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The solar wind
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Measurements in the solar wind
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During solar minimum
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Wind velocity measured by the Helios 2 spacecraft during the year 1976
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Magnetic fluctuations in the solar wind
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Magnetic field,b (nT)

Time, t (days)

Magnetic field measurements by the Helios 2 spacecraft during the year 1976
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Turbulence in the solar wind
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Turbulence in the solar wind

¥

Q
A —
8 16 I3 27 54 08 216

MARINER 2

—— 29 AUG — 29 SEP, 1962 (1)
==== 30 SEP - 3| OCT, 1962 (2)

Ier

TOT PWR (1)= 8242
TOT PWR (2+9.3,2

]
3
X
-
™
>
=
a
z
]
a
=
w
2

w* [
[ ot r 2 frequency (H2)
FREQUENCY (Mz)

Power spectrum of the magnetic fluctuations

5,26



=|

Kl

Turbulent spectrum in the solar wind [>]
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Magnetic power spectra measured by the Helios 2 spacecraft at different distances
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Examples of power spectra

Brownian noise S,,,(v) = (27v)~* ~ Sawtooth wave Ses(v) = (2mv)~?

Velocity, v(x)
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Examples of power spectra

Brownian noise S,,,(v) = (27v)~* ~ Sawtooth wave Ses(v) = (2mv)~?

1

1d

10°

Velocity, v(x)

10"

10°

o 0.25 0.5 0.75

Same spectrum but different type and distribution of singularities
= Necessity to look at other quantities... Higher-order moments 7

=[] [¥] [a][=]

7/26



Irreversibility of time
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Irreversibility of time
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Statistics of gradients or increments are not invariant by time-reversal
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Energy injection, transfer and dissipation
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Ando Hiroshige, The Naruto rapids
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Dissipation mechanisms

Consider the velocity difference uy between two points
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separated by a distance /. How can it be annihilated ?
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Dissipation mechanisms
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Consider the velocity difference uy between two points
separated by a distance /. How can it be annihilated ?

e Dissipation by viscosity
62

Ou=vd*u = )~ ~
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Dissipation mechanisms

Consider the velocity difference uy between two points
separated by a distance /. How can it be annihilated ?

e Dissipation by viscosity

62
Ou=vd*u = mpl)~—
U
e Non-linearity
14
8tu =F u@xu =0 = TNL(@ ~ u—
14
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Dissipation mechanisms

Consider the velocity difference uy between two points
separated by a distance /. How can it be annihilated ?

e Dissipation by viscosity

62
Ou=vd*u = mpl)~—
U
e Non-linearity
14
ou+ud,u=0 = TNL(@ ~ u—
14

The ratio of these two times at large scale is the Reynolds number

ml) o UL
TNL<L) _%_ 1%
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Energy cascade
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Energy cascade
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Energy cascade
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Energy cascade
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Yaglom and Kolmogorov relations
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Take the difference of Navier-Stokes equations
—1
ou+u-Vyu=— Va,PJrz/Viuan
p
at two points « and ' = x + r to get an equation

for the velocity difference Au(r;x,t) = u(x + r,t) — u(x, )
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Yaglom and Kolmogorov relations

Take the difference of Navier-Stokes equations
—1
ou+u-Vou=—VyP+vViu+f
P
at two points « and ' = x + r to get an equation

for the velocity difference Au(r;x,t) = u(x + r,t) — u(x, )
then multiply by 2 Au and average over the space x to get

O {|Aul?) + V.. - {|AuPAu) = 20 Vi (|Aul?) — 4v (| Vul?)
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Yaglom and Kolmogorov relations

Take the difference of Navier-Stokes equations
—1
ou+u-Vou=—VyP+vViu+f
P
at two points « and ' = x + r to get an equation

for the velocity difference Au(r;x,t) = u(x + r,t) — u(x, )
then multiply by 2 Au and average over the space x to get

O {|Aul?) + V.. - {|AuPAu) = 20 Vi (|Aul?) — 4v (| Vul?)

so that in stationary conditions and in the limit v — 0

Ve ([AuffAu) = —de e=——=v(|Vu[’)
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Yaglom and Kolmogorov relations
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Take the difference of Navier-Stokes equations
—1
ou+u-Vou=—VyP+vViu+f
P
at two points « and ' = x + r to get an equation

for the velocity difference Au(r;x,t) = u(x + r,t) — u(x, )
then multiply by 2 Au and average over the space x to get

O {|Aul?) + V.. - {|AuPAu) = 20 Vi (|Aul?) — 4v (| Vul?)

so that in stationary conditions and in the limit v — 0

Ve ([AuffAu) = —de e=——=v(|Vu[’)

which in case of isotropy implies {|Au|*Au) = —4/3 er  (Yaglom)

and using local isotropy again <[Aul]3> = —4/5er; (Kolmogorov)
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" Exact” conservation laws

=[] [¥] [a][=]

12 ) ( 5 ( .
a3 " _ <[Aui] > 2dy8i<[Aui] > (lc1d)
g cr ¢ = { —(ruPau) + { 20V, (jAuP)  (3cld)
4 ¢ — V., - {|Au]*Au) 2v Vi {|Aul?)  (3¢3d)
J \ \
Total dissipation Transfer Viscous dissipation
at scale r to scales < r at scale r

e Scale by scale energy conservation =- no pileup of energy
e Increasing generality (Monin's law valid for anisotropic flows)

e Increasing experimental difficulty
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The Kolmogorov spectrum
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In the inertial range
LK<l
(A (€))°) = —4/5¢el
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The Kolmogorov spectrum
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In the inertial range
LK<l
(Buy(0)?) = —4/5¢ ¢

By self-similarity

(Auy()P) = Cy (e £p?
((Auy(0))%) = Co (e 0)?
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The Kolmogorov spectrum

=[] [¥] [a][=]

In the inertial range
LK<l
(Buy(0)?) = —4/5¢ ¢

By self-similarity
(Auy(0)P) = Cy (e £
((Auy(0))%) = Co (e 0)?

E(k) = Cg e¥? k=53
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The Kolmogorov spectrum

¥

trace of magnetic fied spectral matrix

In the inertial range
LK<l
(Buy(D)?) = —4f5¢

By self-similarity
((Auy(0))P) = Cp (e )2
((Auy(0))) = Ca (e £)*2

E(k) = Cg e¥? k=53

frequency [Hz]

14/26



Magneto-Hydrodynamics

For a charged fluid at velocities © < ¢ in a mean magnetic field B,
velocity w and magnetic field b perturbations obey the MHD equations

V-u=V-b =10 B=DB;+b
1

Gtqu’u,Vu = —Vp—l—ﬂ(VXb)XB—FVvQ’U,
T

Ob = V x (ux B)+1nV?b
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Magneto-Hydrodynamics

For a charged fluid at velocities © < ¢ in a mean magnetic field B,
velocity w and magnetic field b perturbations obey the MHD equations

V. u=V.b =0 B =B),+b

1
ou+u-Vu = —Vp+ﬂ(V><b)><B+yV2u
s

Ob = V x (ux B)+1nV?b

Consider the Elssser variables z* = w + (47p) /2 b
V.2t =0
Ozt + 2T . V2t = —Vp*+ecp- Vi +1EV22T +0TV2eT

where ¢, is the Alfvén velocity (47p)~ /2By and v* = (v £ 1) /2
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Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations,
+
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excepted that one of the Elsasser variables z
is transported by the other z™

4
YE@) = <\Azimz” > —
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Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations,
excepted that one of the Elsisser variables z*

is transported by the other z™

4
YE@) = <\Azimzn > —

which in terms of velocity « and magnetic field b reads

Aul? + |Ab]? £ 2 Au - Ab| (Auy F Ab :—%eiﬁ
[ [ 3

coupling energy |u|? + |b|? and cross-helicity u - b cascades
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Yaglom equations for MHD turbulence

Derivation as for the Navier-Stokes equations,
excepted that one of the Elsisser variables z*

is transported by the other z™

4
YE@) = <\Azimz” > —

which in terms of velocity « and magnetic field b reads

Aul? + |Ab]? £ 2 Au - Ab| (Auy F Ab :—%5i€
[ [ 3

coupling energy |u|? + |b|? and cross-helicity u - b cascades
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Verification in the Ulysses data

. . Ulysses
North Polar Pass L5 . First Solar Orbit

Jun.-Se,p 1985 -

Earth Orbit

Perihelion |
Mar1995 * Launch

Jupiter Orbit

South Polar Pass . . 1994
Jun-Nov 1994 ’

Uhysses position an 01 10 1997

The Ulysses mission first north polar pass during the year 1996 at solar minimum
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The solar wind as seen by Ulysses

1000
ULYSSES/SWOOPS

Los Alamos
Space and Atmospheric Sciences

1000
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LASCO €2 (NRL)

High-latitude 6 > 35°
fast |u| > 700 km /s
polar solar wind

near solar minimum

1995 — 1996
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The solar wind as seen by Ulysses

ULYSSES/SWOOPS

Los Alamos
Space and Atmospheric Sciences

1000

ULYSSES/MAG

Imperial College
®0utward IMF
@Inward IMF

1000

1000

Speed (km s™')

1000

" EIT (NASA/GSFC)
Mauna Loa MK3 (HAO)
LASCO C2 (NRL)

High-latitude 6 > 35°
fast |u| > 700 km /s
polar solar wind

near solar minimum

1995 — 1996

Use 8- min average data
of p,u and b
to build the Elsasser

variables z*
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Data processing

e Reconstruction of the spatial (radial) dependence

using the Taylor's frozen-flow method

u(x,t+7)

25z, t +7) — z5(x, t)

Y
Y
a4

[

Y
Y

u(x —u T,t)
25 (x — Uy T1g,t) — 25 (x, 1)

Az= (=, T 1p,t)

=[] [¥] [a][=]

19/26



Data processing

e Reconstruction of the spatial (radial) dependence
using the Taylor's frozen-flow method

u(x,t+7) ~ ulx —urT,t)
25z, t+7)— 25 (x,t) = 25 (x — U T1g,t) — 25 (x, 1)

~ Az" (=, 71p,t)

e Use 11-days ( =~ 2000 data points) time-average moving window
to build up statistical averages on stationary data sets,
and avoid radial and latitudinal variations
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Yaglom law is observed

Y1) (km’/s?)

First direct evidence of an MHD turbulent energy cascade in the solar

wind

1996, day 104

1996, day 24
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Measurements of the cascade rate

Ulysses, 1996, hourly means
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First measurements of the energy transfer rates ¢* ~ 200 J s~ kg™
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Effect of compressibility

e Incompressibility is not always satisfied in the solar wind
v/cs=v/ca =5-10 = p # const
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Effect of compressibility

e Incompressibility is not always satisfied in the solar wind
v/cs = v/cy =5-10 = p # const

= the dissipation per unit volume ey = pe = pu’//{

should be statistically constant

rather than the dissipation per unit mass ¢
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Effect of compressibility

e Incompressibility is not always satisfied in the solar wind

v/cs = v/cy =5-10 = p # const
= the dissipation per unit volume ey = pe = pu’//{
should be statistically constant

rather than the dissipation per unit mass ¢

= Check for a Yaglom-type law using density-weighted Elsasser fields
w® = pl/3 2%
+2
<]Afw | AwﬁF> 4

d weighted fl £(0) = —— =
and weighted flux W=(¢) B o —3 €
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Compressible scaling

1996, days 24-33

+
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Compressible scaling is observed

but the compressible pseudo-dissipations 5% ~ 3.5kJs lkg™!

are much larger than the incompressible dissipations eft ~200Js ke !
= Correlations between density gradients and velocity /magnetic field
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Solar wind heating

Solar wind radial temperature profile T'(R)
decreases as a power law T(R) ~ R~  £~0.7-1.0
but slower than adiabatic spherical cooling T'(R) ~ R™Y/3
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Solar wind heating

=[] [¥] [a][=]

Solar wind radial temperature profile T'(R)

decreases as a power law T(R) ~ R~  £~0.7-1.0
but slower than adiabatic spherical cooling T(R) ~ R~4/*
= Necessity of in-situ heating ... Turbulence ?
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Solar wind heating

Solar wind radial temperature profile T'(R)

decreases as a power law T(R) ~ R~  £~0.7-1.0
but slower than adiabatic spherical cooling T(R) ~ R~4/*
= Necessity of in-situ heating ... Turbulence ?
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Measurements in the ecliptic

Ulysses data, from 1996 day 220
900 . :
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The dissipation rate £ depends on the type (fast/slow) of solar wind

and is much higher for slow wind in the ecliptic
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Conclusions

e The solar wind is a turbulent magneto-hydrodynamic plasma (]
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e Yaglom's law can be observed and is verified in turbulent MHD plasmas
e The cascade transfer and dissipation rates e* can be estimated
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Conclusions

e The solar wind is a turbulent magneto-hydrodynamic plasma

e Yaglom's law can be observed and is verified in turbulent MHD plasmas
e The cascade transfer and dissipation rates e* can be estimated
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Conclusions
e The solar wind is a turbulent magneto-hydrodynamic plasma
e Yaglom's law can be observed and is verified in turbulent MHD plasmas

+ can be estimated

e The cascade transfer and dissipation rates ¢
even without access to the dissipation scales of the flow

e Effects of compressibility important

e Turbulence can account for (some of) the heating during the solar

wind expansion
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Conclusions
e The solar wind is a turbulent magneto-hydrodynamic plasma
e Yaglom's law can be observed and is verified in turbulent MHD plasmas

+ can be estimated

e The cascade transfer and dissipation rates ¢
even without access to the dissipation scales of the flow

e Effects of compressibility important

e Turbulence can account for (some of) the heating during the solar

wind expansion

Thanks to everybody,
especially to the organizers . ..
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Conclusions
e The solar wind is a turbulent magneto-hydrodynamic plasma
e Yaglom's law can be observed and is verified in turbulent MHD plasmas

+ can be estimated

e The cascade transfer and dissipation rates ¢
even without access to the dissipation scales of the flow

e Effects of compressibility important

e Turbulence can account for (some of) the heating during the solar

wind expansion

Thanks to everybody,
especially to the organizers . ..

and to Fabien !l
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Alain Arneodo 7 2019
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Fabien @ Cargese 2007
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