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Résumé. Le groupe IFP commercialise des catalyseurs et doit s’engager sur leur
performance. Il est donc nécessaire de disposer de modèles prédictifs fiables pour chaque
nouvelle génération de catalyseurs. Ces modèles sont construits à partir de données
expérimentales très couteuses. Afin d’optimiser les coûts, notre ambition est de réduire
le nombre d’expérimentations nécessaires pour estimer un modèle associé à un nouveau
type de catalyseur, en transférant l’information contenue dans les modèles d’anciennes
générations. Cet article décrit nos travaux sur le transfert de modèle linéaire par inférence
bayésienne.
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Abstract. IFP group develops catalysts and has to guarantee their performances. It
is therefore crucial to have good predictive models for all new catalysts. These models
are built upon very expensive experimental data. In order to minimize costs, we aim at
reducing the number of new data points to measure to fit a model on the new catalyst,
that is by using the knowledge available in the previous model. This paper describes our
work on linear model transfer using Bayesian inference.
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1 The problem

IFP group develops and sells catalysts to the chemical, bio chemical producers. Catalysts
are solids that render the reaction feasible, faster, and / or at lower temperature and
pressure. The performance must be guaranteed and it is therefore crucial to have good
predictive models for all new catalysts. These models are built upon very expensive
experimental data and generally without accounting for the former catalysts’ datasets. In
order to minimize costs, we aim at reducing the number of new data points to measure on
the new catalyst by transferring the models. By transferring, we mean use the knowledge
available in the previous model and mix it with the new data points to build a good
prediction model with a minimum of experimentation.

The problem is a transfer learning problem. Let’s define a domain as D = (X,P (X))
with X a feature space and P (X) its probability distribution, and an associated task
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T = (Y, f) with f the function used to predict y ∈ Y given x ∈ X. Pan & Yang
(2010) define transfer learning as follow: ”Given a source domain Ds and learning task
Ts, a target domain Dt and learning task Tt, transfer learning aims to help improve the
learning of the target predictive function ft in Dt using the knowledge in Ds and Ts,
where Ds 6= Dt, or TS 6= TT”. In our case, Ds = Dt and Ts 6= Tt as the catalyst and
its performance is different, which put us in the inductive transfer learning case (Pan &
Yang (2010)). The catalyst changes, so reaction will change and features have no reason
to follow a particularly different distribution. There are different methods to solve these
problems, such as transferring knowledge of instances, features or parameters.

We want a model to predict the output property Yi with some information on feed and
operating conditions, described using 12 features identical for the source and the target
catalyst. Different models are tested to predict the output property on source data,
specifically linear model, support vector, multi-layer perceptron, random forest, gradient
boosting and kriging (Matheron (1969)). Best predictions are achieved with kriging but
the linear model also offers satisfying results. Therefore, in this work the linear model is
considered for its simplicity.

The model for the source catalyst is

Yi = βs0 +

p∑
j=1

βsjXij + εi (1)

with εi ∼ N (0, σs
2) and p = 12. Let θ̂s be the maximum likelihood estimate of θs =

(βs0, . . . , βsp, σ
2
s). The training data set available for the source catalyst is assumed to be

sufficiently large such that θ̂s can be considered as satisfying estimate of θs.
Our goal is to estimate the same model but for the target catalyst

Yi = βt0 +

p∑
j=1

βtjXij + εi (2)

for which the available training data set is of a smaller size nt.
We choose to focus on transfer knowledge of parameters because it’s well adapted for

the transformation of the linear model. Two approaches are considered. The first one is
inspired from Bouveyron & Jacques (2010) and consists in identifying a link between θs
and θt. The second one is a Bayesian approach and consider a Bayesian linear model for
(2) with prior distribution on θt depending on θs.

2 Transfer models

The objective is to have a good model with as few points as possible. In the experiments
presented in this paper, the performance of the transfer techniques are evaluated for
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different numbers nt of new points. The evaluation of the transferred model may depend
on the sampling of training set. For this reason we present average results for 10 random
samplings. For each sampling, RMSE score are evaluated on a test set independent of
the training set. In the present industrial context, a model is considered satisfying if the
RMSE score is lower than 0.005. With the source model the RMSE score is 0.0033 on the
source data.

2.1 Transfer learning using parametric link

This method uses the idea of Bouveyron & Jacques (2010): keep some parameters un-
changed for the target model (βsj = βtj for some j), considering the influence doesn’t
change between both models, and then learn only others parameters.

If M is the set of index of parameters to be modified, then βtj = βsj for j ∈
{1, ..., p}\M and βtj = λjβsj for j ∈ M . Only a reduced number of parameters have
to be estimated for the target model. The challenge with this approach is the choice of
M. In this work M is selected by leave-one-out cross validation on the nt target points,
for all possible size of M. With this approach, a performing model can be fitted with
less points than if a totally new model is learned (Figure 1 left). For example, with 10
observations and modifying 1 parameter, RMSE is smaller than the objective of 0.005.
In contrast, 30 observations are needed to a learned from scratch model to achieve such
good results. With 100 observations, learned from scratch model is better. Changing a
small number of parameters is more efficient for small training set but worse when a lot
of data is available. An emerging challenge is the choice of the size of M. Choosing a
small size for M offers quick results. But by also trying to determine its size by cross
validation, the results deteriorate.

Another remark, for a given size of M, the modified parameters are not the same for
small and large values of nt where they do not change. In other words, we are not able
to find the best parameters to transform with a few points. Assuming to know the best
parameters to change, results are better in terms of number of target points, nt (Figure 1
right). Parameters chosen to be modified are those chosen with 100 observations. So far,
we have not been able to identify a technique to decide which are the best parameters to
change on the available nt points. For this reason, we explored Bayesian inference.

2.2 Transfer learning using Bayesian approach

In this section a Bayesian approach is used to learn parameters for the new linear model.
The idea is to choose prior distributions depending on the source data. The model is
then:
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Figure 1: Graphs shows the evolution of RMSE according to nt. On the left, parameters
to modify are chosen by cross validation, on the right they are chosen knowing they are
the best to modify.

Yi = βt0 +

p∑
j=1

βtjXij + εi,

βt ∼ π(βt),

εi ∼ N (0, σt
2),

σt = σs,

where βt = (βt0, βt1, . . . , βtp)
T .

The Bayes Theorem gives that the posterior of βt is

π(βt|Y t) =
π(βt)f(Y t|βt)

f(Y t)
,

with Y t = (Y1, ..., Ynt)T .
We consider different prior distribution π(βt). The first one is the well known Zellner’s

prior (Zellner, 1986), also known as g-prior, for parameters βt:

π(βt) ∼ N (β̂s, gσ
2
t (XT

t X t)
−1),

with β̂s the maximum likelihood estimator (MLE) learned on the source data and X t the
nt × (p+ 1) matrix of target observations, (X t)i1 = 1 for i = 1, ..., n.

Using such a prior, only the mean of the prior distribution depends on the source data.
The variance of the prior depends only on target data and on a fixed parameter g. Notice
that the posterior’s mean using such a prior is a weighted average between the MLE and
the mean of the prior. In our case, a weighted average between the MLE for source data
and the MLE for target data is calculated: β̂t = 1

g+1
(gβ̂MLE,t + β̂s).
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Figure 2: Comparison between an estimation of βt with a Bayesian approach and a g-prior
for different values of g, and a model learned without any prior.

With this prior, results are not satisfying whatever the value of g. β̂s is not a good
estimator for βt, thus averaging with the MLE for target doesn’t improve results.

An idea to improve the results is to increase the information transferred. Source data
is employed to learn both the mean and the variance of prior. Once again, a Gaussian
prior is considered for parameters βt. The prior mean is β̂s. The variance is chosen as

the variance of β̂s scaled with a scalar λ. Let remark that when λ = 1, this prior for βt

corresponds to the posterior distribution of βs estimated in a Bayesian model with an
uniform prior for βs. The introduction of the factor λ allows more flat prior:

π(βt) = N (β̂s, λσ
2
s(XT

sXs)
−1).

The mean of the corresponding posterior distribution leads to:

β̂t = (XT
t X t + σ2

t λ
−1Σ−1)−1(XT

t Y t + σ2
t λ

−1Σ−1β̂s),

with Σ = σ2
s(XT

sXs)
−1.

The parameter value λ must yield the best performance with the fewest observations
possible. When λ→∞ the posterior mean tends to the MLE. When λ→ 0 the posterior
mean tends to the prior. To see the impact of lambda, different values are tried and
RMSE evolution is evaluated (Figure 3 left). There is an optimum in the λ value in the
range 100− 1000 for our data.

Data are normalized, thus parameters βt take values in [−1, 1]. A compromise must be
found between prior information and variability of parameters. A good choice of standard
deviation for each parameter seems to be near from 1 to cover the [−1, 1] interval and not
be too wide. Taking a λ = (mean((Σjj)j=0,..,p))

−1 ' 800 on our data yields an average
variance of 1 for each parameter. This value of λ offers good results with few points
(Figure 3 right). With this approach, performing models can be fitted with a number of
target points smaller than without knowledge on old catalyst. RMSE score of 0.004 can
be reached with only 5 target points instead of 50 for a learned from scratch model.
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Figure 3: Impact of λ on π(βt|Y t).

3 Perspectives

Bayesian inference with an optimized learning parameter (lambda) gives good results on
transfering linear models on our data set. The knowledge from an old catalyst, namely
the parameter covariance matrix and values, is shown to improve the quality of the linear
model for the new catalyst. Future works will focus on 2 mains areas: the transfer of
kriging models, still with a bayesian transfer knowledge, and the design of experiments
by choosing the best target data to use for transfer.
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