)

Finally, we will, in the sequel use the following lemma:
Lemma 4 ( [10]): For any location l, any set of valuations on

both clocks and parameters Z,Z ′, and any parameter valuation
v|P :

1) v|P (Z↙) = v|P (Z)↙

2) v|P (Z ∩ Z ′) = v|P (Z) ∩ v|P (Z)
3) v|P (Z[R]−1) = v|P (Z)[R]−1

4) v|P (Z \ Z ′) = v|P (Z) \ v|P (Z)
5) for any edge e, v|P (Pred((l, Z), e)) =

Pred((l, v|P (Z)), v|P (e))
6) v|P (Predt(Z1, Z2)) = Predt(v|P (Z1), v|P (Z2))

Now, if we denote by Sgoal = {lgoal} × RX∪P , then a
backwards algorithm for solving reachability games is given
as the fixed-point computation of: W0 = ∅ and

Wn+1 = S∗ ∩ (Predt(cPred(Wn), uPred(S∗\Wn)) ∪ Sgoal)

The computation of Predt(cPred(Wn), uPred(S∗\Wn)) is
illustrated in Figure 1.

q qc ∈ cPred(Wn)q ∈ uPred(S∗\Wn) q1 ∈Wn

q2 ∈ S∗\Wn

δ > 0 δ ≥ 0 c

u

Fig. 1. q ∈ Predt(cPred(Wn), uPred(S∗\Wn)): q can reach Wn by delay
and controllable action, without going in S∗\Wn

Of course, this might not terminate. When it exists, however,
the final fixed-point set is noted W ∗ and we have the following
result:

Lemma 5 ( [10]): For a PGA G, a location lgoal, and a state
(l, v), it holds that for all i, (l, v) is reachable and there exists
a winning strategy enforcing lgoal in at most i controllable
steps from (l, v|X) in v|P (G) iff (l, v) ∈Wi.

B. Integer backward operators

We can now extend the backward operators. From Lemma 2,
the result of applying Predt to two parametric zones is a finite
union of parametric zones, on which we will be able to apply
Predt again with Lemma 3, leading again to finite unions of
parametric zones. In the backward computation of winning
states, we therefore use IS rather than IH.

We first extend the predecessor by an edge operator (Pred)
for the computation of integer parameter valuations, similarly
to the extension of Succ operator. For a symbolic state (l,D)
and an edge e, the integer predecessor by an edge e of (l,D)
is defined as: IPred((l,D), e) = IS(Pred((l,D), e)).

We then have the following result:
Lemma 6: For any symbolic state (l, Z), with D a finite

union of parametric zones, and any edge e:

IPred(IS((l,D), e)) = IS(Pred((l,D), e))

Proof: Let us first assume that Z is convex. Then IS(Z) =
IH(Z). We prove both inclusions:

1) IPred(IS((l, Z)), e) ⊆ IS(Pred((l, Z), e)).
IS((l, Z)) ⊆ (l, Z) and since Pred and IS are non-
decreasing, we immediately have IPred(IS((l, Z)), e) ⊆
IS(Pred((l, Z), e)).

2) IPred(IS((l, Z)), e) ⊇ IS(Pred((l, Z), e)).
Let us now consider v ∈ IntVects(Pred((l, Z), e)).
Then there exists v′ ∈ Z such that v ∈
IntVects(Pred((l, {v′}), e)). By definition of Pred we
also have v|P = v′|P . So v′ ∈ v|P (Z). And since v is an
integer vector, so is v|P and v|P (Z) is therefore a zone
of a classical TA and thus has integer vertices. Conse-
quently, v|P (Z) = IS(v|P (Z)). Moreover, v|P (Z) ⊆ Z
(with a slight abuse of notations: each clock valuation
in v|P (Z) needs to be combined with the parameter
valuation v|P for the dimensions to match) and IS is non-
decreasing, so IS(v|P (Z)) ⊆ IS(Z) and thus v′ ∈ IS(Z)
and v ∈ IntVects(Pred((l, IS(Z)), e)). Finally, Conv be-
ing non-decreasing, we obtain IS(Pred(IS((l, Z)), e)) ⊇
IS(Pred((l, Z), e)).

Now, suppose that D =
⋃
i Zi, with all Zi con-

vex. Then by definition of IS and Pred, we have
IPred(IS((l, Z), e)) =

⋃
i IPred(IS((l, Zi), e)). Similarly,

IS(Pred((l, Z), e)) =
⋃
i IS(Pred((l, Zi), e)). And using the

result above for each convex Zi, we complete the proof.
We define, in a similar way:
• integer controllable action predecessors: cIPred((l, Z)) =

IS(cPred((l, Z))),
• integer uncontrollable action predecessors:

uIPred((l, Z)) = IS(uPred((l, Z))).
Lemma 7: For any symbolic state (l,D), with D a finite

union of parametric zones:

cIPred(IS((l,D))) = IS(cPred((l,D)))

Proof: Immediate with Lemma 6 from the facts
that: cPred((l,D)) =

⋃
c∈Σc Pred(IS((l,D), c))) and

IS(D1, D2) = IS(D1) ∪ IS(D2) when D1 and D2 are finite
unions of parametric zones.

The same result obviously holds for uPred and we can
finally extend this to the safe-timed predecessor operator by
IPredt(D1, D2) = IS(Predt(D1, D2)).

Lemma 8: For any two finite unions of parametric zones D1

and D2:

IPredt(IS(D1), IS(D2)) = IS(Predt(D1, D2))
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Proof: Since D1 and D2 are finite unions of parametric
zones, we can write them as: D1 =

⋃
iD1i and D2 =⋃

j Z2j . By Lemma 3 we have Predt(
⋃
i Z1i,

⋃
j Z2j) =⋃

i

⋂
j Predt(Z1i, Z2j). And by Lemma 2, for any i, j, we

have: Predt(Z1i, Z2j) = (Z↙1i \Z
↙
2j ) ∪ ((Z1i ∩ Z↙2j )\Z2j)

↙,
because Z2j is convex.

What we need to show then is that, for any two parametric
zones Z1 and Z2:
• IS(Z1 ∩ Z2) = IS(IS(Z1) ∩ IS(Z2))
• IS(Z1 ∪ Z2) = IS(IS(Z1) ∪ IS(Z2))
• IS(Z↙1 ) = IS(IS(Z1)↙)
• IS(Z1\Z2) = IS(IS(Z1)\IS(Z2))

These four results are quite straightforward. Let us just
prove the first, the rest being similar.

First remark that Z1 and Z2 being convex, integer shapes
are actually integer hulls. Second IH(Z) ⊆ Z, for any Z
and since IH is non-decreasing, IH(IH(Z1) ∩ IH(Z2)) ⊆
IH(Z1 ∩ Z2). Finally, if v ∈ IntVects(Z1 ∩ Z2) then clearly
v ∈ IntVects(Z1) ∩ IntVects(Z2) and consequently v ∈
IH(Z1) ∩ IH(Z2)). Since v is an integer valuation, we further
have v ∈ IntVects(IH(Z1) ∩ IH(Z2) and thus IntVects(Z1 ∩
Z2) ⊆ IntVects(IH(Z1) ∩ IH(Z2)) and we conclude by
remarking that Conv is non-decreasing and can therefore be
applied on both sides while preserving the inclusion.

C. Computing the Winning States with Integer Parameters

Consider now the following fixed-point computation:
IW0 = ∅ and

IWn+1 = IS∗∩(IPredt(cIPred(IWn), uIPred(IS∗\IWn))∪Sgoal)

When it terminates, we call IW ∗ the corresponding fix-
point.

Lemma 9: For any integer parameter valuation v, and any
finite union of parametric zones D: v(IH(D)) = v(D).

Proof: By definition of IS, we have IS(D) ⊆ D. Then,
using Lemma 4, we obtain that v(IS(D)) ⊆ v(D).

Consider for now a single parametric zone Z. Since v is
an integer parameter valuation, zone v(Z) has integer vertices
so IH(v(Z)) = v(Z). Let w ∈ IntVects(v(Z)). Then clearly
the valuation combining w and v belongs to Z and is an
integer valuation. So it belongs to IH(Z). So w ∈ v(IH(Z))
and therefore IntVects(v(Z)) ⊆ v(IH(Z)). Since Conv is non-
decreasing and v(IH(Z)) is convex, we therefore obtain that
IH(v(Z)) ⊆ v(IH(Z)). And then v(Z) ⊆ v(IH(Z)).

To conclude, consider now that D =
⋃
i Zi, each Zi

being a parametric zone. Then
⋃
i v(Zi) =

⋃
i v(IH(Zi)) and

then, using the basic properties of valuations, v(
⋃
i Zi) =

v(
⋃
i IH(Zi)), which is the expected result.

Lemma 10: For any integer parameter valuation v, any
location l, any finite union of parametric zones D, and any
edge e: v(IPred((l,D), e)) = Pred((l, v(D)), v(e)).

Proof: Since D is a finite union of parametric
zones, so is Pred((l,D), e) and by Lemma 4, we have
Pred((l, v(D)), v(e)) = v(Pred((l,D), e)). Furthermore,
v is an integer valuation, so by Lemma 9, we have

v(Pred((l,D), e)) = v(IS(Pred((l,D), e))) and finally
Pred((l, v(D)), v(e)) = v(IS(Pred((l,D), e))).

Lemma 11: For all integer parameter valuation v and all
n ≥ 0, v(IWn) = v(Wn).

Proof: Let v be an integer valuation. We work by induc-
tion on n The case for n = 0 is trivial. Now consider some
n ≥ 0 and suppose the property holds:

Recall that

IWn+1 = IS∗ ∩
(IPredt(cIPred(IWn), uIPred(IS∗\IWn)) ∪ Sgoal)

Then, by Lemma 8,

IWn+1 = IS∗ ∩
(IS(Predt(cPred(IWn), uPred(IS∗\IWn)))∪Sgoal)

Using now Lemma 9, Lemma 4, and Lemma 10,

v(IWn+1) = v(IS∗)∩
(Predt(cPred(v(IWn)), uPred(v(IS∗)\v(IWn)))
∪v(Sgoal))

Using the analogue of Lemma 10 for Succ [4, Lemma 4],
since v is an integer valuation, we have v(ISucc((l,D), e)) =
Succ((l, v(D)), v(e)). Through a straightforward induction,
this implies that since v is an integer valuation, v(IS∗) =
v(S∗).

Putting it all together with the induction hypothesis, this
means that v(IWn+1) = v(Wn+1).

Lemma 12: For a PGA G, location lgoal, and a state (l, v)
such that v is an integer valuation, it holds that ∀i, there exists
a winning strategy in at most i controllable steps from (l, v|X)
in v|P (G) iff (l, v) ∈ IWi.

Proof: Direct from Lemma 11.
We now prove that the fixed-point computation IWn termi-

nates and that its result IW ∗ is correct and complete.
Theorem 13 (Termination): For any PGA G and any desired

location lgoal, the algorithm terminates.
Proof: We proved that the forward computation of IS∗

terminates. When going backwards, each time we apply IPredt
we know that we have added to the winning set of states at
least one integer point (otherwise the integer hulls are the same
and we can terminate). Since there is only a finite number of
integer points to add (due to the boundedness of clocks and
parameters), the computation terminates.

Theorem 14 (Correctness and completeness): Let
Start(G) = {v ∈ RX∪P | v|X = 0X}. Let v be an
integer parameter valuation. For any PGA G and any location
lgoal, upon termination, there exists a winning strategy for
the controller in v(G) iff v ∈ (IW ∗ ∩ Start(G))|P .

Proof:
We start by proving the right to left implication. Suppose

v ∈ (IW ∗ ∩ Start(G))|P . Then there exists a state (l0, v0)
in IW ∗ ∩ Start(G) such that v0|P = v and v0|X has all
coordinates equal to 0, therefore v0 is an integer valuation
on X ∪ P and since it belongs IW ∗, it belongs to IWn for
some n. We can then apply Lemma 5 to conclude.

Now, we prove the left to right implication. If there exists
a winning strategy for the controller to win in v(G) then it
means that it can win within a finite number of controllable
steps. Then, by Lemma 5, it means that the state (l0, v0) such
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x1

x2

m

m

Fig. 2. Alur & Dill’s regions (dashed) and the construction of parametric
regions

that v0|P = v and v0|X has all coordinates equal to 0 belongs
to IWn for some n, and therefore to IW ∗, which concludes
the proof.

D. Avoiding Integer Hulls in the Backward Computation

We have shown how to symbolically compute the bounded
integer parameter valuations that permit the controller to win.
We will now prove that, surprisingly, we actually do not
have to apply the integer hull in the backwards computation,
in order to obtain the correct integer solution and ensure
termination.

Consider the fixed-point computation corresponding to this
setting: IW ′0 = ∅ and
IW ′n+1 = IS∗∩ (Predt(cPred(IW ′n), uPred(IS∗\IW ′n))∪

Sgoal)

Let us first show that if this procedure terminates, it is sound
and complete.

Theorem 15 (Correctness and completeness): For any PGA
G, a desired location lgoal, and an integer parameter valuation
v, upon the termination, there exists a winning strategy for the
controller in v(G) iff v ∈ (IW ′∗ ∩ Start(G))|P .

Proof: First remark that, for all n, we have IWn ⊆
IW ′n ⊆ Wn, because integer hulls and shapes only remove
points. Let v be an integer parameter valuation. Then, we have
v(IWn) ⊆ v(IW ′n) ⊆ v(Wn). By Lemma 11, v(IWn) =
v(Wn) so all three sets are actually equal and in particular
v(IW ′n) = v(Wn). The theorem then follows in the same
way as Theorem 14.

Proving the termination is much trickier: we construct
new objects, that we call parametric regions, that refines the
standard regions for timed automata of [1] with parametric
constraints. We therefore further divide the regions with all
the guards from the model and all the constraints defining
integer hulls (of the symbolic states) obtained in the forward
computation. We prove that these parametric regions are in
finite number, that the symbolic states are convex unions of
such regions and that the backwards computation preserves
such unions. From this we can conclude that the backwards
fix-point computation eventually terminates.

Before going into the details of this refinement, let us first
briefly recall the main ideas between Alur & Dill’s region
partition for timed automata.

The aim is to define an equivalence relation on clock
valuations such that if two valuations are equivalent they go to
equivalent valuations, both by taking some edge, or by letting
some time elapse. Regions are then the equivalence classes of
that relation. Ensuring that there is a finite number of those
regions relies on the fact that if the value of some clock x
is above the maximal constant m appearing in all the clock
constraints of the automaton (guards and invariants), then the
actual value does not matter, only the fact that it is above m:
a constraint x ≤ c (with by definition c ≤ m) is false and a
constraint x ≥ c is true, for any such value.

The dashed part of Fig. 2 outlines the region partition of
the clock space in the particular case of two clocks x1 and x2.
Each region is either a single point with integer coordinates,
an open segment strictly between two such points (vertical,
horizontal or diagonal), an open triangle, strictly between these
segments or points, or, finally, beyond the maximal constant
m appearing in the constraints of the system, open and infinite
rectangles. We see that for a given value of m there are a finite
number of regions.

For timed automata, when clocks are bounded, or by ap-
plying an extrapolation operator (see e.g. [16]), the valuation
part of symbolic states as computed by (the specialization of)
the Succ operator, are convex unions of regions (i.e. zones)
for a suitable finite value of m, which ensures that they are in
finite number.

In the parametric case, this is more complex because these
symbolic states constrain both clocks and parameters. To
ensure that they are also in finite number, using the same idea
as in [4, Section IV.D.1], we can derive a bound on clocks from
the bound on parameters. We could also alternatively use the
bound on parameters for an extrapolation operator [17]. Thus
we again have a finite number of regions. But the polyhedra
defining the state-space are not convex unions of those regions:
we therefore also need to refine the regions abstraction by
partitioning along all the constraints encountered in the guards
and invariants of the PGA, and in the integer hulls of the
symbolic states computed in the forward exploration.

Furthermore, such a constraint may create a non-integer
point when intersecting the lines x = k, for some clock x and
k ∈ N. For each such point, we also further partition along all
lines that go though that point and are parallel to the diagonal
constraints of the region abstraction (added constraints are of
therefore of the form xi − xj = k for some clocks xi, xj and
k ∈ Q).

Note that if a constraint in the integer hull of some symbolic
state intersects a diagonal line defined by xi − xj = k, for
some clocks xi, xj and some k ∈ Z, creating a non-integer
point, then the partition already accounts for diagonals going
through this point, due to the standard region construction. We
now give a formal definition of parametric regions.

Definition 9 (Parametric regions): Let m be the maximal
value of parametric expressions occurring in the constraints of
the PGA (recall that parameters are bounded so it is possible
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to compute that value). Parametric regions are constructed in
the following way:

1) the variable-space RX∪P is partitioned along the con-
straints x ∼ k and x − y ∼ k for all clocks x, y ∈ X ,
∼∈ {<,=, >} and 0 ≤ k ≤ m (this gives standard
regions);

2) for any guard or invariant of the automaton and any
constraint appearing in the (finite number of) polyhedra
defining IS∗, γ ∼ 0, we further partition the variable-
space, with the constraints γ ∼′ 0 for every ∼′∈ {<,=
, >};

3) for any (non-integer) point that is the intersection of
constraints using an = operator and added in the first two
steps, we further refine the variable-space by constraints
of the form x − y + k ∼ 0, with ∼∈ {<,=, >} for all
clocks x 6= y and k ∈ Q, going through that point.

Fig. 2b shows a two-dimensional example of how the
variable-space is partitioned into parametric regions. The di-
mensions related to parameters are not shown to keep the
figure readable. The integer hull of some symbolic state
obtained during the forward exploration is drawn in red. Its
side that does not overlap with the region graph is extended (in
green) as long as it cuts the region graph. Additionally, each
non-integer point obtained in the intersection of the constraints
defining the integer hull and the region graph, has a diagonal
constraint that goes through it (in blue). An example of a
parametric region is given in gray.

In order to prove the termination when going backwards,
we have to show that all the operators preserve the parametric
regions.

Lemma 16: If (ai)i and (bj)j are finite families of para-
metric regions then the following sets are a finite union of
parametric regions:

1)
⋃
i ai ∪

⋃
j bj ;

2)
⋃
i ai ∩

⋃
j bj ;

3) the complement of
⋃
i ai;

4) (
⋃
i ai)

↙;
5) the valuation part of Pred((l,

⋃
i ai), e), for any location

l and edge e;
6) Predt(

⋃
i ai,

⋃
j bj).

Proof: The first three are straightforward using the fact
that parametric regions are taken from a finite set.

Given one parametric region, the “past” operator consists
in (i) removing the constraints that impose lower bounds on
clocks, (ii) add constraints that ensure that clocks stay non-
negative: ∀i, xi ≥ 0, and (iii) add constraints that ensure that
all clocks evolve at the same speed: ∀i, j, xi− xj stays in the
same fixed interval as in the regions of which we take the past.
These constraints we remove or add are all used to partition
the variable-space into parametric regions. So, removing or
adding them lead to a union of parametric regions. For several
parametric regions, the same results holds by finite union.

The fifth is immediate because the constraints of guards and
invariants are used to define the parametric regions.

For Predt we need to use once again the two results
from [6]: Predt(

⋃
i ai,

⋃
j bj) =

⋃
i

⋂
j Predt(ai, bj) and

Predt(ai, bj) = (a↙i \b
↙
j )∪ ((ai ∩ b↙j )\bj)↙ (if bj is convex,

which is true by definition of the parametric region), which
can equivalently be written as: Predt(ai, bj) = (a↙i ∩ b

↙
j ) ∪

(ai∩ b↙j ∩ bj)↙. We can then conclude by using the first four
results.

We can now get back to the termination of the IW ′n fixed-
point computation:

Theorem 17 (Termination): For any PGA G and any desired
location lgoal the fixed-point computation of IW ′∗ terminates.

Proof: Again, we know, from [4], that the forward com-
putation of IS∗, using ISucc and for bounded parameters,
terminates. By definition of parametric regions, IS∗ can be
written as a finite union of symbolic states whose associated
valuations can be represented as finite unions of parametric
region. When going backwards using Predt, by Lemma 16 we
know that parametric regions are preserved. Therefore at each
step at least one region is added to the set of winning states
(otherwise the fixed-point is reached and we can terminate).
Since there is a finite number of parametric regions, the
computation must terminate.

E. Complexity

As remarked in [4], all of the possible valuations of pa-
rameters, that are integer and bounded, can be enumerated in
exponential time. Therefore, for a problem that is EXPTIME
for TGA, the corresponding bounded integer version for PGA
is also EXPTIME. The timed control problem is EXPTIME-
complete for TGA [18], and it is a special case of the
parametric control problem for PGA. We can thus conclude
that the parametric control problem for PGA is EXPTIME-
complete for bounded integer parameters.

Theorem 18: The parametric control problem for PGA with
bounded integer parameters is EXPTIME-complete.

V. ILLUSTRATIVE EXAMPLE

We consider the same example as in [6], but we extend
and parameterize the model in order to obtain the Parametric
Game Automata of Figure 3. The model has two clocks x and
y, controllable (ci) and uncontrollable (ui) actions and two
parameters a and b. The reachability game consists in finding
a strategy for the controller that will eventually end up in
location Goal. We now explain how the algorithm works.

A. Computation of IS∗

We note Z a zone computed with the bounded integer
parameter assumption and Z otherwise.

Without the bounded integer parameter assumption, the
initial symbolic state is: (l0,Z0) with Z0 =

(
x = y ∧ x ≥

0 ∧ y ≥ 0
)
. After n loops u0, we have : (l0,Zn) with

Zn =
(
x ≥ a ∧ a ≤ b+ 1 ∧ 0 ≤ na ≤ y − x ≤ n(b+ 1)

)
. At

this step, without the bounded integer parameter assumption,
the symbolic state graph (see Figure 4) is not finite and the
algorithm does not terminate neither for integer parameters nor
for bounded parameters.

We now ensure the termination in the integer and bounded
case. For example, assume all parameters and clocks are less
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l0

l1

y ≥ 2; c0; x := 0, y := 0

a ≤ x ≤ b+ 1; u0; x := 0
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x < 1
u2

x := 0, y := 0

x ≤ a; c1
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x < b
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c4

Fig. 3. A Parametric Timed Game Automaton
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Fig. 4. Infinite Symbolic state graph
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Fig. 5. Symbolic state graph with a ≤ 3 ∧ b ≤ 3

than or equal to 3 (i.e. in each symbolic state we implicitly
have (x ≤ 3 ∧ y ≤ 3 ∧ a ≤ 3 ∧ b ≤ 3) then:

• After one loop: Z1 =
(
x ≥ a ∧ a ≤ 3 ∧ a ≤ b+ 1 ∧ a ≤

y − x ≤ b+ 1
)

• After two loops: Z2 =
(
x ≥ a∧a ≤ 1∧a ≤ b+1∧2a ≤

y − x ≤ 2(b+ 1)
)

• After three loops: Z3 =
(
x ≥ a∧a ≤ 1∧a ≤ b+1∧3a ≤

y − x ≤ 3(b+ 1)
)

• After four loops: Z4 =
(
x ≥ a∧a = 0∧a ≤ b+1∧y−x ≤

3
)

• ∀n > 4, after n loops: Zn = Z4

The symbolic state graph representing IS∗ is given in
Figure 5. Only the top part of the figure changes compared
to Figure 4, so we have removed the bottom part to make it
more readable. After transition c0, the resets of clocks x and
y remove the diagonal constraint involving y − x then from
location l1 on, we have x = y since x and y are, from this
location on, always reset simultaneously then, for the sake of
readability, we omit clock y in the symbolic states associated
with locations l1 and its successors. Moreover, all the symbolic
states obtained by transition c0 from (l0, Z1). . . (l0, Z4) are
included in (l1, x ≥ 0 ∧ a ≤ b + 1). We merge them in
the symbolic state graph of Figure 5, again for the sake of
readability. This is by the way a classical optimisation for
timed games, discussed in [6, Section 5.2], and easily extended
to the parametric case.

B. Backward algorithm

After the computation of the symbolic states, shown in
Figure 5, the backward algorithm starts from the symbolic
winning subsets (Goal, x ≥ 2) and (Goal, x ≥ 2∧a ≤ b+1).
To show more precisely from where the constraints come, we
actually describe the back-propagation following the different
paths instead of computing explicitly the sets IW ′n (in [6], it
is shown that this leads to the same result). From (Goal, x ≥
2∧a ≤ b+ 1), by the controllable action (c2) predecessor, we
obtain (l2, x ≥ 2 ∧ a ≤ b + 1). Computing the (timed) past
removes the constraint x ≥ 2, and computing the safe-timed
predecessor adds x ≥ b in order not to end-up in l3 by u3. The
resulting state is (l2, x ≥ b∧a ≤ b+1). The controllable action
predecessor for c4 adds the constraint x ≤ a. The constraint
on the parameters derived in this state is a ≥ b. This constraint
is back-propagated to the predecessor states. The safe-timed
predecessors give us the state (l4, x ≥ 0∧ a ≥ b∧ a ≤ b+ 1).

We obtain successively the following sets of winning states:
• (l3, x ≥ 0 ∧ a ≥ b ∧ a ≤ b+ 1),
• (l2,

(
(x ≥ b) ∨ (x ≥ 0 ∧ a ≥ b)

)
∧ a ≤ b+ 1),

• (l1, (x ≤ a)∧
(
(x < 1∧a ≥ b)∨x ≥ 1

)
∧
(
(x ≥ b)∨(x ≥

0 ∧ a ≥ b)
)
∧ a ≤ b+ 1).

The last one simplifies to (l1, x ≤ a ∧ a ≥ b ∧ a ≤ b+ 1).
From the symbolic winning subset (Goal, x ≥ 2), we obtain

the same result without the constraint a ≤ b+ 1.
The constraints are now back-propagated to the states asso-

ciated with l0. The constraint a > 0 is added in order not to
end-up in the symbolic state (l0, Z4) by an infinite loop u0 in
null time for symbolic state (l0, Z4) which is back-propagated
to (l0, Z3) . . . (l0, Z0). Moreover the back-propagation from
(Goal, x ≥ 2) to (l0, Z0) leads to the constraint a > b+1. We
finally obtain (l0, (a ≥ b)∧

(
(a > b+1)∨

(
(a ≤ b+1)∧ (a >

0)
))

). Thus, there exists a winning strategy if and only if
(a > b+ 1) ∨

(
(a > 0) ∧ (b ≤ a ≤ b+ 1)

)
.

C. Extracting a Winning Strategy

We first recall a classical result (straightforwardly extended
to the parametric setting):
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Theorem 19 ( [5]): Let (G, lgoal) be a parametric reachabil-
ity timed game. For all parameter valuations v, if there exists
a winning strategy in v(G) then there exists a memoryless
winning strategy in v(G).

With this theorem, and following [5], it is easy to extract a
memory-less winning strategy from the set of winning states.
We proceed as follows: a controllable action predecessor gives
us the state from which a corresponding controllable action
should be taken, while safe-timed predecessor further gives us
the state where we should delay.

Since we work on symbolic states, for all the (concrete)
states in a given symbolic state of W ∗, in particular with
the same clock valuations but different parameter valuations,
give the same strategies by this procedure. This thus gives
“parametric strategies” defined in function of the parameters.

Let us now illustrate how to extract a winning strategy from
the winning set of states. The symbolic state (l2, x ≥ 2) is the
controllable action predecessor of (Goal, x ≥ 2) by action c2.
Then the winning strategy is: in all states of (l2, x ≥ 2) the
controllable transition c2 should be taken immediately, and in
(l2, x ≥ 0), we should delay until x ≥ 2. The controllable
action predecessor from l2 gives two symbolic states:

• (l1, x ≥ 0 ∧ x ≤ a). From that state action c1 should be
taken immediately. The controllable action predecessor
gives (l0, y ≥ 2) from which action c0 should be taken
immediately. Timed predecessors give the symbolic state
(l0, y < 2) in which we should delay until y ≥ 2.

• (l4, x ≥ b∧x ≤ a), deriving a constraint a ≥ b. From that
state action c2 should be taken immediately, and timed
predecessors give the symbolic state (l4, x ≥ 0, a ≥ b)
in which we should delay until x ≥ b. The controllable
action predecessor is (l3, x ≥ 0) from which action c3
should be taken immediately

We can do the same reasoning by starting from (Goal, x ≥
2, a ≤ b + 1). Notice that there may be several winning
strategies. Algorithmically speaking, the order of exploration
of the winning states leads to different winning strategies for
different values of parameters.

Instantiating the parameters: Recall that for this exam-
ple, the parameters are bounded by (a ≤ 3) and (b ≤ 3) and
there exists a winning strategy if and only if (a > b+1)∨

(
(a >

0) ∧ (b ≤ a ≤ b + 1)
)
. The possible values for (a, b) are

then (2, 0), (3, 0), (3, 1), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3). We
choose valuation a = 2 and b = 1 which satisfies the con-
straints. A winning strategy corresponding to this parameter
valuation, and extracted from the winning states set, is:

In all states: Do:
(l0, y < 2) delay
(l0, y ≥ 2) c0
(l1, x ≤ 2) c1
(l2, x < 2) delay
(l2, x ≥ 2) c2
(l3, x ≥ 0) c3
(l4, x < 1) delay
(l4, x ≥ 1 ∧ x ≤ 2) c4

Implementing the strategy: A systematic implementation
of real-time models has been studied in [19]. Practically speak-
ing, implementing such a strategy can be done on different
targets such as field programmable gate arrays (FPGA) [20]
or microcontrollers [21]. For more complex strategies and
in particular for distributed systems, the implementation of
distributed timed automata specifications is proposed in [22],
allowing to guarantee that the specifications are preserved by
the implementation.

VI. IMPLEMENTATION AND CASE STUDY

We have implemented the computation of the winning states
and the synthesis of the strategy in our tool ROMÉO1 [23].
With its textual input language, ROMÉO handles a model
called Clock Transition Systems (CTS) which encompasses
both timed automata and Time Petri Nets. We have extended
CTS with controllable and uncontrollable actions in order to
model parametric timed games. In this section, we show how
the parametric reachability control problem can be used in
practice for the synthesis of an offline scheduler.

A. The model

We consider a scheduling problem proposed in [24] and
adapted for a periodic non-preemptive and parametric setting.
Consider three real-time tasks τ1, τ2 and τ3. Task τ1 is periodic
with period a and has an execution time C1 ∈ [10, b] where a
and b are parameters. Tasks τ2 and τ3 are periodic with periods
respectively 2a and 3a, and execution time C2 ∈ [18, 28]
and C3 ∈ [20, 28]. These three tasks are scheduled using a
non-preemptive2 policy defined by the controller we want to
synthesise.

We model this problem with a network of 4 parametric
timed automata given in Figs 6.a, 6.b, 6.c and 6.d. The
automaton given in Fig. 6.e will be used later instead of the
one from Fig. 6.d. The automata of the network interact with
each other by a classical synchronized product à la Arnold
Nivat where a transition with label e! (respectively e?) must be
executed simultaneously with one and only one other transition
with label e? (respectively e!). The synchronization of actions
starti (in blue on the figure Fig. 6) is done as soon as possible
(this is an urgent channel in the tool UPPAAL [7]).

We assume invariants make it possible to win by taking an
uncontrollable action forced by the urgency of the invariant.
These “forced” uncontrollable actions can be easily simulated
in our framework by adding, for each uncontrollable action
from l to l′ with a time interval [α, β], a controllable action
from l to l′ with the point time interval [β, β]. The models of
the tasks and their activations are given in Figures 6.a, 6.b and
6.c. For example, for task τ1 in Figure 6.a, as soon as clock
x1 reaches value a, synchronization start1 can be performed
if the automaton of the task is in state task1. But if x1

reaches again value a and exceeds it (meaning that the task τ1
overruns its deadline) synchronization start1 will definitively
be impossible. After the synchronization, the automaton for the

1Available at http://romeo.rts-software.org
2A running task cannot be interrupted.

http://romeo.rts-software.org
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task1

ready1

run1

notReady1 !

y1 ≤ bstart1?

activate1?
y1 := 0

y1 ≥ 10
end !

clock1

req1

x1 ≤ a

x1 ≥ a
x1 := 0

start1!

task2

ready2

run2

notReady2 !

y2 ≤ 28start2?

activate2?
y2 := 0

y2 ≥ 18
end !

clock2

req2

x2 ≤ 2a

x2 ≥ 2a
x2 := 0

start2!

task3

ready3

run3

notReady3 !

y3 ≤ 28start3?

activate3?
y3 := 0

y3 ≥ 20
end !

clock3

req3

x3 ≤ 3a

x3 ≥ 3a
x3 := 0

start3!

idle running

activate1!

activate2!

activate3!

end ?

sched s4

s1

s2

s3

notReady1?

notReady2?

notReady3?

activate1!

activate2!

activate3!

activate1!
or activate2!
or activate3!

end ?

Fig 6.a The periodic request and the model of the task τ1

Fig 6.b The periodic request and the model of the task τ2

Fig 6.c The periodic request and the model of the task τ3

Fig 6.d Non-preemptive scheduling

Fig 6.e Non-preemptive scheduling with Rate Monotonic

Fig. 6. A PTA with 6 clocks and 2 parameters for non-preemptive scheduling
modeling (actions starti and notReadyi are urgent)

activation is in location clock1 and the automaton of task τ1
is in location ready1. The non-preemptive scheduler is given
in Figure 6.d.

Moreover, we give in Figure 6.e, the model of the non-
preemptive scheduler (to be used instead of the model given in
Figure 6.d) with the classical “rate monotonic” priority assign-
ment policy, i.e. static priorities are assigned according to the
period of the task, so a shorter period results in a higher task
priority. With the scheduler of Figure 6.e, actions notReadyi
and Activatei are urgent. A fixed priority assignment policy
is referred to as optimal if it can schedule all tasks sets that
are schedulable using a different priority assignment. Rate
monotonic priority assignment is not optimal for fixed priority
non-preemptive scheduling.

B. Our results

We first use the scheduler of Figure 6.d. where the controller
can choose to execute any ready task. Using ROMÉO, and
given that all parameters should be non-negative integers, we
obtain that there exists a winning strategy (and then an offline
scheduler) iff a − b ≥ 28 and b ≥ 10. ROMÉO can extract
one strategy among the winning strategies corresponding to
infinitely repeating the following sequence of task executions:
τ2, τ1, τ3, τ1, τ2, τ1, τ3, τ1, τ2, τ1, τ1

We now change the model of the scheduler with the rate
monotonic priority assignment defined by priority(τ1) >
priority(τ2) > priority(τ3) and modelled in Figure 6.e .
It leads to the same constraints a− b ≥ 28 and b ≥ 10 but the
winning strategy is now unique and corresponds to the follow-
ing repeated sequence: τ1, τ2, τ1, τ3, τ1, τ2, τ1, τ3, τ1, τ2, τ1.

This result is very interesting in practice since it shows
that, for this case study, the non-preemptive priority policy
is actually optimal for the task sets that correspond to all the
possible integer parameter values.

C. Comparison with an enumeration of the parameter values

To the best of our knowledge, the only other approach from
the state-of-the-art able to solve a problem similar to ours, is
to explicitly enumerate all the possible parameter valuations
(assuming there are only a finite number of them), and to solve
all the resulting timed games.

We therefore compare now the overall usefulness of our
approach to this explicit enumeration scheme. We use Roméo
also to solve the timed game obtained for each parameter
valuation.

We consider the schedulability problem of figure 6 and
we choose values of parameters leading to both true or false
results for the controllability of this schedulability problem.
The results are given in table I.

In practice, our approach behaves well with respect to
the scaling of the bounds on parameters. For an explicit
enumeration, we can easily see in table I this is not the case.
We use a machine with an Intel Core i7-6500U at 2.5 GHz and
16 Gb RAM. TO means that the computation did not finish
within 60 min. We can see that our approach scales much better
than the explicit enumeration. Though we show only the result
for 1000, on this model, our approach is actually insensitive
to the bound on parameters, when it is above 100.

Note that our implementation is not optimized for instan-
tiated parameters. Hence, given a specialized implementation
and a not too big set for the possible parameter values, an
explicit enumeration might be more efficient. In the general
case however, we believe that our approach is more flexible
and efficient.

Moreover, our symbolic computation may terminate even if
the parameters are not bounded, while explicit enumeration is
impossible in this case. This situation occurs in the present
case-study.

Finally, our approach directly gives a symbolic constraint,
which is, in our opinion, more useful than the individual values
satisfying the property.
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Parameter range a = 10
b = 20

a = 50
b = 40

a = 50
b = 20

a ∈ [20, 50]
b ∈ [10, 20]

a ∈ [0, 100]
b ∈ [0, 100]

a ∈ [0, 1000]
b ∈ [0, 1000]

Controllability result false false true
a ∈ [38, 50]
b ∈ [10, 20]
a− b ≥ 28

a ∈ [38, 100]
b ∈ [10, 72]
a− b ≥ 28

a ∈ [38, 1000]
b ∈ [10, 972]
a− b ≥ 28

Symbolic Computation time 0.05 s 0.4 s 0.13 s 4.9 s 10.5 s 10.5 s
Computed states 38 899 139 2924 5275 5275

Enumeration Computation time 0.05 s 0.4 s 0.13 s 51.6 s 1608 s TO
Computed states 38 899 139 99480 3.13 106 TO

TABLE I
COMPARISON WITH AN EXPLICIT ENUMERATION OF PARAMETER VALUES.

VII. CONCLUSION

We have studied control problems for timed automata
extended with timing parameters, expressed in terms of para-
metric timed games. In that setting, the existence of parameter
values such that a controller enforcing the reachability of some
control location exists is undecidable.

Since in classical timed game automata, real-valued clocks
are always compared to integers for all practical purposes,
we solved undecidability and termination issues by computing
parameters as bounded integers.

We have proposed a further extension of a well-known
fixed-point backward algorithm for solving timed games of
[5], first extended for parametric timed games in [10].

The method is symbolic and avoids the explicit enumeration
of all possible parameter valuations. It is based on the com-
putation of the integer hulls of the parametric symbolic states.
Due to the boundedness of integer parameters, termination is
ensured, and the resulting set of parameter valuations is given
as symbolic constraints between parameters. We have proved
the correctness and completeness of the algorithm and we have
proved that the integer hull operator can be avoided when
propagating the winning states backwards.

The algorithm is implemented in our tool ROMEO and we
have demonstrated its use on a small scheduling case-study.

In future work, we plan to extend this work to other timed
models, such as PTA with stopwatches, and look for less
restrictive domains of values for parameters.
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Aleksandra Jovanović received her PhD degree
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