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The solar wind
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Measurements in the solar wind

Wind velocity measured by the Helios 2 spacecraft during the year 1976
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Magnetic fluctuations in the solar wind
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Magnetic field measurements by the Helios 2 spacecraft during the year 1976
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Turbulence in the solar wind
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Turbulence in the solar wind

Power spectrum of the magnetic fluctuations
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Turbulent spectrum in the solar wind

Magnetic power spectra measured by the Helios 2 spacecraft at different distances
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Examples of power spectra

Brownian noise Sww(ν) = (2πν)−2 ?
= Sawtooth wave Sss(ν) = (2πν)−2
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Examples of power spectra

Brownian noise Sww(ν) = (2πν)−2 ?
= Sawtooth wave Sss(ν) = (2πν)−2
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Same spectrum but different type and distribution of singularities

⇒ Necessity to look at other quantities. . . Higher-order moments ?
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Irreversibility of time
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Irreversibility of time
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Statistics of gradients or increments are not invariant by time-reversal
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Energy injection, transfer and dissipation

Ando Hiroshige, The Naruto rapids
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Dissipation mechanisms
Consider the velocity difference u` between two points

separated by a distance `. How can it be annihilated ?
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Dissipation mechanisms
Consider the velocity difference u` between two points

separated by a distance `. How can it be annihilated ?

• Dissipation by viscosity

∂tu = ν∂2
xxu ⇒ τD(`) ∼ `2

ν
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Dissipation mechanisms
Consider the velocity difference u` between two points

separated by a distance `. How can it be annihilated ?

• Dissipation by viscosity

∂tu = ν∂2
xxu ⇒ τD(`) ∼ `2

ν

• Non-linearity

∂tu + u ∂xu = 0 ⇒ τNL(`) ∼ `

u`
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Dissipation mechanisms
Consider the velocity difference u` between two points

separated by a distance `. How can it be annihilated ?

• Dissipation by viscosity

∂tu = ν∂2
xxu ⇒ τD(`) ∼ `2

ν

• Non-linearity

∂tu + u ∂xu = 0 ⇒ τNL(`) ∼ `

u`

The ratio of these two times at large scale is the Reynolds number

τD(L)

τNL(L)
= < =

UL

ν
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Energy cascade
Injection

εD = U 2/τD(L)
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Energy cascade
Injection

εD = νU 2/L2
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Energy cascade
Injection

εL = U 2/τNL(L)



�

�

�

�

	

11/26

Energy cascade
Injection

εL = U 3/L
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Energy cascade
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ε` = u3
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Energy cascade
Injection

εL = U 3/L

Transfer

ε` = u3
`/` = εL

Dissipation

εη = u3
η/η
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Energy cascade
Injection

εL = U 3/L

Transfer

ε` = u3
`/` = εL

Dissipation

εη = u3
η/η = u2

η/τD(η)
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Energy cascade
Injection

εL = U 3/L

Transfer

ε` = u3
`/` = εL

Dissipation

εη = u3
η/η = ν u2

η/η
2
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Energy cascade
Injection

εL = U 3/L

Transfer

ε` = u3
`/` = εL

Dissipation

εη = u3
η/η = ν u2

η/η
2 = εL

Cascade down to the Kolmogorov scale

η =

(
ν3

ε

)1/4

, uη = (νε)1/4 , <η =
(uη η
ν

)
= 1
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Yaglom and Kolmogorov relations
Take the difference of Navier-Stokes equations

∂tu + u ·∇x u =
−1

ρ
∇x P + ν∇2

x u + f

at two points x and x′ ≡ x + r to get an equation

for the velocity difference ∆u(r; x, t) ≡ u(x + r, t)− u(x, t)
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Yaglom and Kolmogorov relations
Take the difference of Navier-Stokes equations

∂tu + u ·∇x u =
−1

ρ
∇x P + ν∇2

x u + f

at two points x and x′ ≡ x + r to get an equation

for the velocity difference ∆u(r; x, t) ≡ u(x + r, t)− u(x, t)

then multiply by 2 ∆u and average over the space x to get

∂t
〈
|∆u|2

〉
+ ∇r ·

〈
|∆u|2∆u

〉
= 2 ν∇2

r

〈
|∆u|2

〉
− 4 ν

〈
|∇u|2

〉
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− 4 ν
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so that in stationary conditions and in the limit ν → 0

∇r ·
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|∆u|2∆u
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= −4/3 ε r (Yaglom)
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Yaglom and Kolmogorov relations
Take the difference of Navier-Stokes equations
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x u + f

at two points x and x′ ≡ x + r to get an equation
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then multiply by 2 ∆u and average over the space x to get

∂t
〈
|∆u|2

〉
+ ∇r ·

〈
|∆u|2∆u

〉
= 2 ν∇2
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〈
|∆u|2

〉
− 4 ν

〈
|∇u|2

〉
so that in stationary conditions and in the limit ν → 0

∇r ·
〈
|∆u|2∆u

〉
= −4 ε ε ≡ − dE

dt
= ν

〈
|∇u|2

〉
which in case of isotropy implies

〈
|∆u|2∆u

〉
= −4/3 ε r (Yaglom)

and using local isotropy again
〈

[∆ui]
3
〉

= −4/5 ε ri (Kolmogorov)
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”Exact” conservation laws

12

d(d + 2)
ε ri

4

d
ε r

4 ε

 =


−
〈

[∆ui]
3
〉

−
〈
|∆u|2∆u

〉
−∇r ·

〈
|∆u|2∆u

〉+


2 d ν ∂i

〈
[∆ui]

2
〉

2 ν∇r

〈
|∆u|2

〉
2 ν∇2

r

〈
|∆u|2

〉
(1c 1d)

(3c 1d)

(3c 3d)

Total dissipation Transfer Viscous dissipation Exp

at scale r to scales < r at scale r

• Scale by scale energy conservation ⇒ no pileup of energy

• Increasing generality (Monin’s law valid for anisotropic flows)

• Increasing experimental difficulty
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The Kolmogorov spectrum

In the inertial range

L� `� η

〈(∆u‖(`))3〉 = −4/5 ε `
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The Kolmogorov spectrum

In the inertial range

L� `� η

〈(∆u‖(`))3〉 = −4/5 ε `

By self-similarity

〈(∆u‖(`))p〉 = Cp (ε `)p/3

〈(∆u‖(`))2〉 = C2 (ε `)2/3



�

�

�

�

	

14/26

The Kolmogorov spectrum

In the inertial range

L� `� η

〈(∆u‖(`))3〉 = −4/5 ε `

By self-similarity

〈(∆u‖(`))p〉 = Cp (ε `)p/3

〈(∆u‖(`))2〉 = C2 (ε `)2/3

E(k) = CK ε
2/3 k−5/3
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L� `� η
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Magneto-Hydrodynamics
For a charged fluid at velocities u � c in a mean magnetic field B0

velocity u and magnetic field b perturbations obey the MHD equations

∇ · u = ∇ · b = 0 B = B0 + b

∂tu + u ·∇u = −∇p +
1

4πρ
(∇× b)×B + ν∇2u

∂tb = ∇× (u×B) + η∇2b
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Magneto-Hydrodynamics
For a charged fluid at velocities u � c in a mean magnetic field B0

velocity u and magnetic field b perturbations obey the MHD equations

∇ · u = ∇ · b = 0 B = B0 + b

∂tu + u ·∇u = −∇p +
1

4πρ
(∇× b)×B + ν∇2u

∂tb = ∇× (u×B) + η∇2b

Consider the Elsässer variables z± = u± (4πρ)−1/2 b

∇ · z± = 0

∂tz
± + z∓ ·∇z± = −∇p? + cA ·∇z± + ν±∇2z± + ν∓∇2z∓

where cA is the Alfvén velocity (4πρ)−1/2B0 and ν± = (ν ± η)/2
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Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations,

excepted that one of the Elsässer variables z±

is transported by the other z∓

Y ±(`) ≡
〈
|∆z±|2∆z∓‖

〉
= −4

3
ε± `
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Derivation as for the Navier-Stokes equations,

excepted that one of the Elsässer variables z±

is transported by the other z∓

Y ±(`) ≡
〈
|∆z±|2∆z∓‖

〉
= −4

3
ε± `

which in terms of velocity u and magnetic field b reads〈[
|∆u|2 + |∆b|2 ± 2 ∆u ·∆b

] (
∆u‖ ∓∆b‖

)〉
= −4

3
ε± `

coupling energy |u|2 + |b|2 and cross-helicity u · b cascades
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Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations,

excepted that one of the Elsässer variables z±

is transported by the other z∓

Y ±(`) ≡
〈
|∆z±|2∆z∓‖

〉
= −4

3
ε± `

which in terms of velocity u and magnetic field b reads〈[
|∆u|2 + |∆b|2 ± 2 ∆u ·∆b

] (
∆u‖ ∓∆b‖

)〉
= −4

3
ε± `

coupling energy |u|2 + |b|2 and cross-helicity u · b cascades

Does it hold in the solar wind ???
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Verification in the Ulysses data

The Ulysses mission first north polar pass during the year 1996 at solar minimum
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The solar wind as seen by Ulysses

High-latitude θ > 35 ◦

fast |u| > 700 km/s

polar solar wind

near solar minimum

1995 – 1996
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The solar wind as seen by Ulysses

High-latitude θ > 35 ◦

fast |u| > 700 km/s

polar solar wind

near solar minimum

1995 – 1996

Use 8 - min average data

of ρ,u and b

to build the Elsässer

variables z±
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Data processing

• Reconstruction of the spatial (radial) dependence

using the Taylor’s frozen-flow method

u(x, t + τ ) ≈ u(x− u τ, t)

z±(x, t + τ )− z±(x, t) ≈ z±(x− ur τ 1R, t)− z±(x, t)

≈ ∆z±(−ur τ 1R, t)
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Data processing

• Reconstruction of the spatial (radial) dependence

using the Taylor’s frozen-flow method

u(x, t + τ ) ≈ u(x− u τ, t)

z±(x, t + τ )− z±(x, t) ≈ z±(x− ur τ 1R, t)− z±(x, t)

≈ ∆z±(−ur τ 1R, t)

• Use 11 - days ( ≈ 2000 data points) time-average moving window

to build up statistical averages on stationary data sets,

and avoid radial and latitudinal variations
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Yaglom law is observed
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First direct evidence of an MHD turbulent energy cascade in the solar

wind
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Measurements of the cascade rate
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First measurements of the energy transfer rates ε± ≈ 200 J s−1 kg−1
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Effect of compressibility

• Incompressibility is not always satisfied in the solar wind

v/cs ≈ v/cA ≈ 5 – 10 ⇒ ρ 6= const
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⇒ the dissipation per unit volume εV ≡ ρ ε = ρ u3/`

should be statistically constant

rather than the dissipation per unit mass ε
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Effect of compressibility

• Incompressibility is not always satisfied in the solar wind

v/cs ≈ v/cA ≈ 5 – 10 ⇒ ρ 6= const

⇒ the dissipation per unit volume εV ≡ ρ ε = ρ u3/`

should be statistically constant

rather than the dissipation per unit mass ε

⇒ Check for a Yaglom-type law using density-weighted Elsässer fields

w± ≡ ρ1/3 z±

and weighted flux W±(`) ≡

〈
|∆w±|2∆w∓‖

〉
〈ρ〉

∝ −4

3
ε± `
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Compressible scaling
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Compressible scaling is observed

but the compressible pseudo-dissipations ε±C ≈ 3.5 kJ s−1 kg−1

are much larger than the incompressible dissipations ε±I ≈ 200 J s−1 kg−1

⇒ Correlations between density gradients and velocity/magnetic field
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Solar wind heating

Solar wind radial temperature profile T (R)

decreases as a power law T (R) ∼ R−ξ ξ ≈ 0.7 – 1.0

but slower than adiabatic spherical cooling T (R) ∼ R−4/3
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Solar wind heating

Solar wind radial temperature profile T (R)

decreases as a power law T (R) ∼ R−ξ ξ ≈ 0.7 – 1.0

but slower than adiabatic spherical cooling T (R) ∼ R−4/3

⇒ Necessity of in-situ heating . . . Turbulence ?
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Solar wind heating

Solar wind radial temperature profile T (R)

decreases as a power law T (R) ∼ R−ξ ξ ≈ 0.7 – 1.0

but slower than adiabatic spherical cooling T (R) ∼ R−4/3

⇒ Necessity of in-situ heating . . . Turbulence ?
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Measurements in the ecliptic
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The dissipation rate ε depends on the type (fast/slow) of solar wind

and is much higher for slow wind in the ecliptic
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Conclusions

• The solar wind is a real turbulent magneto-hydrodynamic plasma
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Thanks to everybody,
especially to the organizers . . .
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Conclusions

• The solar wind is a real turbulent magneto-hydrodynamic plasma

• Yaglom’s law can be observed and is verified in turbulent MHD plasmas

• The cascade transfer and dissipation rates ε± can be estimated

even without access to the dissipation scales of the flow

• Effects of compressibility are important

• Turbulence can account for (some of) the heating during the solar

wind expansion

Thanks to everybody,
especially to the organizers . . .

and to Fabien !!!
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Alain Arneodo † 2019
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Fabien @ Cargèse 2007
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